Diagonal cycles, triple product L-functions and rational points on elliptic curves (Séminaire de Théorie des Nombres de Bordeaux)

Victor Rotger (Joint work with Henri Darmon)

January 16, 2012

Let $E_{/\mathbb{Q}}$ be an elliptic curve and

$$f = \sum_{n \geq 1} a_n q^n \in S_2(N)$$
 with $L(E, s) = L(f, s)$.

Let $E_{/\mathbb{Q}}$ be an elliptic curve and

$$f = \sum_{n>1} a_n q^n \in S_2(N)$$
 with $L(E,s) = L(f,s)$.

The modular parametrization is

$$\varphi: X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathfrak{H}^* \longrightarrow E(\mathbb{C})$$

$$\tau \mapsto P_\tau := 2\pi i \int_{\infty}^{\tau} f(z) dz$$

$$= \sum_{n \geq 1} \frac{a_n}{n} e^{2\pi i n \cdot \tau}$$

Let $E_{/\mathbb{Q}}$ be an elliptic curve and

$$f=\sum_{n\geq 1}a_nq^n\in S_2(N)$$
 with $L(E,s)=L(f,s).$

The modular parametrization is

$$\varphi: X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathfrak{H}^* \longrightarrow E(\mathbb{C})$$

$$\tau \mapsto P_\tau := 2\pi i \int_{\infty}^{\tau} f(z) dz$$

$$= \sum_{n \geq 1} \frac{a_n}{n} e^{2\pi i n \cdot \tau}$$

If
$$au \in \mathbb{P}^1(\mathbb{Q})$$
 is a cusp: $P_{ au} \in E(\mathbb{Q})_{tors}$.

Let $E_{/\mathbb{Q}}$ be an elliptic curve and

$$f = \sum_{n>1} a_n q^n \in S_2(N)$$
 with $L(E,s) = L(f,s)$.

The modular parametrization is

$$\varphi: X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathfrak{H}^* \longrightarrow E(\mathbb{C})$$

$$\tau \mapsto P_\tau := 2\pi i \int_{\infty}^{\tau} f(z) dz$$

$$= \sum_{n \geq 1} \frac{a_n}{n} e^{2\pi i n \cdot \tau}$$

If $au \in \mathbb{P}^1(\mathbb{Q})$ is a cusp: $P_{ au} \in E(\mathbb{Q})_{tors}$.

If $\tau \in \mathcal{H} \cap K$, where K is imaginary quadratic: $P_{\tau} \in E(K^{ab})$.

• The universal covering of $X_0(N)$ is

$$\mathbf{P}(X_0(N); \infty) = \{ \gamma : [0, 1] \longrightarrow X_0(N), \ \gamma(0) = \infty \} / \text{homotopy}.$$

• The universal covering of $X_0(N)$ is

$$\mathbf{P}(X_0(N); \infty) = \{ \gamma : [0, 1] \longrightarrow X_0(N), \gamma(0) = \infty \} / \text{homotopy.}$$

The modular parametrization factors through

$$\varphi: X_0(N) = \pi_1(X_0(N)) \backslash \mathbf{P}(X_0(N)) \longrightarrow J_0(N) \to E$$

$$\gamma: \infty \leadsto \tau \mapsto P_\tau := \int_{\gamma} \omega_f,$$

• The universal covering of $X_0(N)$ is

$$\mathbf{P}(X_0(N); \infty) = \{ \gamma : [0, 1] \longrightarrow X_0(N), \gamma(0) = \infty \} / \text{homotopy.}$$

The modular parametrization factors through

$$\varphi: X_0(N) = \pi_1(X_0(N)) \backslash \mathbf{P}(X_0(N)) \longrightarrow J_0(N) \to E$$

$$\gamma: \infty \leadsto \tau \mapsto P_\tau := \int_{\gamma} \omega_f,$$

as
$$\pi_1(X_0(N)) \to \mathbb{C}$$
, $\gamma \mapsto \int_{\gamma} \omega_f$ factors through $H_1(X_0(N), \mathbb{Z})$.

• The universal covering of $X_0(N)$ is

$$\mathbf{P}(X_0(N); \infty) = \{ \gamma : [0, 1] \longrightarrow X_0(N), \gamma(0) = \infty \} / \text{homotopy.}$$

The modular parametrization factors through

$$\varphi: X_0(N) = \pi_1(X_0(N)) \backslash \mathbf{P}(X_0(N)) \longrightarrow J_0(N) \to E$$

$$\gamma: \infty \leadsto \tau \mapsto P_\tau := \int_{\gamma} \omega_f,$$

as
$$\pi_1(X_0(N)) \to \mathbb{C}$$
, $\gamma \mapsto \int_{\gamma} \omega_f$ factors through $H_1(X_0(N), \mathbb{Z})$.

• Chen's *iterated integrals* may give rise to *anabelian* modular parametrizations of points in $E(\mathbb{C})$.

• Y smooth quasi-projective curve, $o \in Y$ base point, \tilde{Y} universal covering.

- Y smooth quasi-projective curve, o ∈ Y base point, Y
 universal covering.
- The *iterated integral* attached to a tuple of smooth 1-forms $(\omega_1, \ldots, \omega_n)$ on Y is

- Y smooth quasi-projective curve, o ∈ Y base point, Y
 universal covering.
- The *iterated integral* attached to a tuple of smooth 1-forms $(\omega_1, \ldots, \omega_n)$ on Y is the functional

$$\gamma \mapsto \int_{\gamma} \omega_1 \cdot \omega_2 \cdot \ldots \cdot \omega_n := \int_{\Delta} (\gamma^* \omega_1)(t_1)(\gamma^* \omega_2)(t_2) \cdot \cdots (\gamma^* \omega_n)(t_n),$$

where
$$\Delta = \{0 \le t_n \le t_{n-1} \le \cdots \le t_1 \le 1\}.$$

- Y smooth quasi-projective curve, $o \in Y$ base point, \tilde{Y} universal covering.
- The *iterated integral* attached to a tuple of smooth 1-forms $(\omega_1, \ldots, \omega_n)$ on Y is the functional

$$\gamma \mapsto \int_{\gamma} \omega_1 \cdot \omega_2 \cdot \ldots \cdot \omega_n := \int_{\Delta} (\gamma^* \omega_1)(t_1)(\gamma^* \omega_2)(t_2) \cdot \cdots (\gamma^* \omega_n)(t_n),$$
 where $\Delta = \{0 < t_n < t_{n-1} < \cdots < t_1 < 1\}.$

• When $n=2: \int_{\gamma} \omega \cdot \eta = \int_{\tilde{\gamma}} \omega F_{\eta}$, for F_{η} primitive of η on \tilde{Y} .

- Y smooth quasi-projective curve, $o \in Y$ base point, \tilde{Y} universal covering.
- The *iterated integral* attached to a tuple of smooth 1-forms $(\omega_1, \ldots, \omega_n)$ on Y is the functional

$$\gamma \mapsto \int_{\gamma} \omega_1 \cdot \omega_2 \cdot \ldots \cdot \omega_n := \int_{\Delta} (\gamma^* \omega_1)(t_1)(\gamma^* \omega_2)(t_2) \cdot \cdots (\gamma^* \omega_n)(t_n),$$
 where $\Delta = \{0 < t_n < t_{n-1} < \cdots < t_1 < 1\}.$

- When n=2: $\int_{\gamma} \omega \cdot \eta = \int_{\tilde{\gamma}} \omega F_{\eta}$, for F_{η} primitive of η on \tilde{Y} .
- A linear combination of iterated integrals which is homotopy invariant yields $J : \mathbf{P}(Y; o) \longrightarrow \mathbb{C}$.

