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Classical Heegner points

Let E,q be an elliptic curve and

f=> anq" € S(N) with L(E,s) = L(f,s).

n>1
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Classical Heegner points

Let E,q be an elliptic curve and
f=> anq" € S(N) with L(E,s) = L(f,s).

n>1

The modular parametrization is

@ Xo(N)(C) =To(N)\H" — E(C)
T —  Pr:=2ni [ f(z)dz

_ an p2min-T
- Zn21 Fne
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Classical Heegner points

Let E,q be an elliptic curve and

f=> anq" € S(N) with L(E,s) = L(f,s).

n>1
The modular parametrization is

@ Xo(N)(C) =To(N)\H" — E(C)
T —  Pr:=2ni [ f(z)dz

_ an p2min-T
- Zn21 Fne

If - € P'(Q)isacusp: P, € E(Q)ors.
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Classical Heegner points

Let E,q be an elliptic curve and

f=> anq" € S(N) with L(E,s) = L(f,s).

n>1

The modular parametrization is

@ Xo(N)(C) =To(N)\H" — E(C)
T —  Pr:=2ni [ f(z)dz

_ an p2min-T
- Zn21 Fne

If - € P'(Q)isacusp: P, € E(Q)ors.

If - € H N K, where K is imaginary quadratic: P, € E(K?@).



The modular parametrization revisited

@ The universal covering of Xy(N) is

P(Xo(N); 00) = {7 :[0,1] — Xo(N), 7v(0) = oo} /homotopy.
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The modular parametrization revisited

@ The universal covering of Xy(N) is

P(Xo(N); 00) = {7 :[0,1] — Xo(N), 7v(0) = oo} /homotopy.

@ The modular parametrization factors through

@ Xo(N) =m(X(N)\P(Xo(N)) — d(N)—E

Y00~ T — PT::fWu)f,
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The modular parametrization revisited

@ The universal covering of Xy(N) is

P(Xo(N); 00) = {7 :[0,1] — Xo(N), 7v(0) = oo} /homotopy.

@ The modular parametrization factors through

@ Xo(N) =m(X(N)\P(Xo(N)) — d(N)—E

Y00~ T — PT::fWu)f,

as m1(Xo(N)) — C, v = [ wy factors through Hy (Xo(N), Z).
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The modular parametrization revisited

@ The universal covering of Xy(N) is

P(Xo(N); 00) = {7 :[0,1] — Xo(N), 7v(0) = oo} /homotopy.

@ The modular parametrization factors through

@ Xo(N) =m(X(N)\P(Xo(N)) — d(N)—E

Y100~ T = PT::owf,

as m1(Xo(N)) — C, v = [ wy factors through Hy (Xo(N), Z).

@ Chen’s iterated integrals may give rise to anabelian
modular parametrizations of points in E(C).
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Chen’s iterated path integrals

@ Y smooth quasi-projective curve, o € Y base point, Y
universal covering.
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Chen’s iterated path integrals

@ Y smooth quasi-projective curve, o € Y base point, Y
universal covering.

@ The jterated integral attached to a tuple of smooth 1-forms
(wi,...,wp)oONn Yis
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Chen’s iterated path integrals

@ Y smooth quasi-projective curve, o € Y base point, Y
universal covering.

@ The jterated integral attached to a tuple of smooth 1-forms
(w1,...,wn) on Y is the functional

’y|—>/w1-w2'...-wn = /A(’y*w1)(t1)(’y*w2)(t2)-~-(’y*wn)(tn),

where A={0<t, <t 1<--- <t <1}.
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Chen’s iterated path integrals

@ Y smooth quasi-projective curve, o € Y base point, Y
universal covering.

@ The jterated integral attached to a tuple of smooth 1-forms
(w1,...,wn) on Y is the functional

’y|—>/w1-w2'...-wn = /A(’y*w1)(t1)(’y*w2)(t2)-~-(’y*wn)(tn),

where A={0<t, <t 1<--- <t <1}.

@ Whenn=2: fvw = f%an, for F,, primitive of , on V.
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Chen’s iterated path integrals

@ Y smooth quasi-projective curve, o € Y base point, Y
universal covering.

@ The jterated integral attached to a tuple of smooth 1-forms
(w1,...,wn) on Y is the functional

1 [ = [ (a0 we)(l) - (2 wn)(h),
Y
where A={0<t, <t 1<--- <t <1}.
® Whenn=2: [[w-n= [wF, forF, primitive of 7 on Y.

@ A linear combination of iterated integrals which is
homotopy invariant yields J : P(Y; 0) — C.
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lterated integrals of modular forms

@ X = Xp(N), Y =X\ {oc}, cusp 0 as base point.
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lterated integrals of modular forms

@ X = Xp(N), Y =X\ {oc}, cusp 0 as base point.

@ Letw € Q'(X)
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lterated integrals of modular forms

@ X = Xp(N), Y =X\ {oc}, cusp 0 as base point.

