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Abstract. — This volume comprises four interrelated articles whose unifying theme
is the study of Heegner and Stark-Heegner points, and their connections with the
p-adic logarithm of certain global cohomology classes attached to a pair of weight one
theta series of a common (imaginary or real) quadratic field. These global classes are
obtained from p-adic deformations of diagonal classes attached to triples of modu-
lar forms of weight > 1, and naturally generalise a construction of Kato which one
recovers when the two theta series are replaced by Eisenstein series of weight one. Un-
derstanding the extent to which such classes obtained via the p-adic interpolation of
motivic cohomology classes are themselves motivic is a key motivation for this study.
A second is the desire to show that Stark-Heegner points, whose global nature is still
poorly understood theoretically, arise from classes in global Galois cohomology.

Résumé. — Ce volume est constitué de 4 articles interdépendants dont le théme
unificateur est I’étude des points de Heegner et de Stark-Heegner, et leurs relation
avec certaines classes de cohomologie Galoisienne globales associées a une paire de
séries theta de poids un du méme corps quadratique (imaginaire ou réel). Ces classes
proviennent de déformations p-adiques des classes diagonales associés a des triplets
de formes modulaires de poids > 1, et généralisent une construction de Kato que
I’on récupere quand les deux séries theta sont remplacés par des séries d’Eisenstein
de poids un. Une des motivations pour cette étude est de comprendre dans quelle
mesure de telles classes, obtenues par interpolation p-adique a partir de familles de
classes motiviques, restent elles-mémes motiviques. Ces résultats permettent aussi de
démontrer que les points de Stark-Heegner, dont les propriétés d’algébricité sont en-
core complétement conjecturales, proviennent tout au moins de classes de cohomologie
globales.
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Over the last three decades, the method of Fuler systems has been honed into a
powerful and versatile technique for relating the arithmetic of a motive to its associ-
ated L-function, in the spirit of the conjectures of Deligne, Bloch-Beilinson, Bloch-
Kato and Perrin-Riou. Among its most notable successes is the proof of the weak
Birch and Swinnerton-Dyer conjecture asserting the equality of the algebraic and an-
alytic rank of an elliptic curve over Q when the latter invariant is < 1, as well as
the finiteness of the associated Shafarevich-Tate group. These statements are partic-
ularly striking in the rank one setting, given the dearth of systematic techniques for
constructing rational or algebraic points on elliptic curves with direct connections to
L-function behaviour.

An important precursor of the Euler System concept is the seminal work of Coates
and Wiles [CW] in the mid 1970’s, where certain global cohomology classes con-
structed from norm-compatible collections of elliptic units in Z,—extensions of an
imaginary quadratic field are used to prove the finiteness of Mordell-Weil groups
of elliptic curves with complex multiplication, when the L-function of the associated
Grossencharakter does not vanish at its center. The stronger method of Euler systems
parlays their tame deformations, arising from objects defined over tamely ramified
abelian extensions of finite, p-power degree, into an efficient approach for establish-
ing the finiteness of Selmer and Shafarevich-Tate groups in addition to Mordell-Weil
groups. The genesis of this approach occurs with the work of Francisco Thaine on
circular units [Th| in the late 1980’s, whose inspiration can be traced back even
further to Kummer. The subsequent transposition of Thaine’s approach to the set-
ting of elliptic units is the basis for Karl Rubin’s remarkable strengthening [Rul]
of the approach of Coates-Wiles, with dramatic consequences for the finiteness of
Shafarevich-Tate groups of elliptic curves with complex multiplication. Kolyvagin’s
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almost simultaneous but independent breakthrough [Ko| exploits Heegner points and
their connection with special values of L-series exhibited earlier by Gross and Zagier
[GZ] to prove the equality of analytic and algebraic ranks and the finiteness of the
Shafarevich-Tate group for all (modular) elliptic curves over Q of analytic rank < 1.

Shortly afterwards, Kazuya Kato [Ka| pioneered an entirely different Euler system
approach in which Heegner points are replaced by Beilinson elements in the second
K-groups of modular curves — more accurately, by their p-adic deformations aris-
ing from norm-compatible systems in towers of modular curves, echoing the theme
of p-adic variation that was already present in the work of Coates and Wiles. Some
20 years later, it was realised that Kato’s approach could be profitably adapted to
other closely related settings, in which Beilinson elements are replaced by so-called
Beilinson-Flach elements [BDR] and diagonal cycles on a triple product of modular
curves [DR1], whose p-adic deformations — particularly, those that are germane to
the study of the Birch and Swinnerton-Dyer conjecture—are referred to as gener-
alised Kato-classes in the articles by Darmon-Rotger ([DR.v1] and [DR.v2]) or as
(specialisations of) balanced diagonal classes in the contributions by Bertolini—Seveso—
Venerucci (|[BSV.v3| and [BSV.v4]) to this collection. These classes are the key to
proving the weak Birch and Swinnerton-Dyer conjecture in analytic rank zero for
Mordell-Weil groups of elliptic curves over ring class fields of quadratic fields, both
imaginary and real [DR2] (see also [BSV1] for a simpler variant to this method, ap-
plied in greater generality). For instance, if H is the Hilbert class field of a quadratic
field K, then the implication

(1) “L(B/H,1) £0 = E(H) is finite”

is known unconditionally via these methods. When K is imaginary, the original
pathway to such a result, as described in [BD1], rests crucially on the existence of
compatible families of Heegner points, as well as building on the theory of congruences
between modular forms and on the p-adic uniformisation of Shimura curves. The route
to the same result when K is real quadratic is entirely different and makes no use of
the theory of complex multiplication, for the simple but compelling reason that no
such theory is currently available in the setting of real quadratic fields.

Extending the theory of complex multiplication to real quadratic fields represents
the simplest open case of Hilbert’s twelfth problem aiming to adapt the Jugendtraum of
Kronecker to ground fields other than the rational numbers or CM fields. A systematic
attempt was initiated around 2000 to formulate a theory of “real multiplication”,
involving p-adic rather than complex analytic objects. The resulting real quadratic
analogues of Heegner points, defined in [Dar| in terms of Coleman’s theory of p-adic
integration, are referred to as Stark-Heegner points. They are expected to give rise
to a systematic norm-compatible supply of global points (on suitable elliptic curves
over Q) defined over ring class fields of real quadratic fields. Because of their strong
analogy with Heegner points, they form the basis for a purely conjectural extension
of the approach of Kolyvagin described in [BD1] for proving (1) when K is real
quadratic, which is discussed for instance in [BDD)].

The article [BD2] introduces a different approach to Stark—Heegner points, by
realising them as derivatives of Hida—Rankin p-adic L-functions. This point of view
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leads to the proof in loc. cit. of the rationality of Stark—Heegner points attached to
genus characters of real quadratic fields. It also provides the crucial bridge to connect
Stark—Heegner points to generalised Kato classes arising from suitable p-adic families
of diagonal cycles. The results of [BD3] can likewise be exploited to make a similar
comparison with Heegner points. The explicit comparison between Heegner or Stark-
Heegner points and generalised Kato classes, with a view to broadening the scope of
the conjecture of Perrin-Riou on rational points on elliptic curves [PR], is the main
goal of this volume.

Comparisons of this type between different Euler systems and Heegner points have
a number of fruitful antecedents, among which it may be worthwhile to mention the
following:

1. A pioneering early work by Rubin [Ru2] examines the global Selmer class
arising from the Euler system of elliptic units and finds that the logarithm of
such a class is proportional to the square of the logarithm of a global point
arising from a Heegner point construction. This comparison of elliptic units
and Heegner points has intriguing consequences for the construction of rational
points on CM elliptic curves via the special values of the Katz p-adic L-function
of an imaginary quadratic field.

2. In an attempt to extend Rubin’s theorem to elliptic curves without complex
multiplication, Bernadette Perrin-Riou conjectured in [PR] that the p-adic log-
arithm of the global Selmer class arising from p-adic families of Beilinson ele-
ments via Kato’s method should likewise be expressed in terms of the square of
the logarithm of a Heegner point. This is proved in [Ve] for elliptic curves with
multiplicative reduction at p, and in [BDV] in the general case. One of the key
ingredients in the latter work are the articles [BDP1] and [BDP2], the latter
of which proposes an alternate approach to Rubin’s formula based on special
values of p-adic Rankin L-series rather than of the Katz p-adic L-function.

3. The systematic study of “p-adic iterated integrals” undertaken in [DLR] leads
to a general conjectural formula relating the p-adic logarithms of generalised
Kato classes to certain regulators which are linear combinations with algebraic
coefficients of products of two logarithms of global points on elliptic curves. This
formula is conceptualised in the framework of a p-adic Birch and Swinnerton-
Dyer conjecture in [BSV2]. The cases where this conjecture is proved uncon-
ditionally (thanks to Heegner points) are an important ingredient in the proof
of Perrin-Riou’s conjecture described in [BDV].

The present volume collects four interrelated articles, partially motivated by the
goal of systematically studying the p-adic logarithm of the balanced diagonal class
attached to a pair of weight one theta series of an imaginary (resp. real) quadratic
field, and of relating it to the product of logarithms of two Heegner (resp. Stark—
Heegner) points. More precisely, the first article [DR.v1] gives an overview of the
theory of Stark—Heegner points and of Hida—Rankin p-adic L-functions attached to
elliptic curves, and explains the general strategy used to relate Stark—Heegner points
to generalised Kato classes. The second article [DR.v2]| studies the problem of the
p-adic interpolation of the image of diagonal cycles under the étale Abel-Jacobi map,
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leading to a 3-variable A-adic class in Iwasawa cohomology. It establishes moreover
an explicit reciprocity law, connecting this class to a Hida—Garrett—Rankin p-adic
L-function attached to a triple of Hida families of cusp forms. The third article
[BSV.v3] undertakes the construction of a so-called balanced diagonal class in three
variables from a different standpoint, by exploiting the invariant theory of the diagonal
embedding of GL, into its triple product, combined with the Ash—Stevens theory of
p-adic distributions. This analytic approach, formulated in the context of Coleman
families of modular forms, lends itself to generalisations to higher groups. It allows to
establish an explicit reciprocity law in this context, which is at the base of the results
of the subsequent article. In turn the constructions of [DR.v2] deal more directly
with the geometry of diagonal cycles and have been investigated further for example
in [CS20]. The fourth article [BSV.v4] gives detailed proofs of the formulae relating
the product of the p-adic logarithms of two Heegner points or Stark—Heegner points
to the specialisation at the weight (2,1, 1) of the balanced diagonal class. We refer to
the extensive introductions of the various chapters for further details.

At present, the collection of Heegner points on a modular elliptic curve, arising
from the combination of modularity and of the theory of complex multiplication,
still represents the “gold standard” for understanding the Birch and Swinnerton-Dyer
conjecture, particularly in analytic rank one, where the crucial issue of producing
non-trivial algebraic points of infinite order on elliptic curves becomes inescapable.
By contrast, generalised Kato classes, as well as their forebearers arising from elliptic
units make a priori only tenuous contact with these central issues, upon which further
progress on the Birch and Swinnterton-Dyer conjecture would seem to be crucially
dependent. Obtaining tight connections between generalised Kato classes and global
points on elliptic curves, such as those proved in this volume, is worthwhile for at least
two reasons. Firstly, it seems important to understand the extent to which Selmer
classes constructed via a p-adic limiting process are related to “motivic”’ extensions
attached to genuine global points on elliptic curves (or more general algebraic cycles
on higher dimensional varieties). The results of the present monograph combine with
those of [Ru2], [Ve], [BDV], [DLR] and [BSV2] to present a coherent picture in
the setting of generalised Kato classes arising from diagonal cycles on triple products.
Secondly, it lends some theoretical support for the theory of Stark-Heegner points,
towards the hope of extending the available constructions of rational points on elliptic
curves beyond the theory of Heegner points.

This monograph owes a tremendous debt to the vision of Perrin-Riou, whose con-
jecture of [PR] is a basic prototype for the results that are proved here. Perrin-Riou’s
insights into the connection between Euler systems and p-adic L-functions through
her fundamental “dual exponential map in p-adic families” also provides a key ingre-
dient for the proofs of our main results. It is therefore a pleasure to dedicate this
collection to Bernadette Perrin-Riou on her 65th birthday.
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STARK-HEEGNER POINTS AND DIAGONAL CLASSES

by

Henri Darmon and Victor Rotger

Abstract. — Stark-Heegner points are conjectural substitutes for Heegner points
when the imaginary quadratic field of the theory of complex multiplication is replaced
by a real quadratic field K. They are constructed analytically as local points on
elliptic curves with multiplicative reduction at a prime p that remains inert in K,
but are conjectured to be rational over ring class fields of K and to satisfy a Shimura
reciprocity law describing the action of Gk on them. The main conjectures of [Da01]
predict that any linear combination of Stark-Heegner points weighted by the values
of a ring class character 1 of K should belong to the corresponding piece of the
Mordell-Weil group over the associated ring class field, and should be non-trivial
when L'(E/K,4,1) # 0. Building on the results on families of diagonal classes
described in the remaining contributions to this volume, this note explains how such
linear combinations arise from global classes in the idoneous pro-p Selmer group,
and are non-trivial when the first derivative of a weight-variable p-adic L-function
Zp(f/K, 1) does not vanish at the point associated to (E/K,).
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1. Introduction

Let E be an elliptic curve over Q of conductor IV and let K be a quadratic field
of discriminant D relatively prime to N, with associated Dirichlet character x .

When yg(—N) = —1, the Birch and Swinnerton-Dyer conjecture predicts a sys-
tematic supply of rational points on E defined over abelian extensions of K. More
precisely, if H is any ring class field of K attached to an order O of K of conductor
prime to DN, the Hasse-Weil L-function L(E/H, s) factors as a product

(1.1) L(E/H,s) = [[ L(E/K,1, )
P

of twisted L-series L(E/K, 1, s) indexed by the finite order characters
¥:G=Gal(H/K)— L™,

taking values in some fixed finite extension L of Q. The L-series in the right-hand
side of (1.1) all vanish to odd order at s = 1, because they arise from self-dual Galois
representations and have sign xx(—N) in their functional equations. In particular,
L(E/K,1,1) = 0 for all ¥». An equivariant refinement of the Birch and Swinnerton-
Dyer conjecture predicts that the i-eigenspace E(H)Y C E(H) ® L of the Mordell-
Weil group for the action of Gal (H/K') has dimension > 1, and hence, that E(H)®Q
contains a copy of the regular representation of G.

When K is imaginary quadratic, this prediction is largely accounted for by the
theory of Heegner points on modular or Shimura curves, which for each 1 as above
produces an explicit element P, € E(H )¥. The Gross-Zagier formula implies that
P, is non-zero when L'(E/K,1,1) # 0. Thus it follows for instance that E(H) ® Q
contains a copy of the regular representation of G when L(E/H, s) vanishes to order
[H : K] at the center.

When K is real quadratic, the construction of non-trivial algebraic points in E(H)
appears to lie beyond the scope of available techniques. Extending the theory of
Heegner points to this setting thus represents a tantalizing challenge at the frontier
of our current understanding of the Birch and Swinnerton-Dyer conjecture.

Assume from now on that D > 0 and there is an odd prime p satisfying
(1.2) N =pM withpt M,  xk(p)=-1, xx(M)=1

A conjectural construction of Heegner-type points, under the further restriction
that xyx(¢) = 1 for all ¢|M, was proposed in [Da01l], and extended to the more
general setting of (1.2) in [Gr09], [DG12|, [LRV12|, [KPM18] and [Rel5|. It
leads to a canonical collection of so-called Stark-Heegner points

P, € E(H®Q,) =[] E(H,),
elp
indexed by the ideal classes a of Pic(O), which are regarded here as semi-local points,
ie., [H : K]-tuples Py = { Py} p|p of local points in E(K),). This construction, and its
equivalence with the slightly different approach of the original one, is briefly recalled
in §2.
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As a formal consequence of the definitions (cf. Lemma 2.1), the semi-local points
P, satisfy the Shimura reciprocity law

Py = Piec(o).a forall o €@,

a

where G acts on the group E(H ® Q) in the natural way and rec : G — Pic(O) is
the Artin map of global class field theory.

The construction of the semi-local point P, € [ olp E (Hy,) is purely p-adic analytic,
relying on a theory of p-adic integration of 2-forms on the product H x H,, where
‘H denotes Poincaré’s complex upper half plane and #, stands for Drinfeld’s rigid
analytic p-adic avatar of H, the integration being performed, metaphorically speaking,
on two-dimensional regions in H, x H bounded by Shintani-type cycles associated
to ideal classes in K. The following statement of the Stark-Heegner conjectures of
loc.cit. is equivalent to [Da01, Conj.5.6, 5.9 and 5.15], and the main conjectures in
[Gr09], [DG12], [LRV12], [KPM18] and [Rel5]| in the general setting of (1.2):

Stark-Heegner Conjecture. The semi-local points P, belong to the natural image
of E(H) in E(H ® Qp), and the 1-component

Py = Z v Ha)P, € E(H®Q,)Y
acePic(0)

is non-trivial if and only if L'(E/K,,1) # 0.

The Stark-Heegner Conjecture has been proved in many cases where v is a
quadratic ring class character. When 92 = 1, the induced representation

V"/’ = Indgw = X1 EB X2

decomposes as the sum of two one-dimensional Galois representations attached to
quadratic Dirichlet characters satisfying

x1(p) = —xa(p), x1(M) = x2(M),

and the pair (x1,x2) can be uniquely ordered in such a way that the L-series
L(E,x1,s) and L(E, x2,s) have sign 1 and —1 respectively in their functional
equations.

Define the local sign « := a,(E), which is equal to either 1 or —1 according to
whether E has split or non-split multiplicative reduction at p. Let p be a prime
of H above p, and let 0, € Gal(H/Q) denote the associated Frobenius element.
Because p is inert in K/Q, the unique prime of K above p splits completely in H/K
and o, belongs to a conjugacy class of reflections in the generalised dihedral group
Gal (H/Q). It depends in an essential way on the choice of p, but, because v cuts
out an abelian extension of Q, the Stark-Heegner point

does not depend on this choice. It can in fact be shown that

po _ 2P, if x2(p) =
v 0 if x2(p) = —a.
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The recent work [Mo17] of Mok and [LMY 17| of Longo, Martin and Yan, building
on the methods introduced in [BD09, Thm. 1], [Mo11], and [LV14], asserts:

Stark-Heegner theorem for quadratic characters. Let ¥ be a quadratic ring
class character of conductor prime to 2DN. Then the Stark-Heegner point Py belongs
to E(H) ® Q and is non-trivial if and only if

(14) L(E7X17 1) 7é O’ L/(Ea X2, 1) 7é 07 and XQ(p) = Q.

The principle behind the proof of this result is to compare Pj to suitable Heegner
points arising from Shimura curve parametrisations, exploiting the fortuitous circum-
stance that the field over which Py is conjecturally defined is a biquadratic extension
of Q and is thus also contained in ring class fields of imaginary quadratic fields (in
many different ways).

The present work is concerned with the less well understood generic case where
1% # 1, when the induced representation Vi is irreducible. Note that v is either
totally even or totally odd, i.e., complex conjugation acts as a scalar €, € {1, —1} on
the induced representation V.

The field which % cuts out cannot be embedded in any compositum of ring class
fields of imaginary quadratic fields, and the Stark-Heegner Conjecture therefore seems
impervious to the theory of Heegner points in this case.

The semi-local point Pj of (1.3) now depends crucially on the choice of p, but it
is not hard to check that its image under the localisation homomorphism

Jp it E(H ®Qp) — E(H,) = E(K))

at p is independent of this choice, up to scaling by L* (cf. Lemma 2.4). It is the local
point
Pg, = jp(PS) € E(H,) ® L = E(K,) @ L

which will play a key role in Theorems A and B below.

Theorems A and B are conditional on either one of the two non-vanishing hypothe-
ses below, which apply to a pair (F, K) and a choice of archimedean sign € € {—1,1}.
The first hypothesis is the counterpart, in analytic rank one, of the non-vanishing for
simultaneous twists of modular L-series arising as the special case of [DR17, Def. 6.8|
discussed in (168) of loc.cit., where it plays a similar role in the proof of the Birch
and Swinnerton-Dyer conjecture for L(E/K, 1, s) when L(E/K,1),1) # 0. The main
difference is that we are now concerned with quadratic ring class characters for which
L(E/K,1,s) vanishes to odd rather than to even order at the center.

Analytic non-vanishing hypothesis: Given (E, K) as above, and a choice of a
sign € € {1, —1}, there exists a quadratic Dirichlet character x of conductor prime to
DN satisfying

X(_l) = -6 XXK(p) =, L(E’X7 1) 7é Ov LI(E7XXKa 1) 7é 0.
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The second non-vanishing hypothesis applies to an arbitrary ring class character &
of K.