• $X = X_0(N)$, $Y = X \setminus \{\infty\}$, cusp 0 as base point.

- $X = X_0(N)$, $Y = X \setminus \{\infty\}$, cusp 0 as base point.
- Let $\omega \in \Omega^1(X)$

- $X = X_0(N)$, $Y = X \setminus \{\infty\}$, cusp 0 as base point.
- Let $\omega \in \Omega^1(X)$ and $\eta \in \Omega^1_{\mathrm{II}}(X)$, regular at ∞ .

- $X = X_0(N)$, $Y = X \setminus \{\infty\}$, cusp 0 as base point.
- Let $\omega \in \Omega^1(X)$ and $\eta \in \Omega^1_{\mathrm{II}}(X)$, regular at ∞ .
- Let $\alpha = \alpha_{\omega,\eta} \in \Omega^1_{\mathrm{mer}}(X)$, with a log poles at ∞ , such that $\omega F_{\eta} \alpha_{\omega,\eta}$ is regular on \tilde{Y} .

- $X = X_0(N)$, $Y = X \setminus \{\infty\}$, cusp 0 as base point.
- Let $\omega \in \Omega^1(X)$ and $\eta \in \Omega^1_{\mathrm{II}}(X)$, regular at ∞ .
- Let $\alpha = \alpha_{\omega,\eta} \in \Omega^1_{\mathrm{mer}}(X)$, with a log poles at ∞ , such that $\omega F_{\eta} \alpha_{\omega,\eta}$ is regular on \tilde{Y} .
- $J_{\omega,\eta} := \int \omega \cdot \eta \alpha_{\omega,\eta}$ is homotopy-invariant.

• Let $E_{/\mathbb{Q}}$ be an elliptic curve and $f = f_E \in S_2(N_E)$.

- Let $E_{/\mathbb{Q}}$ be an elliptic curve and $f = f_E \in S_2(N_E)$.
- Let $g \in S_2(M)$ be a newform of some level N_g , with $[\mathbb{Q}(\{a_n(g)\}) : \mathbb{Q}] = t \ge 1$.

- Let $E_{/\mathbb{Q}}$ be an elliptic curve and $f = f_E \in S_2(N_E)$.
- Let $g \in S_2(M)$ be a newform of some level N_g , with $[\mathbb{Q}(\{a_n(g)\}) : \mathbb{Q}] = t \ge 1$. Put $N = \text{lcm}(N_E, N_g)$.

- Let $E_{/\mathbb{Q}}$ be an elliptic curve and $f = f_E \in S_2(N_E)$.
- Let $g \in S_2(M)$ be a newform of some level N_g , with $[\mathbb{Q}(\{a_n(g)\}) : \mathbb{Q}] = t \geq 1$. Put $N = \text{lcm}(N_E, N_g)$.
- $\gamma_f \in H_1(X, \mathbb{C})$ Poincaré dual of ω_f .

- Let $E_{/\mathbb{Q}}$ be an elliptic curve and $f = f_E \in S_2(N_E)$.
- Let $g \in S_2(M)$ be a newform of some level N_g , with $[\mathbb{Q}(\{a_n(g)\}) : \mathbb{Q}] = t \geq 1$. Put $N = \text{lcm}(N_E, N_g)$.
- $\gamma_f \in H_1(X, \mathbb{C})$ Poincaré dual of ω_f .
- Let $\{\omega_{g,i}, \eta_{g,i}\}_{i=1,\dots,t}$ be a symplectic basis of $H^1(X)[g]$.

- Let $E_{/\mathbb{Q}}$ be an elliptic curve and $f = f_E \in S_2(N_E)$.
- Let $g \in S_2(M)$ be a newform of some level N_g , with $[\mathbb{Q}(\{a_n(g)\}) : \mathbb{Q}] = t \geq 1$. Put $N = \text{lcm}(N_E, N_g)$.
- $\gamma_f \in H_1(X, \mathbb{C})$ Poincaré dual of ω_f .
- Let $\{\omega_{g,i}, \eta_{g,i}\}_{i=1,\dots,t}$ be a symplectic basis of $H^1(X)[g]$.
- Define $P_{g,f}:=\sum_{i=1}^t\int_{\gamma_f}\omega_{g,i}\cdot\eta_{g,i}-\eta_{g,i}\cdot\omega_{g,i}-2lpha_i\in E(\mathbb{C}).$

- Let $E_{/\mathbb{Q}}$ be an elliptic curve and $f = f_E \in S_2(N_E)$.
- Let $g \in S_2(M)$ be a newform of some level N_g , with $[\mathbb{Q}(\{a_n(g)\}) : \mathbb{Q}] = t \geq 1$. Put $N = \text{lcm}(N_E, N_g)$.
- $\gamma_f \in H_1(X, \mathbb{C})$ Poincaré dual of ω_f .
- Let $\{\omega_{g,i}, \eta_{g,i}\}_{i=1,\dots,t}$ be a symplectic basis of $H^1(X)[g]$.
- Define $P_{g,f}:=\sum_{i=1}^t\int_{\gamma_f}\omega_{g,i}\cdot\eta_{g,i}-\eta_{g,i}\cdot\omega_{g,i}-2lpha_i\in E(\mathbb{C}).$
- The point is independent of the choice of base point 0, path γ_f or basis of $H^1(X)[g]$.

- Let $E_{/\mathbb{Q}}$ be an elliptic curve and $f = f_E \in S_2(N_E)$.
- Let $g \in S_2(M)$ be a newform of some level N_g , with $[\mathbb{Q}(\{a_n(g)\}) : \mathbb{Q}] = t \geq 1$. Put $N = \text{lcm}(N_E, N_g)$.
- $\gamma_f \in H_1(X, \mathbb{C})$ Poincaré dual of ω_f .
- Let $\{\omega_{g,i}, \eta_{g,i}\}_{i=1,\dots,t}$ be a symplectic basis of $H^1(X)[g]$.
- Define $P_{g,f}:=\sum_{i=1}^t\int_{\gamma_f}\omega_{g,i}\cdot\eta_{g,i}-\eta_{g,i}\cdot\omega_{g,i}-2lpha_i\in E(\mathbb{C}).$
- The point is independent of the choice of base point 0, path γ_f or basis of $H^1(X)[g]$.
- With M. Daub, H. Darmon and S. Lichtenstein we have an algorithm to compute P_{q,f}.

- Let $E_{/\mathbb{Q}}$ be an elliptic curve and $f = f_E \in S_2(N_E)$.
- Let $g \in S_2(M)$ be a newform of some level N_g , with $[\mathbb{Q}(\{a_n(g)\}) : \mathbb{Q}] = t \geq 1$. Put $N = \text{lcm}(N_E, N_g)$.
- $\gamma_f \in H_1(X, \mathbb{C})$ Poincaré dual of ω_f .
- Let $\{\omega_{g,i}, \eta_{g,i}\}_{i=1,\dots,t}$ be a symplectic basis of $H^1(X)[g]$.
- Define $P_{g,f}:=\sum_{i=1}^t\int_{\gamma_f}\omega_{g,i}\cdot\eta_{g,i}-\eta_{g,i}\cdot\omega_{g,i}-2lpha_i\in E(\mathbb{C}).$
- The point is independent of the choice of base point 0, path γ_f or basis of $H^1(X)[g]$.
- With M. Daub, H. Darmon and S. Lichtenstein we have an algorithm to compute $P_{g,f}$. W. Stein has an alternative method based on an idea of S. Zhang.

