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Let

f:q+zanqn

n>2
be a (non-CM) newform for I';(/N) of weight two and character ¢.
» Ef = Q(a2, a3, as, as, ...), a number field.

> Fr = Q({a2/(p)} : p1 N), a totally real subfield of E.

> Bf = ©Er - 3, where x are the inner-twists of f,
a central simple algebra over Ff, with Ef as maximal subfield.

A Dirichlet character x is an inner-twist of f if x(p)ap = o(ap)
for all p{ N, for some o € Hom(Ey, C).



CONJECTURE: There exist only finitely many isomorphism
classes of algebras Ef and Br of given degree over Q.

Let Ar / Q be the factor of J;(NN) attached to f.

» Endg (Af) is an order in Ef.
> Endg (Ar) is an order in Br.

CONJECTURE: For any g > 1, there exist only finitely many
isomorphism classes of endomorphism rings Endx(A) of modular
abelian varieties A/Q of dimension g.

Here, K/Q is an arbitrary algebraic extension.



For g =1, Endg(A) =Z or R C Q(v—d), h(R) = 1.
In g =2: Let A= E; x E; with E;, E; elliptic curves over Q.

Z X7 if E1, E> are not isogenous

Endg(A) =
ndo(A) {/\/IO(N) if there is a cyclic isogeny of degree V.

Here, Mp(N) = {(i Z) € Ma(Z), N | c}.

Mazur: There are finitely many possibilities for Endg(A).



Let E /K be a Q-curve completely defined over a quadratic K/Q.
Let A = Resy/q (E).

Endg(A) ® Q = Q(vEd), d = d(E) = min (deg® : £7 — E).

Conjecture: d(E) < C for some constant C > 1.



AIM:
Focus on the case

Engf

where By is a division algebra.



For a general newform f € S, (I'1(N)) without CM
(or an abelian variety A of GLp-type over Q without CM):

Endg(A) ® Q ~ M, (B) where

» B = E or a totally indefinite quaternion algebra over F.

» A is isogenous over Q to AZ, where Ao/@ is absolutely simple
and Endg(Ao) ® Q ~ B:  a building block.



We thus focus on abelian varieties
A of GLo-type over QQ such that:

> O = Endg(A) is an order in a totally indefinite division
quaternion algebra B over F

By the work of Khare, Wintenbeger and Kisin proving Serre's
modularity Conjecture:

A ~ Af for some newform f € Sy (I'1(N)), N > 1.



By the work of Ribet,

» There exists a (single) non-trivial inner-twist x of f.
» e=1and E = F(y/m) for m € F*\ F*? totally positive.
» O = Endg (A), where K = QX ~ Q(v/—d), d > 1.

>» B ~ (i,_-m) Set ® = 1 - ... - p2r Where B® F,; % Ma(F,).



Question. Given E, B, K, does there exist a modular abelian
variety A/Q such that

» Endg (A) @ Q~ E
» Endx (A) @ Q~B7?

Or a normalized newform f € Sy(I'1(N)) with E ~ E¢, B ~ By and

x = (£) as inner twist?



Numerical data

N | D | m|disc(K)
675 | 6 | 2 -3
1568 | 6 | 3 —4
243 | 6 | 6 -3
2700 (10| 10| -3
1568 | 14 | 7 —4
3969 | 15| 15| -7
5408 | 22 | 11 —4

Data for N < 5500 and F = Q.



N | [F:Q] |disc(F)| ®© |Ngp(m)| disc(K)
1089 | 2 5 [[,11] 11 =3
2502 | 2 33 | 23] | 27 4
3872 2 5 | [411| 11 4
/72| 2 5 | [4,11]| 55 2
1356 | 2 5 | [511]| 55 =3
4761 2 a1 | 25| 10 =3
2187 | 3 81 |[3,17]| 51 =3
2187 | 3 81 | [3.8] | 24 3
3060 | 3 21 | 3,3 | 8l —7
4563 3 | 1436 | [2,3] 6 =3
3267| 4 | 5725 |[9,11]| 11 —3
3267| 4 | 13525 | [5,9] 5 =3

Data for N <5500 and 2 < [F : Q] <4 (J. Quer).




Two approaches:

» Moduli interpretation in terms of Shimura varieties.

» Local methods: rigid analytic uniformization at p | D.
» Global methods: Descent.
» Brute force: Computation of equations.

> Galois representation on T, (A) for some p | D.



Shimura varieties: Fix O C B.

v

G = Resfg/q (B*) reductive algebraic over Q:

G(H) = (B ®g H)* for any algebra H over Q.

B
GL2(R) x (M x GLy(R).
O;, C G(Ar), a compact open subgroup.

Here, n=[F : Q] and g = [E : Q] = 2n.



Define the Shimura variety

Xoc = GQ)\HL x G(Af)/O* = |_| FA\HL,

where
» Hy = PY(C)\ PY(R).
» [ = OF, where each O; is locally isomorphic to O.

Let Xo be Shimura’s canonical model of Xp ¢ over F.



> If F=Q and O = My(N) ~» Xo(N).
> If O C B = My(F) ~» Hilbert-Blumenthal variety.

» If B is a division totally indefinite quaternion algebra:

Xo is a compact Shimura variety, dim(Xop) = [F : Q].



Let O C B be a maximal order.
Xo(C) = {(A)}/ =
» Ais an abelian variety of dimension g = 2[F : Q],

» +: O — End(A),

For K/Q, since Xo is only a coarse moduli scheme:

Xo (K) = {[A, ]}, K = field of moduli of (A,¢).



e Let A/Q be a modular abelian variety with O ~ Endk(A) C B:
[A, (] € Xo (K).
eRCE = F(wn) C B wherew? =mand R=ENO.

® W, € B* induces an Atkin-Lehner involution on Xo:
(Aab) = (A7w;11u")m)'

* (A yRr) € Xo/{wm)(Q), where 1g : R — Endg(A).



Can we prove Xp/{(wm)(Q) = 07?
» (Shimura) Xo (R) = 0.

» (Cerednik, Drinfeld) When F =Q and p | ® = (D):

Xo (Cp) = T\(PY(Cp) — P'(Qp) ) with T € PSL2(Qp),

Xo mod p «— T\7p,
where ' = O’[%]{, disc(O’) = D/p and 7, is Bruhat-Tits tree.

» (Zink, Rapoport, Varshavsky) Higher-dimensional analogue.



When F = Q, write Xp for Xo with disc(O) = (D).

» (R.-Skorobogatov-Yafaev)
e m|D.

e It m#D,D/p, Xp/(wm)(Q) C Xp/(wm)(A) = 0.

e Xp/{wp)(Qp) # 0 for all p < oco.

e Explicit criteria for Xp/{wm)(A) = 0, where D = pm is any
factorization with p prime.

» (R.) If D > 546, Xp/(wm)(Q) is a finite set.



Descent on 7 : Xo — Xo/{(wWm)-

e Let A € 7Z be the product of p | N g(disc(O)) - disc(F/Q).
o m:Xo— Xo/(wm) extends to a smooth morphism over Z[A™1].

e Assume mRy is square-free and 7(m) > 4 for some 7 : F — R.
Then 7 is étale if some prime © | ® splits in F(y/—m).

o Xo/(wm)(Q) = Uy 97 (“Xo(Q)).

e 9Xp is the quadratic twist associated with Q(v/d). It suffices to
take d < 0 and unramified away from A.

e X23.107/{(wi07) violates the Hasse principle over Q.



Explicit approaches: equations and point-counting.

D[e Xo opoy) | wqloy)
6 (0 x> +y?+3=0 (—x,—=y) | ( x,—y)
100 x2+y?+2=0 ( x,=y) | (=x,—y)
2210 x2+y?+11=0 (=, =y) | ( x,—y)
14 |1 (x? =132+ 73+2y2=0 (=, y) | (=x,—y)
151 (x> +3°)(x* +3)+3y? =0 (=x, y) | (=x,—y)
21 |1 x* —658x% +7°+7y? =0 (—x,—y) | (=x, y)
33[1 x*+30x% +38+3y2=0 (—x, y) | (=x,—y)
34 | 1]3x* —26x3+53x> +26x+3+y? =0 (-1, %) | (-1,3})
46 | 1 (x? —45)2 +23+2y2 =0 (—=x, y) | (=x,—y)
26 | 2 y? = —2x5 + 19x* — 24x? — 169 (—x,—=y) | (=x, )
38 |2 y? = —16x°% — 59x* — 82x% — 19 (=x,=y) | (=x, y)
58 | 2 2y? = —x® — 30x* — 431x% — 841 (=, =y) | ( x,—y)




Xp/{wq) for D = pq.

Write Y

>0

1Y (Q) | £ Yem(Q) | #{A, 7 : Q(/g) — End°(A)}

2

<11
-13
- 17
-19
- 23
- 29
-5
-7
<11




Theorem. Let 7 : Xp —Xp/(wm) for some m | D.
The obstruction in Br(Q) for a point P € Xp/(wm)(Q) to
correspond to

(A,i:Q(\/q) — End°(A))




D Xp/{wp) Xp/(wp)(Q)
91 | Y2= —X®4+19X*-3X%+1 |(0,41),(£1,+4),(£3,+28)
123 Y?2= —9X®4+19X*+5X%+1 (0, £1), (&1, +4),
(£1/3,£3)
141 Y2 = 27X0 —5X* —7X°+1 (£1,£4), (£3, £3),
(0,41), (13, £3057)
142 Y2 = 16X°+9X* —10X%2+1 +00, (0, %1), (1, +4),
1
155 | Y2 = 25X° —10X* +11X%2 —1 | oo, (+1,+4),(£3,+5)
158 | Y2 = —8X®+9X*+14X%+1 (£1,+4),(0,+1),
(3.5
254 | Y2 = 8X®+25X* —18X?+1 | (0,+1),(£L,+2),(£2,£+29)
326 | Y2= X®+10X*—63X%2+4 +00, (0, 42)
446 | Y2 = —16X°® —7X*+38X%2 +1 (0,£1), (£1, +4)

Rational points on genus 2 curves Xp/{wp) (Bruin-Flynn-Gonzalez-R.)




Conclusion. Let f € 53('1(N)) be a non-CM newform with an
inner-twist (=9) such that Er = Q(/m) and disc(%) =D>1

» Local methods: m | D, m= D or D/p with p prime
satisfying explicit congruence conditions.

» Descent:
» d|2D

» (D, m) # (23,107) and similar examples, always explained by
the Brauer-Manin obstruction.

» Brute force: (D, m) # (91, 91), (123, 123), (155, 155),
(158, 158), (326, 326), (446, 446).



Main Theorem (R.) Let f € S3('1(N)) be a newform with an
inner-twist by x = (=9). Let Er = Fr(y/m) and © = disc(By).

Assume By is division?.

(i) mRe =m3-m with m | D.
(i) o | p=3 mod 4 forany p | D, p12m.

(i) Assume D t2m and Q(¢n + ¢, ') & F for n #1,2,3,4,6. For

any £ such that VI, 20,30, /20 + /30 ¢ F and

(%) # —1, either

1\We also assume that we can choose Af in its Q-isogeny class such that
O = Endk(A) is maximal in Br. See the preprint for a more general version.



> (%)#lforallp\’}lor
> o€ Pyforall p|D, pt2m, where
Pe={p:p|l & st}

for0<s<4andac Rg, a# Vsl |7(a)| <2Vl V7:F—R.

The set Py is meant to be a small set of small exceptional primes.
When F = Q,

’Pg = {2,3,5,7} and 773 = {2,3,5}.



Theorem. Let Fr = Q, Er = Q(/m), x = (=¢) and
D = disc(_ﬁé’m) = pm with p, m odd primes. Then

(i) p=3mod 4 and (5£) = -1.

(i) If m= 3 mod 4, then d = p and (#) = —1 for any odd /¢
such that (%) =1land p &Py

(iii) If m=1 mod 4, then d = p or pm.

» If d = p, then (_7[) = —1 provided (%) =1land p &P,

» If d = pm, then p =3 mod 8 and p € P, for any odd prime ¢
such that (=97) = 1.



Idea of the proof. Let r, : Gg — GL(E,) at p | D, p{2m.

» Ar/Q has potential good reduction at any ¢ el 74,:/ F,.

> P, =T2—a T+, a €Rg, |7 (ar)| <2V for any
7:E — R

Lemma. There is a character a, : Gp — k; = IF:; such that

A9
7, Ggp — Gla(ky), 7= <X ap 0 ) .

* (675)

Idea: ay, is the restriction of 7, to certain A¢[l,] C Ar[p] C Alp].



Corollary. a mod p = a(¢r) H%(sozl)-

Proposition. There is an even positive integer x such that
ap(pf) = 712 € F} for £ # p.

e x = k(F), but can be made smaller for given Bf or (f, p).
¢ IfQ(¢y + (1) ¢ Fforn=5and n>7, k=24

Idea: For ¢ # p, ay,(lr)** = {1}.

Corollary. a; mod p = V7 -(C+¢7Y), ¢*=1.



We defined the finite set P, so that

ar= V- (C+C =0,V V20,330,210 e F.
) Because( ) = —1, Q®Endk(A) — Q&Endy, (A) = My, (F).

o F=0Q(v—0), QW7 v=3), Q(v2(, v=1), Q(v3(,v/=3) and
r=2[F : Q]/[F : Q], by Honda-Tate.

Lemma. F - F splits B, that is, no prime o | ® splits in F - F/F.

Idea. B acts FF ® Q,-linearly on V, »(A), because
B ¢ Q ® Endy,(A), whose center is F.
Since dimezgg, V) »(A) =2, BC My(FF®Qp).

This proves the Main Theorem.