@ Letw € Q'(X) and n € Q;(X), regular at co.
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lterated integrals of modular forms

@ X =Xo(N), Y =X\ {0}, cusp 0 as base point.
@ Letw € Q'(X) and n € Q;(X), regular at co.

o Leta = ay,, € Q. (X), with a log poles at oo, such that
wF,;, — a5 is regularon Y.
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lterated integrals of modular forms

@ X =Xo(N), Y =X\ {0}, cusp 0 as base point.
@ Letw € Q'(X) and n € Q;(X), regular at co.

o Leta = ay,, € Q. (X), with a log poles at oo, such that
wF,;, — a5 is regularon Y.

@ J,, = [w-n— a,,is homotopy-invariant.

Victor Rotger Cycles, triple L-functions and rational points



lterated integrals of modular forms

@ Let E/g be an elliptic curve and f = fg € Sp(NE).
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lterated integrals of modular forms

@ Let E/g be an elliptic curve and f = fg € Sp(NE).

@ Let g € S5(M) be a newform of some level Ny, with

[Q({an(9)}) : Q] =t = 1.
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lterated integrals of modular forms

@ Let E/g be an elliptic curve and f = fg € Sp(NE).

@ Let g € S5(M) be a newform of some level Ny, with
[Q({an(9)}) : Q] =t > 1. Put N = lem(Ng, Ng).
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lterated integrals of modular forms

@ Let E/g be an elliptic curve and f = fg € Sp(NE).

@ Let g € S5(M) be a newform of some level Ny, with
[Q({an(9)}) : Q] =t > 1. Put N = lem(Ng, Ng).

@ ¢ € Hi(X,C) Poincaré dual of wy.
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lterated integrals of modular forms

@ Let E/g be an elliptic curve and f = fg € Sp(NE).

@ Let g € S5(M) be a newform of some level Ny, with
[Q({an(9)}) : Q] =t > 1. Put N = lem(Ng, Ng).

@ ¢ € Hi(X,C) Poincaré dual of wy.

@ Let {wg,,ng.i}i=1,.t be a symplectic basis of H'(X)[g].
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lterated integrals of modular forms

@ Let E/g be an elliptic curve and f = fg € Sp(NE).

@ Let g € S5(M) be a newform of some level Ny, with
[Q({an(9)}) : Q] =t > 1. Put N = lem(Ng, Ng).

@ ¢ € Hi(X,C) Poincaré dual of wy.
@ Let {wg,,ng.i}i=1,.t be a symplectic basis of H'(X)[g].

© Define Py ;=Y {_y [ wgingi—ngi-wgi— 20ai € E(C).
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lterated integrals of modular forms

@ Let E/g be an elliptic curve and f = fg € Sp(NE).

@ Let g € S5(M) be a newform of some level Ny, with
[Q({an(9)}) : Q] =t > 1. Put N = lem(Ng, Ng).

@ ¢ € Hi(X,C) Poincaré dual of wy.
@ Let {wg,,ng.i}i=1,.t be a symplectic basis of H'(X)[g].
o Define Py :=>"! | [, wa,i g,i — Ng,i - wg,i — 20 € E(C).

@ The point is independent of the choice of base point 0,
path ~; or basis of H'(X)[g].
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lterated integrals of modular forms

@ Let E/g be an elliptic curve and f = fg € Sp(NE).

@ Let g € S5(M) be a newform of some level Ny, with
[Q({an(9)}) : Q] =t > 1. Put N = lem(Ng, Ng).

@ ¢ € Hi(X, C) Poincaré dual of wy.
o Let {wy i, ng,i}i=1,. t be a symplectic basis of H'(X)[g].
@ Define P, := 2521 fw Wg,i - Tg,i — Mg,i - Wg,i — 2aj € E(C).

@ The point is independent of the choice of base point 0,
path ~; or basis of H'(X)[g].

@ With M. Daub, H. Darmon and S. Lichtenstein we have an
algorithm to compute Py ¢.
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lterated integrals of modular forms

@ Let E/g be an elliptic curve and f = fg € Sp(NE).

@ Let g € S5(M) be a newform of some level Ny, with
[Q({an(9)}) : Q] =t > 1. Put N = lem(Ng, Ng).

@ ¢ € Hi(X, C) Poincaré dual of wy.
o Let {wy i, ng,i}i=1,. t be a symplectic basis of H'(X)[g].
@ Define P, := 2521 fw Wg,i - Tg,i — Mg,i - Wg,i — 2aj € E(C).

@ The point is independent of the choice of base point 0,
path ~¢ or basis of H'(X)[g].