Examples

E	P _{gen}	N_g	$P_{g,f}$
37a	(0,-1)	37	-6 <i>P</i>
43a	(0,-1)	43	4 <i>P</i>
53a	(0, -1)	53	-2 <i>P</i>
57a	(2, 1)	57	$-\frac{\frac{4}{3}P}{-\frac{16}{3}P}$
		57	$-\frac{16}{3}P$
		19	_4 <i>P</i>
58a	(0,-1)	58	4 <i>P</i>
		29	0
		29	4 <i>P</i>
77a	(2,3)	77	$\frac{12}{5}P$
		77	$-\frac{3}{3}P$
		11	$ \begin{array}{r} \frac{12}{5}P \\ -\frac{4}{3}P \\ \frac{4}{3}P \end{array} $
79a	(0,0)	79	-4 <i>P</i>
82a	(0,0)	82	0
		82	2 <i>P</i>
		41	2 <i>P</i>
		41	0

83a	(0,0)	83	0
		83	2 <i>P</i>
88a	(2, -2)	88	0
		44 g	0
		44 g(2)	8 <i>P</i>
		11 g	0
		11 <i>g</i> (2)	8 <i>P</i>
91a	(0,0)	91	2 <i>P</i>
		91	2 <i>P</i>
		91	4 <i>P</i>
91b	(-1,3)	91	0
		91	0
		91	0
92b	(1, 1)	92	0
		46	0
99a	(2,0)	99	$-\frac{2}{3}P$
446d	(1,0),(0,	2) 446	0
681a	(4, 4)	681	-24 <i>P</i>

Theorem 1 (Darmon-R.-Sols) The points $P_{f,g}$ are \mathbb{Q} -rational.

Theorem 1 (Darmon-R.-Sols) The points $P_{f,g}$ are \mathbb{Q} -rational.

Theorem 2. Let $E_{/\mathbb{Q}}$ be an elliptic curve of conductor N_E and g a newform of level N_g .

Theorem 1 (Darmon-R.-Sols) The points $P_{f,g}$ are \mathbb{Q} -rational.

Theorem 2. Let $E_{/\mathbb{Q}}$ be an elliptic curve of conductor N_E and g a newform of level N_g . Assume $gcd(N_g, N_E)$ divides N exactly.

Theorem 1 (Darmon-R.-Sols) The points $P_{f,g}$ are \mathbb{Q} -rational.

Theorem 2. Let $E_{/\mathbb{Q}}$ be an elliptic curve of conductor N_E and g a newform of level N_g . Assume $gcd(N_g, N_E)$ divides N exactly.

Define
$$\underline{P}_{g,f}:=\langle P_{{}^\sigma g(az),f(bz)} \rangle \subseteq E(\mathbb{Q})$$
 where

$$a \mid \frac{N}{N_g}, b \mid \frac{N}{N_E}, \sigma : K_g \hookrightarrow \mathbb{C}$$

Theorem 1 (Darmon-R.-Sols) The points $P_{f,g}$ are \mathbb{Q} -rational.

Theorem 2. Let $E_{/\mathbb{Q}}$ be an elliptic curve of conductor N_E and g a newform of level N_g . Assume $gcd(N_g, N_E)$ divides N exactly.

Define
$$\underline{P}_{g,f}:=\langle P_{{}^\sigma g(\mathsf{az}),f(\mathsf{bz})} \rangle \subseteq E(\mathbb{Q})$$
 where

$$a \mid \frac{N}{N_g}, b \mid \frac{N}{N_E}, \sigma : K_g \hookrightarrow \mathbb{C}$$

The module $\underline{P}_{g,f}$ is nonzero if and only if:

i.
$$L(f, 1) = 0, L'(f, 1) \neq 0$$

ii. the local signs at finite primes of $L(g^{\sigma} \otimes g^{\sigma} \otimes f, s)$ are all +1

iii.
$$L(\operatorname{Sym}^2(g^{\sigma}) \otimes f, 2) \neq 0$$
.

Examples

•
$$E = 37a$$
, $g = 37b$,

Examples

$$ullet$$
 $E=37a,\,g=37b,\,\,arepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{\mathsf{Sym}}^2(g),2)
eq 0$

• $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- *E* = 58*a*, *g* = 29*a*,

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- E = 58a, g = 29a, $\varepsilon_2(g, g, f) = \varepsilon_{29}(g, g, f) = +1$ and $L(f \otimes \operatorname{\mathsf{Sym}}^2(g), 2) \neq 0$.

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- E = 58a, g = 29a, $\varepsilon_2(g, g, f) = \varepsilon_{29}(g, g, f) = +1$ and $L(f \otimes \text{Sym}^2(g), 2) \neq 0$. But $P_{g,f}$ is torsion.

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- $E=58a, g=29a, \varepsilon_2(g,g,f)=\varepsilon_{29}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$. But $P_{g,f}$ is torsion. $\underline{P}_{g,f}$ contains the non-torsion point $P_{g(2),f}$.

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- $E=58a, g=29a, \varepsilon_2(g,g,f)=\varepsilon_{29}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$. But $P_{g,f}$ is torsion. $\underline{P}_{g,f}$ contains the non-torsion point $P_{g(2),f}$.
- E = 91b, g = 91a.

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- $E=58a, g=29a, \varepsilon_2(g,g,f)=\varepsilon_{29}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$. But $P_{g,f}$ is torsion. $\underline{P}_{g,f}$ contains the non-torsion point $P_{g(2),f}$.
- E = 91b, g = 91a. $\underline{P}_{g,f} = \langle P_{g,f} \rangle$ is torsion,

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- $E=58a, g=29a, \varepsilon_2(g,g,f)=\varepsilon_{29}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$. But $P_{g,f}$ is torsion. $\underline{P}_{g,f}$ contains the non-torsion point $P_{g(2),f}$.
- E=91b, g=91a. $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is torsion, because $\varepsilon_7(g,g,f)=\varepsilon_{13}(g,g,f)=-1$.

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- $E=58a, g=29a, \varepsilon_2(g,g,f)=\varepsilon_{29}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$. But $P_{g,f}$ is torsion. $\underline{P}_{g,f}$ contains the non-torsion point $P_{g(2),f}$.
- E=91b, g=91a. $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is torsion, because $\varepsilon_7(g,g,f)=\varepsilon_{13}(g,g,f)=-1$. Wants a Shimura curve.

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- $E=58a, g=29a, \varepsilon_2(g,g,f)=\varepsilon_{29}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$. But $P_{g,f}$ is torsion. $\underline{P}_{g,f}$ contains the non-torsion point $P_{g(2),f}$.
- E=91b, g=91a. $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is torsion, because $\varepsilon_7(g,g,f)=\varepsilon_{13}(g,g,f)=-1$. Wants a Shimura curve.
- E = 158b, g = 158d,

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- $E=58a, g=29a, \varepsilon_2(g,g,f)=\varepsilon_{29}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$. But $P_{g,f}$ is torsion. $\underline{P}_{g,f}$ contains the non-torsion point $P_{g(2),f}$.
- E=91b, g=91a. $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is torsion, because $\varepsilon_7(g,g,f)=\varepsilon_{13}(g,g,f)=-1$. Wants a Shimura curve.
- E = 158b, g = 158d, $\varepsilon_2(g, g, f) = \varepsilon_{79}(g, g, f) = +1$,

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- $E=58a, g=29a, \varepsilon_2(g,g,f)=\varepsilon_{29}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$. But $P_{g,f}$ is torsion. $\underline{P}_{g,f}$ contains the non-torsion point $P_{g(2),f}$.
- E=91b, g=91a. $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is torsion, because $\varepsilon_7(g,g,f)=\varepsilon_{13}(g,g,f)=-1$. Wants a Shimura curve.
- E=158b, g=158d, $\varepsilon_2(g,g,f)=\varepsilon_{79}(g,g,f)=+1$, $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is torsion,

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- $E=58a, g=29a, \varepsilon_2(g,g,f)=\varepsilon_{29}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$. But $P_{g,f}$ is torsion. $\underline{P}_{g,f}$ contains the non-torsion point $P_{g(2),f}$.
- E=91b, g=91a. $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is torsion, because $\varepsilon_7(g,g,f)=\varepsilon_{13}(g,g,f)=-1$. Wants a Shimura curve.
- E = 158b, g = 158d, $\varepsilon_2(g, g, f) = \varepsilon_{79}(g, g, f) = +1$, $\underline{P}_{g,f} = \langle P_{g,f} \rangle$ is torsion, because $L(f \otimes \operatorname{Sym}^2(g), 2) = 0$.