Weak non-vanishing hypothesis for Stark-Heegner points: Given (E,K) as
above, and a sign € € {1,—1}, there exists a ring class character & of K of conductor
prime to DN with e¢ = —€ for which P¢, # 0.

That the former hypothesis implies the latter follows by applying the Stark-Heegner
theorem for quadratic characters to the quadratic ring class character £ of K attached
to the pair (x1,x2) := (X, XXk ) supplied by the analytic non-vanishing hypothesis.
The stronger non-vanishing hypothesis is singled out because it has the virtue of
tying in with mainstream questions in analytic number theory on which there has
been recent progress [Mul2]. On the other hand, the weak non-vanishing hypothesis
is known to be true in the classical setting of Heegner points, when K is imaginary
quadratic. In fact, for a given F and K, all but finitely many of the Heegner points P,
(as a ranges over all ideal classes of all possible orders in K) are of infinite order, and
P and P¢ are therefore non-trivial for infinitely many ring class characters ¢, and for
at least one character of any given conductor, with finitely many exceptions. It seems
reasonable to expect that Stark-Heegner points should exhibit a similar behaviour,
and the experimental evidence bears this out as one can readily verify on a software
package like Pari or Magma. In practice, efficient algorithms for calculating Stark-
Heegner points make it easy to produce a non-zero P, for any given (E, K), and
indeed, the extensive experiments carried out so far have failed to produce even a
single example of a vanishing P¢ when ¢ has order > 3. Thus, while these non-
vanishing hypotheses are probably difficult to prove in general, they are expected to
hold systematically. Moreover, they can easily be checked in practice for any specific
triple (E, K, €) and therefore play a somewhat ancillary role in studying the infinite
collection of Stark-Heegner points attached to a fixed E and K.

Let V,(E) = (1&11 E[p”]) ® Qp denote the Galois representation attached to E
and let
Sel, (E/H) = H}(H, V,(E))

be the pro-p Selmer group of E over H. The -component of this Selmer group is an
L,-vector space, where L,, is a field containing both Q,, and L, by setting

Sel,(E/H)" = {k € H{ (H,V,(E))®q, Ly s.t. ok =1(0)-x for all o € Gal (H/K)}.
Since F is defined over Q, the group
Selp(E/H) =~ @,H¢ (Q,V,(E) ® o)

admits a natural decomposition indexed by the set of irreducible representations g of
Gal (H/Q). In this note we focus on the isotypic component singled out by %, namely

(1.5) Sel,(E, ) := H(Q, V,(E) ® Vi) = Sel,(E/H)? & Sel,(E/H)"

where Shapiro’s lemma combined with the inflation-restriction sequence gives the
above canonical identifications.
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It will be convenient to assume from now on that E[p] is irreducible as a Gq-
module. This hypothesis could be relaxed at the cost of some simplicity and trans-
parency in some of the arguments.

Theorem A. Assume that the (analytic or weak) non-vanishing hypothesis holds for
(E,K,e). Let ¢ be any non-quadratic ring class character of K of conductor prime
to DN, for which ey = €. Then there is a global Selmer class

Ky € Sel,(E, )
whose natural image in the group E(Hy) ® L, of local points agrees with Py,
The Selmer class mentioned in the statement above is constructed as a p-adic limit
of diagonal classes. In particular, it follows from Theorem A that

(1.6) Py, #0 = dimg, Sel(T),(E/H)Y > 1.

As a corollary, we obtain a criterion for the infinitude of Sel,(E/H)¥ in terms of the
p-adic L-function Z,(f/K,v) constructed in [BDO09, §3|, interpolating the square
roots of the central critical values L(fr/K, ¢, k/2), as fi ranges over the weight k > 2
classical specializations of the Hida family passing through the weight two eigenform f
associated to E. The interpolation property implies that .Z,(f/K, 1) vanishes at k =
2, and its first derivative %, (f/K,1)(2) is a natural p-adic analogue of the derivative
at s = 1 of the classical complex L-function L(f/K,,s). The following result can
thus be viewed as a p-adic variant of the Birch and Swinnerton-Dyer Conjecture in
this setting.

Theorem B. If £,/(f/K,¢)(2) #0, then dimy,, Sel(T),(E/H)¥ > 1.

Theorem B is a direct corollary of (1.6) in light of the main result of [BD09],
recalled in Theorem 4.1 below, which asserts that P, is non-trivial when

L (8K, 0)(2) £ 0.

Remark 1. Assume the p-primary part of (the v-isotypic component of) the Tate-
Shafarevich group of E/H is finite. Then Theorem A shows that Pj , arises from a
global point in E(H) ® L,, as predicted by the Stark-Heegner conjecture. Moreover,
Theorem B implies that dimy, E(H)¥ > 1 if %, (f/K,)(2) # 0.

Remark 2. The irreducibility of Vi, when 1 is non-quadratic shows that Py is
non-trivial if and only if the same is true for P,. The Stark-Heegner Conjecture
combined with the injectivity of the map from E(H) ® L to E(H,) ® L suggests
that P, never vanishes when Py, =% 0, but the scenario where Pj is a non-trivial
element of the kernel of j, seems hard to rule out unconditionally, without assuming
the Stark-Heegner conjecture a priori.

Remark 3. Section 2 is devoted to review the theory of Stark-Heegner points. For
notational simplicity, §2 has been written under the stronger Heegner hypothesis

xx() =—-1,  xx(f) =1 for all {{M
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of [Da01]. This section merely collects together the basic notations and principal
results of [Da01], [BD09], [Mo17] and [LMY17]. Exact references for the analogous
results needed to cover the more general setting of (1.2) are given along the way.
The remaining sections §3, 4, 5, 6 and 7, which form the main body of the article,
adapt without change to proving Theorems A and B under the general assumption
(1.2). In particular, while quaternionic modular forms need to be invoked in the
general construction of Stark-Heegner points of [Gr09], [DG12] and [LRV12]|, the
arguments in loc. cit. only employ classical elliptic modular forms in order to deal with
the general setting.

Remark 4. The proof of Theorems A and B summarized in this note invokes several
crucial results on families of diagonal classes that are proved in the remaining contri-
butions to this volume. In particular the articles [BSVa] and [BSVb] supply essential
ingredients in the extension of the Perrin-Riou style reciprocity laws in settings where
the idoneous p-adic L-function admits an “exceptional zero". In a previous version of
this article it was wrongly claimed that one of the key inputs, namely formula (7.7)
in the text, follows from one of the main results in Venerucci’s paper [Vel6]; the
authors are grateful to Bertolini, Seveso and Venerucci for pointing out this error and
supplying a proof of this important formula in their contributions to this volume.

History and connection with related work. The first two articles in this volume
are the culmination of a project which originated in the summer of 2010 during a
two month visit by the first author to Barcelona, where, building on the approach
of [BDP13], the authors began collaborating on what eventually led to the p-adic
Gross-Zagier formula of [DR14] relating p-adic Abel-Jacobi images of diagonal cycles
on a triple product of modular curves to the special values of certain Garrett-Rankin
triple product p-adic L-functions. In October of that year, they realized that Kato’s
powerful idea of varying Galois cohomology classes in (cyclotomic) p-adic families
could be adapted to deforming the étale Abel Jacobi images of diagonal cycles, or
the étale regulators of Belinson-Flach elements, along Hida families. The resulting
generalised Kato classes obtained by specialising these families to weight one seemed
to promise significant arithmetic applications, notably for the Birch and Swinnerton-
Dyer conjecture over ring class fields of real quadratic fields — a setting that held a
special appeal because of its connection with the still poorly understood theory of
Stark-Heegner points. This led the authors to formulate a program, whose broad
outline was already in place by the end of 2010, and whose key steps involved

— In the setting of “analytic rank zero", a proof of the “weak Birch and Swinner-
ton Dyer conjecture" for elliptic curves over Q twisted by certain Artin repre-
sentations ¢ of dimension < 4 arising in the tensor product of a pair of odd
two-dimensional Artin representations, i.e., the statement that

L(E,0,1) #0 = (E(H)® )% =0.

This was carried out in [DR17] and [BDR15]| by showing that the generalised
Kato classes fail to be crystalline precisely when L(E, o, 1) # 0.

— In the setting of “analytic rank one", when L(E, p,1) = 0 it becomes natural to
compare the relevant generalised Kato class to algebraic points in the g-isotypic
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part of E(H), along the lines of conjectures first formulated by Rubin (for CM
elliptic curves) and by Perrin-Riou (in the setting of Kato’s work). Several pre-
cise conjectures were formulated along those lines, notably in [DLR15], guided
by extensive numerical experiments conducted with Alan Lauder. In general,
the independent existence of such global points is tied with deep and yet un-
proved instances of the Birch and Swinnerton-Dyer conjecture, but when g is
induced from a ring class character of a real quadratic field K and p is a prime of
multiplicative reduction for E which is inert in K, it becomes natural to compare
the resulting generalised Kato class (a global invariant in the Selmer group, al-
beit with p-adic coefficients) to Stark-Heegner points (which are defined purely
p-adic analytically, but are conjecturally motivic, with Q-coefficients).

Starting roughly in 2012, the idea of exploiting p-adic families of diagonal cycles and
Beilinson-Flach elements was taken up by several others, motivated by a broader range
of applications. While the authors were fleshing out their strategy for writing the
two papers appearing in this volume, they thus benefitted from several key advances
made during this time, which have simplified and facilitated the work that is described
herein, and which it is a pleasure to acknowledge, most importantly:

— The construction of three variable cohomology classes was further developed and
perfected, in the setting of Beilinson-Flach elements by Lei, Loeffler and Zerbes
[LLZ14] and several significant improvements were subsequently proposed, no-
tably in the article [KLZ17] in which Kings’ A-adic sheaves play an essential
role. These provide what are often more efficient and general approaches to
constructing p-adic families of cohomology classes.

— The article [BSVa] by Bertolini, Seveso and Venerucci that appears in this
volume constructs a three-variable A-adic class of diagonal cohomology classes
by a different method, building on the work of Andreatta-lovita-Stevens, and
makes a more systematic study of such classes in settings where there is an
exceptional zero, surveying a wider range of scenarios. Although there is some
overlap between the two works as far as the general strategy is concerned, both
present a different take on these results. Indeed, the approach in this note
eschews the methods of Andreatta-Iovita-Stevens in favour of an approach based
on the study of a collection of cycles on the cube of the modular curve X (V) of
full level structure. These cycles are of interest in their own right, and shed a
useful complementary perspective on the construction of the A-adic cohomology
classes for the triple product. Indeed, their study forms the basis for the ongoing
PhD thesis of David Lilienfeldt [Li], and has let to interesting open questions
(cf.e.g. those that are explored in [CS20]).

— Families of cohomology classes based on compatible collections of Heegner points
are of course a long-standing theme in the subject, and have been taken up
anew, for instance in the more recent works of Castella-Hsieh [CS18], Kobayashi
[Ko20] and Jetchev-Loeffler-Zerbes [JLZ20].

Acknowledgements. The first author was supported by an NSERC Discovery grant.
The second author also acknowledges the financial support by ICREA under the
ICREA Academia programme. This project has received funding from the European



STARK-HEEGNER POINTS AND DIAGONAL CLASSES 9

Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 682152). It is a pleasure to thank M.L.
Hsieh and M. Longo for detailed explanations of their respective recent preprints, and
M. Bertolini, M. Seveso, and R. Venerucci for their complementary works [BSVa],
[BSVDb]| appearing in this volume.

2. Stark-Heegner points

This section recalls briefly the construction of Stark-Heegner points originally pro-
posed in [Da01] and compares it with the equivalent but slightly different presen-
tation given in the introduction. As explained in Remark 3,we provide the details
under the running assumptions of loc. cit.,and we refer to the references quoted in
the introduction for the analogous story under the more general hypothesis (1.2).

Let E/Q be an elliptic curve of conductor N := pM with p f M. Since E has
multiplicative reduction at p, the group E(Q,2) of local points over the quadratic
unramified extension Q2 of Q, is equipped with Tate’s p-adic uniformisation

Py : Q;2/qz — E(sz)-

Let f be the weight two newform attached to E via Wiles’ modularity theorem, which
satisfies the usual invariance properties under Hecke’s congruence group I'g(NN), and
let

I {( “! ) € SLy(Z[1/p]), ¢=0 (mod M)}

denote the associated p-arithmetic group, which acts by Md&bius transformations both
on the complex upper-half plane 7 and on Drinfeld’s p-adic analogue #,, := P1(C,) —
P1(Qp). The main construction of Sections 1-3 of [Da01]| attaches to f a non-trivial
indefinite multiplicative integral

Try
Hy % BL(Q) x B1(Q) — CXJd%  (ray) Hf/ wr

satisfying

T Y Ty
(2.1) ][ / wy :][/ wi, for all v € T,
yx T

along with the requirement that

oo fa=(f[) " flof o

This function is obtained, roughly speaking, by applying the Schneider-Teitelbaum
p-adic Poisson transform to a suitable harmonic cocycle constructed from the modu-
lar symbol attached to f. It is important to note that there are in fact two distinct
such modular symbols, which depend on a choice of a sign w,, = +1 at co and are
referred to as the plus and the minus modular symbols, and therefore two distinct
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multiplicative integral functions, with different transformation properties under ma-
trices of determinant —1 in GL2(Z[1/p]). More precisely, the multiplicative integral
associated to we, satisfies the further invariance property

fe= ()

See sections 1-3 of loc. cit., and §3.3. in particular, for further details.
Let K be a real quadratic field of discriminant D > 0, whose associated Dirichlet
character yx satisfies the Heegner hypothesis

xx(P)=-1,  xx(¢) =1 for all £|M.

It follows that D is a quadratic residue modulo M, and we may fix a 6 € (Z/MZ)*
satisfying 62 = D (mod M). Let K, ~ Q,2 denote the completion of K at p, and let
VD denote a chosen square root of D in K.

Fix an order O of K, of conductor c relatively prime to DN. The narrow Picard
group G := Pic(0O) is in bijection with the set of SLa(Z)-equivalence classes of binary
quadratic forms of discriminant Dc?. A binary quadratic form F = Az? + Bxy + Cy?
of this discriminant is said to be a Heegner form relative to the pair (M,¢) if M
divides A and B = dc (mod M). Every class in Go admits a representative which is
a Heegner form, and all such representatives are equivalent under the natural action
of the group I'o(M). In particular, we can write

Go =To(M)\ {Az* + Bzy + Cy*  with (4,B) = (0,6c) (mod M)}.
For each class a := Az? + By + Cy? € G as above, let

B+ /D r-Bs 20
Ta::Ter_QPCHP7 qu::( 2As T+BS),

where (7, s) is a primitive solution to the Pell equation 22 — Dc?y? = 1. The matrix
vYa € I' has 7, as a fixed point for its action on H,,. This fact, combined with properties
(2.1) and (2.2), implies that the period

Tﬂ ’YD:E
Ja ::f/ wy € K /q*

does not depend on the choice of x € P1(Q) that was made to define it. Property (2.1)
also shows that J, depends only on a and not on the choice of Heegner representative
that was made in order to define 74 and v,. The local point

y(u) = (I>Tate(<]a) c E(Kp)

is called the Stark-Heegner point attached to the class a € Gp.

Let H denote the narrow ring class field of K attached to O, whose Galois group is
canonically identified with G via global class field theory. Because p is inert in K/Q
and Gal (H/K) is a generalised dihedral group, this prime splits completely in H/K.
The set P of primes of H that lie above p has cardinality [H : K| and is endowed
with a simply transitive action of Gal (H/K) = Go, denoted (a,p) — a * p.



STARK-HEEGNER POINTS AND DIAGONAL CLASSES 11

Set K := Hom(P, E(K,)) ~ KI[)H:K]. There is a canonical identification
(2.3) H®Q,=K",

sending € H ® Q,, to the function p — x(p) := z,, where z, denotes the natural
image of x in H, = K. The group Gal (H/K) acts compatibly on both sides of (2.3),
acting on the latter via the rule

(2.4) ox(p) = z(c ! xp).

Our fixed embedding of H into Q, determines a prime pg € P. Conjecture 5.6
of [Da01] asserts that the points y(a) are the images in E(K,) of global points
P! € E(H) under this embedding, and Conjecture 5.9 of loc. cit. asserts that these
points satisfy the Shimura reciprocity law

P!, =rec(b)~ P!, for all b € Pic(O),
where rec : Pic(O) — Gal (H/K) denotes the reciprocity map of global class field
theory.

It is convenient to reformulate the conjectures of [Da01] as suggested in the intro-
duction, by parlaying the collection {y(a)} of local points in E(K,) into a collection
of semi-local points

P, € E(H®Q,) = E(K,)”
indexed by a € Gp. This is done by letting P, (viewed as an E(K,)-valued function
on the set P) be the element of E(H ® Q,) given by

(Pa) (b * po) := y(ab),
so that, by definition
(2.5) Poa(p) = Pa(b*p).
This point of view has the pleasant consequence that the Shimura reciprocity law

becomes a formal consequence of the definitions:

Lemma 2.1. — The semi-local Stark-Heegner points Py € E(H ® Q) satisfy the
Shimura reciprocity law
rec(b) ' (P,) = Ppq.

Proof. — By (2.4),
rec(b) " (Py)(p) = Pa(rec(b) * p) = Py(b * p), for all p € P.
But on the other hand, by (2.5)
Po(b#p) = Poa(p)-
The result follows from the two displayed identities. O

The modular form f is an eigenvector for the Atkin-Lehner involution Wy acting
on Xo(N). Let wy denote its associated eigenvalue. Note that this is the negative
of the sign in the functional equation for L(FE, s) and hence that E(Q) is expected to
have odd (resp. even) rank if wy =1 (resp. if wy = —1). Recall the prime pg of
H attached to the chosen embedding of H into Qp. The frobenius element at pg in
Gal (H/Q) is a reflection in this dihedral group, and is denoted by oy, .
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Proposition 2.2. — For all a € Go,

UpDPa = wNP —1.
Proof. — Proposition 5.10 of [Da01] asserts that

opoy(a) = wny(ca)

for some ¢ € Go. The definition of ¢ which occurs in equation (177) of loc.cit. directly
implies that

opy(1) = wny(1),  opey(a) = wyy(a™),
and the result follows from this. O
Lemma 2.1 shows that the collection of Stark-Heegner points P, is preserved under

the action of Gal (H/K), essentially by fiat. A corollary of the less formal Proposition
2.2 is the following invariance of the Stark-Heegner points under the full action of

Gal (H/Q):
Corollary 2.3. — For all 0 € Gal (H/Q) and all a € Go,
oP, = wf\?Pb, for some b € Gp,

where
5 — 0 ifoeGal(H/K);
711 ifo ¢ Gal(H/K).

Proof. — This follows from the fact that Gal (H/Q) is generated by Gal (H/K) to-
gether with the reflection oy, . 0

To each p € P we have associated an embedding j, : H — K, and a frobenius
element o, € Gal (H/Q). If p’ = o * p is another prime in P, then we observe that

. . 1 1 . . 1
(2.6) Jp=Jpo0 ", Op =00p0 ", JprO0p =Jp00p00 .

Let ¢ : Gal (H/K) — L* be a ring class character, let

1 _
ey = e Uezcow(a)a e L[Go]

be the associated idempotent in the group ring, and denote by
Pw = e¢P1 S E(H ® Qp) ®L

the i-component of the Stark-Heegner point. Recall from the introduction the sign
a € {—1,1} which is equal to 1 (resp. —1) if F has split (resp. non-split) multiplicative
reduction at the prime p. Following the notations of the introduction, write

P,L(; = (1+C¥UP)P¢.

Lemma 2.4. — The local point j, (P$) 1s independent of the choice of prime p € P
that was made to define it, up to multiplication by a scalar in Y(Go) C L*.
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Proof. — Let p’ = o x p be any other element of P. Then by (2.6),
Jpr(L+aoy )Py = jooo (14 acoyo MeyPr =jpo (14 aoy)o teyPr
= P(0) 'p o (1 +aoy)Py.
The result follows. O

Examples. This paragraph describes a few numerical examples illustrating the scope
and applicability of the main results of this paper. By way of illustration, suppose
that F is an elliptic curve of prime conductor N = p, so that M = 1. In that special
case the Atkin-Lehner sign wy is related to the local sign a by

wWN = —Q.

The following proposition reveals that the analytic non-vanishing hypothesis fails in
the setting of the Stark-Heegner theorem for quadratic characters of [BD09] when
e=—1:

Proposition 2.5. — Let ¢ be a totally even quadratic ring class character of K of
conductor prime to N. Then Py is trivial.

