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a part of the Iwasawa 2019 conference, June 19–28, 2019, in Bordeaux. They were LATEX’ed
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1. Lecture 1: June 19

1.1. The BSD Conjecture. The goal of these lectures is to describe some recent progress
towards the Birch–Swinnerton-Dyer conjecture in cases when the ground field is not Q and
in the rank 2 case. These are cases where Heegner points are not available, so they are not
covered by the methods of Gross–Zagier [GZ86] and Kolyvagin [Kol90]. We start with a
review of the conjecture and these classical methods.

Let E/Q be an elliptic curve of conductor NE. For ` prime, the Tate module is

V`(E) =

(
lim←−
n

E[`n]

)
⊗Q`.

The absolute Galois group GQ = Gal(Q/Q) acts on V`(E) and yields

%E,` : GQ → Aut(V`(E)) ∼= GL2(Q`).

The family of Galois representations {V`(E)}` is a compatible system of Galois representations
(in the sense that for any p 6= `, the characteristic polynomial of Frobp has Z-coefficients,
independent of `).

Definition 1.1. The L-function of the elliptic curve E is

L(E, s) = L({V`(E)}`, s) =
∏
p

(
CharFrobp(p

−s)
)−1

.

Here ` 6= p and Frobp ∈ End(V`(E)Ip) is the arithmetic Frobenius at p acting on the space
of co-invariants of V`(E) for the action of the inertia group Ip.
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Conjecture 1.2 (Birch–Swinnerton-Dyer (BSD)). The order of vanishing of the L-function
at s = 1 is the rank of E(Q):

ords=1 L(E, s) = rankE(Q).

Remark 1.3. Here, L(E, s) has analytic continuation to the complex plane with a functional
equation relating s 7→ 2 − s. This follows from the modularity theorem due to Wiles and
Taylor–Wiles. Therefore, s = 1 is the point of symmetry of the functional equation.

More generally, let H/Q be a finite Galois extension and let ρ : Gal(H/Q)→ GLn(L) be an
Artin representation of degree n (here L/Q is a finite extension).

Definition 1.4. The L-function of E twisted by ρ is

L(E, ρ, s) = L({V`(E)⊗ ρ}`, s)

Definition 1.5. The ρ-isotypic component of E(H) is

E(H)[ρ] = HomGQ(Vρ, E(H)⊗ L).

Conjecture 1.6 (Equivariant BSD). The L-function L(E, ρ, s) admits analytic continuation
and satisfies a functional equation relating L(E, ρ, s) to L(E, ρ∨, 2− s) and

ords=1 L(E, ρ, s) = dimLE(H)[ρ].

Remark 1.7. We usually say ords=1 L(E, ρ, s) is the analytic rank ran(E, ρ) and dimLE(H)[ρ]
is the algebraic rank r(E, ρ).

Remark 1.8. These conjectures are all instances of more general conjectures (Beilison,
Bloch–Kato). The L-functions are motivic L-functions assigned to subquotients of étale
cohomology of some varieties by the same process as above. The right hand sides are dimen-
sions of motivic cohomology groups, which are certain explicit vector spaces, recovering the
above in the case of elliptic curves.

These more general conjectures will be behind the scenes of the next lectures, even when do
not mention them explicitly.

Theorem 1.9 (Kato, 1985–1990). Let ρ : Gal(H/Q)→ L× be a character. If ran(E, ρ) = 0,
then r(E, ρ) = 0.

Theorem 1.10 (Gross–Zagier, Kolyvagin, 1987). Let K = Q(
√
−D) be an imaginary qua-

dratic field, and ψ : Gal(H/K) → L× where H/K is abelian, H/Q is Galois and dihedral
(so the character ψ is anticyclotomic).

Let ρψ = Ind(ψ) : Gal(H/Q)→ GL(Vψ) ∼= GL2(L). Here,

ρψ|Gal(H/K) =

(
ψ 0
0 ψ′

)
where ψ′ : Gal(H/K)→ L× and ψ′(σ) = ψ(cσc) for complex conjugation c.

Then, if ran(E, ρψ) = 0, then r(E, ρψ) = 0. Also, if ran(E, ρψ) = 1, then r(E, ρψ) = 1.