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- $E=58a, g=29a, \varepsilon_2(g,g,f)=\varepsilon_{29}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$. But $P_{g,f}$ is torsion. $\underline{P}_{g,f}$ contains the non-torsion point $P_{g(2),f}$.
- E=91b, g=91a. $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is torsion, because $\varepsilon_7(g,g,f)=\varepsilon_{13}(g,g,f)=-1$. Wants a Shimura curve.
- E = 158b, g = 158d, $\varepsilon_2(g, g, f) = \varepsilon_{79}(g, g, f) = +1$, $\underline{P}_{g,f} = \langle P_{g,f} \rangle$ is torsion, because $L(f \otimes \operatorname{Sym}^2(g), 2) = 0$.
- E = 446d, g = 446b,

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- $E=58a, g=29a, \varepsilon_2(g,g,f)=\varepsilon_{29}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$. But $P_{g,f}$ is torsion. $\underline{P}_{g,f}$ contains the non-torsion point $P_{g(2),f}$.
- E=91b, g=91a. $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is torsion, because $\varepsilon_7(g,g,f)=\varepsilon_{13}(g,g,f)=-1$. Wants a Shimura curve.
- E = 158b, g = 158d, $\varepsilon_2(g, g, f) = \varepsilon_{79}(g, g, f) = +1$, $\underline{P}_{g,f} = \langle P_{g,f} \rangle$ is torsion, because $L(f \otimes \operatorname{Sym}^2(g), 2) = 0$.
- E = 446d, g = 446b, $\underline{P}_{q,f} = \langle P_{q,f} \rangle$ is torsion,

- $E=37a, g=37b, \ \varepsilon_{37}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$ and $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is not torsion.
- $E=58a, g=29a, \varepsilon_2(g,g,f)=\varepsilon_{29}(g,g,f)=+1$ and $L(f\otimes \operatorname{Sym}^2(g),2)\neq 0$. But $P_{g,f}$ is torsion. $\underline{P}_{g,f}$ contains the non-torsion point $P_{g(2),f}$.
- E=91b, g=91a. $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is torsion, because $\varepsilon_7(g,g,f)=\varepsilon_{13}(g,g,f)=-1$. Wants a Shimura curve.
- E = 158b, g = 158d, $\varepsilon_2(g, g, f) = \varepsilon_{79}(g, g, f) = +1$, $\underline{P}_{g,f} = \langle P_{g,f} \rangle$ is torsion, because $L(f \otimes \operatorname{Sym}^2(g), 2) = 0$.
- E=446d, g=446b, $\underline{P}_{g,f}=\langle P_{g,f}\rangle$ is torsion, because L(E,1)=L'(E,1)=0, $L''(E,1)\neq 0$.

$$\Delta = \{(x, x, x)\} - \{(x, x, 0)\} - \{(x, 0, x)\} - \{(0, x, x)\} +$$

$$+ \{(0, 0, x)\} + \{(0, x, 0)\} + \{(x, 0, 0)\} \in CH^{2}(X^{3})_{0}.$$

$$\begin{split} \Delta &= \{(x,x,x)\} - \{(x,x,0)\} - \{(x,0,x)\} - \{(0,x,x)\} + \\ &+ \{(0,0,x)\} + \{(0,x,0)\} + \{(x,0,0)\} \in \mathrm{CH}^2(X^3)_0. \end{split}$$

Put
$$\Pi = \{(x, x, y, y)\} \subset X^4$$
.

$$\begin{split} \Delta &= \{(x,x,x)\} - \{(x,x,0)\} - \{(x,0,x)\} - \{(0,x,x)\} + \\ &+ \{(0,0,x)\} + \{(0,x,0)\} + \{(x,0,0)\} \in \mathrm{CH}^2(X^3)_0. \end{split}$$

Put
$$\Pi = \{(x, x, y, y)\} \subset X^4$$
. We have $\pi_{123} : X^4 \rightarrow X^3$, $\pi_E : X^4 \rightarrow X \rightarrow E$, and

Gross-Kudla-Schoen's diagonal cycle in X^3 is

$$\begin{split} \Delta &= \{(x,x,x)\} - \{(x,x,0)\} - \{(x,0,x)\} - \{(0,x,x)\} + \\ &+ \{(0,0,x)\} + \{(0,x,0)\} + \{(x,0,0)\} \in \mathrm{CH}^2(X^3)_0. \end{split}$$

Put $\Pi = \{(x, x, y, y)\} \subset X^4$. We have $\pi_{123} : X^4 \rightarrow X^3$, $\pi_E : X^4 \rightarrow X \rightarrow E$, and

$$\begin{array}{ccc} \mathrm{CH^2}(X^3)_0 & \stackrel{\mathrm{AJ}_{\mathbb{C}}}{\to} & J^2(X^3) = \frac{\mathrm{Fil}^2 H_{dR}^3(X^3)^{\vee}}{H_3(X^3,\mathbb{Z})} \\ \downarrow & & \downarrow \\ E & \stackrel{\mathrm{AJ}_{\mathbb{C}}}{\to} & \mathbb{C}/\Lambda_E, \end{array}$$

Gross-Kudla-Schoen's diagonal cycle in X^3 is

$$\begin{split} \Delta &= \{(x,x,x)\} - \{(x,x,0)\} - \{(x,0,x)\} - \{(0,x,x)\} + \\ &+ \{(0,0,x)\} + \{(0,x,0)\} + \{(x,0,0)\} \in \mathrm{CH}^2(X^3)_0. \end{split}$$

Put $\Pi = \{(x, x, y, y)\} \subset X^4$. We have $\pi_{123} : X^4 \rightarrow X^3$, $\pi_E : X^4 \rightarrow X \rightarrow E$, and

$$\begin{array}{ccc} \mathrm{CH}^2(X^3)_0 & \stackrel{\mathrm{AJ}_{\mathbb{C}}}{\to} & J^2(X^3) = \frac{\mathrm{Fil}^2 H^3_{dR}(X^3)^{\vee}}{H_3(X^3,\mathbb{Z})} \\ \downarrow & & \downarrow \\ E & \stackrel{\mathrm{AJ}_{\mathbb{C}}}{\to} & \mathbb{C}/\Lambda_E, \end{array}$$

Theorem. (Darmon-R.-Sols) $\Delta[g,g,f] \in \mathrm{CH}^2(X^3)_0$

Gross-Kudla-Schoen's diagonal cycle in X^3 is

$$\Delta = \{(x, x, x)\} - \{(x, x, 0)\} - \{(x, 0, x)\} - \{(0, x, x)\} +$$

$$+ \{(0, 0, x)\} + \{(0, x, 0)\} + \{(x, 0, 0)\} \in CH^{2}(X^{3})_{0}.$$

Put $\Pi = \{(x, x, y, y)\} \subset X^4$. We have $\pi_{123} : X^4 \rightarrow X^3$, $\pi_E : X^4 \rightarrow X \rightarrow E$, and

$$\begin{array}{ccc} \mathrm{CH}^2(X^3)_0 & \stackrel{\mathrm{AJ}_{\mathbb{C}}}{\to} & J^2(X^3) = \frac{\mathrm{Fil}^2 H_{dR}^3(X^3)^{\vee}}{H_3(X^3,\mathbb{Z})} \\ \downarrow & & \downarrow \\ E & \stackrel{\mathrm{AJ}_{\mathbb{C}}}{\to} & \mathbb{C}/\Lambda_E, \end{array}$$