Proof. — Let (x1,x2) = (X, XXk ) be the pair of even quadratic Dirichlet characters
associated to 1, ordered in such a way that L(FE, x1,s) and L(F, x2,s) have signs 1
and —1 respectively in their functional equations. Writing sign(F, x) € {—1,1} for the
sign in the functional equation of the twisted L-function L(E, x, s), it is well-known
that, if the conductor of y is relatively prime to N,

sign(E, x) = sign(E)x(—N) = —wnx(=1)x(p) = ax(p)x(-1).
It follows that
axi(p) =1,  axa(p) = -1,
but equation (1.4) in the Stark-Heegner theorem for quadratic characters implies
Py =0. O

The systematic vanishing of Py for even quadratic ring class characters of K can
be traced to the failure of the analytic non-vanishing hypothesis of the introduction,
which arises for simple parity reasons. The failure is expected to occur essentially
only when E has prime conductor p, i.e., when M = 1, and never when M satisfies
ordg(M) = 1 for some prime g. Because of Proposition 2.5, the main theorem of
[BDO09]| gives no information about the Stark-Heegner point P} attached to even
quadratic ring class characters of conductor prime to p, on an elliptic curve of con-
ductor p.

On the other hand, in the setting of Theorem A of the introduction, where v has
order > 2, this phenomenon does not occur as the non-vanishing of Py and PJ * are
equivalent to each other, in light of the irreducibility of the induced representation
Vi The numerical examples below show many instances of non-vanishing P for ring
class characters of both even and odd parity.

Example. Let E : y?> +y = 23 — z be the elliptic curve of conductor p = 37, whose
Mordell-Weil group is generated by the point (0,0) € F(Q). Let K = Q(+/5) be the
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real quadratic field of smallest discriminant in which p is inert. It is readily checked
that L(E/K, s) has a simple zero at s = 1 and that E(K) also has Mordell-Weil rank
one. The curve F has non-split multiplicative reduction at p and hence &« = —1 in
this case. It is readily verified that the pair of odd characters (x1, x2) attached to the
quadratic imaginary fields of discriminant —4 and —20 satisfy the three conditions
in (1.4), and hence the analytic non-vanishing hypothesis is satisfied for the triple
(E,K,e = 1). In particular, Theorem A holds for E, K, and all even ring class
characters of K of conductor prime to 37.

Let O be an order of O with class number 3, and let H be the corresponding
cubic extension of K. The prime p of H over p and a generator o of Gal (H/K) can
be chosen so that the components

P =P, Py = Pyy, P3:= P,z
in E(H,) = E(K,) of the Stark-Heegner point in E(H ® Q,,) satisfy
Py =Py, Py = P3, Py = Ps.
Letting v be the cubic character which sends o to ¢ := (1 ++/—3)/2, we find that
Jp(Py) = Pi+(P+ (P,
op(Jp(Py)) = Pi+(Pas+(*Py= P+ (P + (P,
Gp(P3) = V=3x(Py—P3)=V=3x (P~ Py).

The following table lists the Stark-Heegner points P;, Py, and P, — Py attached to the
first few orders O C Og of conductor ¢ = ¢(O) and of class number three, calculated
to a 37-adic accuracy of 2 significant digits. (The numerical entries in the table below
are thus to be understood as elements of (Z/372Z)[\V/5].)

C(O) P1 P2 P2 — Fg
18 | (=635, —256) (319 + 678v/5, —481230+/5) (—360, 684 + 27+/5)
38 | (—154,447) | (—588+ 1237v/5,367 4 386v/5) | (—437,684 + 87/5)
46 | (223,12-37) | (=112 +629v/5, (=6 + 34V/5) - 37) 00
47 | (610, —229) (539 + 711/5, 10 + 439+/5) (—293,684 + 1132/5)
54 | (533,-561) (679 + 984+/5, 391 + 8621/5) (93,684 + 673v/5)

Since the Mordell-Weil group of E(K) has rank one, the data in this table is enough
to conclude that the pro-37-Selmer groups of E over the ring class fields of K attached
to the orders of conductors 18, 38, 47 and 54 have rank at least 3. As for the order
of conductor 46, a calculation modulo 372 reveals that P, — P, is non-trivial, and
hence the pro-37 Selmer group has rank > 3 over the ring class field of that conductor
as well. Under the Stark-Heegner conjecture, more is true: the Stark-Heegner points
above are 37-adic approximations of global points rather than mere Selmer classes.
But recognising them as such (and thereby proving that the Mordell-Weil ranks are
> 3) typically requires a calculations to higher accuracy, depending on the eventual
height of the Stark-Heegner point as an algebraic point, about which nothing is known
of course a priori, and which can behave somewhat erratically. For example, the x-
coordinates of the Stark-Heegner points attached to the order of conductor 47 appear
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to satisfy the cubic polynomial
z? — 3192% + 190z + 420,

while those of the Stark-Heegner points for the order of conductor 46 appear to satisfy
the cubic polynomial

23523470012° — 3477269879122 + 138835821427z — 136501565573

with much larger coefficients, whose recognition requires a calculation to at least 7
digits of 37-adic accuracy.

The table above produced many examples of non-vanishing Py for ¢ even, and in
particular it verifies the non-vanishing hypothesis for Stark-Heegner points stated in
the introduction, for the sign ¢ = —1. This means that Theorem A is also true for
odd ring class characters of K, even if the premise of (1.6) is never verified for odd
quadratic characters of K.

3. p-adic L-functions associated to Hida families

Let
£= 3 an(H)" € Aellg]
n>1

be the Hida family of tame level M and trivial tame character passing through f;
cf. [BD09| and [DRD, §1.3] for more details on the notations chosen for Hida families.

Let 9 € Wy denote the point of weight 2 such that f,, = f. Note that f;, € Sz(N)
is new at p, while for any = € W§ with wt(x) = k > 2, £,(q) = £2(q) — B£2(¢P) is the
ordinary p-stabilisation of an eigenform f7 of level M = N/p. We set f; = f,, = f.

Let K be a real quadratic field in which p remains inert and all prime factors of M
split, and fix throughout a finite order anticyclotomic character ¢ of K of conductor
¢ coprime to DN, with values in a finite extension L,/Q,. Note that ¢(p) =1 as the
prime ideal pOg is principal.

Under our running assumptions, the sign of the functional equation satisfied by
the Hasse-Weil-Artin L-series L(E/K, v, s) = L(f, 1, s) is

5(E/K7¢) = 713

and in particular the order of vanishing of L(E/K,1,s) at s =1 is odd. In contrast,
at every classical point x of even weight k& > 2 the sign of the functional equation
satisfied by L(f,/K,, s) is
e(fy/K,¢) =+1
and one expects generic non-vanishing of the central critical value L(f,/K, v, k/2).
In [BDO09, Definition 3.4], a p-adic L-function

jp(f/Ka ’l/}) € Af

associated to the Hida family f, the ring class character ¥ and a choice of collection
of periods was defined, by interpolating the algebraic part of (the square-root of) the
critical values L(f,/K,,k/2) for x € W§ with wt(z) = k =k +2 > 2. See also
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[LMY17, §4.1] for a more general treatment, encompassing the setting considered
here.

In order to describe this p-adic L-function in more detail, let ®¢, ¢ denote the
classical modular symbol associated to f, with values in the space Pj (C) of homo-
geneous polynomials of degree £, in two variables with coefficients in C. The space
of modular symbols is naturally endowed with an action of GLy(Q) and we let @E e

and ;¢ denote the plus and minus eigencomponents of ®¢ ¢ under the involution

at infinity induced by ws, = ((1) 5 )

As proved in [KZ84, §1.1] (with slightly different normalizations as for the powers
of the period 27 that appear in the formulas, which we have taken into account
accordingly), there exists a pair of collections of complex periods

{Qac}zewp {Qf;)c}mewt? ccx
satisfying the following two conditions:

(i) the modular symbols

o [opy
of = =€ &y = =€ take values in Q(f,) = Q({an(fs)}nz1),
sz,c Qf .C

(ii) and Q;‘Z,C Qo= 472 (£2,£2).

Note that conditions (i) and (ii) above only characterize Qic up to multiplication
by non-zero scalars in the number field Q(f,,).

Fix an embedding Q — Qp C C,, through which we regard <I>f as C,-valued
modular symbols. In [GS93], Greenberg and Stevens introduced measure-valued
modular symbols ,u;“ and pp interpolating the classical modular symbols <I>;: and @
as x ranges over the classical specializations of f.

More precisely, they show (cf. [GS93, Theorem 5.13] and [BD07, Theorem 1.5])
that for every o € Wy, there exist p-adic periods
(3.1) QF eC,

fp’fp

such that the specialisation of ,u? and p; at x satisfy
(3.2) z(uf) = Q;;’p . <I>;;7 z(pg) = Qg Pp .

Since no natural choice of periods Qi ¢ bresents itself, the scalars Q;;’p and (¢ ,p
are not expected to vary p- adically continuously. However, conditions (i) and (ii)
above imply that the product Q Qg , € Cp is a more canonical quantity, as it
may also be characterized by the formula

3.3 - =0f O Yo Ph
(3.3) r(pg ) - x(pg ) = f2.p fmp'm,

which is independent of any choices of periods.
This suggests that the map = — Q+ Qf » may extend to a p-adic analytic func-
tion, possibly after multiplying it by sultable Euler-like factors at p. And indeed, the
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following theorem is proved in one of the contributing articles of Bertolini, Seveso and
Venerucci to this volume, and we refer to [BSVb, §3] for the proof.

Theorem 3.1. — There exists a rigid-analytic function £,(Sym*(f)) on a neigh-
borhood Ug of We around xo such that for all classical points x € Ug N W§ of weight
k>2:

(3.4) Zp(Sym*(f))(z) = Eo(£2)E () - O

2P fz,p?

where E(f,;) and & (£,) are as in [DR14, Theorem 1.3]. Moreover, Z,(Sym?(f))(xo) €
Q.

Remark 3.1. — The motivation for denoting fp(Sme(f)) the p-adic function ap-
pearing above relies on the fact that Qi p are p-adic analogues of the complex periods

Qi,c- As is well-known, the product QEAC'Qf_I,c = 42 (£2,£2) is essentially the near-
central critical value of the classical L-function associated to the symmetric square of
fo. In addition to this, as M. L. Hsieh remarked to us, it might not be difficult to show
that Z,(Sym?(f)) is a generator of Hida’s congruence ideal in the sense of [Hs20),

§1.4, p.4].

The result characterizing the p-adic L-function .Z,(f/K, ) alluded to above is
[BDO09, Theorem 3.5], which we recall below. Although [BDO09, Theorem 3.5] is
stated in loc. cit. only for genus characters, the proof has been recently generalized
to arbitrary (not necessarily quadratic) ring class characters ¢ of conductor ¢ with
(¢, DN) = 1 by Longo, Martin and Yan in [LMY17, Theorem 4.2|, by employing
Gross-Prasad test vectors to extend Popa’s formula [Po06, Theorem 6.3.1] to this
setting.

Let f. € K denote the explicit constant introduced at the first display of [LMY17,
§3.2]. It only depends on the conductor ¢ and its square lies in Q*.

Theorem 3.2. — The p-adic L-function L,(f/K,1) satisfies the following interpo-
lation property: for all x € Wg of weight wt(x) =k =k, +2 > 2, we have

L8/ K. ) (@) = frp (2) x L(E /K, 1, k/2)"/?

where
Ko+l ke €4
. fo- (D)5 (%)) %
= ]_— 2 ko . 2 : I’p'
few(r) = (1—ag"p*) (2mi)ke /2 O c

4. A p-adic Gross-Zagier formula for Stark-Heegner points

One of the main theorems of [BD09] is a formula for the derivative of £, (f/K, )
at the point xg, relating it to the formal group logarithm of a Stark-Heegner point.
This formula shall be crucial for relating these points to generalized Kato classes and
eventually proving our main results.
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Theorem 4.1. — The p-adic L-function £,(f/K, 1) vanishes at the point xo of
weight 2 and

d 1 o
(41) %gp(f/K7 ’L/))\:D::ro = 5 10gp<Pw )

Proof. — The vanishing of %,(f/K,vy) at * = x¢ is a direct consequence of the
assumptions and definitions, because x = x( lies in the region of interpolation of the
p-adic L-function and therefore Z,(f/K,1)(xo) is a non-zero multiple of the central
critical value L(f/K,1,1). This L-value vanishes as remarked in the paragraph right
after (1.1).

The formula for the derivative follows verbatim as in the proof of [BD09, Theorem
4.1]. See also [LMY17, Theorem 5.1] for the statement in the generality required
here. Finally, we refer to [LV14] for a formulation and proof of this formula in
the setting of quaternionic Stark-Heegner points, under the general assumption of
(1.2). O

5. Setting the stage

In this section we set the stage for the proofs of Theorems A and B by introducing
a particular choice of triplet of eigenforms (f, g, h) of weights (2,1,1). Let E/Q be an
elliptic curve having multiplicative reduction at a prime p and set o = a,(E) = £1.
Let

Y:Gal(H/K) — L*
be an anticyclotomic character of a real quadratic field K satisfying the hypotheses
stated in the introduction.

In particular we assume that a prime ideal p above p in H has been fixed and either
of the non-vanishing hypotheses stated in loc. cit. holds; these hypotheses give rise to
a character £ of K having parity opposite to that of ¢ that we fix for the remainder
of this note, satisfying that the local Stark-Heegner point P, is non-zero.

As shown in [DR17, Lemma 6.9], there exists a (not necessarily anti-cyclotomic)
character 9 of finite order of K and conductor prime to DNg such that

(5.1) Yo/vo = &/

Since by hypothesis £/ is totally odd, it follows that ¥y has mixed signature (4, —)
with respect to the two real embeddings of K.

Let ¢ C Ok denote the conductor of 1y and let x denote the odd central Dirichlet
character of ¢y. Let xi also denote the quadratic Dirichlet character associated to

K/Q.
Let f € Sa(pMy) denote the modular form associated to E by modularity. Like-
wise, set
My = Dc* Ngq(c) and M, =D Ng/q(c)

and define the eigenforms
9=0(oy) € S1(Mg,xxx) and h=0(;") €81 (M, x "xk)

to be the theta series associated to the characters 1oy and 1y ! respectively.
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Recall from the introduction that E[p] is assumed to be irreducible as a Gq-module.
This implies that the mod p residual Galois representation attached to f is irreducible,
and thus also non-FEisenstein mod p. The same claim holds for g and h because ¥ and
¢ have opposite signs and p is odd, hence ¢ # *! (mod p).

Note that p { My MyMj,. Asin previous sections, we let M denote the least common
multiple of My, M, and Mj. The Artin representations V, and V}, associated to g
and h are both odd and unramified at the prime p. Since p remains inert in K, the
arithmetic frobenius Fr, acts on Vj; and V}, with eigenvalues

{agvﬁg} = {Cv _C}v {ah75h} = {C_lv _C_l}a

where ( is a root of unity satisfying x(p) = —¢>.

In light of (5.1) we have ¥g/1o = ¢ and Yo/ = &, hence the tensor product
of V, and V}, decomposes as
(5.2) Voh =V, @ Viy =~ IndR(¢) ® Ind$(€)  as Gq-modules
and

Vo=V a Vi, Vi=Vo VI Vo = @ Vil as Gq,-modules
(asb)

where (a,b) ranges through the four pairs (ay, an), (o, Br), (B, @), (Bg, Br). Here
V', say, is the Gq,-submodule of V; on which Fr, acts with eigenvalue g, and
similarly for the remaining terms.

Let W), be an arbitrary self-dual Artin representation with coeflicients in L, and

factoring through the Galois group of a finite extension H of Q. Assume W, is
unramified at p. There is a canonical isomorphism

(5.3) HY(Q,Vy(E)@W,) =~ (Hl(H7Vp(E))®Wp)Ga1(H/Q)
= Homga (r/q)(Wp, H' (H, V,(E))),

where the the second equality follows from the self-duality of W,. Kummer theory
gives rise to a homomorphism

(54)  6: E(H)"» := Homgu (n/q)(Wp, E(H) ® L,) — HY(Q,V,(E) @ W,).
For each rational prime ¢, the maps (5.3) and (5.4) admit local counterparts
HY Qe Vp(B)@W,) =~ Homga (11/Q) (Wp, ©xjcH' (Hx, Vo (E))),
Wp
de: (®reE(H))) — HY(Qu, V,(E) @ Wy),
for which the following diagram commutes:

(5.5) E(H)W» —— HY(Q,V,(E) ® W,)

l resy lresz

(@A\ZE(HA))Wp SN HY (Qq, V,(E) @ Wp).

For primes ¢ # p, it follows from [Ne98, (2.5) and (3.2)] that H'(Qe, V,(E) @
W,) = 0. (We warn however that if we were working with integral coefficients, these
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cohomology groups may contain non-trivial torsion.) For ¢ = p, the Bloch-Kato
submodule H} (Q,, V,(E) ® W,) is the subgroup of H'(Q,, V,(E) ® W,,) formed by
classes of crystalline extensions of Galois representations of V,(E) ® W, by Q,. It
may also be identified with the image of the local connecting homomorphism 6,,.

Lemma 5.1. — There is a natural isomorphism of L,-vector spaces
H (Qp, Vip(E) @ Wy) = Hi (Qp, Vim @ W =) & HY(Qp, VT @ Wy, /W, =),
where recall @ = a,(E) = £1.

Proof. — We firstly observe that H{ (Q,, V,(E) ® W) = HL(Q,, Vp(E) @ W,) by
e.g. [Be09, Prop. 2.0 and Ex. 2.20|, because V,(E) ® W, contains no unramified
submodule. As shown in [F190, Lemma , p.125|, it follows that

Hfl(Qp» VP(E) ® Wp) = Ker(Hl(Qp, Vp(E) ® Wp) — Hl(Ip» Vp_(E) ® Wp))

is the kernel of the composition of the homomorphism in cohomology induced by
the natural projection V,(E) — V,7(E) and restriction to the inertia subgroup
Ip C GQP'
The long exact sequence in Galois cohomology arising from the exact sequence
0— V:(E) — Vp(E) — V, (E) =0

shows that the kernel of the map H'(Q,, V,(E) @ W) — H'(Qy, V, (E) ® W) is
naturally identified with H'(Q,, V" (E) ® W,). We have H'(I,, Q,(¢ecye)) = 0 for
any nontrivial unramified character . Besides, it follows from e.g. [DRb, Example

1.4] that H} (Qp, Qp(ecye)) = ker (H(Qp, Qp(Ecye)) = H (I, Qp(ecyc))) is a line in
the two-dimensional space H'(Qp, Qp(ccyc)), which Kummer theory identifies with

Z; ®zp Q, sitting inside Q) ®Zp Q,.
Note that V,"(E) = Ly(¢fecyc) and V7 (E) = L, (1) where 1)y is the unramified
quadratic character of Gq, sending Fr;, to a. The lemma follows. O
The Selmer group Sel(T),(E, W,) is defined as
Sel(T)y(B,Wy) == {\ € H'(Q, V,(E) @ W,,) : res,(\) € Hi (Qp, Vy(E) @ Wy)}.

Here res, stands for the natural map in cohomology induced by restriction from
Gq to GQP'

6. Factorisation of p-adic L-series

The goal of this section is proving a factorisation formula of p-adic L-functions
which shall be crucial in the proof of our main theorems.

Keep the notations introduced in the previous section and recall in particular the
sign « := ap,(f) € {£1} associated to E. Let g and h,c-1 denote the ordinary
p-stabilizations of g and h on which the Hecke operator U, acts with eigenvalue

(6.1) ag:=C and o :=al?,

respectively.
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Let f, g and h be the Hida families of tame levels My, My, M), and tame characters
1, XXx, X ‘X passing respectively through f, g¢ and h,e-1. The existence of these
families is a theorem of Wiles [Wi88], and their uniqueness follows from a recent result
of Bellaiche and Dimitrov [BeDil6] (note that the main theorem of loc. cit. indeed
applies because oy # By, oy, # By and p does not split in K'). Let xg, yo, 20 denote
the classical points in W, Wy and Wh, respectively such that £, = f, gy, = g¢ and
h,, = hgc-1.

As e)qglained in [DR14], [DR17] and recalled briefly in [DRb, (5.1)] in this vol-
ume, associated to a choice

feSRM)f], e STUM, xxx)lgl, heSTHM, x " xk)h]
of A-adic test vectors of tame level M there is a three-variable p-adic L-function
2,7 (f,8,h). Among such choices, Hsieh [Hs20] pinned down a particular choice of
test vectors with optimal interpolation properties (cf.loc. cit.and [DRb, Prop.5.1]

for more details), which we fix throughout this section.
Define

(6.2) L (£, Gcy hac—1) € Ag

to be the one-variable p-adic L-function arising as the restriction of fpf (f‘ , €, fl) to
the rigid analytic curve W x {yo, 20}

In addition, recall the p-adic L-functions described in §3 associated to the twist
of E/K by an anticyclotomic character of K, and set fo(k ) := (DCQ)% /§2, where
fo is the constant introduced at the first display of [LMY17, §3.2]. Note that the
rule k — fo(k) extends to an Iwasawa function, that we continue to denote fo,
because p does not divide De?. Recall also the rigid-analytic function ., (Sym?(f))
in a neighborhood Uy C Wk of zy introduced in (3.4).