@ With M. Daub, H. Darmon and S. Lichtenstein we have an
algorithm to compute P, ;. W. Stein has an alternative
method based on an idea of S. Zhang.
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[E T Pgen [Ng[ Pgr] 83a | (0,0) 83 0
37a | (0,—1)[ 37| —6P 83 2P
43a | (0,—1)] 43 4P 88a | (2,—2) 88 0
53a | (0,—1)| 53| —2P 44 g 0
57a (2,1) | 57 ip 44 g(2) 8P
57 —§P g 0
19 | —4P 119(2) 8P
58a (0,—1)] 58 4P 91a (0,0) 91 2P
29 0 91 2P
29 4P o1 4P
77a | (2,3) | 77| 2P 91b | (-1,3) 91 0
77 | —4p 91 0
11 %P o1 0
79a | (0,0) | 79 | —4P 92b | (1,1) 92 0
82a | (0,0) | 82 0 46 2
82 op 99a (2,0) 99 | 2P
41 op 446d | (1,0),(0/2) 446 0
41 0 681a | (4,4) 681 | —24P
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Combining our work with Yuan-Zhang-Zhang

Theorem 1 (Darmon-R.-Sols) The points Ps 4 are Q-rational.
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Combining our work with Yuan-Zhang-Zhang

Theorem 1 (Darmon-R.-Sols) The points Ps 4 are Q-rational.

Theorem 2. Let £ be an elliptic curve of conductor Ng and g
a newform of level Nj.
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Combining our work with Yuan-Zhang-Zhang

Theorem 1 (Darmon-R.-Sols) The points Ps 4 are Q-rational.

Theorem 2. Let £ be an elliptic curve of conductor Ng and g
a newform of level Ny. Assume gcd(Ny, Ng) divides N exactly.
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Combining our work with Yuan-Zhang-Zhang

Theorem 1 (Darmon-R.-Sols) The points Ps 4 are Q-rational.

Theorem 2. Let £ be an elliptic curve of conductor Ng and g
a newform of level Ny. Assume gcd(Ny, Ng) divides N exactly.

Define Py := (Pog(az).1(bz)) < E(Q) where

N N
ﬁg,b|—,a:Kg‘—>(C

a| Ne
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Combining our work with Yuan-Zhang-Zhang

Theorem 1 (Darmon-R.-Sols) The points Ps 4 are Q-rational.

Theorem 2. Let £ be an elliptic curve of conductor Ng and g
a newform of level Ny. Assume gcd(Ny, Ng) divides N exactly.

Define Py := (Pog(az).1(bz)) < E(Q) where

N N
ﬁg,b|NiE,U.Kg‘—>(C

a|
The module P, ; is nonzero if and only if:
. L(f,1)=0,L(f,1)#0
ii. the local signs at finite primes of L(g ® g° ® f, s) are all +1
ii. L(Sym?(g?) @ f,2) # 0.
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@ E=37a, g=37b,
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@ E =373, 9= 370, 637(9, 9, f) = +1 and
L(f ® Sym?(g),2) # 0
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@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.
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@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

@ E =58a,g=29a,
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@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® £ =158a, g= 29a, 62(97 g, f) = E29(9, g, f) = +1and
L(f & Sym?(g),2) £ 0.

Victor Rotger Cycles, triple L-functions and rational points



@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® E =58a, g= 29a, 62(97 g, f) = 529(95 9, f) =+1and
L(f ® Sym?(g),2) # 0. But P, is torsion.
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@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® £ =158a, g= 29a, 62(95 g, f) = E29(9, g, f) = +1and

L(f ® Sym®(g),2) # 0. But Py is torsion. P, ; contains the
non-torsion point Py(z) f-
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@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® E =58a, g= 29a, 62(9’ g, f) = 529(95 9, f) =+1and
L(f ® Sym®(g),2) # 0. But Py is torsion. P, ; contains the
non-torsion point Py(z) f-

@ E=91b,g=91a.
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@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® E =58a, g= 29a, 52(9’ g, f) = 529(95 9, f) =+1and
L(f ® Sym®(g),2) # 0. But Py is torsion. P, ; contains the
non-torsion point Py(z) f-

@ E=91b,g=91a. P, ;= (Py ) is torsion,
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@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® E =58a, g= 29a, 52(9’ g, f) = 529(95 9, f) =+1and
L(f ® Sym®(g),2) # 0. But Py is torsion. P, ; contains the
non-torsion point Py(z) f-

@ E=91b,g=91a. P, ;= (Py ) is torsion, because
57(91 g, f) = €13(ga g, f) =-1.
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@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® E =58a, g= 29a, 52(9’ g, f) = 529(95 9, f) =+1and
L(f ® Sym®(g),2) # 0. But Py is torsion. P, ; contains the
non-torsion point Py(z) f-

@ E=91b,g=91a. P, ;= (Py ) is torsion, because
e7(9,9,f) = e13(g, 9, f) = —1. Wants a Shimura curve.
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@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® E =58a, g= 29a, 52(9’ g, f) = 529(95 9, f) =+1and
L(f ® Sym®(g),2) # 0. But Py is torsion. P, ; contains the
non-torsion point Py(z) f-

@ E=91b,g=91a. P, ;= (Py ) is torsion, because
e7(9,9,f) = e13(g, 9, f) = —1. Wants a Shimura curve.