Theorem. (Darmon-R.-Sols) $\Delta[g,g,f] \in \mathrm{CH}^2(X^3)_0 \mapsto \pi_{123}^* \Delta[g,g,f]$

Gross-Kudla-Schoen's diagonal cycle in X^3 is

$$\begin{split} \Delta &= \{(x,x,x)\} - \{(x,x,0)\} - \{(x,0,x)\} - \{(0,x,x)\} + \\ &+ \{(0,0,x)\} + \{(0,x,0)\} + \{(x,0,0)\} \in \mathrm{CH}^2(X^3)_0. \end{split}$$

Put $\Pi = \{(x, x, y, y)\} \subset X^4$. We have $\pi_{123} : X^4 \rightarrow X^3$, $\pi_E : X^4 \rightarrow X \rightarrow E$, and

$$\begin{array}{ccc} \mathrm{CH}^2(X^3)_0 & \stackrel{\mathrm{AJ}_{\mathbb{C}}}{\to} & J^2(X^3) = \frac{\mathrm{Fil}^2 H^3_{dR}(X^3)^{\vee}}{H_3(X^3,\mathbb{Z})} \\ \downarrow & & \downarrow \\ E & \stackrel{\mathrm{AJ}_{\mathbb{C}}}{\to} & \mathbb{C}/\Lambda_E, \end{array}$$

Theorem. (Darmon-R.-Sols) $\Delta[g,g,f] \in \mathrm{CH}^2(X^3)_0 \mapsto \pi_{123}^* \Delta[g,g,f] \mapsto \pi_{123}^* \Delta[g,g,f] \cdot \Pi$

Gross-Kudla-Schoen's diagonal cycle in X^3 is

$$\Delta = \{(x, x, x)\} - \{(x, x, 0)\} - \{(x, 0, x)\} - \{(0, x, x)\} +$$

$$+ \{(0, 0, x)\} + \{(0, x, 0)\} + \{(x, 0, 0)\} \in CH^{2}(X^{3})_{0}.$$

Put $\Pi = \{(x, x, y, y)\} \subset X^4$. We have $\pi_{123} : X^4 \rightarrow X^3$, $\pi_E : X^4 \rightarrow X \rightarrow E$, and

$$\begin{array}{ccc} \operatorname{CH}^2(X^3)_0 & \stackrel{\operatorname{AJ}_{\mathbb{C}}}{\to} & J^2(X^3) = \frac{\operatorname{Fil}^2 H_{dR}^3(X^3)^{\vee}}{H_3(X^3,\mathbb{Z})} \\ \downarrow & & \downarrow \\ E & \stackrel{\operatorname{AJ}_{\mathbb{C}}}{\to} & \mathbb{C}/\Lambda_E, \end{array}$$

Theorem. (Darmon-R.-Sols) $\Delta[g,g,f] \in \mathrm{CH}^2(X^3)_0$ $\mapsto \pi_{123}^* \Delta[g,g,f] \mapsto \pi_{123}^* \Delta[g,g,f] \cdot \Pi$ $\mapsto \pi_{E,*}(\pi_{123}^* \Delta[g,g,f] \cdot \Pi) = P_{g,f} \in E.$

Gross-Kudla-Schoen's diagonal cycle in X^3 is

$$\Delta = \{(x, x, x)\} - \{(x, x, 0)\} - \{(x, 0, x)\} - \{(0, x, x)\} +$$

$$+ \{(0, 0, x)\} + \{(0, x, 0)\} + \{(x, 0, 0)\} \in CH^{2}(X^{3})_{0}.$$

Put $\Pi = \{(x, x, y, y)\} \subset X^4$. We have $\pi_{123} : X^4 \rightarrow X^3$, $\pi_E : X^4 \rightarrow X \rightarrow E$, and

$$\begin{array}{ccc} \operatorname{CH}^2(X^3)_0 & \stackrel{\operatorname{AJ}_{\mathbb{C}}}{\to} & J^2(X^3) = \frac{\operatorname{Fil}^2 H_{dR}^3(X^3)^{\vee}}{H_3(X^3,\mathbb{Z})} \\ \downarrow & & \downarrow \\ E & \stackrel{\operatorname{AJ}_{\mathbb{C}}}{\to} & \mathbb{C}/\Lambda_E, \end{array}$$

Theorem. (Darmon-R.-Sols) $\Delta[g,g,f] \in \mathrm{CH}^2(X^3)_0$ $\mapsto \pi_{123}^* \Delta[g,g,f] \mapsto \pi_{123}^* \Delta[g,g,f] \cdot \Pi$ $\mapsto \pi_{E,*}(\pi_{123}^* \Delta[g,g,f] \cdot \Pi) = P_{g,f} \in E.$

The p-adic Abel-Jacobi map at a prime $p \nmid N$ is

$$\mathrm{AJ}_{\rho}:\mathrm{CH}^2(X^3)_0(\mathbb{Q}_{\rho})\longrightarrow\mathrm{Fil}^2H^3_{dR}(X^3/\mathbb{Q}_{\rho})^{\vee}\ \mathrm{and\ thus}$$

The *p*-adic Abel-Jacobi map at a prime $p \nmid N$ is

$$\mathrm{AJ}_p:\mathrm{CH}^2(X^3)_0(\mathbb{Q}_p)\longrightarrow\mathrm{Fil}^2H^3_{dR}(X^3/\mathbb{Q}_p)^\vee \ \mathrm{and \ thus}$$

$$\log_{\omega_f}(P_{g,f}) = -2AJ_p(\Delta)(\eta_g \wedge \omega_g \wedge \omega_f).$$

The p-adic Abel-Jacobi map at a prime $p \nmid N$ is

$$\mathrm{AJ}_p:\mathrm{CH}^2(X^3)_0(\mathbb{Q}_p)\longrightarrow\mathrm{Fil}^2H^3_{dR}(X^3/\mathbb{Q}_p)^\vee \ \mathrm{and \ thus}$$

$$\log_{\omega_f}(P_{g,f}) = -2\mathrm{AJ}_p(\Delta)(\eta_g \wedge \omega_g \wedge \omega_f).$$

M. Daub is implementing the computation of these points via this *p*-adic formula.

The p-adic Abel-Jacobi map at a prime $p \nmid N$ is

$$\mathrm{AJ}_p:\mathrm{CH}^2(X^3)_0(\mathbb{Q}_p)\longrightarrow\mathrm{Fil}^2H^3_{dR}(X^3/\mathbb{Q}_p)^\vee \text{ and thus }$$

$$\log_{\omega_f}(P_{g,f}) = -2\mathrm{AJ}_p(\Delta)(\eta_g \wedge \omega_g \wedge \omega_f).$$

M. Daub is implementing the computation of these points via this *p*-adic formula.

Theorem. (Darmon-R.) Let (\mathcal{W}, Φ) be a wide open nbhd of

$$X_0(N)(\mathbb{C}_\rho) \setminus \mathrm{red}^{-1}(X(\bar{\mathbb{F}}_\rho)_{ss})$$

The *p*-adic Abel-Jacobi map at a prime $p \nmid N$ is

$$\mathrm{AJ}_p:\mathrm{CH}^2(X^3)_0(\mathbb{Q}_p)\longrightarrow\mathrm{Fil}^2H^3_{dR}(X^3/\mathbb{Q}_p)^\vee$$
 and thus

$$\log_{\omega_f}(P_{g,f}) = -2AJ_p(\Delta)(\eta_g \wedge \omega_g \wedge \omega_f).$$

M. Daub is implementing the computation of these points via this *p*-adic formula.

Theorem. (Darmon-R.) Let (\mathcal{W}, Φ) be a wide open nbhd of

$$X_0(N)(\mathbb{C}_p)\setminus \mathrm{red}^{-1}(X(\bar{\mathbb{F}}_p)_{ss})$$

Let $\rho \in \Omega^1(\mathcal{W} \times \mathcal{W})$ be a Coleman primitive of $\omega_g \otimes \omega_f$: $d\rho = P(\Phi)(\omega_g \otimes \omega_f)$ for a suitable polynomial P.