Theorem 6.1. — The following factorization of p-adic L-functions holds in As:
Zy(Sym?(£)) x L)) (£, ¢, hac-1) = fo - L(£/ K, ) x Z,(£/ K, €).

Proof. — Tt follows from [DRb, Prop. 5.1] that .pr(f', gcs 7104471) satisfies the follow-

ing interpolation property for all € Wy of weight k > 2:

y k 1—ap2pf  L(£°, g, h,%)1/2
f M _ N —k o 1\2 fo I D
zp (fngahagfl)(x) - (271'1) ’ (5') ’ 1 — Bfg‘xplfk ’ <f§7f§>
Besides, it follows from Theorem 3.2 that the product of .%,(f/K,v) and
Z,(f/ K, €) satisfies that for all z € Wy of weight k > 2:

L8/ K, )Ly (£/ K, ) () = e (@) - fre (@) x LIET /K 0, k/2)Y? - L(E7 /K, €,k /2)"/2

where

9

2-(Dc2)k°2+1 ,(’Lo)!z 0Fr Or

. S 1%2.](6 2 L fep fep

(o) - fe(e) = (1 — %) e .

A direct inspection to the Euler factors shows that for all z € W¢ of weight k& > 2:

(6.3) L(f),g,h,k/2) = L(£) /K, ¥, k/2) - L(£) /K, &, k/2).
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Recall finally from Theorem 3.1 that the value of .Z,(Sym?(f)) at a point 2 €
Us N WY is

fp(Sme(f))(x) =(1- ﬁépl_k)(l — af_fpko )Q}" ,pr_I,p'

Combining the above formulae together with the equality
Of ¢ Qo =4n%(E7, 1),
described in §3, it follows that the following formula holds for all z € Wf of weight
k> 2:
Z,(Sym?*(£)) () x LI (£, Gc, hac-1) () = Ao (k) - L, (£/ K, ) (x) x L, (£/ K, €)(x).

Since Wy is dense in Wk for the rigid-analytic topology, the factorization formula

claimed in the theorem follows. O
Recall from Theorem 3.2 that .Z,(f/K, ) and .Z,(f/K, £) both vanish at x( and
d 1 o d 1 o
(64) %gp(f/Ka 'l/))|:c=9c0 = 5 ’ logp(Pw )7 %gp(f/Ka g)\x:wo = 5 ) logp(PE )

By Theorem 3.1, .%,(Sym?(f))(xo) € Q*. It thus follows from Theorem 6.1 that
the order of vanishing of fpf(f'v,gc, FLaC—l) at x = x is at least two and

d? N
(65) @gpf<fv7 9¢, hoc(—l)\z:zo =Cr- Ing(quy) ) Ing(Pga)a
where (1 is a non-zero simple algebraic constant.

As recalled at the beginning of this article, P¢, is non-zero. We can also suppose
that Pi?,p is non-zero, as otherwise there is nothing to prove. Hence (6.5) shows that

the order of vanishing of fpf(f'v,gg, i/lagfl) at x = z¢ is exactly two.

7. Main results

Let us now explain the proofs of the main theorems stated in the introduction by
invoking the results proved in previous sections in combination with some of the main
statements proved in the remaining contributions to this volume.

Let

K(f,g,h) € H'(Q, Vi, (M))
be the A-adic global cohomology class introduced in [DRb, Def. 5.2].
Define Vttgh(M) as the Af[Gql-module obtained by specialising the Agn[Gql-

module V;gh(M ) at (yo, 20). Let
(71) ’%(f’ 9¢» haC*l) = l/yoyzoli(ﬂ g, h) € Hl(Q7 Vlgh(M))
denote the specialisation of k(f, g, h) at (yo, 20), and

K(f5 9¢: hac—1) € HY(Q, Vign(M))

denote the class obtained by specializing (7.1) further at xg.
Let us analyze the above class locally. According to the discussion preceding
Lemma 5.1, it follows that res; (k(f, g¢c, hac-1)) = 0 at every prime £ # p.
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In order to study it at p, write k,(f,gc,hac-1) = respr(f,g¢,hac-1) €

HY(Qp, Vi @ Vgn(M)).
After setting Vga,f’ =Vi® V}i’ , we find that there is a natural decomposition

(7.2) HY(Qy, Vo (B) @ Van) = P H'(Qp, Vi (E) @ Vi)

(a.b)

where (a,b) ranges through the four pairs (ag, ap), (o, Bn), (Bg> @n), (Bg, Br). Anal-
ogous decompositions hold for the various Galois cohomology groups appearing in
this section. Given a class K € H(Q,, V,(E) ® Vi (M)), we shall denote % for its
projection to the corresponding (a, b)-component.

Note that

(7'3) QqQp = Bgﬂh = Q, O‘gﬂh = /Bgah = —qQ.
Hence, according to Lemma 5.1, &(f, g¢, hac-1) lies in the Bloch-Kato finite submodule
of HY(Q, Vg (M)) if and only if
(1) Kp(f,9¢ hac—1)*Pr and kp(f, g, hac-1)P7*" lie in HY(Qy, V,H(E) @ Vo (M)),
(ii) wp(f, 9¢s haCfl)%ah and r,(f, g¢, ha(*l)ﬁg'gh lie in Hfl(Qim V;'(E) ® Vgh(M))~
By [DRb, Proposition 1.5.8], the local class ,(f,g¢, hac-1) is the specialization
at (zo,yo,20) of a A-adic cohomology class with values in the A-adic representation
V;"gh(M ), which recall is defined as the span in Vfgh( ) of (suitably twisted) triple
tensor products of the form V;E ® V:gt ® Vh, with at least two +’s in the exponents.
Since V¢ = Vng and V,"¢ = V, ", and similarly for Vj,, it follows from the very
definition of V}"gh(M) that the (o, an)-component of k,(f, g¢, hac-1) in HY(Q,,V;®
Vgigah’ (M)) vanishes —this yields a fortiori claim (ii) for the (g, @ )-component. The
same reasoning also yields that the (ay, 85) and (8, o )-components of the projection
of kp(fyg¢, hac—1) to H(Q,, Vi ® Vg (M)) vanish, and hence (i) holds.

It only remains to analyze the (8,4, 8)-component x,(f,g¢, hac-1). For this pur-
pose we define the Af[Gq,]-modules

W e Vf756(M) — Vf( )(5;1/2) Vﬂgﬁh (M),

W = Vi (M) = Vi (M)(eg %) @ V™ (M),

It follows from (6.1) that Vgﬂhﬂ = L,(a) is the one-dimensional representation af-
forded by the character of Gal (K,/Q,) sending Fr, to a = a,(F). Hence W~ is the
sub-quotient of V;ﬁ on (M) that is isomorphic to several copies of Af(\:[l?hgg 1 %), where
as in [DRb, (1.5.5)], ‘l/?h denotes the unramified character of Gq, satisfying

W (Fr,) = ay(f)a, ' (g1)a, ' (hy) = a - ay(f).
Let
(74) K’g(fa g¢, haC*I) € Hl(QZHW)’ K’i(fa 9g¢, hocﬁ*l)i € Hl(vawi)

denote the image of k,(f,g¢, hoc-1) under the map induced by the projection
V;‘gh(M) — W = V¢ g3(M), and further to W= = Vi 55(M) respectively.
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Equivalently and in consonance with our notations, ng (f,9¢, hac-1)~ is the spe-
cialization at (yo, z0) of the local class ng(f, g,h)” introduced in [DRb, (1.5.8)] and
invoked in [DRb, Theorem 1.5.1]. Hence [DRb, Theorem 1.5.1] applies and asserts
that the following identity holds in Ag¢ for any triple (f’ , &, fl) of A-adic test vectors:

> = gpf(f'\/?g@ﬁa(_l)'

—1

(7.5) <£f7gh(h‘/£(f, gc, h,ac—l)i), Mg @ Wyz & WfL*C

Let now /@]J;(f, 9¢> hac—1) and /-;]J;(f, 9¢> hac—1)~ denote the specializations at g of
the classes in (7.4). According to our previous definitions, we have

(7.6) /ip(f,gg,hac—l)ﬁgﬁh = ng(f,gc,hac_l).

Since a,(f) = a € {£1} and ge(xp) = 1, it follows from the above description
of W and the character \Ilgh that W(zo) ~ V,(E;)(M) as Gq,-modules, where
E, is the (trivial or quadratic) twist of E given by a. Hence ng(f, g¢,hac-1) €
HY(Qy. Vy(E+)(M)).

The Bloch-Kato dual exponential and logarithm maps associated to the p-adic
representation V,,(E4)(M) take values in a space L, (M) consisting of several copies
of the base field L,. Given a choice of test vectors, it gives rise to a projection
L,(M) — L,. We shall denote by a slight abuse of notation

loggy : Hi (Qp, Vp(E4+)(M)) — Ly

the composition of the Bloch-Kato logarithm with the projection to L.

The following fundamental input comes from the main results due to Bertolini,
Seveso and Venerucci in this volume, and we refer to [BSVa] and [BSVDb] for the
detailed proof; here we just content to point out to precise references in loc. cit. As
explained in the introduction, in a previous version of this paper formula (7.7) below
was wrongly attributed to [Vel6|.

Theorem 7.1. — (Bertolini, Seveso, Venerucci) The local class ng(f, 9¢>hac—1) is
crystalline and

d? N
(77) @fpf(f\/7 g¢, ha(—l)\z:mo = CV2 : IOgBK(Hg(fu 9gc¢, ha(—l))
for some nonzero rational number Cy € Q.

Indeed, the first claim of the above theorem follows from [BSVa, Theorem BJ: since
L(f,g,h,1) = 0 it follows from the equivalence between (a) and (c) of [BSVa, §9.4]
that the dual exponential map vanishes on /{5( [, 9¢, hac—1) —note that the improved
class kj(f, g¢, hac—1) of loc. cit. is simply a non-zero multiple of x(f, g¢, hac-1) in our
setting, because of (7.3). This amounts to saying that the class is crystalline. Formula
(7.7) follows from [BSVb, Proposition 2.2] combined with (7.5).

In light of (7.6) and the above discussion, the above theorem implies that
K(f,9¢s hac-1) belongs to the Selmer group H{ (Q, Vign(M)), as conditions (i) and
(ii) above are fulfilled.
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Recall from (5.2) that Vg, = Vi, @ Ve decomposes as the direct sum of the induced
representations of ¢ and . Write

(7.8) K (f, 9¢, hag—1) € Hi (Q, Vy(B) ® Vyy(M)),
ke(f,9¢, hac—1) € Hi (Q, Vo (E) @ V(M)

for the projections of the class x(f,gc, hac-1) to the corresponding quotients. We
denote as in the introduction

K3 (fs 9 hac—1) = (1 + aop)ky (f, 9¢, hac—1) € HE(H, Vy(E)(M))¥®%

the component of sy (f, g¢, hac-1) on which o, acts with eigenvalue a, and likewise
with 1 replaced by the auxiliary character &.

Lemma 7.1. — We have
1OgE,p K’%(fa g¢,s haC_l) = IOgE,p K’?(f’ g¢, haC_l)'
Proof. — We may decompose the local class
Kp = K‘P(f7 9¢s haCfl) = (Kggahvﬁggﬁha Hggahvﬁggﬁh)

in H'(Qy, Vy ® V,,**"(M)) as the sum of four contributions with respect to the
decomposition (7.2) afforded by the eigen-spaces for the action of o,. In addition to
that, s, also decomposes as

Kp = (Kyp; Kep) € Hfl(va Vp(E) @ Vy(M)) & Hfl(Qp7 Vp(E) @ Ve(M)),

where Ky p, K¢ p are the local components at p of the classes in (7.8). An easy exercise
in linear algebra shows that

(7.9) Rp? ™" = K p = KEp Hggﬁh = Kyp T K p-
Since we already proved that x,**" = 0, the above display implies that Ky = Ke,p

are the same element. The lemma follows.

Let
105, 5, ¢ H} (Qp Vs @ Von (M) 5" HH(Qy, Vy 0 V™ (M) 25 L,
g g

denote the composition of the natural projection to the (84, 81)-component with the
Bloch-Kato logarithm map associated to the p-adic representation Vy ® Vﬁfﬁ "(M) ~
Vi, (M) and the choice of test vectors. Note that H} (Q,, V,(E1)) = HH(Q,, Qp(1)),
which as recalled in [DRb, Example 1.1.4 (¢)] is naturally identified with the comple-
tion of Z, and the Bloch-Kato logarithm is nothing but the usual p-adic logarithm
on Z; under this identification. Lemma 7.1 together with the second identity in (7.9)
imply that

(7’) 1ogE,p Hq?;(fv g¢, haﬁfl) = 1ogﬁgﬁh (’V‘:;D(fa g¢s ha(*l))'

Thanks to (7.7) we have

. d? oo ¥
(”) logﬁgﬁh (Hp(f, 9¢s haC_l)) = Egpf(fvmgQ hozC—l)\z:zo (mOd LX)
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Finally, fix (f' , g, ﬁ) to be Hsieh’s choice of A-adic test vectors satisfying the prop-
erties stated in Theorem 6.1. Recall from (6.5) that, with this choice, we have

v v

d? o
i) B (B, e, o) jemsy = 108, (PF) log,(P2) (mod L¥).
Define
Koy = logE,p(Pga)_l X K’%(fv gavha)'

It follows from the combination of (i)-(ii)-(iii) that k. fulfills the claims stated in
Theorem A, and hence the theorem is proved.

Theorem B also follows, because the non-vanishing of the first derivative
%fp(f/K, V)|z=z, implies thaic Py, # 0. Theorem A then implies that the
class ky € H} (H,V,(E)(M))¥®? is non-trivial.
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Introduction

The main purpose of this article is to supply a construction of a three-variable
family of cycles interpolating the generalized diagonal cycles introduced in [DR14],
and to prove a reciprocity law relating this family to the three variable triple-product
p-adic L-function associated to a triple of Hida families by means of Perrin-Riou’s
A-adic regulator.

In order to give a flavor of our construction, let us describe in more detail the
organization and contents of this article.

After reviewing some background in the first section, in section 2 we construct for
every r > 1 a completely explicit family of cycles in the cube X2 of the modular curve
X, = X1(Mp") of 'y (Mp")-level structure. This family is parametrized by the space
of SLy(Z/p"Z)-orbits of the set

S = ((Z/p"Zx Z/p"Z))* C (Z/p"Z)%)*

of triples of primitive row vectors of length 2 with entries in Z/p"Z, on which
GL3(Z/p"Z) acts diagonally by right multiplication. Any triple in ¥, gives rise to
a twisted diagonal embedding of the modular curve X(p") of I'1(M) U I'(p")-level
structure into the three-fold X? and the associated cycle is defined as the image of
this map: we refer to (2.4) for the precise recipe.

The parameter space X,/SLa(Z/p"Z) is closely related to ((Z/p"Z)*)3 and as
shown throughout §2, the associated family of global cohomology classes introduced
in Definition 2.9 can be packaged into a global A-adic cohomology class parametrized
by three copies of weight space.

Along §3 and §4 we study the higher weight and cristalline specialisations of this
family and we eventually prove in Theorem 4.1 that they interpolate the classes
introduced in [DR14] as claimed above.

Finally, in §5 we recall Garrett-Hida’s triple product p-adic L-function associated
to a triple of Hida families (f,g, h) and prove in Theorem 5.1 a reciprocity law ex-
pressing the latter as the image of our three-variable cohomology classes (as specified
in Definition 5.2) under Perrin-Riou’s A-adic regulator.

It is instructive to compare the construction of our family to the approach taken in
[DR17], which associated to a triple (f, g, h) consisting of a fized newform f and a pair
(g,h) of Hida families a one-variable family of cohomology classes instead of the two-
variable family that one might have felt entitled to a priori. This shortcoming of the
earlier approach can be understood by noting that the space of embeddings of X(p")
into X7 (M) x X,. x X,- as above in which the projection to the first factor is fixed is nat-
urally parametrized by the coset space Ma(Z/p"Z)' /SLo(Z/p"Z), where Mo(Z/p"Z)’
denotes the set of 2 x 2 matrices whose rows are not divisible by p. The resulting cycles
are therefore parametrized by the coset space GLy(Z/p"Z)/SLo(Z/p"Z) = (Z/p"Z)*,
whose inverse limit with r is the one dimensional p-adic space Z; rather than a
two-dimensional one.

As mentioned already in our previous article in this volume, these cycles are of
interest in their own right, and shed a useful complementary perspective on the con-
struction of the A-adic cohomology classes for the triple product when compared to
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[BSVal. Indeed, their study forms the basis for the ongoing PhD thesis of David
Lilienfeldt [Li], and has let to interesting open questions as those that are explored
by Castella and Hsieh in [CS20].

1. Background

1.1. Basic notations. — Fix an algebraic closure Q of Q. All the number fields
that arise will be viewed as embedded in this algebraic closure. For each such K,
let G := Gal (Q/K) denote its absolute Galois group. Fix an odd prime p and an
embedding Q — Q,; let ord, denote the resulting p-adic valuation on Q*, normalized
in such a way that ord,(p) = 1.

For a variety V defined over K C Q, let V denote the base change of V to Q. If F
is an étale sheaf on V, write HZ (V,F) for the ith étale cohomology group of V with
values in F, equipped with its continuous action by G.

Given a prime p, let Q(up=~) = Uy>1Q((:) be the cyclotomic extension of Q
obtained by adjoining to Q a primitive p"-th root of unity (.. Let

Eeye 1 Gq — Gal (Q(pp~)/Q) —> Zj
denote the p-adic cyclotomic character. It can be factored as ecyc = w{€cyc), Where
w:Gq — tp-1 (€cye) : Gq — 1+ pZ,
are obtained by composing e.y. with the projection onto the first and second factors

in the canonical decomposition Z, =~ p, 1 x (1 + pZy). If M is a Z,[Gql-module

and j is an integer, write M(j) = M ® el for the j-th Tate twist of M.
Let

K, =2,02/p'2)"),  R:=7Z,[[Z}]):=lm4&,
denote the group ring and completed group ring attached to the profinite group Z,.
The ring R is equipped with p — 1 distinct algebra homomorphisms w® : A=A (for
0 <i<p-—2) to the local ring

A =Zy[[1 +pZ,)| = im Z,[1 + pZ/p"Z] ~ Z,[[T]],
where w’ sends a group-like element a € Z to w'(a)(a) € A. These homomorphisms
identify A with the direct sum

p—2
A=
i=0
The local ring A is called the one variable Iwasawa algebra. More generally, for any
integer t > 1, let
®t R R R R
K= Rég, .t &g R, A% =A&g .t &g A~ Z,[[Th,... T3]

The latter ring is called the Iwasawa algebra in t variables, and is isomorphic to the
power series ring in ¢ variables over Z,, while

K®t _ ®A®t,
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the sum running over the (p — 1) distinct Z valued characters of (Z/pZ)**.

1.2. Modular forms and Galois representations. — Let
¢=q+ Y an(d)q" € Sk(M,x)
n>2

be a cuspidal modular form of weight k > 1, level M and character x : (Z/MZ)* —
C*, and assume that ¢ is an eigenform with respect to all good Hecke operators Ty,
{1 M.

Fix an odd prime number p (that in this section may or may not divide M). Let
O, denote the valuation ring of the finite extension of Q, generated by the fourier
coefficients of ¢, and let T denote the Hecke algebra generated over Z, by the good
Hecke operators Ty with £ 1 M and by the diamond operators acting on Sy (M, x).
The eigenform ¢ gives rise to an algebra homomorphism

€¢ZT—>O¢

sending Ty to ay(¢) and the diamond operator (£) to x(¢).
A fundamental construction of Shimura, Deligne, and Serre-Deligne attaches to ¢
an irreducible Galois representation

0 : Gq — Aut(Vy) ~ GL2(0y)
of rank 2, unramified at all primes ¢{ Mp, and for which
(1.1) det(l — Q¢(FI‘@).’L‘) =1 Gzé((b)l‘ + X(E)Kk_l-fz,

where Fry denotes the arithmetic Frobenius element at £. This property characterizes
the semi-simplification of g4 up to isomorphism.