@ £=158b, g = 1584,
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@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® E =58a, g= 29a, 52(9’ g, f) = 529(95 9, f) =+1and
L(f ® Sym®(g),2) # 0. But Py is torsion. P, ; contains the
non-torsion point Py(z) f-

@ E=91b,g=91a. P, ;= (Py ) is torsion, because
e7(9,9,f) = e13(g, 9, f) = —1. Wants a Shimura curve.

@ £ =158b, g =158d, €2(9, 9, f) = €79(9, 9, f) = +1,
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@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® E =58a, g= 29a, 52(9’ g, f) = 529(95 9, f) =+1and
L(f ® Sym®(g),2) # 0. But Py is torsion. P, ; contains the
non-torsion point Py(z) f-

@ E=91b,g=91a. P, ;= (Py ) is torsion, because
e7(9,9,f) = e13(g, 9, f) = —1. Wants a Shimura curve.

® £ =158b, g =1580d, ¢2(g9.9,f) = c79(9, 9. f) = +1,
Py = (Pgyy) is torsion,
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@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® E =58a, g= 29a, 52(9’ g, f) = E29(95 9, f) =+1and
L(f ® Sym®(g),2) # 0. But Py is torsion. P, ; contains the
non-torsion point Py(z) f-

@ E=91b,g=91a. P, ;= (Py ) is torsion, because
e7(9,9,f) = e13(g, 9, f) = —1. Wants a Shimura curve.

® E=158b, g =158d, e2(g,9.f) = 79(9.9.) = +1,
Py ¢ = (Pg) is torsion, because L(f ® Sym?(g),2) = 0.

Victor Rotger Cycles, triple L-functions and rational points



@ E=2387a,g=37b, e37(g,9,f) = +1 and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® E =58a, g= 29a, 52(9’ g, f) = E29(95 9, f) =+1and
L(f ® Sym®(g),2) # 0. But Py is torsion. P, ; contains the
non-torsion point Py(z) f-

@ E=91b,g=91a. P, ;= (Py ) is torsion, because
e7(9,9,f) = e13(g, 9, f) = —1. Wants a Shimura curve.

® E=158b, g =158d, e2(g,9.f) = 79(9.9.) = +1,
Py ¢ = (Pg) is torsion, because L(f ® Sym?(g),2) = 0.

o E =446d, g = 446D,
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@ E =373, g= 370, 637(9, g, f) = +1and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® E =58a, g= 29a, 62(9’ g, f) = 829(95 9, f) =+1and
L(f ® Sym®(g),2) # 0. But Py is torsion. P, ; contains the
non-torsion point Py(z) f-

@ E=91b,g=91a. P, ;= (Py ) is torsion, because
e7(9,9,f) = e13(g, 9, f) = —1. Wants a Shimura curve.

@ £ =158b,9=158d, ¢2(9,9,f) =¢79(9,9, f) = +1,
Py = (Pg,y) is torsion, because L(f @ Sym?(g),2) = 0.

© E =446d, g = 446b, P, s = (Py) is torsion,
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@ E =373, g= 370, 637(9, g, f) = +1and
L(f® Sym?(g),2) # 0and P, ; = (Pg) is not torsion.

® E =58a, g= 29a, 62(9’ g, f) = 829(95 9, f) =+1and
L(f ® Sym®(g),2) # 0. But Py is torsion. P, ; contains the
non-torsion point Py(z) f-

@ E=91b,g=91a. P, ;= (Py ) is torsion, because
e7(9,9,f) = e13(g, 9, f) = —1. Wants a Shimura curve.

@ £ =158b,9=158d, ¢2(9,9,f) =¢79(9,9, f) = +1,
Py = (Pg,y) is torsion, because L(f @ Sym?(g),2) = 0.

o E =446d, g = 446b, P,

= (Pg,r) is torsion, because
L(E7 1) = L/(E7 1) = 0’ L// E’1
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P, as a complex Chow-Heegner point

Gross-Kudla-Schoen’s diagonal cycle in X2 is
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P, as a complex Chow-Heegner point

Gross-Kudla-Schoen’s diagonal cycle in X2 is

A= {(X,X,X)} - {(X,X, 0)} - {(X?va)} - {(0,X,X)}—|—

+{(0,0,x)} + {(0,x,0)} + {(x,0,0)} € CH3(X®),.
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P, as a complex Chow-Heegner point

Gross-Kudla-Schoen’s diagonal cycle in X2 is

A= {(X,X,X)} - {(X,X, 0)} - {(X?va)} - {(0,X,X)}—|—

+{(0,0,x)} + {(0,x,0)} + {(x,0,0)} € CH3(X®),.