The *p*-adic Abel-Jacobi map at a prime $p \nmid N$ is

$$\mathrm{AJ}_p:\mathrm{CH}^2(X^3)_0(\mathbb{Q}_p)\longrightarrow\mathrm{Fil}^2H^3_{dR}(X^3/\mathbb{Q}_p)^\vee$$
 and thus

$$\log_{\omega_f}(P_{g,f}) = -2AJ_p(\Delta)(\eta_g \wedge \omega_g \wedge \omega_f).$$

M. Daub is implementing the computation of these points via this *p*-adic formula.

Theorem. (Darmon-R.) Let (W, Φ) be a wide open nbhd of

$$X_0(N)(\mathbb{C}_p)\setminus \mathrm{red}^{-1}(X(\bar{\mathbb{F}}_p)_{ss})$$

Let $\rho \in \Omega^1(\mathcal{W} \times \mathcal{W})$ be a Coleman primitive of $\omega_g \otimes \omega_f$: $d\rho = P(\Phi)(\omega_g \otimes \omega_f)$ for a suitable polynomial P. Then

$$\mathrm{AJ}_p(\Delta)(\eta_g\otimes\omega_g\otimes\omega_f)=\langle\eta_g,P(\Phi)^{-1}\epsilon^*\rho\rangle$$

where
$$\epsilon^* = \epsilon_{12}^* - \epsilon_1^* - \epsilon_2^*$$
, for $\epsilon_{12}, \epsilon_1, \epsilon_2 : X \hookrightarrow X^2$.

The triple *L*-function of $f \in S_k(N_f)$, $g \in S_\ell(N_g)$, $h \in S_m(N_h)$ is

The triple *L*-function of $f \in S_k(N_f)$, $g \in S_\ell(N_g)$, $h \in S_m(N_h)$ is

$$L(f,g,h;s) = L(V_f \otimes V_g \otimes V_h;s) = \prod_{p} L^{(p)}(f,g,h;p^{-s})^{-1},$$

The triple *L*-function of $f \in S_k(N_f)$, $g \in S_\ell(N_g)$, $h \in S_m(N_h)$ is

$$L(f,g,h;s) = L(V_f \otimes V_g \otimes V_h;s) = \prod_{\rho} L^{(\rho)}(f,g,h;\rho^{-s})^{-1},$$

For
$$p \nmid N = \text{lcm}(N_f, N_g, N_h)$$
, the Euler factor $L^{(p)}(f, g, h; T)$ is
$$(1 - \alpha_f \alpha_g \alpha_h T) \cdot (1 - \alpha_f \alpha_g \beta_h T) \cdot \dots \cdot (1 - \beta_f \beta_g \beta_h T).$$

The triple *L*-function of $f \in S_k(N_f)$, $g \in S_\ell(N_g)$, $h \in S_m(N_h)$ is

$$L(f,g,h;s) = L(V_f \otimes V_g \otimes V_h;s) = \prod_{\rho} L^{(\rho)}(f,g,h;\rho^{-s})^{-1},$$

For
$$p \nmid N = \text{lcm}(N_f, N_g, N_h)$$
, the Euler factor $L^{(p)}(f, g, h; T)$ is
$$(1 - \alpha_f \alpha_g \alpha_h T) \cdot (1 - \alpha_f \alpha_g \beta_h T) \cdot ... \cdot (1 - \beta_f \beta_g \beta_h T).$$

• The completed *L*-function satisfies

$$\Lambda(f,g,h;s) = \prod_{p|N\infty} \varepsilon_p(f,g,h) \cdot \Lambda(f,g,h;k+\ell+m-2-s).$$

Connection with L-functions

The triple *L*-function of $f \in S_k(N_f)$, $g \in S_\ell(N_g)$, $h \in S_m(N_h)$ is

$$L(f,g,h;s) = L(V_f \otimes V_g \otimes V_h;s) = \prod_{p} L^{(p)}(f,g,h;p^{-s})^{-1},$$

For
$$p \nmid N = \text{lcm}(N_f, N_g, N_h)$$
, the Euler factor $L^{(p)}(f, g, h; T)$ is
$$(1 - \alpha_f \alpha_g \alpha_h T) \cdot (1 - \alpha_f \alpha_g \beta_h T) \cdot ... \cdot (1 - \beta_f \beta_g \beta_h T).$$

• The completed L-function satisfies

$$\Lambda(f,g,h;s) = \prod_{p|N\infty} \varepsilon_p(f,g,h) \cdot \Lambda(f,g,h;k+\ell+m-2-s).$$

•
$$\varepsilon_{\infty}(f, g, h) = \begin{cases} -1 & \text{if } (k, \ell, m) \text{ are balanced.} \\ +1 & \text{if } (k, \ell, m) \text{ are unbalanced.} \end{cases}$$

A complex Gross-Zagier formula for Δ

Theorem (Yuan-Zhang-Zhang)

$$h(\Delta[f,g,h]) = (\text{Explicit non-zero factor}) \times L'(f,g,h,2)$$

where

$$h: \mathrm{CH}^2(X^3)_0 \longrightarrow \mathbb{R}$$

is Beilinson-Bloch's height pairing.

• Assume $p \nmid N$ is ordinary for f and let $\mathbf{f} : \Omega_f \longrightarrow \mathbb{C}_p[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.

- Assume $p \nmid N$ is ordinary for f and let $\mathbf{f} : \Omega_f \longrightarrow \mathbb{C}_p[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.
- $\kappa = \text{weight} : \Omega_f \longrightarrow \text{hom}_{\text{cts}}(\mathbb{Z}_p^{\times}, \mathbb{C}_p^{\times}),$

- Assume $p \nmid N$ is ordinary for f and let $\mathbf{f} : \Omega_f \longrightarrow \mathbb{C}_p[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.
- $\kappa = \text{weight} : \Omega_f \longrightarrow \text{hom}_{\text{cts}}(\mathbb{Z}_p^{\times}, \mathbb{C}_p^{\times}), \quad \Omega_{f, \text{cl}} := \kappa^{-1}(\mathbb{Z}_{\geq 2}).$

- Assume $p \nmid N$ is ordinary for f and let $\mathbf{f} : \Omega_f \longrightarrow \mathbb{C}_p[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.
- $\bullet \ \kappa = \text{weight} : \Omega_f \longrightarrow \mathsf{hom}_{\mathrm{cts}}(\mathbb{Z}_p^{\times}, \mathbb{C}_p^{\times}), \quad \Omega_{f, \mathrm{cl}} := \kappa^{-1}(\mathbb{Z}_{\geq 2}).$
- Harris and Tilouine construct a *p*-adic *L*-function

$$\mathcal{L}_{p}(\mathbf{f}, \mathbf{g}, \mathbf{h}) : \Omega_{\mathbf{f}} \longrightarrow \mathbb{C}_{p}$$

interpolating the *square-roots* of the *central critical values* of the classical $L(f_x, g, h, s)$ for $x \in \Omega_{f,cl}$ with $\kappa(x) \ge 4$.

- Assume $p \nmid N$ is ordinary for f and let $\mathbf{f} : \Omega_f \longrightarrow \mathbb{C}_p[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.
- $\kappa = \text{weight} : \Omega_f \longrightarrow \mathsf{hom}_{\mathrm{cts}}(\mathbb{Z}_p^{\times}, \mathbb{C}_p^{\times}), \quad \Omega_{f,\mathrm{cl}} := \kappa^{-1}(\mathbb{Z}_{\geq 2}).$
- Harris and Tilouine construct a *p*-adic *L*-function

$$\mathcal{L}_{p}(\mathbf{f}, \mathbf{g}, \mathbf{h}) : \Omega_{\mathbf{f}} \longrightarrow \mathbb{C}_{p}$$

interpolating the *square-roots* of the *central critical values* of the classical $L(f_x, g, h, s)$ for $x \in \Omega_{f,cl}$ with $\kappa(x) \ge 4$.

• Points with $\kappa(x) = 2$ are *not* interpolated: $L(f_x, g, h, 2) = 0$.

- Assume $p \nmid N$ is ordinary for f and let $\mathbf{f} : \Omega_f \longrightarrow \mathbb{C}_p[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.
- $\bullet \ \kappa = \text{weight} : \Omega_f \longrightarrow \mathsf{hom}_{\mathrm{cts}}(\mathbb{Z}_p^{\times}, \mathbb{C}_p^{\times}), \quad \Omega_{f, \mathrm{cl}} := \kappa^{-1}(\mathbb{Z}_{\geq 2}).$
- Harris and Tilouine construct a *p*-adic *L*-function

$$\mathcal{L}_{p}(\mathbf{f}, \mathbf{g}, \mathbf{h}) : \Omega_{\mathbf{f}} \longrightarrow \mathbb{C}_{p}$$

interpolating the *square-roots* of the *central critical values* of the classical $L(f_x, g, h, s)$ for $x \in \Omega_{f,cl}$ with $\kappa(x) \ge 4$.

- Points with $\kappa(x) = 2$ are *not* interpolated: $L(f_x, g, h, 2) = 0$.
- For x_0 with $\kappa(x_0) = 2$ and $\mathbf{f}_{x_0} = f$,

- Assume $p \nmid N$ is ordinary for f and let $\mathbf{f} : \Omega_f \longrightarrow \mathbb{C}_p[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.
- $\bullet \ \kappa = \text{weight} : \Omega_f \longrightarrow \mathsf{hom}_{\mathrm{cts}}(\mathbb{Z}_p^{\times}, \mathbb{C}_p^{\times}), \quad \Omega_{f, \mathrm{cl}} := \kappa^{-1}(\mathbb{Z}_{\geq 2}).$
- Harris and Tilouine construct a *p*-adic *L*-function

$$\mathcal{L}_{p}(\mathbf{f}, \mathbf{g}, \mathbf{h}) : \Omega_{\mathbf{f}} \longrightarrow \mathbb{C}_{p}$$

interpolating the *square-roots* of the *central critical values* of the classical $L(f_x, g, h, s)$ for $x \in \Omega_{f,cl}$ with $\kappa(x) \ge 4$.

- Points with $\kappa(x) = 2$ are *not* interpolated: $L(f_x, g, h, 2) = 0$.
- For x_0 with $\kappa(x_0) = 2$ and $\mathbf{f}_{x_0} = f$, regard $\mathcal{L}_p(\mathbf{f}, g, h)(x_0)$ as a p-adic avatar of L'(f, g, h, 2).

Theorem. (Darmon-R.) Assume for simplicity that $N_f = N_g = N_h$. Then

$$\mathcal{L}_{p}(\mathbf{f},g,h)(x_{0}) = \frac{\mathcal{E}(f,g,h)}{\mathcal{E}_{0}(f)\mathcal{E}_{1}(f)} \times \mathrm{AJ}_{p}(\Delta)(\eta_{f} \otimes \omega_{g} \otimes \omega_{h}).$$

where

$$\mathcal{E}(f,g,h) := \left(1 - \beta_{p}(f)\alpha_{p}(g)\alpha_{p}(h)p^{-2}\right) \left(1 - \beta_{p}(f)\alpha_{p}(g)\beta_{p}(h)p^{-2}\right) \\ \left(1 - \beta_{p}(f)\beta_{p}(g)\alpha_{p}(h)p^{-2}\right) \left(1 - \beta_{p}(f)\beta_{p}(g)\beta_{p}(h)p^{-2}\right) \\ \mathcal{E}_{0}(f) := \left(1 - \beta_{p}^{2}(f)\chi_{f}^{-1}(p)p^{-1}\right) \\ \mathcal{E}_{1}(f) := \left(1 - \beta_{p}^{2}(f)\chi_{f}^{-1}(p)p^{-2}\right).$$

• Let $x \in \omega_{f,cl}$ with $\kappa(x) = k \ge 4$.

• Let $x \in \omega_{f,cl}$ with $\kappa(x) = k \ge 4$. Define

$$I(\mathbf{f}_x, g, h) := \langle \mathbf{f}_x^*, \delta^t(g)h \rangle, \quad t = (k-4)/2$$

where δ is the weight raising Shimura-Maass operator.

• Let $x \in \omega_{f,cl}$ with $\kappa(x) = k \ge 4$. Define

$$I(\mathbf{f}_x, g, h) := \langle \mathbf{f}_x^*, \delta^t(g)h \rangle, \quad t = (k-4)/2$$

where δ is the weight raising Shimura-Maass operator.

Jacquet's conjecture, proved by Harris-Kudla:

$$L(\mathbf{f}_x, g, h, \frac{k+2}{2}) \stackrel{\cdot}{=} I(\mathbf{f}_x, g, h)^2.$$

ullet $I^{\mathrm{alg}}(\mathbf{f}_{\mathsf{X}},g,h):=I(\mathbf{f}_{\mathsf{X}},g,h)/\langle \mathbf{f}_{\mathsf{X}}^*,\mathbf{f}_{\mathsf{X}}^*
angle$ is algebraic

• Let $x \in \omega_{f,cl}$ with $\kappa(x) = k \ge 4$. Define

$$I(\mathbf{f}_x, g, h) := \langle \mathbf{f}_x^*, \delta^t(g)h \rangle, \quad t = (k-4)/2$$

where δ is the weight raising Shimura-Maass operator.

Jacquet's conjecture, proved by Harris-Kudla:

$$L(\mathbf{f}_x, g, h, \frac{k+2}{2}) \stackrel{\cdot}{=} I(\mathbf{f}_x, g, h)^2.$$

• $I^{alg}(\mathbf{f}_x, g, h) := I(\mathbf{f}_x, g, h)/\langle \mathbf{f}_x^*, \mathbf{f}_x^* \rangle$ is algebraic and the intepolation property of the *p*-adic *L*-function is

$$\mathcal{L}_p(\mathbf{f}, g, h)(x) = \frac{\mathcal{E}(f, g, h)}{\mathcal{E}_0(f)\mathcal{E}_1(f)} \times I^{\mathrm{alg}}(\mathbf{f}_x, g, h)$$

• Let $x \in \omega_{f,cl}$ with $\kappa(x) = k \ge 4$. Define

$$I(\mathbf{f}_x, g, h) := \langle \mathbf{f}_x^*, \delta^t(g)h \rangle, \quad t = (k-4)/2$$

where δ is the weight raising Shimura-Maass operator.

Jacquet's conjecture, proved by Harris-Kudla:

$$L(\mathbf{f}_x, g, h, \frac{k+2}{2}) \stackrel{\cdot}{=} I(\mathbf{f}_x, g, h)^2.$$

• $I^{alg}(\mathbf{f}_x, g, h) := I(\mathbf{f}_x, g, h) / \langle \mathbf{f}_x^*, \mathbf{f}_x^* \rangle$ is algebraic and the intepolation property of the p-adic L-function is

$$egin{align} \mathcal{L}_{p}(\mathbf{f},g,h)(x) &= rac{\mathcal{E}(f,g,h)}{\mathcal{E}_{0}(f)\mathcal{E}_{1}(f)} imes I^{\mathrm{alg}}(\mathbf{f}_{x},g,h) \ &= (...) imes \sqrt{L(\mathbf{f}_{x},g,h,rac{k+2}{2})}. \end{split}$$

$$\bullet \ \mathcal{L}_{p}(\mathbf{f},g,h)(x_{0}) = \lim_{\substack{x \to x_{0} \\ \kappa(x) \in \mathbb{Z}_{>4}}} \mathcal{L}_{p}(\mathbf{f},g,h)(x) =$$

$$\bullet \ \mathcal{L}_{p}(\mathbf{f},g,h)(x_{0}) = \lim_{\substack{x \to x_{0} \\ \kappa(x) \in \mathbb{Z}_{>4}}} \mathcal{L}_{p}(\mathbf{f},g,h)(x) =$$

$$\bullet \ \mathcal{L}_{\rho}(\mathbf{f},g,h)(x_0) = \lim_{\substack{x \to x_0 \\ \kappa(x) \in \mathbb{Z}_{\geq 4}}} \mathcal{L}_{\rho}(\mathbf{f},g,h)(x) =$$

$$= \lim_{k \to 2} \frac{\mathcal{E}(f,g,h)}{\mathcal{E}_0(f)\mathcal{E}_1(f)} \cdot \frac{\langle \mathbf{f}_x^*, \delta^t(g)h \rangle}{\langle \mathbf{f}_x^*, \mathbf{f}_x^* \rangle} = ^{(\text{as } t = (k-4)/2)}$$

$$\begin{split} \bullet \ \mathcal{L}_{p}(\mathbf{f},g,h)(x_{0}) &= \lim_{\substack{x \to x_{0} \\ \kappa(x) \in \mathbb{Z}_{\geq 4}}} \mathcal{L}_{p}(\mathbf{f},g,h)(x) = \\ &= \lim_{k \to 2} \frac{\mathcal{E}(f,g,h)}{\mathcal{E}_{0}(f)\mathcal{E}_{1}(f)} \cdot \frac{\langle \mathbf{f}_{x}^{*}, \delta^{t}(g)h \rangle}{\langle \mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*} \rangle} = ^{(\text{as } t = (k-4)/2)} \\ &\stackrel{d=q\frac{d}{dq}}{=} \lim_{t \to -1} \frac{\mathcal{E}(f,g,h)}{\mathcal{E}_{0}(f)\mathcal{E}_{1}(f)} \cdot \frac{\langle \mathbf{f}_{x}^{*}, \mathbf{e}_{\text{ord}} d^{t}(g)h \rangle}{\langle \mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*} \rangle} = \end{split}$$

$$\begin{split} \bullet \ \mathcal{L}_p(\mathbf{f},g,h)(x_0) &= \lim_{\kappa(x) \in \mathbb{Z}_{\geq 4}} \mathcal{L}_p(\mathbf{f},g,h)(x) = \\ &= \lim_{k \to 2} \frac{\mathcal{E}(f,g,h)}{\mathcal{E}_0(f)\mathcal{E}_1(f)} \cdot \frac{\langle \mathbf{f}_x^*, \delta^t(g)h \rangle}{\langle \mathbf{f}_x^*, \mathbf{f}_x^* \rangle} = ^{(\mathrm{as} \ t = (k-4)/2)} \\ &\stackrel{d = q \frac{d}{dq}}{=} \lim_{t \to -1} \frac{\mathcal{E}(f,g,h)}{\mathcal{E}_0(f)\mathcal{E}_1(f)} \cdot \frac{\langle \mathbf{f}_x^*, \mathbf{e}_{\mathrm{ord}} d^t(g)h \rangle}{\langle \mathbf{f}_x^*, \mathbf{f}_x^* \rangle} = \\ &= \frac{\mathcal{E}(f,g,h)}{\mathcal{E}_0(f)\mathcal{E}_1(f)} \cdot \langle \eta_f, \mathbf{e}_{\mathrm{ord}} d^{-1}(g^{[p]})h \rangle = \end{split}$$

$$\bullet \ \mathcal{L}_{p}(\mathbf{f}, g, h)(x_{0}) = \lim_{\kappa(x) \in \mathbb{Z}_{\geq 4}} \mathcal{L}_{p}(\mathbf{f}, g, h)(x) =$$

$$= \lim_{k \to 2} \frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f)\mathcal{E}_{1}(f)} \cdot \frac{\langle \mathbf{f}_{x}^{*}, \delta^{t}(g)h \rangle}{\langle \mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*} \rangle} = ^{(\text{as } t = (k-4)/2)}$$

$$\stackrel{d=q \frac{d}{dq}}{=} \lim_{t \to -1} \frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f)\mathcal{E}_{1}(f)} \cdot \frac{\langle \mathbf{f}_{x}^{*}, \mathbf{e}_{\text{ord}} d^{t}(g)h \rangle}{\langle \mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*} \rangle} =$$

$$= \frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f)\mathcal{E}_{1}(f)} \cdot \langle \eta_{f}, \mathbf{e}_{\text{ord}} d^{-1}(g^{[p]})h \rangle =$$

$$= \langle \eta_{f}, P(\Phi)^{-1} \epsilon^{*} \rho \rangle =$$

•
$$\mathcal{L}_{p}(\mathbf{f},g,h)(x_{0}) = \lim_{\substack{x \to x_{0} \\ \kappa(x) \in \mathbb{Z}_{\geq 4}}} \mathcal{L}_{p}(\mathbf{f},g,h)(x) =$$

$$= \lim_{k \to 2} \frac{\mathcal{E}(f,g,h)}{\mathcal{E}_{0}(f)\mathcal{E}_{1}(f)} \cdot \frac{\langle \mathbf{f}_{x}^{*}, \delta^{t}(g)h \rangle}{\langle \mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*} \rangle} = ^{(\text{as } t = (k-4)/2)}$$

$$\stackrel{d=q\frac{d}{dq}}{=} \lim_{t \to -1} \frac{\mathcal{E}(f,g,h)}{\mathcal{E}_{0}(f)\mathcal{E}_{1}(f)} \cdot \frac{\langle \mathbf{f}_{x}^{*}, \mathbf{e}_{\text{ord}}d^{t}(g)h \rangle}{\langle \mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*} \rangle} =$$

$$= \frac{\mathcal{E}(f,g,h)}{\mathcal{E}_{0}(f)\mathcal{E}_{1}(f)} \cdot \langle \eta_{f}, \mathbf{e}_{\text{ord}}d^{-1}(g^{[p]})h \rangle =$$

$$= \langle \eta_{f}, P(\Phi)^{-1}\epsilon^{*}\rho \rangle = \text{AJ}_{p}(\Delta)(\eta_{f} \otimes \omega_{g} \otimes \omega_{h})$$
where we had set $\rho = d^{-1}P(\Phi)(\omega_{g} \otimes \omega_{h})$.