Gross–Zagier [GZ86] proved that if ran(E, ρψ) = 1, then there is an infinite order point on
E(H)[ρ], so r(E, ρψ) ≥ 1. Kolyvagin [Kol90] proved that in that case, the rank is actually 1.
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Questions.

(1) Can we extend results of this type to other Artin representations?
(2) Can we extend them to ran(E, ρ) > 1?

1.2. Modular curves and modular forms. For N ≥ 1, X1(N) is the compactification of
the moduli space of (A,P ) where

• A is an elliptic curve,
• P is a point of exact order N in A.

By the theory of Shimura varieties, this admits a natural model over Q.

Similarly, X0(N) is the compactification of the moduli space of (A,C) where

• A is an elliptic curve,
• C is a cyclic subgroup of A of order N .

There is a forgetful map

X1(N)→ X0(N)

(A,P ) 7→ (A, 〈P 〉).

For k ≥ 0, let Mk(N) be the space of modular forms of weight k on X1(N). Geometrically,

Mk(N) = H0(X1(N), ω⊗k),

where ω is a line bundle on X1(N) whose fiber ar a non-cuspidal point x = (A,P ) is Ω1
A. The

fiber of ω at cusps is defined by means of the Tate curve and logarithmic poles are allowed.
See [Kat73] for a detailed account of the theory of geometric modular forms.

If χ : (Z/NZ)× → Q× is a Dirichlet character, Mk(N,χ) is the space of modular forms of
nebentype χ under the action of diamond operators. Then

Mk(N) =
⊕
χ

Mk(N,χ).

Let f ∈ Sk(N,χ) be a normalized primitive Hecke eigenform (a newform of level N). If
f =

∑
n≥1

an(f)qn is the q-expansion, let L(f) = Q({an(f)}n≥1), which is a finite extension

of Q.

By Eichler–Shimura (k = 2), Deligne (k > 2), Deligne–Serre (k = 1), there exists a Galois
representation

ρf,` : GQ → GL(Vf,`) ∼= GL2(L`(f)),

where L`(f) is the completion of L(f) in Q`.

Remark 1.11. The original work of Eichler–Shimura (see [Shi71]) realizes it in the Jacobian
of X1(N). Deligne [Del73] uses the cohomology of Kuga–Sato varieties whose fibers are
products of elliptic curves. Deligne–Serre [DS74] use congruences to reduce the case k = 1
to the other cases.
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If k = 2 and L(f) = Q, {V`(f)} = {V`(E)} for some elliptic curve E/Q. Conversely, given
E/Q there exists f ∈ S2(N) such that V`(f) = V`(E) (this is the famous modularity theorem,
proved by Wiles and Taylor–Wiles).

If k = 1, ρf is an Artin representation, meaning that it factors through a finite extension
and takes values in L(f):

GQ GL2(L`(f))

Gal(H/Q) GL2(L(f)).

ρf

ρf

Conversely (under some mild hypotheses), if ρ : Gal(H/Q)→ GL2(L) is such that det(ρ(c)) =
−1, then {Vρ}` = {V`(f)}` for some f ∈M1(N). This follows from the work of many math-
ematicians, most notably including Khare and Wintenburger.

We can finally recast the Theorem of Gross–Zagier and Kolyvagin 1.10 in terms of modular
forms.

Theorem 1.12 (Gross–Zagier, Kolyvagin). Let f = fE ∈ S2(N) be the modular form
attached to E and g = gψ ∈ M1(N) be the weight one form attached to ρψ. Let L(f, g, s) =
L({V`(f)⊗V`(g)}`, s) be Rankin’s L-function attached to (f, g). It is known to have analytic
continuation and functional equation (for any two modular forms f and g).

If ords=1 L(f, g, s) = r ∈ {0, 1}, then dimLE(H)[ρψ] = r.

2. Lecture 2: June 19

2.1. Triple product L-function. We saw that if E/Q is an elliptic curve, then there is an
attached modular form f = fE ∈ S2(NE).