Put M= {(x,x,y,y)} c X*.
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P, as a complex Chow-Heegner point

Gross-Kudla-Schoen’s diagonal cycle in X2 is

A= {(X,X,X)} - {(X,X, 0)} - {(X’va)} - {(0,X,X)}—|—

+{(0,0,x)} + {(0,x,0)} + {(x,0,0)} € CH3(X®),.

Put M= {(x,x,y,y)} C X*.  We have 23 : X*—X5,
e X*=>X—E, and
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P, as a complex Chow-Heegner point

Gross-Kudla-Schoen’s diagonal cycle in X2 is

A= {(X,X,X)} - {(X,X, 0)} - {(X’va)} - {(0,X,X)}—|—

+{(0,0,x)} + {(0,x,0)} + {(x,0,0)} € CH3(X®),.

Put M= {(x,x,y,y)} C X*.  We have 23 : X*—X5,
e X*=>X—E, and

Al Fil2H3_(X3)V
CH2XG), A Jo(x3) = P00
1
E A C/Ag,
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P, as a complex Chow-Heegner point

Gross-Kudla-Schoen’s diagonal cycle in X2 is

A= {(X,X,X)} - {(X,X, 0)} - {(X’va)} - {(O,X,X)}—l—

+{(0,0,x)} + {(0,x,0)} + {(x,0,0)} € CH3(X®),.

Put M= {(x,x,y,y)} C X*.  We have 23 : X*—X5,
e X*=>X—E, and

AJ Fil2H3_(X3)V
CH2XG), A Jo(x3) = P00
1
E Ale C/Ag,

Theorem. (Darmon-R.-Sols) A[g, g, f] € CH2(X3),
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P, as a complex Chow-Heegner point

Gross-Kudla-Schoen’s diagonal cycle in X2 is
A= {(X,X,X)} - {(X?Xa 0)} - {(X’ va)} - {(O,X,X)}—F

+{(0,0,x)} + {(0,x,0)} + {(x,0,0)} € CH3(X®),.

Put M= {(x,x,y,y)} C X*.  We have 23 : X*—X5,
e X*=>X—E, and

Al Fil2H3_(X3)V
CH2XG), A Jo(x3) = P00
1

AJ
E =

C/AE,

Theorem. (Darmon-R.-Sols) A[g, g, f] € CH2(X3),
= 7TjIkZ(SAl:g? g? f]
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P, as a complex Chow-Heegner point

Gross-Kudla-Schoen’s diagonal cycle in X2 is
A= {(X,X,X)} - {(X?Xa 0)} - {(X’ va)} - {(O,X,X)}—F

+{(0,0,x)} + {(0,x,0)} + {(x,0,0)} € CH3(X®),.

Put M= {(x,x,y,y)} C X*.  We have 23 : X*—X5,
e X*=>X—E, and

Al Fil2H3_(X3)V
CH2XG), A Jo(x3) = P00
1

AJ
E =

C/AE,

Theorem. (Darmon-R.-Sols) A[g, g, f] € CH2(X3),
= 7-rjIkZ(SAl:g? g? f] = 7TjIkZ(SAl:g? g7 f] -1l
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P, as a complex Chow-Heegner point

Gross-Kudla-Schoen’s diagonal cycle in X2 is
A= {(X,X,X)} - {(X?X’ 0)} - {(X’va)} - {(vaa X)}+
+{(0,0,x)} +{(0,x,0)} + {(x,0,0)} € CHZ(X®),.

Put M= {(x,x,y,y)} C X*.  We have 23 : X*—X5,
e X*=>X—E, and

Al Fil2H3_(X3)V
CH2XG), A Jo(x3) = P00
1

AJ
E =

C/AE,

Theorem. (Darmon-R.-Sols) A[g, g, f] € CH2(X3),
= TigAlg, 9, f] = mix3Alg,9,f] - N
— 7"'E,>i<(7rjlk23A[gagv f] : n) = Pg,f € E.
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P, as a complex Chow-Heegner point

Gross-Kudla-Schoen’s diagonal cycle in X2 is
A= {(X,X,X)} - {(X?X’ 0)} - {(X’va)} - {(vaa X)}+
+{(0,0,x)} +{(0,x,0)} + {(x,0,0)} € CHZ(X®),.