When £k := k 4 2 > 2, the representation V4 can be realised in the p-adic étale
cohomology of an appropriate Kuga-Sato variety. Since this realisation is important
for the construction of generalised Kato classes, we now briefly recall its salient fea-
tures. Let Y = Y1 (M) and X = X;(M) denote the open and closed modular curve
representing the fine moduli functor of isomorphism classes of pairs (A, P) formed by
a (generalised) elliptic curve A together with a torsion point P on A of exact order
M. Let

(1.2) A, — Y

denote the universal elliptic curve over Y.
The k -th open Kuga-Sato variety over Y is the k -fold fiber product

(1.3) Ab = Agxy B) xy A,

of A, over Y. The variety A% admits a smooth compactification A% which is fibered
over X and is called the k -th Kuga-Sato variety over X; we refer to Conrad’s appendix
in [BDP13] for more details. The geometric points in A% that lie above Y are
in bijection with isomorphism classes of tuples [(A4, P), P, ..., Py ], where (A, P) is
associated to a point of Y as in the previous paragraph and P, ..., P, are points on
A.
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The representation Vj is realised (up to a suitable Tate twist) in the middle degree
étale cohomology H fg“(/{’% ,Z,). More precisely, let

H, = R'n. Z/p"Z(1), H = R'1. Z,(1),
and for any k, > 0, define
(1.4) H = TSym" (H,), HF .= TSym™ (#)

to be the sheaves of symmetric k -tensors of H, and H, respectively. As defined in
e.g.[BDP13, (2.1.2)], there is an idempotent ¢ in the ring of rational correspon-
dences of A% whose induced projector on the étale cohomology groups of this variety
satisfy:

(1.5) e (Hee T (A% Z()) = HE\ (X, HP).
Define the O4-module

(1.6) Vo(M) := Hi (X, 1% (1)) ®r¢, Oy,

and write

(L.7) @y Hi (X, 1Y (1)) — V(M)

for the canonical projection of T[Gq]-modules arising from (1.6). Deligne’s results
and the theory of newforms show that the module V(M) is the direct sum of several
copies of a locally free module V,, of rank 2 over O, that satisfies (1.1).

Let g and B, the two roots of the p-th Hecke polynomial 72 —a,,(¢)T + x(p)p* 1,
ordered in such a way that ord,(ag) < ord,(8e). (If ay and By have the same p-
adic valuation, simply fix an arbitrary ordering of the two roots.) We set x(p) = 0
whenever p divides the primitive level of ¢ and thus ay = a,(¢) and 54 = 0 in this
case. The eigenform ¢ is said to be ordinary at p when ord,(ay) = 0. In that case,
there is an exact sequence of Gq,-modules

(1.8) 0=V, —V, —V, =0, Vi~ Ol xwy ), Vo = 04(),

where 1y is the unramified character of Gq, sending Fr;, to ay.

1.3. Hida families and A-adic Galois representations. — Fix a prime p > 3.
The formal spectrum

W := Spf(A)
of the Iwasawa algebra A = Z,[[1 + pZ,]] is called the weight space attached to A.
The A-valued points of W over a p-adic ring A are given by

W(A) = Homgig (A, A) = Homg,p (1 + pZ,, A™),

where the Hom’s in this definition denote continuous homomorphisms of p-adic rings
and profinite groups respectively. Weight space is equipped with a distinguished col-
lection of arithmetic points vy, . , indexed by integers k, > 0 and Dirichlet characters
e:(1+pZ/p"Z) — Qp(¢r—1)* of p-power conductor. The point vy . € W(Z,[(,]) is

defined by

Uk, e(n) = e(n)n’e,
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and the notational shorthand v, := v ;1 is adopted throughout. More generally, if
A is any finite flat A-algebra, a point € W := Spf(]&) is said to be arithmetic if its
restriction to A agrees with vy . for some k, and e. The integer k = k, + 2 is called
the weight of x and denoted wt(x).

Let

(19) §cyc : GQ — A%

denote the A-adic cyclotomic character which sends a Galois element o to the group-
like element [(ecyc(c))]. This character interpolates the powers of the cyclotomic
character, in the sense that

k. _
(1.10) Vk, e ©Eeye = € (eeye)® =€y - w.

Let M > 1 be an integer not divisible by p.

Definition 1.1. — A Hida family of tame level M and tame character x
(Z/MZ)* — Q) is a formal q-expansion

b= an()q" € Agyllq]]

n>1

with coefficients in o finite flat A-algebra Ay, such that for any arithmetic point
x € Wy = Spf(Ag) above vy o, where k, > 0 and € is a character of conductor
p", the series
b, =Y w(an(9))q" € Qyllq]
n>1

is the q-expansion of a classical p-ordinary eigenform in the space Sy(Mp", xew %)
k

of cusp forms of weight k =k, + 2, level Mp"™ and nebentype xyew ™.
By enlarging Ay if necessary, we shall assume throughout that Ay contains the
M-th roots of unity.

Definition 1.2. — Let x € Wy be an arithmetic point lying above the point vy . of
weight space. The point x is said to be

— tame if the character € is tamely ramified, i.e., factors through (Z/pZ)* .
— crystalline if ew™% =1, i.e., if the weight k specialisation of ¢ at x has trivial
nebentypus character at p.

We let W, denote the set of crystalline arithmetic points of We.

Note that a crystalline point is necessarily tame but of course there are tame
points that are not crystalline. The justification for this terminology is that the
Galois representation Vy_ is crystalline at p when x is crystalline.

If z is a crystalline point, then the classical form ¢, is always old at p if k& > 2.
In that case there exists an eigenform ¢; of level M such that ¢, is the ordinary
p-stabilization of ¢;. If the weight is k = 1 or 2, ¢, may be either old or new at p; if
it is new at p then we set ¢, = ¢, in order to have uniform notations.
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We say ¢ is residually irreducible if the mod p Galois representation associated
to the Deligne representations associated to ¢2 for any crystalline classical point is
irreducible.

Finally, the Hida family ¢ is said to be primitive of tame level My | M if for all
but finitely many arithmetic points € Wg of weight £ > 2, the modular form ¢,
arises from a newform of level M.

The following theorem of Hida and Wiles associates a two-dimensional Galois rep-
resentation to a Hida family ¢ (cf. e.g. [MT90, Théoréme 7]).

Theorem 1.1. — Assume ¢ is residually irreducible. Then there is a rank two
Ag-module Vg equipped with a Galois action
(1.11) 04 : Gq — AutA¢(V¢) ~ GL2(Ag),

such that, for all arithmetic points x : Ay — Qp,

Vg ®unge Qp = Ve, ® Q.
Let
1/)¢ : GQP — A;
denote the unramified character sending a Frobenius element Fr,, to a,(¢). The re-
striction of Vg to Gq, admits a filtration

(1.12)
0— V; = Vg =V, — 0 where V; o~ A¢(w¢:1X€;y]E:§cyc) and Vg =~ Agp(Yg).

The explicit construction of the Galois representation Vg4 plays an important role
in defining the generalised Kato classes, and we now recall its main features.
For all 0 < r < s, let

X, = Xl(MpT)v Xr,s = Xl(MpT) X Xo(Mp™) X()(Mps)v

where the fiber product is taken relative to the natural projection maps. In particular,

— the curve X := X := X;(M) represents the functor of elliptic curves A with
Iy (M)-level structure, i.e., with a marked point of order M;

— the curve X, represents the functor classifying pairs (A, P) consisting of a gen-
eralized elliptic curve A with T';(M)-level structure and a point P of order p”
on A;

— the curve Xo s = X1(M) X x, () Xo(Mp®) classifies pairs (A, C) consisting of a
generalized elliptic curve A with T’y (M) structure and a cyclic subgroup scheme
C of order p® on A;

— the curve X, s classifies pairs (A, P,C) consisting of a generalized elliptic curve
A with I'; (M) structure, a point P of order r on A and and a cyclic subgroup
scheme C' of order p* on A containing P.

The curves X, and X, are smooth geometrically connected curves over Q. The
natural covering map X, — Xy, is Galois with Galois group (Z/p"Z)* acting on
the left via the diamond operators defined by

(1.13) (a)(A, P) = (A, aP).
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Let
(114) w1 . X7-+1 — XT

denote the natural projection from level r+ 1 to level r which corresponds to the map
(A, P) — (A, pP), and to the map 7 — 7 on upper half planes. Let

w9 . Xr+1 — X?“

denote the other projection, corresponding to the map (A, P) — (A/{p" P), P+{(p"P)),
which on the upper half plane sends 7 to pr. These maps can be factored as

(1.15) X4 X1
AN AN
12 12
Xr,r+1 ?’ Xra Xr,r+1 ? Xr~

For all » > 1, the vertical map u is a cyclic Galois covering of degree p, while the
horizontal maps 71 and 7 are non-Galois coverings of degree p. When r = 0, the
map p is a cyclic Galois covering of degree p — 1 and mo are non-Galois coverings of
degree p + 1.

The A-adic representation V¢ shall be realised (up to twists) in quotients of the
inverse limit of étale cohomology groups arising from the tower

D GINFEENNNEAEND IR YD L DPNRENS e, O
of modular curves. Define the inverse limit
(1.16) H(X%, Zy) = %ﬂn He (X, Z,)
W1

where the transition maps arise from the pushforward induced by the morphism o .
This inverse limit is a module over the completed group rings Z,[[Z,’]] arising from the
action of the diamond operators, and is endowed with a plethora of extra structures
that we now describe.

Hecke operators. The transition maps in (1.16) are compatible with the action of
the Hecke operators T}, for all n that are not divisible by p. Of crucial importance
for us in this article is Atkin’s operator Uy, which operates on Hét(Xr, Z,) via the
composition
Uy = 175
arising from the maps in (1.15). B
The operator U, is compatible with the transition maps defining H, ét(X o),

Inverse systems of étale sheaves. The cohomology group Hélt (X, Z,) can be iden-
tified with the first cohomology group of the base curve X; with values in a certain
inverse systems of étale sheaves.

For each r > 1, let

(1.17) Lr=w 7,
be the pushforward of the constant sheaf on X, via the map

X, — X
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The stalk of £ at a geometric point z = (A, P) on X is given by
L7 =Zp[Ap"[(P)],
where
A[p"](P) := {Q € A[p"] such that p"'Q = P}.

The multiplication by p map on the fibers gives rise to natural homomorphisms of
sheaves

(1.18) = L7 — L7,

and Shapiro’s lemma gives canonical identifications
Hét(XTa Z,) = Hélt(le L),

for which the following diagram commutes:

Hgt (Xr-i-lv Zp) s Hélt()_(h Zp)

o [p] N
H (X1, Ly ) — HL (X1, L),

Let L} := I&nﬁq’i denote the inverse system of étale sheaves relative to the maps

[p] arising in (1.18). By passing to the limit, we obtain an identification
(1.19) Hy (X%, Zp) = lim Hi (X1, £7) = Hiy (X1, £3,).
r>1

Weight k specialisation maps. Recall the p-adic étale sheaves H% introduced in (1.4),
whose cohomology gave rise to the Deligne representations attached to modular forms
of weight k = k, + 2 via (1.6). The natural k -th power symmetrisation function

AP ) — M, Qe QR
restricted to A[p"](P) and extended to L , by Z,-linearity, induces morphisms
(1.20) spp.: LF — My

of sheaves over X; (which are thus compatible with the action of Gq on the fibers).
These specialisation morphisms are compatible with the transition maps [p] in the
sense that the diagram

[p]

* *
r+1 ‘Cr
lspz,rﬂ lbpk r
k,

k,
e

commutes, where the bottom horizontal arrow denotes the natural reduction map.
The maps spy, ,. can thus be pieced together into morphisms

(1.21) spp L, — M.
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The induced morphism
(1.22) Spy, Hgt(X;oa Z,) — Hét(leHko )s

arising from those on H} (X1, L) via (1.19) will be denoted by the same symbol
by abuse of notation, and is referred to as the weight k = k, + 2 specialisation map.
The existence of such maps having finite cokernel reveals that the A-adic Galois
representation Hélt()_(;o,Zp) is rich enough to capture the Deligne representations
attached to modular forms on X; of arbitrary weight k > 2.

For each a € 1+ pZ,, the diamond operator (a) acts trivially on X; and as
multiplication by a® on the stalks of the sheaves ’Hf". It follows that the weight k
specialisation map spj, factors through the quotient Hét(X;o, Z,) Ay, Z,,i.e., one
obtains a map

spi + Heo(X50, Zp) N, Lp — Hi (X1, H™).

Remark 1.3. — The inverse limit L%, of the sheaves L on X1 has been systemat-
ically studied by G. Kings in [K15, §2.3-2.4], and is referred to as a sheaf of Iwasawa
modules. Jannsen introduced in [J88| the étale cohomology groups of such inverse
systems of sheaves, and proved the existence of a Hoschild-Serre spectral sequence,
Gysin excision exact sequences and cycle map in this context.

Ordinary projections. Let

(1.23) e = lim U™

n— oo

denote Hida’s (anti-)ordinary projector. Since U, commutes with the push-forward
maps wix, this idempotent operates on HZ (X% ,Z,). While the structure of the
A-module H} (X% ,Z,) seems rather complicated, a dramatic simplification occurs
after passing to the quotient e*Hélt(XSO, Z,), as the following classical theorem of
Hida shows.

Theorem 1.2. — [H86, Corollaries 3.3 and 3.7] The Galois representation
e*H} (X%, Zy(1)) is a free A-module. For each vy, € W with k, > 0, the weight
k =k, +2 specialisation map induces maps with bounded cokernel (independent of k)

spp 1 € HL (X5, Z,(1) @, Zyp — e Hey (X1, 1™ (1)),

Galois representations attached to Hida families. The Galois representation V¢ of
Theorem 1.1 associated by Hida and Wiles to a Hida family ¢ of tame level M and
character y can be realised as a quotient of the A-module e* H}, (X% ,Z,(1)). More
precisely, let
£¢ :Tph — A¢
be the A-algebra homomorphism from the A-adic Hecke algebra T, to the A-algebra
A4 generated by the fourier coefficients of ¢ sending T to a¢(¢).
Then we have, much as in (1.7), a quotient map of A-adic Galois representations

(1'24) wj;) : e*Hélt(X:w Zp(l)) — e*Hé}t(X;ov Zp(l)) ®TA’£¢ A¢ = V¢(M)’
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for which the following diagram of T [GqJl-modules is commutative:

*

(1.25) e Hy (X2, Zy(1)) V(M)

lspz ir
e*H (X1, 15 (1)) "V, (Mp),

for all arithmetic points x of Wy of weight k = k, 4 2 and trivial character.

Asin (1.7), V(M) is non-canonically isomorphic to a finite direct sum of copies of
a Ay|Gql-module V4 of rank 2 over Ay, satisfying the properties stated in Theorem
1.1.

One can of course work alternatively with the ordinary projection e := lim,,_, U;,“
rather than the anti-ordinary one, in which case one similarly constructs a quotient
map of A-adic Galois representations

(126)  wg: eHY (X Zy(1)) = lim H (X, Z,(1)) — Vo(M).
W2x
1.4. Families of Dieudonné modules. — Let Bgr denote Fontaine’s field of de

Rham periods, BS{R be its ring of integers and log[(,e] denote the uniformizer of
BIR associated to a norm-compatible system (poo = {(pn }n>0 of p™-th roots of unity.
(cf.e.g.[BK93, §1]). For any finite-dimensional de Rham Galois representation V' of
Gq, with coefficients in a finite extension L,/Q,, define the de Rham Dieudonné
module
D(V) = (V @ Bgr)¢r.

It is an L,-vector space of the same dimension as V, equipped with a descending
exhaustive filtration Fil? D(V) = (V ® log’[¢y]|Blr) 9@ by L,-vector subspaces.

Let Bis C Bgr denote Fontaine’s ring of crystalline p-adic periods. If V' is crys-
talline (which is always the case if it arises as a subquotient of the étale cohomology of
an algebraic variety with good reduction at p), then there is a canonical isomorphism

D(V) ~ (V & Beys) 99,

which furnishes D(V) with a linear action of a Frobenius endomorphism ®.
In [BK93] Bloch and Kato introduced a collection of subspaces of the local Galois
cohomology group H'(Q,, V), denoted respectively

H(}(va V) g Hfl(va V) g Hgl;(QPv V) g Hl(Qpa V)a

and constructed homomorphisms

(1.27) loggy : H(Qyp, V) = D(V)/(Fil’D(V) + D(V)*=1)
and
(1.28) expik : H(Qp, V)/HY(Q,, V) = Fil°D(V)

that are usually referred to as the Bloch-Kato logarithm and dual exponential map.
We illustrate the above Bloch-Kato homomorphisms with a few basic examples
that shall be used several times in the remainder of this article.
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Example 1.4. — As shown e.g. in [BK93|, [B09, §2.2|, for any unramified charac-
ter ¢ of Gq, and all n € Z we have:

(a) If n>2, orn=1and ¥ # 1, then Hé(Qp,Lp(lps(’}yc)) = Hl(Qp,Lp(z/Jsgyc)) 18
one-dimensional over L, and the Bloch-Kato logarithm induces an isomorphism

loggk : H'(Qp: Lp(¥egye)) — D(Lp(Pegye)).

(b) Ifn <0, orn =0 and # 1, then Hy (Qyp, Ly(vel.)) = 0 and H' (Qy, Ly(vel.))
1s one-dimensional. The dual exponential gives Tise to an isomorphism

expi + H'(Qp, Lp(¥elye)) — Fil'D(Ly(vely)) = D(Ly(vegye)).
(c) Assume ¢ = 1. If n = 0, then H'(Qp,L,) has dimension 2 over L,,

H}(Qp, Ly) = HX(Qy, Ly) has dimension 1 and HY(Qy, Ly) has dimension 0
over L,. The Bloch-Kato dual exponential map induces an isomorphism

exXppi Hl(va Lp)/Hfl(vaLp) - FﬂOD(Lp) = D(Lp) = Ly.

Class field theory identifies H'(Qy, Ly) with Homcont ( s Qp) @ Ly, which is
spanned by the homomorphisms ord, and log,,.

If n = 1, then H'(Qp,Ly(1)) = HX(Qp, Ly(1)) is 2-dimensional and
H}NQp, Ly(1)) = HXQp, Lp(1)) has dimension 1 over L,. As proved e.g.in
[B09, Prop. 2.9|, Kummer theory identifies the spaces H{ (Qyp,L,y(1)) C
HY(Qyp, Ly(1)) with ZX &L, sitting inside Q¥®L,. Under this identification,
the Bloch-Kato logarithm is the usual p-adic logarithm on Z,; .

Let Z;‘r denote the ring of integers of the completion of the maximal unramified
extension of Q. If V' is unramified then there is a further canonical isomorphism

(1.29) D(V) = (V & Z:") %,

Let ¢ be an eigenform (with respect to the good Hecke operators) of weight k =
k, +2 > 2, level M and character x, with fourier coeflicients in a finite extension L,
of Qp. The comparison theorem [F97| of Faltings-Tsuji combined with (1.6) asserts
that there is a natural isomorphism

D(Vy(M)) =~ Hig(X1(M), H* (1))[¢]

of Dieudonné modules over L,. Note that D(Vy(M)) is the direct sum of several
copies of the two-dimensional Dieudonné module D(V).

Assume that p{ M and ¢ is ordinary at p. Then V(M) is crystalline and ® acts
on D(Vyg(M)) as

k+1yr—1
(1.30) ® = x(p)p* U,

In particular the eigenvalues of ® on D(Vg(M)) are X(p)pko“a;1 = By and
X(p)p’“o“ﬂ(;l = ag, the two roots of the Hecke polynomial of ¢ at p. For future
reference, recall from [DR14, Theorem 1.3] the Euler factors

Bes

=, &(¢) :=1—x(p)ay*p" %

(131)  E&(e):=1-x 7" =1 - 0%
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Let ¢* = ¢ ® x € Sk(M, X) denote the twist of ¢ by the inverse of its nebentype
character. Poincaré duality induces a perfect pairing
(,) : D(Vup(M)) x D(Vy«(M)) — D(Ly,) = L.
The exact sequence (1.8) induces in this setting an exact sequence of Dieudonné
modules

(1.32) 0 — D(V;H (M)~ D(Vy(M)) "+ D(V; (M)) — 0.

Since V" (M is unramified, we have D(V, (M)) ~ (V; (M) @ Z3")“ar. This sub-
module may also be characterized as the eigenspace D(V, " (M)) = D(Vy(M ))2=s of
eigenvalue ay for the action of frobenius.

The rule (;US Wy that attaches to a modular form its associated differential form
gives rise to an isomorphism Sy (M, x) 1, [¢] — Fil’(D(V,(M))) € D(Vg4(M)). More-
over, the map 7 of (1.32) induces an isomorphism
(1.33) Si(M. X)r,[¢] — Fil’(D(Vy(M))) == D(V; (M)).