Let g ∈ S1(Ng, χ), h ∈ S1(Nh, χ
−1). The triple product L-function of eigenforms (f, g, h) of

weights (2,1,1) is
L(f, g, h, s) = L({V`(f)⊗ V`(g)⊗ V`(h)}`, s).

This is known as Garrett’s L-function, who proved that it admits analytic continuation and
a functional equation relating s to 2− s.
Conjecture 2.1 (BSD for triple product L-function). We have that

ords=1 L(f, g, h, s) = dimLE(H)[ρg ⊗ ρh]
where ρg, ρh : GQ → GL2(L) are the Artin representations attached to f and g, and H is a
field such that both of them factor through Gal(H/Q).

Special cases.

(I) Let K = Q(
√
±D) be a real or imaginary quadratic field and ψg, φh : GK → L× be

character of finite orders (and if K is real, take ψg, ψh to be mixed signature). Then
Vg = Ind(ψg), Vh = Ind(ψh) are odd 2-dimensional Artin representations and hence,
by modularity, there exist

g ∈M1(Ng, χg), h ∈M1(Nh, χh)
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such that

ρg ∼= Ind(ψg), ρh ∼= Ind(ψh).

Remark 2.2. Here, g and h are cusp forms if the representations Vg, Vh are irre-
ducible; for example, ψg 6= ψ′g and same for h.

Assume that χ := χg = χ−1h and g, h are cusp forms. Then the triple product
L-function factors as

L(f, g, h, s) = L(f/K, ψ1, s) · L(f/K, ψ2, s)

where ψ1 = ψgψh and ψ2 = ψgψ
′
h, because

Vg ⊗ Vh = Ind(ψ1)⊕ Ind(ψ2).

(II) Take g ∈ S1(N,χ) arbitrary, h = g∗ = g ⊗ χ−1, characterized by the fact that

a`(h) = a`(g) for (`,Ng) = 1. Then

L(f, g, h, s) = L(f, s) · L(f, ad0(g), s).

Question. Can one construct a point Pf,g,h ∈ E(H)[ρg ⊗ ρh] which is non-zero when
L(f, g, h, 1) = 0?

In order to (attempt to) answer this question, it is helpful to look at the wider setting of
triples

fk ∈ Sk(Nf ), f` ∈ S`(Ng, χ), hm ∈ Sm(Nh, χ
−1).

Assume throughout that the local signs of the functional equation of L(fk, g`, hm, s) at finite
primes are all εv(fk, g`, hm) = +1. This is always the case for instance if (Nf , Ng, Nh) = 1.

Then there is a functional equation:

L(fk, g`, hm, s) = ε(f, g, h)L(fk, g`, hm, k + `+m− 2− s)
(after completing L(s) at ∞), where

ε(f, g, h) =


+1 if one of the weights dominates the others

i.e. if k ≥ `+m or ` ≥ k +m or m ≥ k + `

−1 otherwise, i.e. (k, `,m) is balanced.

Note that (k, `,m) is balanced exactly when the three numbers k, `,m are the sides of a
triangle.

The center of symmetry is c = k+`+m−2
2

.

• At (k, `,m) = (2, 1, 1), k = 2 is dominant, because 2 ≥ 1 + 1. Therefore, ε(f, g, h) =
+1, so ords=1 L(f, g, h, s) is even, so we expect the algebraic rank r(E, ρg ⊗ ρh) to be
even.
• In (I) and (II), we have L(f, g, h, s) = L1(s)L2(s) and ran(L1) and ran(L2) have the

same parity. In particular, we may recover this from Gross–Zagier in a particular
case.
• When (k, `,m) is balanced, so that ε = −1, the analytic rank ran(f, g, h) is odd, so

BSD for higher dimensional varieties (Bloch–Kato) predicts the existence of at least
one 0 6= Pf,g,h ∈ CH(Kuga–Sato varieties). Together with Darmon in [DR14], we
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propose a candidate for Pf,g,h and conjecture that the height of Pf,g,h is a non-zero
factor multiplied by L′(f, g, h, c); cf. Theorem 4.1.

The goal is to define a p-adic analogue of the first non-zero term of L(fk, g`, hm, s) in the
Taylor expansion at s = c.