Put M= {(x,x,y,y)} C X*.  We have 23 : X*—X5,
e X*=>X—E, and

Al Fil2H3_(X3)V
CH2XG), A Jo(x3) = P00
1

AJ
E =

C/AE,

Theorem. (Darmon-R.-Sols) A[g, g, f] € CH2(X3),
= TigAlg, 9, f] = mix3Alg,9,f] - N
— 7"'E,>i<(7rjlk23A[gagv f] : n) = Pg,f € E.
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Pg.r as a p-adic Chow-Heegner point via Coleman integration

The p-adic Abel-Jacobi map at a prime pt N is
AJp : CH3(X®)(Qp) — FilPH33(X3/Qp)Y and thus
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Pg.r as a p-adic Chow-Heegner point via Coleman integration

The p-adic Abel-Jacobi map at a prime pt N is
Alp : CH3(X®)0(Qp) — FilPH33(X3/Qp)Y and thus

IogLUf(Pg,f) = _2AJp(A)(T]g VAN Wy VAN Wf).
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Pg.r as a p-adic Chow-Heegner point via Coleman integration

The p-adic Abel-Jacobi map at a prime pt N is
Alp : CH3(X®)0(Qp) — FilPH33(X3/Qp)Y and thus

IogLUf(Pg,f) = _2AJp(A)(T]g VAN Wy VAN Wf).

M. Daub is implementing the computation of these points via
this p-adic formula.
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Pg.r as a p-adic Chow-Heegner point via Coleman integration

The p-adic Abel-Jacobi map at a prime pt N is
Alp : CH3(X®)0(Qp) — FilPH33(X3/Qp)Y and thus

Iogwf(Pg,f) = _2AJp(A)(T]g A Wy VAN Wf).
M. Daub is implementing the computation of these points via

this p-adic formula.
Theorem. (Darmon-R.) Let (W, ) be a wide open nbhd of

Xo(N)(Cp) \ red ™" (X(Fp)ss)
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Pg.r as a p-adic Chow-Heegner point via Coleman integration

The p-adic Abel-Jacobi map at a prime pt N is
Alp : CH3(X®)0(Qp) — FilPH33(X3/Qp)Y and thus

Ion,(Pg,f) = _ZAJp(A)(T]g VAN Wy VAN UJf).
M. Daub is implementing the computation of these points via

this p-adic formula.
Theorem. (Darmon-R.) Let (W, ) be a wide open nbhd of

Xo(N)(Cp) \ red (X (Fp)ss)

Let p € Q'(W x W) be a Coleman primitive of wqg ® wy:
dp = P(®)(wg ® wy) for a suitable polynomial P.
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Pg.r as a p-adic Chow-Heegner point via Coleman integration

The p-adic Abel-Jacobi map at a prime pt N is
Alp : CH3(X®)0(Qp) — FilPH33(X3/Qp)Y and thus

Ion,(Pg,f) = _ZAJp(A)(T]g VAN Wy VAN UJf).

M. Daub is implementing the computation of these points via
this p-adic formula.

Theorem. (Darmon-R.) Let (W, ) be a wide open nbhd of
Xo(N)(Cp) \ red ™ (X(Fp)ss)

Let p € Q'(W x W) be a Coleman primitive of wqg ® wy:
dp = P(®)(wg ® wy) for a suitable polynomial P. Then

AJp(D)(ng ® wg ® wy) = (ng, P(®) """ p)

where €* = €%, — & — €5, for €10, €1, €2 1 X — X2,
12 1 2 ’
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Connection with L-functions

The triple L-function of f € Sk(Ng), g € Si(Ng), h € Sn(Np) is
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Connection with L-functions

The triple L-function of f € Sk(Ng), g € Si(Ng), h € Sn(Np) is

L(f, g, h;s) = L(V; @ Vg @ Vi s) = [[ LP(F, 9. h; p~%) 7",
p
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Connection with L-functions

The triple L-function of f € Sk(Ng), g € Si(Ng), h € Sn(Np) is

L(f, g, h;s) = L(V; @ Vg @ Vi s) = [[ LP(F, 9. h; p~%) 7",
p

For pt N = lcm(Ny, Ng, Ny), the Euler factor LP)(f, g, h; T) is

(1 —aragapT) - (1 — araghpT) - ... (1 = BeBgBnT).
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Connection with L-functions

The triple L-function of f € Sk(Ng), g € Si(Ng), h € Sn(Np) is

L(f, g, h;s) = L(V; @ Vg @ Vi s) = [[ LP(F, 9. h; p~%) 7",
p

For pt N = lcm(Ny, Ng, Ny), the Euler factor LP)(f, g, h; T) is

(1 —aragapT) - (1 — araghpT) - ... (1 = BeBgBnT).

@ The completed L-function satisfies

Nf, g, hs)= ][ =o(f.9.h)-A(f.9.hik+2+m—2—5).
p|Noo
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Connection with L-functions

The triple L-function of f € Sk(Ng), g € Si(Ng), h € Sn(Np) is

L(f, g, h;s) = L(V; @ Vg @ Vi s) = [[ LP(F, 9. h; p~%) 7",
p

For pt N = lcm(Ny, Ng, Ny), the Euler factor LP)(f, g, h; T) is

(1 —aragapT) - (1 — araghpT) - ... (1 = BeBgBnT).

@ The completed L-function satisfies

Nf,g,h;s) = Hspfg, Af, g, hk+0+m—2—5s).
pINoo
o co(f,g,h) = —1 ?f (k, ¢, m) are balanced.
+1 if (k, ¢, m) are unbalanced.
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A complex Gross-Zagier formula for A

Theorem (Yuan-Zhang-Zhang)
h(A[f, g, h]) = (Explicit non-zero factor) x L'(f, g, h, 2)

where
h:CH3(X%)y — R

is Beilinson-Bloch’s height pairing.
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A p-adic avatar of the Gross-Zagier formula

@ Assume p { N is ordinary for f and let f : Q; — Cp[[q]] be
the Hida family of overconvergent p-adic modular forms
passing though f.
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A p-adic avatar of the Gross-Zagier formula

@ Assume p { N is ordinary for f and let f : Q; — Cp[[q]] be
the Hida family of overconvergent p-adic modular forms
passing though f.

@ k = weight : Qf — homcts(Z;7C;)’
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A p-adic avatar of the Gross-Zagier formula

@ Assume p { N is ordinary for f and let f : Q; — Cp[[q]] be
the Hida family of overconvergent p-adic modular forms
passing though f.

@ k= weight : Qf — homes(Zy, Cp), Qf e =k~ (Z>2).
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A p-adic avatar of the Gross-Zagier formula

@ Assume p { N is ordinary for f and let f : Q; — Cp[[q]] be
the Hida family of overconvergent p-adic modular forms
passing though f.

@ k= weight : Qf — homes(Zy, Cp), Qf e =k~ (Z>2).
@ Harris and Tilouine construct a p-adic L-function

interpolating the square-roots of the central critical values
of the classical L(f, g, h, s) for x € Q¢ with x(x) > 4.
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A p-adic avatar of the Gross-Zagier formula

@ Assume p { N is ordinary for f and let f : Q; — Cp[[q]] be
the Hida family of overconvergent p-adic modular forms
passing though f.

@ k= weight : Qf — homes(Zy, Cp), Qf e =k~ (Z>2).
@ Harris and Tilouine construct a p-adic L-function

interpolating the square-roots of the central critical values
of the classical L(f, g, h, s) for x € Q¢ with x(x) > 4.

@ Points with k(x) = 2 are not interpolated: L(f, g, h,2) = 0.
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A p-adic avatar of the Gross-Zagier formula

@ Assume p { N is ordinary for f and let f : Q; — Cp[[q]] be
the Hida family of overconvergent p-adic modular forms
passing though f.

@ k= weight : Qf — homes(Zy, Cp), Qf e =k~ (Z>2).
@ Harris and Tilouine construct a p-adic L-function

interpolating the square-roots of the central critical values
of the classical L(f, g, h, s) for x € Q¢ with x(x) > 4.

@ Points with k(x) = 2 are not interpolated: L(f, g, h,2) = 0.

@ For xp with k(Xxp) = 2 and f, = f,

Victor Rotger Cycles, triple L-functions and rational points



A p-adic avatar of the Gross-Zagier formula

@ Assume p { N is ordinary for f and let f : Q; — Cp[[q]] be
the Hida family of overconvergent p-adic modular forms
passing though f.

@ k= weight : Qf — homes(Zy, Cp), Qf e =k~ (Z>2).
@ Harris and Tilouine construct a p-adic L-function

interpolating the square-roots of the central critical values
of the classical L(f, g, h, s) for x € Q¢ with x(x) > 4.

@ Points with k(x) = 2 are not interpolated: L(f, g, h,2) = 0.

@ For xp with k(xg) = 2 and f, = f,regard L(f, g, h)(xo) as a
p-adic avatar of L'(f, g, h, 2).
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A p-adic avatar of the Gross-Zagier formula

Theorem. (Darmon-R.) Assume for simplicity that
Nf = Ng = Nj. Then

£pl1. 9. M00) = £ o X AT At ).
where
E(f.g.h) = (1= Bo(Nap(@)ap(p2) (1= Bo(Nap(@)Bp(p~?)
(1= BoNBo(@)ap(hp2) (1= Bo(1)Bp( ) Boh)p~?)
&olf) = (1= BN (o))
a(f) = (1= 5N " (p)p2).
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Spirit of proof of the p-adic Gross-Zagier formula

@ Let x € wry With k(x) = k > 4.
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Spirit of proof of the p-adic Gross-Zagier formula

@ Let x € wr With k(x) = k > 4. Define

I(fx, g, h) == (£, 8(g)h), t=(k—4)/2

where ¢ is the weight raising Shimura-Maass operator.
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Spirit of proof of the p-adic Gross-Zagier formula

@ Let x € wr With k(x) = k > 4. Define

I(tx,9,h) = (£, 0'(9)h), t=(k—4)/2
where ¢ is the weight raising Shimura-Maass operator.
@ Jacquet’s conjecture, proved by Harris-Kudla:
K+ 2) B
— )=
o Ps(fy, g, h) = I(fy, g, h)/(E;, ;) is algebraic

