What do heating your living room, financial investments, and image processing have in common?

Xavier Cabré

ICREA Research Professor at the UPC

15/01/2013 - 52nd ICREA Colloquium
There is a striking resemblance on the modeling of

- heat &
- option prices in Finance

In both cases the basic object is the same: "the Laplacian" after Pierre-Simon, marquis de Laplace (1749-1827)

It is responsible for many phenomena in our lives
A first example:

what is the **temperature** of a certain tile in your living room's floor, long after you turn on the wall radiators at **30°C** while the remaining of the walls are always kept at **0°C**?
"What do heating your living room, financial investments, and image processing have in common?"
Xavier Cabré
iCrea
"What do heating your living room, financial investments, and image processing have in common?" Xavier Cabré

iCrea
A second question (on images):
which color (red level) would you give to the missing pixels?
Robert Brown (1773-1858), biologist

Looking through a microscope at pollen grains in water, he noted that the grains moved randomly through the water.

BROWNIAN MOTION

Think also on a large plastic beach ball on the stands of a stadium totally full of people.
A third question (of finance type):

what is your **expected gain** when,

starting always from the same given tile in your living room, you walk randomly and you get **30€** only when you hit a radiator on the first time that you hit your living room's walls (otherwise you get **0€**)?
• A third question (of **finance** type)

ANSWER: at every point one has

expected gain = temperature !!
How to solve the problem:

- make a **squared lattice** of very small step-size h
- Move from a point to either East, West, North, or South, each one with **probability** 1/4
How to solve the problem:

- make a **squared lattice** of very small step-size h
- Move from a point to either **East, West, North, or South**, each one with **probability 1/4**

$C = \text{starting point of the walk}$

$u(C) = \text{expected gain starting from } C$

\[
u(C) = \frac{1}{4} \{u(E) + u(W) + u(N) + u(S)\}
\]

(average)
Some math:

\[\Delta u (x, y) = (\partial_{xx} u + \partial_{yy} u) (x, y) = 0 \]

The LAPLACIAN of \(u = 0 \)
Harmonic functions are characterized by the mean value property:

The value of the function at the center of any circle =
the average of the values of the function on the circle

OK with HEAT, and with EXPECTED GAIN!
\[\Delta u = \partial_{xx} u + \partial_{yy} u = 0 \]

is called the [Laplace equation](#).

It is a **Partial Differential Equation** (a PDE) (also called the equations of Mathematical Physics).

Its solutions are called “harmonic functions”. Together with solutions of the heat or diffusion equation

\[\partial_t u - \Delta u = 0 \]

(and other equations of the same type), they model:

- **heat** (Fourier and Einstein)
- **option prices** in Finance
- gravitational and electric potentials (Laplace)
- densities of biological or chemical species
Partial Differential Equations. Types:

1. Elliptic: Laplace equation: \(\Delta u = \partial_{xx} u + \partial_{yy} u = 0 \)

2. Parabolic:
 - **Heat** or diffusion equation: \(\partial_t u - \Delta u = 0 \)
 - Navier-Stokes (or 1 million $) equations
 (incompressible viscous **fluids**)
 \[\begin{align*}
 \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} - \nu \Delta \mathbf{u} &= - \nabla p \\
 \text{div } \mathbf{u} &= 0
 \end{align*} \]

3. Hyperbolic:
 - **Wave** equation
 (acoustics, sound-waves)
 \(\partial_{tt} u - \Delta u = 0 \)
 - Schrödinger equation
 (quantum mechanics)
 \(i \partial_t \mathbf{u} + \Delta \mathbf{u} = 0 \)
 - Euler's equations
 (incompressible **fluids**)
 \[\begin{align*}
 \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} &= - \nabla p \\
 \text{div } \mathbf{u} &= 0
 \end{align*} \]
Some other important PDEs:

a. Linear equations.
1. Laplace’s equations: \(\Delta u = 0 \)
2. Helmholtz’s equation (involves eigenvalues): \(-\Delta u = \lambda u \)
3. First-order linear transport equation: \(u_t + cu_x = 0 \)
4. Heat or diffusion equation: \(u_t - \Delta u = 0 \)
5. Schrödinger’s equation: \(iu_t + \Delta u = 0 \)
6. Wave equation: \(u_{tt} - c^2 \Delta u = 0 \)
7. Telegraph equation: \(u_{tt} + d u_t - u_{xx} = 0 \)

b. Nonlinear equations.
1. Eikonal equation: \(|Du| = 1 \)
2. Nonlinear Poisson equation: \(-\Delta u = f(u) \)
3. Burgers’ equation: \(u_t + u u_x = 0 \)
4. Minimal surface equation: \(\text{div} \left(\frac{Du}{(1 + |Du|^2)^{1/2}} \right) = 0 \)
5. Monge-Ampère equation: \(\text{det}(D^2 u) = f \)
6. Korteweg-deVries equation (KdV): \(u_t + u u_x + u_{xxx} = 0 \)
7. Reaction-diffusion equation: \(u_t - \Delta u = f(u) \)

1. Evolution equation of linear elasticity: \(u_{tt} - \mu \Delta u - (\lambda + \mu) D(\text{div} u) = 0 \)
2. System of conservation laws:
 \(u_t + \text{div} F(u) = 0 \)
 \(\{ \begin{align*}
 \text{curl} E &= -B_t \\
 \text{curl} B &= \mu_0 \varepsilon_0 E_t \\
 \text{div} B &= \text{div} E &= 0
 \end{align*} \)
3. Maxwell’s equations in vacuum:
4. Reaction-diffusion system:
5. Euler’s equations for incompressible, inviscid fluid:
6. Navier-Stokes equations for incompressible viscous fluid: