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Classical Heegner points

Let E/Q be an elliptic curve and

f =
∑
n≥1

anqn ∈ S2(N) with L(E , s) = L(f , s).

The modular parametrization is

ϕ : X0(N)(C) = Γ0(N)\H∗ −→ E(C)
τ 7→ Pτ := 2πi

∫ τ
∞ f (z)dz

=
∑

n≥1
an
n e2πin·τ

If τ ∈ P1(Q) is a cusp: Pτ ∈ E(Q)tors.

If τ ∈ H ∩ K , where K is imaginary quadratic: Pτ ∈ E(K ab).
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Stark-Heegner points

Bertolini, Darmon, Greenberg replaced H∗ by the p-adic
upper half-plane, using Coleman p-adic path integrals.

For E/Q, K real quadratic where p is inert and H/K ring
class field, Darmon constructs points on E(Cp) which
should be H-rational.
Bertolini, Dasgupta, Greenberg, Longo, R., Seveso, Vigni
complete the conjectural picture.

For E/F modular over a totally real F , Darmon and Logan
use a similar cohomological formalism to construct points
on ring class fields H/K of ATR quadratic extensions K/F .
Gartner generalizes to any K/F provided the signs of the
functional equations match, but is not effective.
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The modular parametrization revisited

The universal covering of X0(N) is

P(X0(N);∞) = {γ : [0,1] −→ X0(N), γ(0) =∞}/homotopy.

The modular parametrization factors through

ϕ : X0(N) = π1(X0(N))\P(X0(N)) −→ J0(N)→ E
γ :∞; τ 7→ Pτ :=

∫
γ ωf ,

as π1(X0(N))→ C, γ 7→
∫
γ ωf factors through H1(X0(N),Z).

Chen’s iterated integrals may give rise to anabelian
modular parametrizations of points in E(C).
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Chen’s iterated path integrals

Y smooth quasi-projective curve, o ∈ Y base point, Ỹ
universal covering.

The iterated integral attached to a tuple of smooth 1-forms
(ω1, . . . , ωn) on Y is the functional

γ 7→
∫
γ
ω1·ω2·. . .·ωn :=

∫
∆

(γ∗ω1)(t1)(γ∗ω2)(t2) · · · (γ∗ωn)(tn),

where ∆ = {0 ≤ tn ≤ tn−1 ≤ · · · ≤ t1 ≤ 1}.

When n = 2 :
∫
γ ω · η =

∫
γ̃ ωFη, for Fη primitive of η on Ỹ .

A linear combination of iterated integrals which is
homotopy invariant yields J : P(Y ; o) −→ C.
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Iterated integrals of modular forms

X = X0(N), Y = X \ {∞}, cusp 0 as base point.

Let ω ∈ Ω1(X ) and η ∈ Ω1(Y ), with a pole at∞.

Let α = αω,η ∈ Ω1(Y ) such that ωFη − αω,η on Ỹ has log
poles over∞.

Jω,η :=
∫
ω · η − αω,η is homotopy-invariant.
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Iterated integrals of modular forms

Let E/Q be an elliptic curve and f = fE ∈ S2(NE ).

Let g ∈ S2(M) be a newform of some level M, with
[Q({an(g)}) : Q] = t ≥ 1. Put N = lcm(M,NE ).

γf ∈ H1(X ,C) Poincaré dual of ωf .

Let {ωg,i , ηg,i}i=1,...,t be a symplectic basis of H1(X )[g].

Define Pg,f :=
∑t

i=1
∫
γf
ωg,i · ηg,i − ηg,i · ωg,i − 2αi ∈ E(C).

The point is independent of the choice of base point 0,
path γf or basis of H1(X )[g].
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Numerical computation

With Michael Daub, Henri Darmon and Sam Lichtenstein
we have an algorithm to compute Pg,f :

Given N ≥ 1, define cN the smallest integer for which there
are

γj =
(

a b
cN d

)
∈ Γ0(N), c ≤ cN

such that H1(X ,Z) = 〈..., [γj ], ...〉Z.

The number nD of Fourier coefficients required to compute
Pg,f to a given number D of digits of accuracy is

nD = O(max{N · cN · (D + N11σ0(N)+2), c2
N · N2σ0(N)+2}).