L(fy, g, h, I(fx, g, h)2.
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Spirit of proof of the p-adic Gross-Zagier formula

@ Let x € wr With k(x) = k > 4. Define

I(t. g, h) == (f5,0'(9)h), t=(k—4)/2
where ¢ is the weight raising Shimura-Maass operator.
@ Jacquet’s conjecture, proved by Harris-Kudla:
k + 2) B
— )=
o IPle(fy, g, h) == I(fy, g, h)/(f;, £) is algebraic and the
intepolation property of the p-adic L-function is

_ E&(f.g.h)
— Eo(hE(f)

L(fy, g, h, I(fx, g, h)2.

x [%(f, g, h)

ﬁp(f? g, h)(X)
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Spirit of proof of the p-adic Gross-Zagier formula

@ Let x € wr With k(x) = k > 4. Define

(ix, g.h) := (£5.6'Q)h).  t=(k—4)/2
where ¢ is the weight raising Shimura-Maass operator.

@ Jacquet’s conjecture, proved by Harris-Kudla:

k+2, .
T) = l(fX7ga h)2

e [s(fy, g, h) = I(fy, g, h)/(f;, ;) is algebraic and the
intepolation property of the p-adic L-function is

_ E&(f.g.h)
— Eo(hE(f)

L(fX) ga h7

ﬁp(f’g7 h)(X) X /alg(ijg’ h)

= () X \/L(fx, g, h7 %)
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Spirit of proof of the p-adic Gross-Zagier formula

@ Recall we write xp € wr ) With x(xp) =2 and fy, = f.
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Spirit of proof of the p-adic Gross-Zagier formula

@ Recall we write xp € wr ) With x(xp) =2 and fy, = f.

° Ep(fv g, h)(XO) =lim X=rXg Ep(fa g, h)(X) =

K)(X)EZZ4
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Spirit of proof of the p-adic Gross-Zagier formula

@ Recall we write xp € wr ) With x(xp) =2 and fy, = f.

° Ep(fv g, h)(XO) =lim X=rXg Ep(fa g, h)(X) =

K)(X)EZZ4
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Spirit of proof of the p-adic Gross-Zagier formula

@ Recall we write xp € wr ) With x(xp) =2 and fy, = f.

° Ep(fv g, h)(XO) =lim X=rXg Ep(fa g, h)(X) =

K)(X)EZZ4

—im £U.9:h) (85,00 (as1=(k-4)2)
k-2 E(HE(F) (B, £)
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Spirit of proof of the p-adic Gross-Zagier formula

@ Recall we write xp € wr ) With x(xp) =2 and fy, = f.

° Ep(fv g, h)(XO) =lim X=rXg Ep(fa g, h)(X) =

K)(X)EZZ4

—im £U.9:h) (85,00 (as1=(k-4)2)
k-2 E(HE(F) (B, £)

d=9% im £(f.9.0) (£ enad'(9)h)
t——1 50(f)<€1(f) <f;,f;"(>
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Spirit of proof of the p-adic Gross-Zagier formula

@ Recall we write xp € wr ) With x(xp) =2 and fy, = f.

° Ep(fv g, h)(XO) =lim X=rXg Ep(fa g, h)(X) =

K)(X)EZZ4

_iim £(.9:h) (£, 09)h) _ (as t=(k—4)/2)

k-2 E(HE(F) (B, £)

d-ag g(f g.h) (£ eoad'(g)h)

t=—1 E(NE(F) (tx, %)
E(f,g.h) _
= &) (07, €orad ™ (gPY ) =
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Spirit of proof of the p-adic Gross-Zagier formula

@ Recall we write xp € wr ) With x(xp) =2 and fy, = f.

° Ep(fv g, h)(XO) =lim X=rXg Ep(fa g, h)(X) =

K)(X)EZZ4

_iim £(.9:h) (£, 09)h) _ (as t=(k—4)/2)

k-2 E(HE(F) (B, £)

d-ag g(f g.h) (£ eoad'(g)h)

t=—1 E(NE(F) (tx, %)
E(f,g.h) _
= &) (07, €orad ™ (gPY ) =

= (07, P(®)"¢"p) =
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Spirit of proof of the p-adic Gross-Zagier formula

@ Recall we write xp € wr ) With x(xp) =2 and fy, = f.

° Ep(fv g, h)(XO) =lim X=rXg Ep(fa g, h)(X) =

K)(X)EZZ4

_iim £(.9:h) (£, 09)h) _ (as t=(k—4)/2)

k-2 E(HE(F) (B, £)

d-ag g(f g.h) (£ eoad'(g)h)

t=—1 E(NE(F) (tx, %)
E(f,g.h) _
= &) (07, €orad ™ (gPY ) =

= (g, P(®) 7" €*p) = AJp(L) (1 ® wg @ wh)
where we had set p = d~1P(®)(wg @ wp).
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