Any element w € D(V,.(M)) gives rise to a linear map
w: D(VJ(M)) — Ly, n (n, 7 Hw)).
Similarly, any 1 € D(V;; (M)) may be identified with a linear functional
n: DV (M) — Ly, we (1 (w), ),

and given ¢ € (M, X)1,[¢] we set 15 : DV (M) = Ly, @ = 0y(p) = (225
Let now A be a finite flat extension of the Iwasawa algebra A and let U denote
a free A-module of finite rank equipped with an unramified A-linear action of Gq, .

Define the A-adic Dieudonné module

D(U) := (USZL")“%».

As shown in e.g.[003, Lemma 3.3], D(U) is a free module over A of the same rank
as U.

Examples of such A-adic Dieudonné modules arise naturally in the context of fam-
ilies of modular forms thanks to Theorem 1.1. Indeed, let ¢ be a Hida family of tame
level M and character , and let ¢* denote the A-adic modular form obtained by
twisting ¢ by x.

Let V4 and V(M) denote the global A-adic Galois representations described in
(1.24). It follows from (1.12) that to the restriction of V4 to Gq, one might associate
two natural unramified A[Gq,]-modules of rank one, namely

Vo, = Ag(tg) and UL = V(X ecycoye)-

Scyc

Define similarly the unramified modules V(M) and [U$(M ).
Let

(131 SR = {F S0 s
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For any crystalline arithmetic point z € Wy of weight k, the specialization of a

A-adic test vector ¢ € STI(M,x)[@] at z is a classical eigenform ¢, € Si(Mp, )
with coeflicients in L, = z(Ag) ® Qp and the same eigenvalues as ¢, for the good
Hecke operators.

Likewise, define

STUM, %) [B] = {n L SYUM, X) = Ay ZZ%:Z((?)Z’ VLt Mp, }

v

Let Qg denote the field of fractions of Ag. Associated to any test vector ¢ €
S¢4(M, x)[¢p], [DR14, Lemma 2.19] describes a Qg-linear dual test vector

oV .
(1.35) ¢ € STUM,x)"[¢] @ Qg
such that for any ¢ € S (M, ¥) and any point z € Wg,
5V <(;5x7 "pm>
(@ (p)) = 5
(P, Pu)

where (,) denotes the pairing induced by Poincaré duality on the modular curve
associated to the congruence subgroup I'1 (M) N Ty(p). This way, the specialization

of a A-adic dual test vector qubv € S(M, x)V ] at x gives rise to a linear functional
B, Sk (Mp, 03] — Ly,

A natural Qg-basis of SY4(M, x)[p] ® Q4 is given by the A-adic modular forms
¢(q?) as d ranges over the positive divisors of M/My and it is also obvious that
{p(gh)Y : d| Mﬂ(b} provides a Qgp-basis of S (M, )V [¢] @ Qgp.

The following statement shows that the linear maps described above can be made
to vary in families.

Proposition 1.5. — For any A-adic test vector qv$ € Ser(M, X)[@] there exist ho-
momorphisms of Ag-modules
wg D(U;f*(M)) — Ny, my: D(V;(M)) — Qg,
whose specialization at a classical point x € Wj) such that ¢, is the ordinary stabi-
lization of an eigenform ¢, of level M are, respectively
L zowy = 50(¢;)6w’{(w$z) as functionals on D(U(;':(Mp)).
1

2. x0ony = g9y ew{(n&);) as functionals on D(V. (Mp)).

Proof. — This is essentially a reformulation of [KLZ17, Propositions 10.1.1 and
10.1.2], which in turn builds on [O00]. Namely, the first claim in Prop.10.1.2 of
loc. cit. asserts that W exists such that at any x € Wy as above, z o Wy =Wy =

Pr®(w, ) where Pr®" is the map defined in [KLZ17, 10.1.3] sending $2 to its ordi-

e . Y s/ 0N Oz(pgd;z B 5(1,;0;; v,
nary p-stablilization ¢,. Note that w](¢3) = Gog Boz  Ggs ez’ where ¢! denotes
the non-ordinary specialization of ¢°. Since ew 5 = 0 and Eo(@y) = % the

claim follows.
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The second part of [KLZ17, Proposition 10.1.2] asserts that there exists a A-adic
functional % such that for all x as above:

} Pra*né)o
T ong = o o ¢ o
18T NeDE(@2)6(62)
as Ly-linear functionals on D(V,.(Mp)). Here A(¢,) € Q* denotes the pseudo-

T

eigenvalue of ¢, which we recall is the scalar given by

(1.36) Wi (d;) = Moz) - 077

where Wiy @ Sk(M,x) — Sp(M,x1) stands for the Atkin-Lehner operator. Since
we are assuming that Ay contains the M-th roots of unity (cf. the remark right after
Definition 1.1), Prop. 10.1.10f loc. cit. shows that there exists an element A(¢) € Ay
interpolating the pseudo-eigenvalues of the classical p-stabilized specializations of ¢.
The claim follows by taking Ny = A((b)f]&). The same argument as above yields that

for all  as above, z ony = 5“@{)3)%, which amounts to the statement of

the proposition. O

2. Generalised Kato classes

2.1. A compatible collection of cycles. — This section defines a collection of
codimension two cycles in X;(Mp")? indexed by elements of (Z/p"Z)*3 and records
some of their properties.

We retain the notations that were in force in Section 1.3 regarding the meanings
of the curves X = X;(M), X, = X;(Mp") and X, 5. In addition, let

Y(p") =Y xx0) Y(p"), X(@"):=X xx@a) X(")

denote the (affine and projective, respectively) modular curve over Q(¢{,) with full
level p” structure. The curve Y(p") classifies triples (A, P, @) in which A is an elliptic
curve with 'y (M) level structure and (P, Q) is a basis for A[p"] satisfying (P, Q) = ¢,
where ( ) denotes the Weil pairing and ¢, is a fixed primitive p"-th root of unity.
The curve X(p") is geometrically connected but does not descend to a curve over Q,
as can be seen by noting that the description of its moduli problem depends on the
choice of (.. The covering X(p")/X is Galois with Galois group SLo(Z/p"Z), acting
on the left by the rule

(2.1) ( “ ! )(A,P,Q) — (A, aP +bQ,cP +dQ).

Consider the natural projection map
(2.2) ol x w} x w} : X3 — X3

induced on triple products by the map @/ of (1.14). Write A C X3 for the usual
diagonal cycle, namely the image of X under the diagonal embedding = — (z,z, z).
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Let A, be the fiber product A x ys X3 via the natural inclusion and the map of (2.2),
which fits into the cartesian diagram

A X3

L

AC— > X3,

An element of a Z,-module (2 is said to be primitive if it does not belong to p(2, and
the set of such primitive elements is denoted Q'. Let

S = ((Z/p"Z % Z/p"Z))* C (Z/p"Z)%)®

be the set of triples of primitive row vectors of length 2 with entries in Z/p"Z, equipped
with the action of GLy(Z/p"Z) acting diagonally by right multiplication.

Lemma 2.1. — The geometrically irreducible components of A, are defined over
Q(¢r) and are in canonical bijection with the set of left orbits

Proof. — Each triple

(v1,v2,v3) = ((x1,91), (72, Y2), (3,¥3)) € E
determines a morphism
P(v1,v2,03) - X(pr) — A C XE
of curves over Q((,), defined in terms of the moduli descriptions on Y(p") by

(A, PQ) — ((AzP+1Q), (A x2P +12Q), (A xsP +ysQ) ).
It is easy to see that if two elements (v1,v2,v3) and (v],vh,v5) € 3, satisfy
(v}, vh,vh) = (v1,v2,v3)y, with v € SLa(Z/p"Z),
then
P] whvl) = Plor,ve,vg) © Vs

where + is being viewed as an automorphism of X(p") as in (2.1). It follows that the
geometrically irreducible cycle

Ar(vla V2, U3) = @(1)1,1)2,113)* (X(pr))

depends only on the SLy(Z/p"Z)-orbit of (v1, va,v3).

Since SLo(Z/p"Z) acts transitively on (Z/p"Z x Z/p"Z)’, one further checks that
the collection of cycles A,(vy,v2,v3) for (vi,ve,vs) € X, /SLa(Z/p"Z) do not over-
lap on Y, and cover A,. Hence the irreducible components of A, are precisely
Ay (v1,v2,v3) for (v1,va,v3) € X, /SLa(Z/p"Z). O

The quotient X, /SLy(Z/p"Z) is equipped with a natural determinant map
D :%,/SLy(Z/p"Z) — (Z/p"Z)?
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defined by

D ((z11), (x2,y2), (v3,y3)) := (

For each [dy,ds,ds] € (Z/p"Z)3, we can then write
Erldr, d2, ds] := {(v1,v2,v3) € B, with D(v1,v2,v3) = (d1,d2,d3)} .

T2 Y2
T3 Y3

3 Ys
1 U1

r1 Y1
T2 Y2

The group SLo(Z/p"Z) operates simply transitively on X.[d1, da, ds3] if (and only if)
(2.3) [dy,dy,d3) € I := (Z/p"Z)*>.

In particular, if (v1,ve,vs3) belongs to X,[dy, ds, ds], then the cycle A,.(vy,vq,v3) de-
pends only on [d,dy,ds] € I, and will henceforth be denoted

(2.4) Ay [dy, dy, ds] € CH?(X}).

A somewhat more intrinsic definition of A,[d;,ds,d3] as a curve embedded
in X2 is that it corresponds to the schematic closure of the locus of points
((A, P1), (A, Py), (A, Ps)) satistying

(2.5) (Py, P3) = ¢ (P, P) = (2, (P, Py) = (5.

r o

This description also makes it apparent that the cycle A,[d1,ds,ds] is defined over
Q(¢) but not over Q. Let o, € Gal(Q(¢,)/Q) be the automorphism associated to
m € (Z/p"Z)*, sending ¢, to (. The threefold X3 is also equipped with an action
of the group

(2.6) G, = ((Z/p"Z)*)® = {(a1,a2,a3), a1,as,a3 € (Z/p"Z)*}

of diamond operators, where the automorphism associated to a triple ((a1), {(as), (as))
has simply been denoted (a1, as, as).

Lemma 2.2. — For all diamond operators (ay,az,as) € G, and all [dy,dy, ds] € I,

(2.7) (a1,a2,a3)Arldy, da, ds] = Arlazas - di, aras - d2, aras - ds].
For all o, € Gal (Q(¢)/Q),
(2.8) Omldy, da, ds] = Apfm - dy,m - da,m - ds].

Proof. — Equation (2.7) follows directly from the identity
D(ayvi, azvz2, azvs) = lagas, aras, araz] D(v1, va, v3).

The first equality in (2.8) is most readily seen from the equation (2.5) defining the
cycle A,[dy,ds,ds], since applying the automorphism o, € Gal (Q(¢-)/Q) has the
effect of replacing ¢, by ¢". O

Remark 2.3. — Assume m is a quadratic residue in (Z/p"Z)*, which is the case,
for instance, when o, belongs to Gal (Q(¢,)/Q(¢1)). Then it follows from (2.7) and
(2.8) that

(2.9) O’mAr[dl, dg, dg] = (m, m, m>1/2AT[d1, dg, dg]
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Let us now turn to the compatibility properties of the cycles A,[dy,ds,ds] as the
level r varies. Recall the modular curve X, ,; classifying generalised elliptic curves
together with a distinguished cyclic subgroup of order p"+! and a point of order p”
in it. The maps u, @, 71, we and 7o of (1.15) induce similar maps on the triple
products:

3 3
(2.10) X X7
3 3
w1 w2
3 3 3 3
XT,7'+1 T> Xr’ X7',7'+1 T> Xr .
1 2

A finite morphism j : V; — V4 of varieties induces maps
g : CH/ (Vi) — CHY(V),  j*: CH/ (V) — CHY(W})

between Chow groups, and j,j* agrees with the multiplication by deg(j) on CHY(V3).
If j is a Galois cover with Galois group G,

(2.11) §*5(A) =) oA
ceG

By abuse of notation we will denote the associated maps on cycles (rather than just
on cycle classes) by the same symbols.

Lemma 2.4. — For oll v > 1 and all [d},ds, d5] € I.41 whose image in I, is
[d17d2ad3];

(w%)*AT-i—l[ 3_7 éadg] = pBAT[dthadE}L

(@3)Arya[dy, dy, dy) = (Up)*PA,[dy, da, ds).

The cycles A,[dy,ds,ds] also satisfy the distribution relations
Z AT-H[ /la éadg] = (w?)*AT’[dlvd%d?’]?
[d1,d5,d3]
where the sum is taken over all triples [d},dy, d5] € I11 which map to [d1,dz,ds] in
I
Proof. — A direct verification based on the definitions shows that the morphisms p*
and 7} of (2.10) induce morphisms

3 7|_3
Ay |didsy, i) —== P30, 4 [df, dy, di] ——= A[dy, da, dy],
of degrees 1 and p? respectively. Hence the restriction of @3 to A, 1[d}, db, d5] induces
a map of degree p3 from A, [d},d},d5] to Ay[d1,da,ds], which implies the first
assertion. It also follows from this that
(2.12) PIA s [dy, dy, ds] = (77)* Ar[dy, do, ds].
Applying (73), to this identity implies that

(wg)*AT+1[ /17 é’dé] = (Up)®3AT[d17d27d3]'
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The second compatibility relation follows. To prove the distribution relation, observe
that the sum that occurs in it is taken over the p?® translates of a fixed A, [d}, db, dj]

for the action of the Galois group of X7\, over X? ., and hence, by (2.11), that

Z Ar+1[d/1, d;, dé] = (N*)gﬂiATJrl[d/lv dl27 dé}

[df ,d5,d3]
The result then follows from (2.12). O
2.2. Galois cohomology classes. — The goal of this section is to parlay the cy-

cles A,[dy,ds,d3] into Galois cohomology classes with values in HZ (X, Z,)®3(2),
essentially by considering their images under the p-adic étale Abel-Jacobi map:

(2.13) Ale : CHA(X D)o — HN(Q, HE (X}, Z,(2))),

where
CH?(X2)o == ker (CH*(X?) — HZ (X2, Z,(2)))

denotes the kernel of the étale cycle class map, i.e., the group of null-homologous
algebraic cycles defined over Q. There are two issues that need to be dealt with.
Firstly, the cycles A, [d, d3,ds] need not be null-homologous and have to be suitably
modified so that they lie in the domain of the Abel Jacobi map. Secondly, these
cycles are defined over Q((¢,) and not over Q, and it is desirable to descend the field
of definition of the associated extension classes.

To deal with the first issue, let ¢ be any prime not dividing Mp, and let T;; denote
the Hecke operator attached to this prime. It can be used to construct an algebraic
correspondence on X2 by setting

0 = (T, — (g +1))%°.
Lemma 2.5. — The element 0, annihilates the target Hét (X3, Z,) of the étale cycle
class map on CH?(X3).

Proof. — The correspondence T, acts as multiplication by (¢+1) on H2 (X,,Z,) and

6, therefore annihilates all the terms in the Kiinneth decomposition of HZ, (X, Zy).

O
The modified diagonal cycles in CH?*(X?) are defined by the rule
(2.14) AYldy,da, ds] == 0,7, [dy, do, d3].
Lemma 2.5 shows that they are null-homologous and defined over Q(¢,). Define
keldi,da,d3] = AJa(A7[dr, da, ds]) € HY(Q(G), He(Xo, Zy)#%(2)).

To deal with the circumstance that the cycles A2[dy,ds,ds] are only defined over
Q(¢r), and hence that the associated cohomology classes k,[d1, da, dgl need not (and
in fact, do not) extend to Gq, it is necessary to replace the Z,[G.][Gql-module
H}(X,,Z,)®3(2) by an appropriate twist over Q({,). Let G, denote the Sylow p-

subgroup of the group G, of (2.6), and let G := I'&nGT. Let
A(Gy) = Z,[G,], AGw) = Zp[[G]]
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be the finite group ring attached to G, and the associated Iwasawa algebra, respec-
tively.

Let A(Gr)(:t%) denote the Galois module which is isomorphic to A(G,) as a
A(G;)-module, and on which the Galois group Ggq(c,) is made to act via its quo-
tient Gal (Q(¢-)/Q(¢1)) = 1+ pZ/p"Z, the element o, acting as multiplication by

the group-like element (m,m,m)T/2. Let A(Goc)(i%) denote the projective limit of
the A(G,)(£5). It follows from the definitions that if
Uk 0,m, - MGr) — Z/p"Z, or Uk, b, m, - MGoso) — 2y
is the homomorphism sending (a1, as, ag) to alf" ag" az°, then
1 r r —(ky 4, 4+m, ) /2
(2.15) MGC(E) By, BT = (B/072) ey ),
where the tensor product is taken over A(G,), and similarly for G. In particular if
k 4+ ¢ +m, = 2t is an even integer,
1
(2.16) A(GOO)(?) O, gy my Lp = Z,(—t)(w')

as Gq-modules. More generally, if 2 is any A(G«) module, write

Q) = Q@) MG)D),  AST) = Q@) MGa) (=),

for the relevant twists of €2, which are isomorphic to 2 as a A(G)[Gq(u,e)]-module
but are endowed with different actions of Gq.
There is a canonical Galois-equivariant A(G,)-hermitian bilinear, A(G,)-valued
pairing
— E 1 — - 1
217) (D Haf(X0, Z)®(2(F) % He(X, Z,)° (1)) — A(Gy),
given by the formula
<<a>b>>7’ = Z <aavb>X7~ ’ <d17d2ad3>a
o=(d1,d2,d3) €G>
where
(0 )x,  Ha(Xr, Zy)%(2) x Hy(Xr, 2,)%°(1) — HE(X,, Z,(1)%° = Z,
arises from the Poincaré duality between H3 (X2, Z,)(2) and HZ (X3, Z,)(1). This
pairing enjoys the following properties:
— For all X € A(G,),
O b)e =A@ (a0 = e, D),
where A* € A(G,) is obtained from A by applying the involution on the group
ring which sends every group-like element to its inverse. In particular, the
pairing of (2.17) can and will also be viewed as a A(G,)-valued *-hermitian
pairing
(0 D+ Ha(Xr, 2)9%(2) x Hey (X, Z) (1) — A(Gy).
— For all o € Gq(c,), we have (oa,ob)), = ((a,b)),.
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— The U, and Uy operators are adjoint to each other under this pairing, giving
rise to a duality (denoted by the same symbol, by an abuse of notation)

(Vs € HL(X, Z,)5(2)(5) x eHL(XZ)®(1)(F) — AG)).

Define
H'Y(X,) = Hompa(HA (X, 2 (1)(5), AGy)) = H (X, Z,)%%(2) (),
HU'Y(X,) = Homaga(eHh (X, Z,) % (1)(5), AG,)) ~ e* HY (X, Z,)(2) (5).

The above identifications of Z,[Gq(c,)]-modules follow from the pairing (2.17).
To descend the field of definition of the classes k., [d1,ds,ds], we package them
together into elements

Kela,b,d € HYQ(G), HM(X,)
indexed by triples
(2.18) la,b,c] € Iy = (Z/pZ)*° = iy-1(Z,)* © (2P,

The class k,[a,b,c] is defined by setting, for all 0 € Gq,) and all v, €
Hy (X0, Z,)%5(1),

(2.19) wrla, b, (o) (vr) = (Krla, b, (), 7))

where the elements a,b,c € (Z/pZ)* are viewed as elements of (Z/p"Z)* via the
Teichmuller lift alluded to in (2.18). Note that there is a natural identification

(Q(C7) Hlll( )) = EXt/l\(G NG, )]( et(XTaZ ) ( )’A(GT')7

because H}, (X,,Z,)®3(1) = H} (X, Zp)®3(1)(%) as Gq(c,)-modules and the A(G,)-
dual of the latter is H'*!(X,). With these definitions we have

Lemma 2.6. — The class k.[a,b, ] is the restriction to Gqc,) of a class
- 1
Krla, b, € HY(Q(C), H'H (X)) = Ext (g, )(aq ) (Ha (Xr: Zp) % (1)(F), AGy)).
Furthermore, for all m € pp_1(Zy),
Om Krla,b, c] = k.[ma, mb, mc].

Proof. — We will prove this by giving a more conceptual description of the coho-
mology class k.[a,b,c]. Let |A| denote the support of an algebraic cycle A, and
let

(2.20) ARlla, b c] = |AT[a, b, ]| xxp X7
denote the inverse image in X3 of |A$[a, b, c]|, which fits into the cartesian diagram
All[a, b, c]]— X3

| fer

|AS[a, b, ]| — X3.
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As in the proof of Lemma 2.1, observe that
Aflab el = || |AY[ady, bdy, cds]]
[dl,dz,dg]GI},

where I! denotes the p-Sylow subgroup of I,.. Consider now the commutative diagram
of A(G,)[Gq(¢1)]-modules with exact rows:

(2.21)

HY (X0, Zy)®(2),
where

— the map j is the inclusion defined on group-like elements by
j (<d1, d2, d3>) = Cl(A:[adgdg, bd1d37 Cdldg]),

which is Gq(¢,)-equivariant by Lemma 2.2;

— the middle row arises from the excision exact sequence in étale cohomology
(cf.[I88, (3.6)] and [M, p.108]);

— the subscript of 0 appearing in the rightmost term in the exact sequence denotes
the kernel of the cycle class map, i.e.,

Hgt(Av?[[av bv C]]? Z;U)O = ker (Hgt(Aﬁ[[aﬂ b’ C]]? ZP)O — Hgt(XE)? Zp(2))) )

and the fact that the image of j is contained in HY (A%[[a,b,c]],Z,)o follows
from Lemma 2.5;
— the projection p is the one arising from the Kiinneth decomposition.

Taking the pushout and pullback of the extension in (2.21) via the maps p and j
yields an exact sequence of A(G,)[Gq(¢1)]-modules

(2.22) OHHét(XT,Zp)@)S(Q) ——FE, ——= AG,) (=) ——0.

Taking the A(G,)-dual of this exact sequence, we obtain

1 . —
0 —= AMG)(5) — BEr — Hy (X, Z,))%° (1) —0.

where M* means the A(G,)-module obtained from M by letting act A(G,) on it by

-1
composing with the involution A — A\*. Twisting this sequence by (?) and noting

that M*(=) ~ M (%)* yields an extension

1
2

(2.23) 0 —— A(G,) — Bl — HL(X,,Z,)®3(1)(5)" — 0.
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Since

H}(X,,Z,)%(1)(5)" = Homq,) (H (X, Z,)®3(2)(5), A(G,)),

it follows that the cohomology class realizing the extension E! is an element of

HY(Q(G1), Homy e, (HE (X, 2,)** (1)(5), AGr)) = H'(Q(G), B (X,),

because the duality afforded by ((, )), is hermitian (and not A-linear). When restricted
to Gq(c,), this class coincides with k.[a,b, c], and the first assertion follows.

The second assertion is an immediate consequence of the definitions, using the
Galois equivariance properties of the cycles A, [d;,ds,ds] given in the first assertion
of Lemma 2.2. O

Remark 2.7. — The extension E,. of (2.23) can also be realised as a subquotient of
the étale cohomology group H3(X3-A2[[a,b,c]], Z,)(1) with compact supports, in light
of the Poincaré duality

Hg (X7=A0[a, b, )], 2,)(2) x HI(X=A7la,b,c]], Z,)(1) — Zy.
2.3. A-adic cohomology classes. — Thanks to Lemma 2.6, we now dispose, for
each [a,b,c] € pp—1(Zy)3, of a system
(2.24) Krla,b,c € HH(Q(Cr), H™ (X,))

of cohomology classes indexed by the integers r > 1, so that e*k,.[a,b,c] €
HY(Q(G1), Hot (X7)). Let

Pr+1,r : A(GT+1) — A(Gr)

be the projection on finite group rings induced from the natural homomorphism
GT+1 — Gr.

Lemma 2.8. — Let 41 € HL(X,11,Z,)%%(1) and v € HA(X,,Z,)®3(1)
be elements that are compatible under the pushforward by w3, i.e., that satisfy
(@) s (Yr41) = - For all o € Gg(cy),

Pr+1,r (HTJrl [CL7 b, C] (U) (7r+1)) = EKr [av b, C] (U> ('VT)'
Proof. — This amounts to the statement that

Pratr((Frrala, by el veg1 1) = (Rrla, b, el 7).

But the left-hand side of this equation is equal to

D () (1) atip i1 [adydy, by dy, ed) ), vri1) x, ., - (da, da, ds),
Gr
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where the sum runs over (di,ds,ds) € G, and (d},d},d;) denotes an (arbitrary) lift
of (dy,ds,ds) to Gr41. The third assertion in Lemma 2.4 allows us to rewrite this as

> (@) krladads, bdyds, edida], r41) x, ., - (dy, da, ds)

G,
= Z(Hr[ad2d37 bd1d370d1d2], (W%)*’Yﬂ-ﬁxr : <d1, do, d3>
G,
= > (krladsds, bdrds, cdyda), ) x, - (da, da, ds)
G,
= <<Kr[a7ba 0]77T>>r7
and the result follows. O
Define
* Yk 1
(2.25)  H'W(XL):= Hompg.,)(H& (X%, Z)®*(1)(5), AMGeo))

— Homa ..y (HL (X1, £20)%3(1)(5), A(Goo)),

where the identification follows from (1.19).
Thanks to Lemma 2.8, the classes k,[a,b,c] can be packaged into a compatible
collection. Namely:

Definition 2.9. — Set
(2.26) Koola, b, ] := (Krla,b,d]), > € H'(Q(G), H'M (X))
It will also be useful to replace the classes ko[a, b, ¢] by elements that are essentially

indexed by triples
(wl,wg,wg) : (Z/pZX)3 — Z;

of tame characters of G, /G,. Assume that the product wiwsws is an even character.
This assumption is equivalent to requiring that

wiwows = 6%, for some § : (Z/pZ)* — L.

Note that for a given (wq,ws,ws), there are in fact two characters ¢ as above, which
differ by the unique quadratic character of conductor p. With the choices of w1, we, w3
and J in hand, we set

3
(p—1)°

where the sum is taken over the triples [a, b, c] of (p — 1)st roots of unity in Z,. The
classes Koo (w1, wa,ws; d) satisfy the following properties.

Lemma 2.10. — For all 0., € Gal (Q(¢x)/Q),

(2.27) Koo(wr,wa,ws;0) :=

: Z 5 Habe) - wi (a)wa (b)ws(c) - koo lbe, ac, ab),
la,b,c]

Um,’ioo (wlv w27 CU3; 6) = 5(m)K’OO (wlv w27 CU3; 6)
For all diamond operators (a1, as,as3) € pip—1(Zy)>

(a1, a2, a3) Koo (w1, w2, ws; 0) = wizz(ai, az, as) - Koo (w1, ws,ws; d).
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Proof. — This follows from a direct calculation based on the definitions, using the
compatibilities of Lemma 2.2 satisfied by the cycles A,[d1, da, d3]. O

The classes Keola,b,c] and Koo (w1, we,ws;d) are called the A-adic cohomology
classes attached to the triple [a, b, c] € p,—1(Z,)® or the quadruple (w1, ws,ws;d). As
will be explained in the next section, they are three variable families of cohomology
classes parametrised by points in the triple product W x W x W of weight spaces,
and taking values in the three-parameter family of self-dual Tate twists of the Galois
representations attached to the different specialisations of a triple of Hida families.

3. Higher weight balanced specialisations
For every integer k, > 0 define
Wie = H (X, 1)

and recall from the combination of (1.19), (1.21) and (1.22) the specialisation map
(3.1) sph, + H(X0, Zp) = B (X1, £3) — WP,

Fix throughout this section a triple

k=k +2  (=0(+2  m=m +2
of integers > 2 for which k&, + ¢ +m_, = 2t is even. Let
Hoolormo = R WHS R H™
viewed as a sheaf on X3, and
Wil = W @ W @ W (2~ t).

As one readily checks, the p-adic Galois representation W1k° oM is Kummer self-
dual, i.e., there is an isomorphism of Gg-modules

Homgg (W, ™ Z,(1)) =~ Wy
The specialisation maps give rise, in light of (2.16), to the triple product speciali-
sation map

ko ol ymy,

(3.2) SDh 4 .m, = SD. @sp; @spy, H'(XZ) — W,
and to the associated collection of specialised classes

(3.3) k1(k,, €, m,)[a,b,c] :=spy_ 4 . (Keo[a,b,c]) € Hl(Q(Q),Wlk“e(”m").

0?0

Note that for (k , ¢ ,m, ) = (0,0,0), it follows from the definitions (cf. e.g. the proof

of Lemma 2.6) that the class k1 (k,, ¢, ,m, )[a,b, ] is simply the image under the étale
Abel-Jacobi map of the cycle Af[a, b, c].

The main goal of this section is to offer a similar geometric description for the above
classes also when (k, ¢, m) is balanced and k,, ¢, ,m, > 0, which we assume henceforth

(R
for the remainder of this section.
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In order to do this, it shall be useful to dispose of an alternate description of
the extension (2.22) in terms of the étale cohomology of the (open) three-fold X7 —
|AS[a, b, c]| with values in appropriate sheaves.

Lemma 3.1. — Let [jjg?’ denote the exterior tensor product of L, over the triple
product X3. There is a commutative diagram

Hgt(ng ZP)(Q) - Hgt(Xg - A?[[C% b7 CH’ Zp)(2) - Hgt(Ag[[a7 b7 CH? Zl))

T

HE(XF, £59)(2) —— HE (X} — A [a, b, ], £7) (2) —— HA(1A7[a.b.d]|. £;5%)),

in which the leftmost maps are injective and the horizontal sequences are exact.

Proof. — Recall from (1.17) that
L2 = (@] x @ x w2,
where
w{fl X w{fl X w’{f1 X — X3
is defined as in (2.2). The vertical isomorphisms then follow from Shapiro’s lemma

and the definition of A?[[a,b,c]] in (2.20). The horizontal sequence arises from the
excision exact sequence in étale cohomology of [J88, (3.6)] and [M, p. 108]. O

Lemma 3.2. — For all [a,b,c] € I,
HY (Aq[a,b, c], HE o) = Z,(1).

Proof. — The Clebsch-Gordan formula asserts that the space of tri-homogenous poly-
nomials in 6 = 2 + 2 + 2 variables of tridegree (k,, £, ,m, ) has a unique SLy-invariant
element, namely, the polynomial

’ 0’ ’

T ° | @ °lz o
P o om, (1,91, %2, Y2, 23, Y3) = 33; zi xi z? x; z; ,
where
k,:fko+€o+mo é,:kof€o+mo m,:koJrEO—mo'
o =T o9 o T T o o =T 5
Since the triplet of weights is balanced, it follows that k', £, m ' > 0. From the

Clebsch-Gordan formula it follows that HY (Aq]a,b, c], HF%™) is spanned by the
global section whose stalk at a point ((A, Py), (A, P), (A, P3)) € Aqla, b, c] as in (2.5)
is given by

(X20Ys—Y, @ X3)%% @ (X, 05 —Y; @ X3)®%' @ (X1 0V, — Yy @ Xg)®,

where (X;,Y;), ¢ = 1,2,3, is a basis of the stalk of H at the point (4, P;) in X;. The
Galois action is given by the t-th power of the cyclotomic character because the Weil
pairing takes values in Z,(1) and k' + £ +m,' =t. O
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Write cly, ¢ m, (A1a,b,c]) € H(|AS]a, b, c]|, H* ™) for the standard generator
given by Lemma 3.2. Define

(3.4) AJi o m (Aifa,b,d]) € HYQ(G), Wi ™)

to be the extension class constructed by pulling back by j and pushing forward by p
in the exact sequence of the middle row of the following diagram:
(3.5)

Z,(t)

HI (X3, Ml o) (2) e B (XP-0, HE 7 ) (2) o HE (A, HE )

:

Wi ),
where
- A =A4a,b,c;
— the map j is the Gq(¢,)-equivariant inclusion defined by j(1) = cl ¢ m, (A);
— the surjectivity of the right-most horizontal row follows from the vanishing of
the group H ét(Xf,Hko 4™ ) which in turn is a consequence of the Kiinneth

formula and the vanishing of the terms HZ, (X3, H% ) when k, > 0 (cf.[BDP13,
Lemmas 2.1, 2.2]).
In particular the image of j lies in the image of the right-most horizontal row and
this holds regardless whether the cycle is null-homologous or not. The reader may
compare this construction with (2.21), where the cycle A¢][a, b, ¢]] is null-homologous
and this property was crucially exploited.

Theorem 3.1. — Set Ay ¢ m (A7a,b,c]) = 0,ATx ¢ m (Aila,b,c]). Then the
identity
ki(k,,€,,m,)[a,b,c] = AJg ¢ m, (Afla,b,c])

©) 0 o

holds in HY(Q(¢y), Wiewe™).

Proof. — Set A := AS[a, b, c] in order to alleviate notations. Thanks to Lemma 3.1,
the diagram in (2.21) used to construct the extension E,. realising the class k. [a, b, (]
is the same as the diagram

(3.6)

0 ——= HE(XP, £759)(2) ——= HE (X} — |A],£7%%)(2) — HE (4], £7%%)

i

Hg, (X1, £7)%%(2).
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Let

l/kO 7£O ’mO : A(GT) —> Z/prz
be the algebra homomorphism sending the group like element (dy, da, d3) to dlf" dg" dy°,
and observe that the moment maps of (1.20) allow us to identify

* r AN N
£T®3 ®Vko,lo,7no (Z/p"Z) = H, :

Tensoring (3.6) over A(G,.) with Z/p"Z via the map vy ¢ m, : MG,) — Z/p"Z,
yields the specialised diagram which coincides exactly with the mod p" reduction of
(3.5), with A = AfJa, b, c]. The result follows by passing to the limit with 7. O

Corollary 3.3. — Let

3
(3.7)  Af(wr,ws,ws;0) := (1)671)3 . Z 5~ Habe)w: (a)ws (b)ws(c)AS[a, b, c].

la,b,c]e1;
Then
SPh, 0, ,m, (Koo (W1, w2,ws50) = Ady ¢ m (A7 (w1, w2, w3;6)).
Proof. — This follows directly from the definitions. O

4. Cristalline specialisations

Let f, g, h be three arbitrary primitive, residually irreducible p-adic Hida families of
tame levels My, My, M) and tame characters xy, x4, Xn, respectively, with associated
weight space W x Wg x Wg. Assume xrxgxn = 1 and set M = lem(My, My, Mp,). Let
(2,9, 2) € WexWgxWh be a point lying above a classical triple (Vg e, Ve, eys Vi, e5) €
W3 of weight space. As in Definition 1.2, the point (z,y,2) is said to be tamely
ramified if the three characters €1, €2 and €3 are tamely ramified, i.e., factor through
the quotient (Z/pZ)* of ZY, and is said to be crystalline if ejw™ = ew™> =
3w Mo = 1.

Fix such a crystalline point (x, y, z) of balanced weight (k, ¢, m) = (k, 42,4, +2, m_ +
2), and let (f;, g,,h.) be the specialisations of (f,g,h) at (z,y,2). The ordinariness
hypothesis implies that, for all but finitely many exceptions, these eigenforms are the
p-stabilisations of newforms of level dividing M, denoted f, g and h respectively:

£.(q) = f(q) — Br f(d"), gy = 9(q) — Byg(d”), h.(q) = h(q) — Brh(q").

Since the point (z,y, z) is fixed throughout this section, the dependency of (f, g, h)
on (z,y, z) has been suppressed from the notations, and we also write (fu, ga, ha) =
(fy, gy, h,) for the ordinary p-stabilisations of f, g and h.

Recall the quotient Xo; of X, having T (p)-level structure at p, and the projection
map g : X1 — Xo; introduced in (1.15). By an abuse of notation, the symbol H*
is also used to denote the étale sheaves appearing in (1.4) over any quotient of X7,
such as Xp;. Let

Wy = Hét(Xtho) ® Hélt(leHzo) ® Hélt(XlaHmo)(z - t)’
Wor = Hi(Xor, H*) @ H (Xo1, H®) @ Hi (Xo1, H™ )(2 — ),
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be the Galois representations arising from the cohomology of X; and Xy; with values
in these sheaves. They are endowed with a natural action of the triple tensor product
of the Hecke algebras of weight k_ , £, m, and level Mp.

Let Wi[fa, 9a, ha] denote the (fa, ga, ho)-isotypic component of Wy on which the
Hecke operators act with the same eigenvalues as on f, ® go ® ha. Let m¢, 4. 5,
W1 = Wi[fas ga, ha] denote the associated projection. Use similar notations for Wo;.

Recall the family
(4.1) Koo (610 ™% eqw™ 3w ™™ ;1) = Koo(1,1,151)

that was introduced in (2.27). By Lemma 2.10, this class lies in H*(Q,H(X?)).

Recall the choice of auxiliary prime ¢ made in the definition of the modified diagonal
cycle (2.14). We assume now that ¢ is chosen so that Cy := (aq(f) —q — 1)(as(g) —
g —1)(aq(h) — g — 1) is a p-adic unit. Note that this is possible because the Galois
representations of, gg and on were assumed to be residually irreducible and hence f,
g and h are non-Eisenstein mod p. Let

1 *
(42) Kvl(focagayhoc) = 5 Tfagasha SPzy, 2 K'oo(la 1,1 1)) € Hl(QaWI[.faagaaha])

Cq
be the specialisation at the crystalline point (z,y, z) of (4.1), after projecting it to
the (fa, 9o, ha)-isotypic component of Wy via 7y, g, .. We normalize the class by
multiplying it by the above constant in order to remove the dependency on the choice
of q.

The main goal of this section is to relate this class to the generalised Gross-Schoen
diagonal cycles that were studied in [DR14], arising from cycles in Kuga-Sato varieties
which are fibered over X3 and have good reduction at p.

The fact that (x,y, z) is a crystalline point implies that the diamond operators in
Gal (X1/Xo1) act trivially on the (fu, ga, ha)-eigencomponents, and hence the Hecke-
equivariant projection u2 : Wy — Wy induces an isomorphism

12 Wi fas Gas hal — Worlfa, Gas hal-

The first aim is to give a geometric description of the class
KOl(fa7 Ja, ha) = szﬂ (fou Yo ha)

in terms of appropriate algebraic cycles. To this end, recall the cycles Ajla,b,c] €
CH?(X?}) introduced in (2.4), and let p* := £p be such that Q(y/p*) is the quadratic
subfield of Q(¢1).

Lemma 4.1. — The cycle u3A[a, b, ¢| depends only on the quadratic residue symbol

(‘%C) attached to abc € (Z/pZ)*. The cycles

b

Af, = pBAifa,b,c]  for any a,b,c with (ac) =1,
p
b

Ay = p3Aifa,b,c]  for any a,b,c with <ac) = -1,
p

belong to CH?(X3,/Q(v/p%)) and are interchanged by the non-trivial automorphism

of Q(Vp¥).
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Proof. — Arguing as in Lemma 2.2 shows that for all (d,ds,ds) € I, = (Z/pZ)*?,
<d1, d27 d3>A1 [a, b, C] = Al [dgdga, dldgb, dldgc].

The orbit of the triple [a, b, ] under the action of I is precisely the set of triples
[@', V', ] for which (%) = (“lec). Since X is the quotient of X; by the group
I, it follows that p2A;[a,b,c] depends only on this quadratic residue symbol, and
hence that the classes Aj; and Ap; in the statement of Lemma 4.1 are well-defined.
Furthermore, Lemma 2.6 implies that, for all m € (Z/pZ)*, the Galois automor-
phism o, fixes Aarl and Ag; if m is a square modulo p, and interchanges these two
cycle classes otherwise. It follows that they are invariant under the Galois group
Gal (Q(¢1)/Q(yv/p™)) and hence descend to a pair of conjugate cycles A, defined

over Q(y/p*), as claimed. O
It follows from this lemma that the algebraic cycle
(4.3) Ao = A, + Ay, € CHY(XE,/Q).

is defined over Q. To describe it concretely, note that a triple (Cq, Ca, Cs) of distinct
cyclic subgroups of order p in an elliptic curve A admits a somewhat subtle discrete
invariant in (u$? — {1}) modulo the action of (Z/pZ)*?, denoted o(C1,Cs,C3) and
called the orientation of (Cy,Cy, C3). This orientation is defined by choosing genera-
tors Py, P», P of C1, Cy and Cj5 respectively and setting

0(01,02,03) = <P2,P3> ® <P37P1> ® <P17P2> S /1,?3 - {1}
It is easy to check that the value of o(C,Cs,C3) in p$® — {1} only depends on the

choices of generators P, P, and P;3, up to multiplication by a non-zero square in
(Z/pZ)*. In view of (2.5), we then have

(44) AOI = {((/L Cl), (A, 02), (A7 03)) with Cl 75 CQ 7é Cg},

and

AL = {((A,C1), (A C2),(A,C5)  with o(C1,Co,C3) = aly?, a € (Z/pZ)**},
Ay = {((4,C1),(A,C2),(A,C3)  with o(Cy,Cs, C3) = al{?, a ¢ (Z/pZ)**}.