We represent the 1-forms ηg,i as differentials of the 2nd
kind:

∑
ui · ωg,i where ui are modular units given as eta

products.
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Some points on curves of rank 1 and conductor < 100

E Pgen g n Pg,f ,n

37a1 (0,−1) 1 1 −6P
43a1 (0,−1) 1 1 4P
53a1 (0,−1) 1 1 −2P
57a1 (2,1) 1 1 4

3 P
2 1 − 16

3 P
3 1 −4P

58a1 (0,−1) 1 1 4P
2 1 0

2 4P
77a1 (2,3) 1 1 12

5 P
2 1 − 4

3 P
3 1 4

3 P
4 1 − 12

5 P
79a1 (0,0) 1 1 −4P
82a1 (0,0) 1 1 0

3 2P
2 1 2P

83a1 (0,0) 1 1 0
2 2P

88a1 (2,−2) 1 1 0
2 1 0

2 8P
3 1 0

2 8P
91a1 (0,0) 1 1 2P

2 1 2P
3 1 4P

91b1 (−1,3) 0 1 0
2 1 0
3 1 0

92b1 (1,1) 1 1 0
2 1 0

99a1 (2,0) 1 1 − 2
3 P

2 1 0
3 1 2

3 P
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Connection with diagonal cycles

Theorem 1 (Darmon-R.-Sols) The points Pf ,g are
Q-rational.

Pg,f is the Chow-Heegner point associated with the
[g,g, f ]-isotypical component of Gross-Kudla-Schoen’s
diagonal cycle

∆ = {(x , x , x), x ∈ X}−

−{(x , x ,0)} − {(x ,0, x)} − {(0, x , x)}+

+{(0,0, x)}+ {(0, x ,0)}+ {(x ,0,0)} ⊂ X 3,

a null-homologous cycle of codimension two in X 3:
Putting
Π = {(x , x , y , y)} ⊂ X 4, Pg,f = πf ,∗(Π · π∗123(∆[g,g, f ])) .
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Connection with diagonal cycles

In fact, for any divisor

T ∈ Pic(X × X )

π∗1Pic(X )⊕ π∗2Pic(X )
' End(J0(N))

we obtain a point

PT = Π · π∗123(∆T ) for a suitable ∆T ∈ CH2(X 3)0.

This gives rise to a new modular parametrization of points

End(J0(N))→Hodge(X0(N)2)→ J0(N)(Q)
πf ,∗→ E(Q), T 7→ PT ,

which is Gal(Q̄/Q)-equivariant for its natural extension to Q̄.
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Connection with L-functions

The triple L-function of f ∈ Sk (Nf ), g ∈ S`(Ng), h ∈ Sm(Nh) is

L(f ,g,h; s) = L(Vf ⊗ Vg ⊗ Vh; s) =
∏

p

L(p)(f ,g,h; p−s)−1,

For p - N = lcm(Nf ,Ng ,Nh), the Euler factor L(p)(f ,g,h; T ) is

(1− αfαgαhT ) · (1− αfαgβhT ) · ... · (1− βfβgβhT ).

The completed L-function satisfies

Λ(f ,g,h; s) =
∏

p|N∞

εp(f ,g,h) · Λ(f ,g,h; k + `+ m − 2− s).

ε∞(f ,g,h) =

{
−1 if (k , `,m) are balanced.
+1 if (k , `,m) are unbalanced.
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Combining our result with Yuan-Zhang-Zhang

Theorem 2. Let E/Q be an elliptic curve of conductor NE and g
a newform of level M.

Assume εp(g,g, f ) = +1 at the primes p | N = lcm(M,NE ).

Then the module of points

Pg,f :=
∑
d | N

NE

πf (d){PT ,T ∈ End0(J0(N))[g]} ⊆ E(Q)

is nonzero if and only if:

i. L(f ,1) = 0,
ii. L′(f ,1) 6= 0, and
iii. L(f ⊗ Sym2(gσ),2) 6= 0 for all σ : Kg −→ C.
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Examples

E = 37a, g = 37b. Pg,f = 〈Pg,f 〉 is not torsion.
ε37(g,g, f ) = +1 and L(f ⊗ Sym2(g),2) 6= 0.

E = 58a and g = 29a. ε2(g,g, f ) = ε29(g,g, f ) = +1 and
L(f ⊗ Sym2(g),2) 6= 0. But Pg,f is torsion. Pg,f contains the
non-torsion point Pg,f ,2 := πf (PTg ·T2).

E = 91b, g = 91a. Pg,f = 〈Pg,f 〉 is torsion, because
ε7(g,g, f ) = ε13(g,g, f ) = −1. Wants a Shimura curve.

E = 158b, g = 158d . While ε2(g,g, f ) = ε79(g,g, f ) = +1,
Pg,f = 〈Pg,f 〉 is torsion, because L(f ⊗ Sym2(g),2) = 0.
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Motivic explanation of the rationality of Pg,f

Set Y = X0(N) \ {∞}, Γ = π1(Y ; 0).

I = 〈γ − 1〉 augmentation ideal of Z[Γ]: Z[Γ]/I = Z.

I/I2 = Γab = H1(Y ,Z) = H1(X ,Z).

I2/I3 = (Γab ⊗ Γab), γ1 ⊗ γ2 7→ (γ1 − 1)(γ2 − 1).

{P(Y ; 0)→C of length ≤ n} ' Hom(I/In+1,C).
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An extension of mixed motives

The exact sequence 0 −→ I2/I3 −→ I/I3 −→ I/I2 −→ 0

becomes 0 −→ H1
B(Y ) −→ MB −→ H1

B(Y )⊗2 −→ 0.

The first and third groups are the Betti realizations of a
pure motive defined over Q.

The complexification of both is equipped with a Hodge
filtration: both are pure Hodge structures.

MB = Hom(I/I3,C) = {J : P(Y ; 0)→C of length ≤ 2}
underlies a mixed Hodge structure and should arise from a
mixed motive over Q.
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Motivic explanation of the rationality of Pg,f

MB yields an extension class κ ∈ Ext1MHS(H1
B(X )⊗2,H1

B(X )).

Any ξ : Z(−1) −→ H1
B(X )⊗2 yields

0 // H1
B(X ) // MB(ξ)

��

// Z(−1)

ξ
��

// 0

0 // H1
B(X ) // MB // H1

B(X )⊗2 // 0.

ϕ : Ext1MHS(Z(−1),H1
B(X )) =

H1
dR(X/C)

Ω1(X(C))+H1
B(X)
' J0(N)(C).

ξg : 1 7→ cl(Tg) ∈ H2
B(X 2)

Kunneth−→ H1
B(X )⊗2,

Pg := ϕ(ξg) ∈ J0(N), Pg,f := πf (Pg).
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Pg,f as a Chow-Heegner point

The complex Abel-Jacobi map for curves

AJC : CH1(X )0 −→ Ω1,∨
X /H1(X ,Z), D 7→

∫
D

generalizes to varieties V of higher dimension d and
null-homologous cycles of codimension c:

AJC : CHc(V )0→Jc(V ) =
Fild−c+1H2d−2c+1

dR (VC)∨

H2d−2c+1(V ,Z) , ∆ 7→
∫

∆̃,

where ∆̃ is a 2(d − c) + 1-differentiable chain on the real
manifold V (C) with boundary ∆.
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Pg,f as a complex Chow-Heegner point

CH2(X 3)0
AJC→ J2(X 3) =

Fil2H3
dR(X 3)∨

H3(X 3,Z)

Π∗ ↓ ↓ Π∗C

E AJC→ C/ΛE ,

∆ ∈ CH2(X 3)0 7→ π∗123∆ 7→ π∗123∆·Π 7→ P∆ := πE ,∗(π
∗
123∆·Π) ∈ E .

Theorem. (Darmon-R.-Sols) In E(Q)⊗Z Q:

AJC(∆GKS)(cl(Tg) ∧ ωf ) =

∫
γf

(
t∑

i=1

ωg,i · ηg,i − ηg,iωg,i − 2αi

)
.
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Pg,f as a p-adic Chow-Heegner point via Coleman integration

The p-adic Abel-Jacobi map at a prime p - N is

AJp : CHr+2(X 3)0(Qp) −→ Fil2H3
dR(X 3/Qp)∨.

logωf
(Pg,f ) = −2AJp(∆GKS)(ηg ∧ ωg ∧ ωf ).

Theorem. (Darmon-R.) Let (W,Φ) be a wide open of

X0(N)(Cp) \ red−1(X (F̄p)ss)

and a lift of Frobenius. Let ρ ∈ Ω1(W ×W) such that
dρ = P(Φ)(ωg ⊗ ωf ) for a suitable polynomial P. Then

AJp(∆)(ηg ⊗ ωg ⊗ ωf ) = 〈η,P(Φ)−1ε∗ρ〉X

where ε∗ = ε∗12 − ε∗1 − ε∗2, for ε12, ε1, ε2 : X ↪→ X 2.
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