Modular endomorphism algebras

Modular forms: Arithmetic and Computation
June 3-8, 2007

Víctor Rotger Universitat Politècnica de Catalunya Let

$$f = q + \sum_{n>2} a_n q^n$$

be a (non-CM) newform for $\Gamma_1(N)$ of weight two and character ε .

- ► $E_f = \mathbb{Q}(a_2, a_3, a_4, a_5, ...)$, a number field.
- $ightharpoonup F_f = \mathbb{Q}(\{a_p^2/\varepsilon(p)\}: p \nmid N)$, a totally real subfield of E_f .
- ▶ $B_f = \oplus E_f \cdot \beta_{\chi}$ where χ are the inner-twists of f, a central simple algebra over F_f , with E_f as maximal subfield.

A Dirichlet character χ is an *inner-twist* of f if $\chi(p)a_p = \sigma(a_p)$ for all $p \nmid N$, for some $\sigma \in \text{Hom}(E_f, \mathbb{C})$.

CONJECTURE: There exist only finitely many isomorphism classes of algebras E_f and B_f of given degree over \mathbb{Q} .

Let A_f / \mathbb{Q} be the factor of $J_1(N)$ attached to f.

- ▶ $\operatorname{End}_{\mathbb{Q}}(A_f)$ is an order in E_f .
- ▶ $\operatorname{End}_{\bar{\mathbb{Q}}}(A_f)$ is an order in B_f .

CONJECTURE: For any $g \ge 1$, there exist only finitely many isomorphism classes of endomorphism rings $\operatorname{End}_K(A)$ of modular abelian varieties A/\mathbb{Q} of dimension g.

Here, K/\mathbb{Q} is an arbitrary algebraic extension.

For g = 1, $\operatorname{End}_{\bar{\mathbb{Q}}}(A) = \mathbb{Z}$ or $R \subset \mathbb{Q}(\sqrt{-d})$, h(R) = 1.

In g=2: Let $A=E_1\times E_2$ with E_1 , E_2 elliptic curves over \mathbb{Q} .

$$\operatorname{End}_{\mathbb{Q}}(A) = egin{cases} \mathbb{Z} & ext{if } E_1, E_2 ext{ are not isogenous} \\ M_0(N) & ext{if there is a cyclic isogeny of degree } N. \end{cases}$$

Here,
$$M_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{M}_2(\mathbb{Z}), N \mid c \}.$$

Mazur: There are finitely many possibilities for $\operatorname{End}_{\mathbb{Q}}(A)$.

Let E / K be a \mathbb{Q} -curve completely defined over a quadratic K/\mathbb{Q} . Let $A = \operatorname{Res}_{K/\mathbb{Q}}(E)$.

$$\operatorname{End}_{\mathbb{Q}}(A) \otimes \mathbb{Q} = \mathbb{Q}(\sqrt{\pm d}), \ d = d(E) = \min(\deg \Phi : E^{\sigma} \to E).$$

Conjecture: $d(E) \leq C$ for some constant $C \geq 1$.

AIM:

Focus on the case

$$E_f \subsetneq B_f$$

where B_f is a division algebra.

For a general newform $f \in S_2(\Gamma_1(N))$ without CM (or an abelian variety A of GL_2 -type over $\mathbb Q$ without CM):

$$\operatorname{End}_{\bar{\mathbb{Q}}}(A) \otimes \mathbb{Q} \simeq M_n(B)$$
 where

- \triangleright B = E or a totally indefinite quaternion algebra over F.
- ▶ A is isogenous over $\bar{\mathbb{Q}}$ to A_0^n , where $A_0/\bar{\mathbb{Q}}$ is absolutely simple and $\operatorname{End}_{\bar{\mathbb{Q}}}(A_0)\otimes \mathbb{Q} \simeq B$: **a building block**.