Let (k, `,m) ∈ Σg, so ` ≥ k +m. Then ε(f, g, h) = +1. In this case, generically, L(f, g, h, s)
will not vanish at s = 1 and hence we can hope to interpolate these values p-adically.

We draw the regions in Z3 corresponding to the three weight dominating and to when they
are balanced as follows:

Σbal

Balanced region

k `

m

Σg

g dominates

` ≥ k +m

Σf

f dominates

k ≥ `+m

•
(2, 1, 1)

h dominates

Σh

m ≥ k + `

The idea is to construct a p-adic L-function that interpolate the values of L(fk, g`, hm, c) at

{(k, `,m) | ` ≥ k +m and k, `,m ≥ 2} ⊆ Σg

and then evaluate it outside of the region of interpolation, as for instance at (2, 1, 1) ∈ Σf .
It is also interesting to investigate what evaluation at other points outside the region of
interpolation gives, but we will only mention this in passing (cf. Theorem 4.1 for evaluation
in balanced region).

2.2. Algebraicity result. The key to constructing the p-adic L-function is to establish that
the values of the L-functions are algebraic (at least up to an explicit period).

Theorem 2.3 (Harris–Kudla [HK91], Ichino [Ich08], Watson [Wat02]). If ` = k +m,

L(fk, g`, hm, c) = (∗)〈fk · hm, g`〉2.
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Equivalently,

L(fk, g`, hm, c)
1/2

〈g`, g`〉
= (∗)〈fk · hm, g`〉

〈g`, g`〉
.

Here, (∗) is an explicit constant.

The right hand side may be interpreted algebraically (using Poincaré duality and algebraic
modular forms), so it is suitable for p-adic interpretation. Note also that fk ·hm is a weight `
modular form and hence can be expressed in terms of the orthogonal basis of S`, which gives:

〈fk · hm, g`〉
〈g`, g`〉

=
coefficient of fk · hm at g`

in the spectral decomposition
of S`(N,χ)

Therefore, this quantity belongs to

L(f, g, h) = Q({an(f), an(g), an(h)}n≥1) ⊆ Q ⊆ Qp.

We need a slightly stronger version of this theorem, which applies to all weight ` ≥ k + m.
To do this, we recall the Maass–Shimura operator δ on the space of real-analytic modular
forms SC

∞

k (N). It is defined as follows:

δ : SC
∞

k (N)→ SC
∞

k+2(N), δ(f(z)) =
1

2πi

(
∂f

∂z
+

k

2iy
f

)
where z = x+ iy.

We are now ready to state the full version of Theorem 2.3.

Theorem 2.4 (Harris–Kudla, Ichino, Watson: Part II). If ` = k +m+ 2t for t ≥ 0,

L(fk, g`, hm, c)
1/2

〈g`, g`〉
= (∗)〈δ

t(fk) · hm, g`〉
〈g`, g`〉

.

By the same argument as above (due to Shimura), one shows that

〈δt(fk) · hm, g`〉
〈g`, g`〉

∈ Q.

For any r ≥ 0, define the space of nearly holomorphic modular forms of weight k, level N ,
and order r as

N r
k (N) =

{
r∑
i=0

1

yi
· hi

∣∣∣∣∣ hi holomorphic

}
⊆ SC

∞

k (N).

For any t ≤ r, if f ∈ Sk(N) then δt(f) ∈ N r
k+2t(N).

The goal for the next lecture is to define a p-adic L-function by using p-adic families and
give a p-adic interpretation of the above formulas.
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3. Lecture 3: June 20

The references for the next two lectures include [Urb14], [DR14], [DLR15], but we will try
to give more specific references.

Recall from the previous lecture that we have the following spaces:

H0(X,ωk) Mk(N) = N0
k N1

K · · · N r
k H0(XC∞

, ωk)

Mk−2 Mk−2r

=

δ δr

In [Urb14], Urban proves that there is a sheaf Hr
k on X together with a map of sheaves

Hr
k → ωk over XC∞

such that the induced map

H0(X,Hr
k)→ N r

k ⊆ H0(XC∞
, ωk)

is an isomorphism. The map Hr
k → ωk exists thanks to the Hodge decomposition which for

any elliptic curve A/C says that

H1
dR(A/C) = Ω1(A)⊕ Ω

1
(A).

We want to give meaning to the quantify 〈δt(fk) · hm, g`〉 appearing in Theorem 2.4 over Cp.

• Classical modular forms with coefficients in Cp are

Mk(N,Cp) = H0(X/Cp, ω
k).

• Note that δt(fk) ∈ H0(X/Cp, H
t
k+2t) makes sense, but there is no Hodge decompo-

sition over Cp and no map Hr
k → ωk over X/Cp. We give a way to get around this

difficulty next.

Let A/OCp be an ordinary elliptic curve, i.e. A[p] ∼= Z/pZ. Then

H1
dR(A) = Ω1(A)⊕ U

where U is the free OCp-submodule of rank 1 on which Frobp acts invertibly by multiplication
by ap(A) ∈ O×Cp . This is the unit-root decomposition on this elliptic curve.

Therefore, define
Xord
/Qp = {x = [A,P ] ∈ X(Cp) | A is ordinary}.

We define p-adic modular forms as

M
(p)
k (N) = H0(Xord, ωk).

Note that the space Xord is smaller, so the sheaf ωk has more sections over it. Therefore,
these are not just classical modular forms with coefficients in Cp, as above.

Remark 3.1. Jan Vonk’s lecture course will be devoted to overconvergent modular forms,
which are sections of ωk on a slightly larger variety Xε ⊃ Xord (where we allow ourself to
glue an annulus of width ε > 0 around the ordinary region). While these ideas are certainly
present in the background, and are actually necessary to justify some of the claims, we do
not make explicit reference to them in this mini course and rather refer to Vonk’s lectures
for that.
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There is a map of sheaves Hr
k → ωk over Xord and hence we have a map

N r
k ⊆ H0(Xord, Hr

k)→ H0(Xord, ωk) = M
(p)
k (N).

We may thus regard δt(fk) in M
(p)
k+2t(N). On q-expansions,

δt

(∑
n≥1

anq
n

)
=
∑
n≥1

ann
tqn.

Altogether, we have shown that

〈δt(fk) · hm, g`〉
makes sense in Cp for k, `,m ∈ Z≥2. We still need to allow the weights k, `,m and the
exponent t to vary p-adically.

From now on, assume that fk, g`, hm are ordinary at p, i.e.

ap(fk), ap(g`), ap(hm) ∈ O×Cp .

We can factor

T 2 − ap(fk)T + pk−1 = (T − αf )(T − βf )
with af ∈ O×Cp (and similarly for g`, hm).

Hida constructed p-adic families of modular forms, known as Hida families:

f ∈ ZpJT KJqK

(actually, we should replace Λ = ZpJT K with a finite extension of it, but we keep it this way
to simplify notation), which can be written as

f =
∑
n≥1

an(f)qn where an(f) ∈ Λ,

such that:

• for all w ∈ Z≥2, fw =
∑

n≥1(an(f))|T=(1+p)w−1q
n ∈ Sw(Np) (this is the weight w

specialization),
• f

k
(q) = fk(q)− βffk(qp)︸ ︷︷ ︸

fαk

∈ Sk(Np), and Up(f
α
k ) = αjf

α
k .

The specializations at w 6∈ Z are overconvergent modular forms; we do not discuss this here
further.

We still have to extend the δt operator p-adically. If n ∈ Zp is divisible by p, the map t 7→ nt

does not make sense in Zp. However, we can define the p-depletion of f to be

f
[p]
k (q) =

∑
n≥1

(p,n)=1

an(fk)q
n.

A priori, it is not clear this is even a modular form. It turns out, however, that this is an
algebraic operation: we have Hecke operators Up and Vp whose effect on q-expansions is:

Up(f) =
∑

apnq
n, Vp(f) =

∑
anq

pn = f(qp)
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and
f
[p]
k = (1− VpUp)fk.

The “family” {δt(f [p]
k )}t∈Zp make sense, in the precise sense that there is δ•(f

[p]
k ) ∈ ZpJT KJqK

such that for all t ∈ Z≥0, δ•(f [p]
k )|T=(1+p)t−1 = δt(f

[p]
k ).

Remark 3.2. This is not a Hida family. It is exactly what we wrote above: an element of
ΛJqK with the described specialization.

Example 3.3. Take k = 2, t = −1 to get:

δ−1(f [p]) =
∑

(p,n)=1

an
n
qn.

This is a p-adic modular form of weight 0, called the Coleman primitive of f .

Let S
(p),ord
k (N) ⊆ S

(p)
K (N) be the subset of f such that ap(f) ∈ O×Cp . Hida defined the

ordinary projector:

eord = lim
n→∞

Un!
p : S

(p)
k (N)→ S

(p),ord
k (N)

which satisfies
eord|S(p),ord

k (N)
= id.

If f, h are Hida families, we can consider

eord(δ•(f [p]) · h) ∈ ZpJT,X,ZKJqK

whose specialization at k,m ∈ Z≥2 and at any t ∈ Z such that ` = k +m+ 2t ≥ 2 is

eord(δt(f
[p]
k ) · hm) ∈ S(p),ord

` (Np).

By Coleman’s classicality theorem1, this is an element of S`(Np).

In symbols,
eord(δ•(f [p]) · h) ∈ S(N,ZpJT,X,ZK)

(this is called a Λ-adic family, where Λ = ZpJT,X,ZK). Note that we may write ZpJT,X,ZK =
ZpJX, Y, ZK because T determined by X, Y, Z.

Define

S(N)JgK = {φ ∈ S(N) | for every (`,N) = 1, (T` − a`(g))n(φ) = 0 for some n ≥ 1}
(where the coefficients are as above), a generalized eigenspace. By multiplicity one,

S(N)JgK = Qp((X, Y, Z)) · g.
There is a natural projector

S(N)
πg

� S(N)JgK
and define

Lgp(f, g, h) · g = πg

[
eord(δ•(f [p]) · h)

]
.

This defines
Lgp : Z3

p → Cp.

1A p-adic overconvergent modular form of classical weight k ≥ 2 is a classical modular form.
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By construction, if (k, `,m) ∈ (Z≥2)3,

Lgp(k, `,m) =
the coefficient at g`
of eord(δtf

[p]
k · hm)

=
〈eord(δtf

[p]
k · hm), g`〉
〈g`, g`〉

.

If moreover, ` ≥ k +m, this is equal to

(∗) · L(fk, g`, hm, c)
1/2

〈g`, g`〉
by Harris–Kudla’s formula 2.4 described in the second lecture.

We have hence achieved the p-adic interplation of the square root of the special values of
this L-function.

4. Lecture 4: June 20

Recall that {(k, `,m) | ` dominates and k, `,m ≥ 2} ⊆ Σg is the region of interpolation of
Lgp(k, `,m).

If (k, `,m) ∈ Σbal, then L(fk, g`, hm, c) = 0 because ε = −1. We expect that

L′(fk, g`, hm, c)
?
= height of Pf,g,h

in an appropriate sense. This is a Gross–Zagier type formula. When the weights are (2,2,2)
this has been proven by S. Zhang, W. Zhang and X. Yuan [YZZ12].

The principle is that Lgp(k, `,m) ∈ Cp plays the role of L′(fk, g`, hm, c). (Indeed, they are
both the first non-zero coefficients in the Taylor expansion).

Here is particular result in this direction, which we call a p-adic Gross–Zagier formula.

Theorem 4.1 (Darmon–Rotger [DR14]). For (k, `,m) ∈ Σbal

Lgp(k, `,m) = (Euler factor) · (p-adic Bloch Kato logarithm of (Pf,g,h)).

We have proved roughly half of this theorem already. Indeed, we have an explicit formula
for the value of the p-adic L-function and we just need to prove it agrees with the right
hand side in the theorem, which is done in [DR14] by resorting to Besser’s finite-polynomial
cohomology.

4.1. Special value at (2, 1, 1). What is the value of Lgp at (2, 1, 1)? This situation was
investigated in [DLR15], [DLR16], and [GG19].

Let E/Q be an elliptic curve and f = fE ∈ S2(N) and p be a prime coprime to N such that E
is ordinary at p. Let f ∈ ΛJqK be a Hida family passing through fα. Take g ∈ S1(N,χ),

h ∈ S1(N,χ
−1) such that

T 2 − ap(g)T + χ(p) = (T − αg)(T − βg)
and αg, βg ∈ O×Cp . Let g, h ∈ ΛJqK be Hida families through gα, hα.

According to the definition of Lgp(f, g, h), we must look at the space

S(N,QpJX, Y, ZK)JgK
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and specialize at k = 2, ` = 1, m = 1, t = −1, so we get:

S
(p),ord
1 (Np,Cp)JgαK.

This is where

eord(d−1(f
[p]
E ) · hα)

belongs to. Before, for weights ≥ 2, we could invoke here Coleman’s classicality result.
However, for weight 1, classicality may not hold, but we instead have the following result.

Theorem 4.2 (Belläıche–Dimitrov [BD16]). Assume αg 6= βg and assume ρg 6∼= Ind(ψ) for
ψ : GK → L×, a character of a real quadratic field in which p splits. Then

S
(p),ord
1 (Np)JgαK = Cpg

α

(where the left hand side is the space of overconvergent ordinary modular forms).

Remark 4.3. In terms of the eigencurve, this theorem is saying that the eigenspace is
smooth and étale over the weight space at these particular weight 1 points. This is how
Belläıche and Dimitrov phrase their theorem.

Assume that the hypothesis of the theorem hold. Then the value of Lgp at (2, 1, 1) is given
by the formula:

Lgp(2, 1, 1) = coefficient of eord(d−1(f [p]) · hα) at gα.

Conjecture 4.4 (Darmon–Lauder–Rotger [DLR15]). Assume

L(E, ρg ⊗ ρh, 1) = L′(E, ρg ⊗ ρh, 1) = 0, L′′(E, ρg ⊗ ρh, 1) 6= 0.

Then

Lgp(2, 1, 1) = c︸︷︷︸
∈L

· det

(
logE,p(P1) logE,p(P2)
logEp(Q1) logE,p(Q2)

)
· 1

logp(ug)

for some (unknown) constant c ∈ L and P1, P2, Q1, Q2, ug described shortly below.

Since ran(E, ρg ⊗ ρh) = 2, by BSD we expect that

dimL HomGQ(Vg ⊗ Vh, E(H)⊗ L) = 2.

Pick a basis:

HomGQ(Vg ⊗ Vh, E(H)⊗ L) = 〈P,Q〉L,
so

P,Q : Vg ⊗ Vh → E(H)⊗ L.
Pick also a basis Vg ⊗ Vh = 〈eαα, eαβ, eβα, eββ〉 where Frobp(eαα) = αgαheαα and similarly for
eαβ, eβα, eββ. Define

P1 = P (eβα), P2 = P (eββ),
Q1 = P (eβα), Q2 = Q(eββ)

in E(H)⊗ L.

Finally, ug ∈ O×Hg [ad0(g)]⊗ L is characterized by Frobp(ug) = βg
αg
⊗ ug, where Hg is the field

cut out by ad0(g). This is a Stark unit.
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4.2. Evidence for the conjecture.

(1) Numerical evidence in many cases (Lauder’s algorithm),
(2) The main theoretical evidence is [DLR15, Theorem 3.1] which proves conjecture when

g = Ind(ψg), h = Ind(ψh), where ψg, ψh : GK → L× are characters of an imaginary
quadratic fieldK. This can be done by proving a factorization of the p-adic L-function
into Katz p-adic L-functions and using results of Bertolini–Darmon–Prasanna.

(3) If we replace fE with an Eisenstein series of weight 2, there is a natural generalization
of this conjecture, where Pi, Qi are replaced with Stark units. This is done in [DLR16].

(4) Gatti and Guitart [GG19] generalize these conjectures to higher weights and provide
theoretical and numerical evidence.

(5) Rivero and Rotger [RR18] prove it when h = g∗. The proof uses exceptional zeros
and Hida’s improved p-adic L-function.
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