We thus focus on abelian varieties A of GL_2 -type over \mathbb{O} such that:

 $ightharpoonup \mathcal{O} = \operatorname{End}_{\bar{\mathbb{Q}}}(A)$ is an order in a totally indefinite division quaternion algebra B over F

By the work of Khare, Wintenbeger and Kisin proving Serre's modularity Conjecture:

 $A \sim A_f$ for some newform $f \in S_2(\Gamma_1(N))$, $N \ge 1$.

By the work of Ribet,

▶ There exists a (single) non-trivial inner-twist χ of f.

$$\epsilon = 1$$
 and $E = F(\sqrt{m})$ for $m \in F^* \setminus F^{*2}$ totally positive.

$$ightharpoonup \mathcal{O} = \operatorname{End}_{\kappa}(A)$$
, where $\kappa = \bar{\mathbb{Q}}^{\chi} \simeq \mathbb{Q}(\sqrt{-d})$, $d \geq 1$.

▶
$$B \simeq (\frac{-d,m}{F})$$
. Set $\mathfrak{D} = \wp_1 \cdot ... \cdot \wp_{2r}$ where $B \otimes F_{\wp_i} \not\simeq \mathrm{M}_2(F_{\wp_i})$.

Question. Given E, B, K, does there exist a modular abelian variety A/\mathbb{Q} such that

- ▶ $\operatorname{End}_{\mathbb{O}}(A) \otimes \mathbb{Q} \simeq E$
- ▶ End_K (A) \otimes $\mathbb{Q} \simeq B$?

Or a normalized newform $f \in S_2(\Gamma_1(N))$ with $E \simeq E_f$, $B \simeq B_f$ and $\chi = (\frac{K}{N})$ as inner twist?

Numerical data

Ν	D	m	$\operatorname{disc}(K)$
675	6	2	-3
1568	6	3	-4
243	6	6	-3
2700	10	10	-3
1568	14	7	-4
3969	15	15	-7
5408	22	11	-4

Data for $N \leq$ 5500 and $F = \mathbb{Q}$.

2592	2	33	[2, 3]	21	-4
3872	2	5	[4, 11]	11	-4
3872	2	5	[4, 11]	55	-4
4356	2	5	[5, 11]	55	-3
4761	2	41	[2, 5]	10	-3
2187	3	81	[3, 17]	51	-3
2187	3	81	[3,8]	24	-3
3969	3	321	[3, 3]	81	-7
4563	3	1436	[2, 3]	6	-3
3267	4	5725	[9, 11]	11	-3
3267	4	13525	[5, 9]	5	-3

 $\frac{\mathfrak{D}}{[9,11]}$

[2 2]

 $N_{F/\mathbb{Q}}(\overline{m})$

11

27

 $\operatorname{disc}(K)$

1

 $\operatorname{disc}(\overline{F})$

5

33

 $F:\mathbb{Q}$

2

Ν

1089

2502

Data for $N \le 5500$ and $2 \le [F : \mathbb{Q}] \le 4$ (J. Quer).

Two approaches:

- ▶ Moduli interpretation in terms of Shimura varieties.
 - ▶ Local methods: rigid analytic uniformization at $\wp \mid \mathfrak{D}$.
 - Global methods: Descent.
 - ▶ Brute force: Computation of equations.
- ▶ Galois representation on $T_{\wp}(A)$ for some $\wp \mid \mathfrak{D}$.

Shimura varieties: Fix $\mathcal{O} \subset \mathcal{B}$.

▶ $G = \operatorname{Res}_{F/\mathbb{O}}(B^*)$ reductive algebraic over \mathbb{Q} :

$$G(H) = (B \otimes_{\mathbb{Q}} H)^*$$
 for any algebra H over \mathbb{Q} .

- $ightharpoonup G(\mathbb{Q}) = B^*.$
- $ightharpoonup \hat{\mathcal{O}}^* = \prod_{\wp} \mathcal{O}_{\wp}^* \subset G(\mathbb{A}_f)$, a compact open subgroup.

Here, $n = [F : \mathbb{Q}]$ and $g = [E : \mathbb{Q}] = 2n$.

Define the Shimura variety

$$X_{\mathcal{O},\mathbb{C}} = G(\mathbb{Q}) \backslash \mathcal{H}^n_{\pm} \times G(\mathbb{A}_f) / \hat{\mathcal{O}}^* = \bigsqcup_{i=1}^h \Gamma_i \backslash \mathcal{H}^n_{\pm},$$

where

- $ightharpoonup \mathcal{H}_{\pm}=\mathbb{P}^1(\mathbb{C})\setminus \mathbb{P}^1(\mathbb{R}).$
- $ightharpoonup \Gamma_i = \mathcal{O}_i^*$, where each \mathcal{O}_i is locally isomorphic to \mathcal{O} .

Let $X_{\mathcal{O}}$ be Shimura's canonical model of $X_{\mathcal{O},\mathbb{C}}$ over F.

▶ If $F = \mathbb{Q}$ and $\mathcal{O} = \mathrm{M}_0(N) \rightsquigarrow X_0(N)$.

▶ If
$$\mathcal{O} \subseteq B = M_2(F) \rightsquigarrow$$
 Hilbert-Blumenthal variety.

▶ If *B* is a division totally indefinite quaternion algebra:

 $X_{\mathcal{O}}$ is a compact Shimura variety, $\dim(X_{\mathcal{O}}) = [F:\mathbb{Q}]$.

Let $\mathcal{O} \subset B$ be a maximal order.

$$X_{\mathcal{O}}(\mathbb{C}) = \{(A, \iota)\}/\simeq$$

- ▶ A is an abelian variety of dimension $g = 2[F : \mathbb{Q}]$,
- $\iota: \mathcal{O} \hookrightarrow \operatorname{End}(A)$,

For K/\mathbb{Q} , since $X_{\mathcal{O}}$ is only a *coarse* moduli scheme:

$$X_{\mathcal{O}}(K) = \{ [A, \iota] \}, K = \text{ field of moduli of } (A, \iota).$$

• Let A/\mathbb{Q} be a modular abelian variety with $\mathcal{O} \stackrel{\iota}{\simeq} \operatorname{End}_{\kappa}(A) \subset B$:

$$[A, \iota] \in X_{\mathcal{O}}(K).$$

•
$$R \subset E = F(\omega_m) \subset B$$
 where $\omega_m^2 = m$ and $R = E \cap \mathcal{O}$.

•
$$\omega_m \in B^*$$
 induces an Atkin-Lehner involution on $X_{\mathcal{O}}$:

$$(A, \iota) \mapsto (A, \omega_m^{-1} \iota \omega_m).$$

•
$$(A, \iota_{|R}) \in X_{\mathcal{O}}/\langle \omega_m \rangle(\mathbb{Q})$$
, where $\iota_{|R} : R \hookrightarrow \operatorname{End}_{\mathbb{Q}}(A)$.

Can we prove $X_{\mathcal{O}}/\langle \omega_m \rangle(\mathbb{Q}) = \emptyset$?

- ▶ (Shimura) $X_{\mathcal{O}}(\mathbb{R}) = \emptyset$.
- ▶ (Cerednik, Drinfeld) When $F = \mathbb{Q}$ and $p \mid \mathfrak{D} = (D)$:

$$X_{\mathcal{O}}\left(\mathbb{C}_{p}\right)\simeq\Gamma\backslash\left(\,\mathbb{P}^{1}(\mathbb{C}_{p})-\mathbb{P}^{1}(\mathbb{Q}_{p})\,
ight)\,\,\, ext{with}\,\,\,\Gamma\subset\mathrm{PSL}_{2}(\mathbb{Q}_{p}),$$

$$X_{\mathcal{O}} \mod p \quad \leftrightarrow \quad \Gamma \backslash \mathcal{T}_p,$$

where $\Gamma = \mathcal{O}'[\frac{1}{p}]_1^*$, $\operatorname{disc}(\mathcal{O}') = D/p$ and \mathcal{T}_p is Bruhat-Tits tree.

(Zink, Rapoport, Varshavsky) Higher-dimensional analogue.

When $F = \mathbb{Q}$, write X_D for $X_{\mathcal{O}}$ with $\operatorname{disc}(\mathcal{O}) = (D)$.

- (R.-Skorobogatov-Yafaev)
 - m | D.
 - If $m \neq D, D/p, X_D/\langle \omega_m \rangle(\mathbb{Q}) \subset X_D/\langle \omega_m \rangle(\mathbb{A}) = \emptyset.$
 - $X_D/\langle \omega_D \rangle(\mathbb{Q}_p) \neq \emptyset$ for all $p \leq \infty$.
 - Explicit criteria for $X_D/\langle \omega_m \rangle(\mathbb{A}) = \emptyset$, where D = pm is any factorization with p prime.
 - ▶ **(R.)** If D > 546, $X_D/\langle \omega_m \rangle(\mathbb{Q})$ is a finite set.

Descent on $\pi: X_{\mathcal{O}} \to X_{\mathcal{O}}/\langle \omega_m \rangle$.

- Let $\Delta \in \mathbb{Z}$ be the product of $p \mid \mathrm{N}_{F/\mathbb{Q}}(\mathrm{disc}(\mathcal{O})) \cdot \mathrm{disc}(F/\mathbb{Q})$.
- $\bullet \ \pi: \mathcal{X}_{\mathcal{O}} \to \mathcal{X}_{\mathcal{O}}/\langle \omega_{\textit{m}} \rangle \text{ extends to a smooth morphism over } \mathbb{Z}[\Delta^{-1}].$
- Assume mR_f is square-free and $\tau(m) > 4$ for some $\tau : F \hookrightarrow \mathbb{R}$. Then π is étale if some prime $\wp \mid \mathfrak{D}$ splits in $F(\sqrt{-m})$.
- $X_{\mathcal{O}}/\langle \omega_m \rangle (\mathbb{Q}) = \bigcup_d {}^d \pi ({}^d X_{\mathcal{O}}(\mathbb{Q})).$
- ${}^dX_{\mathcal{O}}$ is the quadratic twist associated with $\mathbb{Q}(\sqrt{d})$. It suffices to take d < 0 and unramified away from Δ .
- $X_{23\cdot 107}/\langle \omega_{107} \rangle$ violates the Hasse principle over \mathbb{Q} .

Explicit approaches: equations and point-counting.

D	g	X_D	$\omega_n(x, y)$	$\omega_q(x,y)$
6		$x^2 + y^2 + 3 = 0$	(-x,-y)	<u> </u>
10	0		(x,-y)	
22	0	$x^2 + y^2 + 11 = 0$	(-x,-y)	(x,-y)
14	1	$(x^2 - 13)^2 + 7^3 + 2y^2 = 0$	(-x, y)	(-x,-y)
15	1	$(x^2+3^5)(x^2+3)+3y^2=0$	(-x, y)	(-x,-y)
21	1	$x^4 - 658x^2 + 7^6 + 7y^2 = 0$	(-x,-y)	(-x, y)
33	1	$x^4 + 30x^2 + 3^8 + 3y^2 = 0$	(-x, y)	(-x,-y)
34	1	$3x^4 - 26x^3 + 53x^2 + 26x + 3 + y^2 = 0$	$\left(-\frac{1}{x}, \frac{y}{x^2}\right)$	$\left(-\frac{1}{x}, \frac{-y}{x^2}\right)$
46	1	$(x^2 - 45)^2 + 23 + 2y^2 = 0$	(-x, y)	(-x,-y)
26	2	$y^2 = -2x^6 + 19x^4 - 24x^2 - 169$	(-x,-y)	(-x, y)
38	2	$y^2 = -16x^6 - 59x^4 - 82x^2 - 19$	(-x,-y)	(-x, y)
58	2	$2y^2 = -x^6 - 39x^4 - 431x^2 - 841$	(-x,-y)	(x,-y)

Write
$$Y = X_D/\langle \omega_q \rangle$$
 for $D = pq$.

D	$\sharp Y(\mathbb{Q})$	$\sharp Y_{CM}(\mathbb{Q})$	$\sharp \{A, i : \mathbb{Q}(\sqrt{q}) \hookrightarrow \mathrm{End}^0(A)\}$
2 · 3	∞	1	∞
2 · 5	∞	2	∞
2 · 7	6	2	4
2 · 11	∞	2	∞
2 · 13	3	1	0
2 · 17	0	0	0
2 · 19	3	1	0
2 · 23	2	2	0
2 · 29	∞	2	> 0
3 · 5	4	4	0
3 · 7	0	0	0
3 · 11	2	2	0

Theorem. Let $\pi: X_D \to X_D/\langle \omega_m \rangle$ for some $m \mid D$.

The obstruction in $Br(\mathbb{Q})$ for a point $P \in X_D/\langle \omega_m \rangle(\mathbb{Q})$ to

correspond to
$$(A : : \mathbb{Q}(\sqrt{a}) \hookrightarrow \mathbb{F}_{n} d^{0}(A))$$

is

correspond to
$$(A,i:\mathbb{Q}(\sqrt{q})\hookrightarrow \mathrm{End}^0(A))$$

Here $\pi^{-1}(P) \subset X_D(\mathbb{Q}(\sqrt{-d}))$.

correspond to
$$(A,i:\mathbb{Q}(\sqrt{q})\hookrightarrow \mathrm{End}^0(A))$$

 $B\otimes (\frac{-d,m}{\mathbb{O}}).$

123	Y - =	$-9x^{\circ} + 19x^{\circ} + 5x^{2} + 1$	$(0,\pm 1), (\pm 1,\pm 4),$
			$(\pm 1/3, \pm \frac{4}{3})$
141	$Y^2 =$	$27X^6 - 5X^4 - 7X^2 + 1$	$(\pm 1, \pm 4), (\pm \frac{1}{3}, \pm \frac{4}{9}),$
			$(0,\pm 1), (\pm \frac{11}{13}, \pm \frac{4012}{2197})$
142	$Y^2 =$	$16X^6 + 9X^4 - 10X^2 + 1$	$\pm \infty, (0, \pm 1), (\pm 1, \pm 4),$
			$(\pm \frac{1}{3}, \pm \frac{4}{27})$

 $X_D/\langle \omega_D \rangle(\mathbb{Q})$

 $(0,\pm 1), (\pm 1,\pm 4), (\pm 3,\pm 28)$

 $\pm \infty, (\pm 1, \pm 4), (\pm \frac{1}{3}, \pm \frac{4}{27})$

 $(\pm 1, \pm 4), (0, \pm 1),$

 $X_D/\langle \omega_D \rangle$

0.16 + 10.14 + 5.12 + 1

 $Y^2 = -X^6 + 19X^4 - 3X^2 + 1$

 $Y^2 = 25X^6 - 19X^4 + 11X^2 - 1$

 $Y^2 = -8X^6 + 9X^4 + 14X^2 + 1$

D

155

158

$$\begin{array}{c|ccccc} & & & & & & & & & & & \\ \hline 254 & Y^2 = & 8X^6 + 25X^4 - 18X^2 + 1 & & & & & & & \\ \hline 326 & Y^2 = & X^6 + 10X^4 - 63X^2 + 4 & & & & & & & \\ \hline \end{array}$$

 $Y^2 = -16X^6 - 7X^4 + 38X^2 + 1$ 446 $(0,\pm 1), (\pm 1,\pm 4)$

Rational points on genus 2 curves $X_D/\langle \omega_D \rangle$ (Bruin-Flynn-Gonzalez-R.)

Conclusion. Let $f \in S_2(\Gamma_1(N))$ be a non-CM newform with an inner-twist $(\frac{-d}{\mathbb{O}})$ such that $E_f = \mathbb{Q}(\sqrt{m})$ and $\operatorname{disc}(\frac{-d,m}{\mathbb{O}}) = D > 1$.

- ▶ **Local methods:** $m \mid D$, m = D or D/p with p prime satisfying explicit congruence conditions.
- Descent:
 - ▶ d | 2D
 - ▶ $(D, m) \neq (23, 107)$ and similar examples, always explained by the Brauer-Manin obstruction.
- ▶ Brute force: $(D, m) \neq (91, 91), (123, 123), (155, 155), (158, 158), (326, 326), (446, 446).$

Main Theorem (R.) Let $f \in S_2(\Gamma_1(N))$ be a newform with an inner-twist by $\chi = (\frac{-d}{2})$. Let $E_f = F_f(\sqrt{m})$ and $\mathfrak{D} = \operatorname{disc}(B_f)$.

Assume B_f is division¹.

- (i) $mR_F = \mathfrak{m}_0^2 \cdot \mathfrak{m}$ with $\mathfrak{m} \mid \mathfrak{D}$.
- (ii) $\wp \mid p \equiv 3 \mod 4$ for any $\wp \mid \mathfrak{D}$, $\wp \nmid 2m$.
- (iii) Assume $\mathfrak{D} \nmid 2m$ and $\mathbb{Q}(\zeta_n + \zeta_n^{-1}) \not\subset F$ for $n \neq 1, 2, 3, 4, 6$. For any ℓ such that $\sqrt{\ell}$, $\sqrt{2\ell}$, $\sqrt{3\ell}$, $\sqrt{2\ell \pm \sqrt{3}\ell} \notin F$ and
 - $\left(\frac{K}{\ell}\right) \neq -1$, either

¹We also assume that we can choose A_f in its \mathbb{Q} -isogeny class such that $\mathcal{O} = \operatorname{End}_K(A)$ is maximal in B_f . See the preprint for a more general version.

$$\blacktriangleright \left(\frac{-\ell}{\wp}\right) \neq 1$$
 for all $\wp \mid \mathfrak{D}$, or

 $\triangleright \wp \in \mathcal{P}_{\ell}$ for all $\wp \mid \mathfrak{D}, \wp \nmid 2m$, where

$$\mathcal{P}_{\ell} = \{\wp : \wp \mid \ell, \ \mathsf{a}^2 - \mathsf{s}\ell\},$$

for $0 \le s \le 4$ and $a \in R_F$, $a \ne \sqrt{s\ell}$, $|\tau(a)| \le 2\sqrt{\ell} \quad \forall \tau : F \hookrightarrow \mathbb{R}$.

The set \mathcal{P}_{ℓ} is meant to be a small set of small exceptional primes. When $F=\mathbb{O}$,

$$\mathcal{P}_2 = \{2, 3, 5, 7\}$$
 and $\mathcal{P}_3 = \{2, 3, 5\}$.

Theorem. Let $F_f = \mathbb{Q}$, $E_f = \mathbb{Q}(\sqrt{m})$, $\chi = (\frac{-d}{m})$ and $D = \operatorname{disc}(\frac{-d,m}{m}) = pm$ with p,m odd primes. Then

(i)
$$p \equiv 3 \mod 4$$
 and $(\frac{-p}{m}) = -1$.

(ii) If
$$m \equiv 3 \mod 4$$
, then $d = p$ and $\left(\frac{-\ell}{m}\right) = -1$ for any odd ℓ such that $\left(\frac{\ell}{n}\right) = 1$ and $p \notin \mathcal{P}_{\ell}$.

(iii) If
$$m \equiv 1 \mod 4$$
, then $d = p$ or pm .

- ▶ If d = p, then $\left(\frac{-\ell}{p}\right) = -1$ provided $\left(\frac{\ell}{p}\right) = 1$ and $p \notin \mathcal{P}_{\ell}$.
 - ▶ If d = pm, then $p \equiv 3 \mod 8$ and $p \in \mathcal{P}_{\ell}$ for any odd prime ℓ such that $\left(\frac{-pm}{\ell}\right) = 1$.

Idea of the proof. Let $r_{\wp}: G_{\mathbb{Q}} \longrightarrow \operatorname{GL}_2(E_{\wp})$ at $\wp \mid \mathfrak{D}$, $\wp \nmid 2m$.

 $ightharpoonup A_f/\mathbb{Q}$ has potential good reduction at any $\ell \overset{S-T}{\leadsto} \tilde{A}_f/\mathbb{F}_{\ell}$.

 $P_{\varphi_{\ell}} = T^2 - a_{\ell}T + \ell, \ a_{\ell} \in R_{E}, \ |\tau(a_{\ell})| \le 2\sqrt{\ell} \text{ for any } \tau : E \hookrightarrow \mathbb{R}.$

Lemma. There is a character $\alpha_{\wp}: G_{\mathbb{Q}} \longrightarrow k_{\wp}^* = \mathbb{F}_a^*$ such that

$$ar{r}_{\wp}: \mathcal{G}_{\mathbb{Q}} \longrightarrow \mathrm{GL}_2(k_{\wp}), \qquad ar{r}_{\wp} = egin{pmatrix} \chi \cdot lpha_{\wp}^{m{q}} & 0 \ * & lpha_{\wp} \end{pmatrix}.$$

Idea: α_{\wp} is the restriction of \bar{r}_{\wp} to certain $A_f[I_{\wp}] \subset A_f[\wp] \subset A[p]$.

Corollary. $a_{\ell} \mod \wp = \alpha_{\wp}(\varphi_{\ell}) + \ell \alpha_{\wp}(\varphi_{\ell}^{-1}).$

Proposition. There is an even positive integer κ such that $\alpha_{\wp}(\varphi_{\ell}^{\kappa}) = \ell^{\kappa/2} \in \mathbb{F}_{p}^{*} \text{ for } \ell \neq p.$

- $\kappa = \kappa(F)$, but can be made smaller for given B_f or (f, \wp) .
- If $\mathbb{Q}(\zeta_n + \zeta_n^{-1}) \not\subset F$ for n = 5 and $n \ge 7$, $\kappa = 24$.

Idea: For $\ell \neq p$, $\alpha_{c}(I_{\ell})^{24} = \{1\}$.

Corollary. $a_{\ell} \mod \wp = \sqrt{\ell} \cdot (\zeta + \zeta^{-1}), \ \zeta^{24} = 1.$

We defined the finite set \mathcal{P}_{ℓ} so that

$$a_{\ell} = \sqrt{\ell} \cdot (\zeta + \zeta^{-1}) = 0, \sqrt{\ell}, \sqrt{2\ell}, \sqrt{3\ell}, 2\sqrt{\ell} \in F.$$

- Because $(\frac{K}{\ell}) = -1$, $\mathbb{Q} \otimes \operatorname{End}_{K}(A) \hookrightarrow \mathbb{Q} \otimes \operatorname{End}_{\mathbb{F}_{\ell}}(\tilde{A}) = \operatorname{M}_{2r}(\tilde{F})$.
- $\tilde{F} = \mathbb{Q}(\sqrt{-\ell})$, $\mathbb{Q}(\sqrt{\ell}, \sqrt{-3})$, $\mathbb{Q}(\sqrt{2\ell}, \sqrt{-1})$, $\mathbb{Q}(\sqrt{3\ell}, \sqrt{-3})$ and $r = 2[F : \mathbb{Q}]/[\tilde{F} : \mathbb{Q}]$, by Honda-Tate.

Lemma. $F \cdot \tilde{F}$ splits B, that is, no prime $\wp \mid \mathfrak{D}$ splits in $F \cdot \tilde{F}/F$. **Idea.** B acts $F\tilde{F} \otimes \mathbb{Q}_p$ -linearly on $V_p(A)$, because $B \subset \mathbb{Q} \otimes \operatorname{End}_{\mathbb{F}_\ell}(\tilde{A})$, whose center is \tilde{F} . Since $\dim_{F\tilde{F} \otimes \mathbb{Q}_p} V_p(A) = 2$, $B \subset M_2(F\tilde{F} \otimes \mathbb{Q}_p)$.

This proves the Main Theorem.