Recall the natural projections
7T1,7I'21X01 HX, W17WQ2X1 — X
to the curve X = Xo(M) of prime to p level, and set
Wo = He’}t(XO’ Hko) ® Hét(XOa ’Hfo ) ® Hé}t(XO’ H™ )(2 - t)v

The Galois representation Wy is endowed with a natural action of the triple tensor
product of the Hecke algebras of weight &k, £, m and level M. Let Wy[f,g,h]
denote the (f,g,h)- isotypic component of Wy, on which the Hecke operators act
with the same eigenvalues as on f ® g ® h. Note that the U} operator does not act
naturally on Wy and hence one cannot speak of the (fu,ga,ha)-eigenspace of this
Hecke module. One can, however, denote by Wi[f, g, h] and Wy1[f, g, h] the (f, g, h)-

isotypic component of these Galois representations, in which the action of the U,
operators on the three factors are not taken into account. Thus, Wo1[fa, ga, hal 18
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the image of Wo1[f, g, h] under the ordinary projection, and likewise for W;. In other
words, denoting by 7¢ 4 » the projection to the (f, g, h)-isotypic component on any of
these modules, one has

Tfogosha = € Tfgh
whenever the left-hand projection is defined.
The projection maps
(1, m,m) : Xo — X3, (w1, @1,1) 1 X7 — X3
induces push-forward maps
(m1, 71, 71)« 1 Worlfas Gas ha] — Wolf, g, bl
(w1, @, @)« o Wilfas 9o hal — Wolf, g, R]

on cohomology, as well as maps on the associated Galois cohomology groups.
The goal is now to relate the class

(4.5) (@1, @1, @1)+(K1(fas Jas ha)) = (71,71, m1)s (Ko1 (fas Gas ha))
to those arising from the diagonal cycles on the curve Xy = X, whose level is prime
to p.

To do this, it is key to understand how the maps 71, and (w1, 71, 71 )« interact with
the Hecke operators, especially with the ordinary and anti-ordinary projectors e and
e*, which do not act naturally on the target of 71,. Consider the map

(1, m2) : Wi i= HE (Xop, 1) — Wi = HL (Ko, HP).

It is compatible in the obvious way with the good Hecke operators arising from primes
£+ Mp, and therefore induces a map

(4.6) (1, m2) : W [f] — Wo° [f] @ Wg* [f]

on the f-isotypic components for this Hecke action. As before, note that W(f‘l’ [f]is a

priori larger than ng [fa], which is its ordinary quotient.
Let &5 := xf(p)p*~! be the determinant of the frobenius at p acting on the two-
dimensional Galois representation attached to f, and likewise for g and h.

Lemma 4.2. — For the map (w1, m3) as in (4.6),
T _ ap(f) -1 T
(2)em = (" 0)(R)
T . _ 0 D T
(2)e = (o uln )(0)

Proof. — The definitions m and my imply that, viewing U, and U} (resp. T}) as
correspondences on a Kuga-Sato variety fibered over Xg; (resp. over Xj), we have

mUp = Tpm — 72, mU, = pm2
U, = plp]m mU, = —[pm + Tpma,
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where [p] is the correspondence induced by the multiplication by p on the fibers and
on the prime-to-p part of the level structure. The result follows by passing to the f-
isotypic parts, using the fact that [p] induces multiplication by £¢p~! on this isotypic
part. [

For the next calculations, it shall be notationally convenient to introduce the no-
tations

5f:04f76f7 (Sg:ag*ﬁg, 5h:ah75h, 6fgh:6f695h.

Lemma 4.3. — For (71, m2) as in Lemma 4.2,
QpmT] — T m — BT
Mo~ MMM moe= MBI 5,
o of ‘
—pfm1 + pm — I QT _
Toet = /Bf 1 pQ7 Tooe* = gfp 1tay ZZpOéfl'(Trloe*)-
oy oy
Proof. — The matrix identities

(apg(ff) _01) B (Blf Oélf)(o([)f 50f>(61f O‘lf>_17

(cemt win) = (i e ) (¥ 5 (e aiim )
=&t ap(f) &pt &t 0 By Ep~t &pp? ’
show that
(e —1\" (11 10 11 \"!
hm( & 0) _<ﬁf af><o 0)(@ af)

n!
) 0 P 1 ( By p )
lim _ = 6 o ,
( =&t ap(f) ) P\ =&pt ay
and the result now follows from Lemma 4.2. O

Lemma 4.4. — Let k € HY(Q,Wo1lf,g,h]) be any cohomology class with wval-
ues in the (f,g,h)-isotypic subspace of Wo1, and let e,e* : HY(Q,Wo1[fgh]) —
HYQ, Wo1|fa, gas ha]) denote the ordinary and anti-ordinary projections. Then

(m1, 71, m)x(er) = 5;glh><{afagah(ﬂl,ﬂl,m)*

—Olgah(ﬂ'27ﬂ'1, 771)* - O‘fah(ﬂ-hﬂ—Zu 771)* - Oéfag(ﬂ—la 77177(-2)*

+Ozf(7T1,7T2,7T2)* + Cvg(WQ,WlﬂTz)* + ap, - (T2, T2, 1)«

—(7T2,7T2,772)*}(I€).
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(rmm)a(e'n) = 07 x { = ByByBa(m, mm).
+pBgBr(ma, m1, m1)« + pBePr(m1, 2, T1)x + DBfBg (1,1, T2)x

—p? By (M1, T2, T2 ) — DBy (T, T1, T2 )s — P*Br(ma, T2, 1)

* (m2 2, m2)- (),
where we recall that 4 == ((ay — Bf) (g — Bg) (o — Br))-

Proof. — This follows directly from Lemma 4.3. O

Recall the notations

k =k—2, L =0-2, m, =m — 2, ri=(k +4 +m)/2.
Let A denote the Kuga-Sato variety over X as introduced in 1.2. In [DR14,
Definitions 3.1,3.2 and 3.3|, a generalized diagonal cycle

Ako AR N AISO Wy ,my c CHT’+2(A]€O > AZO > Am",Q)

is associated to the triple (k , £, ,m,).

(CRENCI (s}

When k,,£,,m, >0, AR %™ is obtained by choosing subsets A, B and C of the

o9 Y

set {1,...,r} which satisfy:

#A=k, #B=(, #C=m, ANBNC =0,

e}

#BNC)=r—k, #HANC)=r—14, #ANB)=r—m,.
The cycle A% is defined as the image of the embedding A" into A% x A% x A™o
given by sending (E, (P1,...,P.)) to ((E, Pa),(E, Pg),(E, Pc)), where for instance

P, is a shorthand for the k -tuple of points P; with j € A.

Let also Agc’l’z" Mo ¢ CH™P2( AR x A% x A™) denote the generalised diagonal cycle

in the product of the three Kuga-Sato varieties of weights (k, ¢, m) fibered over Xo1,
defined in a similar way as in (4.4) and along the same lines as recalled above.

More precisely, A’gol,fo " is defined as the schematic closure in A% x A% x A™ of
the set of tuples ((E, Cy, Pa), (E,Cs, Pg), (E,Cs, Pc)) where P4, Pg, Pc are as above,
and Cq,Cy, C3 is a triple of pairwise distinct subgroups of order p in the elliptic curve
E.

Since the triple (k,, ¢ ,m,) is fixed throughout this section, in order to alleviate

notations in the statements below we shall simply denote A* and A%, for Ak

Ky by .
and Agy °""™ respectively.
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Lemma 4.5. — The following identities hold in CH™ T2 (AR x A% x A™):

(mom,m)e(Af) = (p+ Dplp — 1)(AF),

(7T2,7T1,7T1)*(A(u)1) p(p — 1) x (T, 1’1)(Aﬁ)7

(w1, ma,m)o(Af1) = plp— 1) x (1,T, 1)(A),

(71'1,77177T2)*(Ag1) p(p ) < (1,1,T, )(Aﬁ)7

(1, ™2, )4 (AF;) (p—1) x ((1,T,, T,)(A%) — p"~% Dy)

(2, 71, 72) (A (p=1) x (T, 1, T,)(AF) = p" Dy)

(2, ™2, )4 (D)) (p— 1) x (T, Ty, 1)(A%) — p" =" Dy)

(77277277T2)*(A31) = (1,1, T,)(A ) pT_kOEl _PT,_Z°E2_ZUT o B3
—p"(p + 1)AF,

where the cycles D1, Dy and Ds3 satisfy

([p]vlal)*(Dl) (Tp’lﬁl) (A ) (1,[p],1)*(D2) :pé (LTpvl)*(Au)v
(1,1,[p])*(D3) :p (LLTI))(A )7

the cycles E1, Ey and E3 satisfy

([p]v 1, 1)*(E1) = pko (Tp27 L, 1)(Au)7 (17 [p]v 1)*(E2) = pé (1’TP2’ 1)(Aﬁ)’
(17 1, [p])*(E?)) = pmo (1’ lanz)(Au)v

and Ty> :=T? — (p+ 1)[p].

Proof. — The first four identities are straightforward: the map m; X m X m; in-
duces a finite map from Agl to A% of degree (p + 1)p(p — 1), which is the number
of possible choices of an ordered triple of distinct subgroups of order p on an ellip-
tic curve, and likewise 72 X w1 X mp induces a map of degree p(p — 1) from Agl to
(T, 1, 1)Aﬁ. The remaining identities follow from combinatorial reasonings based on
the explicit description of the cycles Agl and AP, For the 5th identity, observe that
(w1, 72, ma)« induces a degree (p — 1) map from Agl to the variety X parametris-
ing triples ((E, Pa), (E', Pg), (E", PZ)) for which there are distinct cyclic p-isogenies
¢ 1 E — E'and ¢' : E — E”, the system of points P, C E’ and PZ C E” indexed
by the sets B and C' satisfy

¢ (PanB) = Pinp,  ¢"(Panc) = Pinc:
and for which there exists points Qpnc C E indexed by B N C satisfying
¢'(@Bnc) = Ppnes ¢"(QBnc) = Ppnc-

On the other hand, (1,7}, T},) parametrises triples of the same type, in which E’ and
E" need not be distinct. It follows that

(4-7) (LTpan)(Aﬁ) =X +pr_k° Dy,
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where the closed points of D; correspond to triples ((E, Pa), (E’, Pp), (E’, P})) for
which there is a cyclic p-isogeny ¢’ : E — E’ satisfying

©'(Pang) = Phnps ¢ (Panc) = Panc-

The coefficient of p"~% in (4.7) arises because each closed point of D; comes from

p#(BNC) distinct closed points on (1,7}, T})(A*), obtained by translating the points
P; € Pgn¢ with j € BN C by arbitrary elements of ker(¢). The fifth identity now
follows after noting that the map ([p],1,1]) induces a map of degree p* from D; to
(T,,1,1),A% The 6th and 7th identity can be treated with an identical reasoning
by interchanging the three factors in W x W% x W™ . As for the last identity,
the map (g, a9, m2) induces a map of degree 1 to the variety Y consisting of triples
(E',E",E") of elliptic curves which are p-isogenous to a common elliptic curve E
and distinct. But it is not hard to see that

(Tvapan)(Au) =Y +p B +p B +p ™ Ey +p"(p+ 1)Aﬁ

where the additional terms on the right hand side account for triples (E', E”, E")
where £/ # E"” = E", where E" # E' = E'", where E" # E’ = E”, and where
E' = E" = E" respectively. O

Assume for the remainder of the section that k. , ¢ ,m, > 0. Recall the projectors

er, of (1.5). It was shown in [DR14, §3.1] that (e , €z ,€m )AR ™ is a null-
homologous cycle and we may define

(48) ﬁ(fa 9, h) = Tfgq,h AJét((eko )y €45 €my )Ako b ,mc) € Hl(Qa WO[f7 9, h])

as the image of this cycle under the p-adic étale Abel-Jacobi map, followed by the
natural projection from HZ* !(A% x A% x A", Q,(c)) to WSCO £ induced by the
Kiinneth decomposition and the projection m¢ g p.

It follows from [DR14, (66)], (1.5) and the vanishing of the terms H}, (X1, H")
for i # 1 when k, > 0, that the class x(f,g,h) is realized by the (f,g, h)-isotypic
component of the same extension class as in (3.5), after replacing X; by the curve
X = Xgand A = A%0%0 ig taken to be the usual diagonal cycle in X3. In the notations
of (3.4), this amounts to

(49) K’(fv 9, h) = W,f,g,hAcho,Zo my (A)
Similar statements holds over the curve Xp;. Namely, we also have the following:

Proposition 4.6. — The cycle (fko,ézo,ﬁmo)A§3’€° "o s null-homologous and the
following equality of classes holds in H*(Q, Wo1[fas Jas Pal):

(4.10) ko1 (far 9o ha) = 07+ Tpygona Adar((en, €, €m, )AGe™).

Proof. — Corollary 3.3 together with (4.2) imply that

1

K?l(fougaahoz) = ? :
q

ﬂ-fozvgo“hcx AJko 7£o sy, (AT(]W 17 17 5))7
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in which § = 1 is the trivial character of (Z/pZ)*. Since p?® induces a finite map of
degree (p—1)? from the support of Aq(1,1,1;8) to Ag1, it follows from the convention
adopted in (3.7) that

K01 (fas Gas ha) = Mi’ K“l(favgav hot) = "M forgasha AJ}% LS (Agl)v

P
Cq
where AJy ¢ m (AG;) is defined to be the class realized by the same extension class
as in (3.5), after replacing X; by the curve X(; and replacing A by the cycle Ag,

arising from (4.4). Since Ag"l’z" " is fibered over Agq, the same argument as in (4.9)
then shows that

k. 4,
Ay 0, ,mo(AOl) = AJs((en, €0, €m )AG ™).
Since 75, goha (D01) = G- Tfa gasha (Af1), the proposition follows. O
Cy T fas
Theorem 4.1. — With notations as before, letting c = r 4+ 2, we have

5bal(fa,ga,ha)
ELE(G)E(ha) k(f, g, h),

(w1,w1,w1)* /ﬂ(fmgmha) =

where

EY™ (fas gar ha) = (1= ayByBrp~) (1 = BragBup ™) (1 = BrBganp™ ) (1 = By ByBrp~°),

and
E(fo) =1=X7" (B ™", E(9a) = 1=x,"0)B;p" ™", E(ha) = 1—=x;, ' (p)Brp" ™
Proof. — In view of (4.5), (4.8) and (4.10), it suffices to prove the claim for the

my

. Since k&, £ m are fixed throughout the

cycles AForfo ™o and (7, 71, 1) e*Ak" o 0o
discussion, we again denote Af = Ak%™o and Agl = A oo 44 lighten notations.

When combined with Lemma 4.4, Lemma 4.5 equips us Wlth a completely explicit
formula for comparing (7T1,7T177T1)*6*(Ag1) with the generalised diagonal cycle Af.
Namely, since the correspondences ([p],1,1), (1,[p],1) and (1,1, [p]) induce multipli-
cation by p*, p% and p™ respectively on the (f7g, h)-isotypic parts, while (T}, 1,1),
(1,7,,1), and (1,1,T,) induce multiplication by a,(f), a,(g), and a,(h) respectively,

it follows that, with notations as in the proof of Lemma 4.5,

Trgn(D1) = ap(f)”f,g-,h(Aﬁ)»
Tfgn(D2) = ap(g)ﬁfﬁg,h(An)v
Tron(Ds) = ap(R)msgn(AF),
and that
Trgn(E1) = (af;(f)—(p+1)pk°)7ff,g,h(M),
Trgn(E2) = (ap(g) — (p+1)p*)mysgn(AF),
Trgn(Es) = (ap(h) = (p+ 1)p"™)ms e n(A%).

By projecting the various formulae for (7r1,7r1,771)*(A01) that are given in Lemma
4.5 to the (f, g, h)-isotypic component and substituting them into Lemma 4.4, one
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obtains a expression for ef,g_,h(mﬂrl,m)*e*(Agl) as a multiple of 7, ,(A*) by an
explicit factor, which is a rational function in oy, ay and oy,. This explicit factor is
somewhat tedious to calculate by hand, but the identity asserted in Theorem 4.1 is
readily checked with the help of a symbolic algebra package. O

5. Triple product p-adic L-functions and the reciprocity law

Let (f,g,h) be a triple of p-adic Hida families of tame levels My, M,, M} and
tame characters x7, X4, Xn @s in the previous section. Let also (f*,g*,h*) = (f ®
X7, 8 ® Xg,h ® Xp) denote the conjugate triple. As before, we assume xfxgxn = 1
and set M = lem(M;, My, Mp,).

Let Af, Ag and Ay be the finite flat extensions of A generated by the coefficients
of the Hida families f, g and h, and set Agn = Af®szg®szh. Let also Q¢ denote
the fraction field of A¢ and define

Of gh 1= QrRAGOA,.

Let Wey, 1= W X Wg x Wi C Wegn = Spf(Agen) denote the set of triples of
crystalline classical points, at which the three Hida families specialize to modular
forms with trivial nebentype at p (and may be either old or new at p). This set
admits a natural partition, namely

Wf?gh = Wffgh U ng

h bal
eh U Wegn U Weany

where

- ngh denotes the set of points (z,y,z) € Wegn of weights (k,¢,m) such that
k>/{0+m.

— Wiy, and Wiy, are defined similarly, replacing the role of f with g (resp. h).

- Pgall] is the set of balanced triples, consisting of points (z, y, z) of weights (k, £, m)

such that each of the weights is strictly smaller than the sum of the other two.
Each of the four subsets appearing in the above partition is dense in Wegp for the
rigid-analytic topology.
Recall from (1.34) the spaces of A-adic test vectors S§™
of a triple

(M, xr)[f]. For any choice

(£,8,h) € STUM, x5)[£] x SR(M, x,)[g] x S (M, xn)[b]
of A-adic test vectors of tame level M, in [DR14, Lemma 2.19 and Definition 4.4]
we constructed a p-adic L-function gpf (f , 8, ﬁ) in Qr®Ag®Ap, giving rise to a mero-
morphic rigid-analytic function
(5.1) 2,7 (£,8,1) : Weggn — C,.

As shown in [DR14, §4], this p-adic L-function is characterized by an interpolation
property relating its values at classical points (x,y,2) € W;cgh to the central critical
value of Garrett’s triple-product complex L-function L(f;, g, h,, s) associated to the
triple of classical eigenforms (f;,g,,h.). The fudge factors appearing in the inter-

polation property depend heavily on the choice of test vectors: cf. [DR14, §4] and
[DLR15, §2] for more details. In a recent preprint, Hsieh [H17] has found an explicit
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choice of test vectors, which yields a very optimal interpolation formula which shall
be useful for our purposes. We describe it below:

Proposition 5.1. — for every (z,y,z) € ngh of weights (k, ¢, m) we have

G a(k,l,m
62 ) Ea b ) = i) ) [ Cx L g bz
v|Noo

where
D) e= k+ZJ5m727
i) a(k, £,m) = (2mi) 2k . (blbm=tyy (hilom=2)) (k=tim=2)| . (h=Lom)|
iii) e(z,y,2) = E(x,y,2)/Eo(x) €1 () with
z) = 1=x; (B,
x) = 1=xp(p)agp®
(1= oo an05) x (1= s a0 5=)

_ k—0—m _ k—2—m
x (1= xs(pag Be, anp ) x (1= xs(p)ag Bg, Bup 7 )

iv) The local constant C, € Q(f;, gy, h;) depends only on the admissible represen-
tations of GL2(Q,) associated to (f;,8,,h.) and on the local components at v
of the test vectors.

tn
—~
&
=

I
~—

I

Moreover, there exists a distinguished choice of test vectors (f g, ) (as specified
by Hsieh in [H17, §3]) for which ﬁpf(f, g, h) lies in Aggn and the local constants may
be taken to be C, =1 at all v | Noo.

Proof. — This follows from [H17, Theorem A], after spelling out explicitly the defi-
nitions involved in Hsieh’s formulation.

Let us remark that throughout the whole article [DR14], it was implicitly assumed
that f,, g, and h,, are all old at p, and note that the definition we have given here of
the terms &y(z), £1(x) and E(x,y, z) is exactly the same as in [DR14] in such cases,
because g, = xf(p)og 1pk ! when £, is old at p.

In contrast with loc cit.,in the above proposition we also allow any of the eigen-
forms f,, g, and h,, to be new at p (which can only occur when the weight is 2); in
such case, recall the usual convention adopted in §1.2 to set 34 = 0 when p divides
the primitive level of an eigenform ¢. With these notations, the current formulation
of E(x,y,2), En(x) and & (x) is the correct one, as one can readily verify by rewriting
the proof of [DR14, Lemma 4.10]. O

5.1. Perrin-Riou’s regulator. — Recall the A-adic cyclotomic character g, and
the unramified characters Vg, Wg, Wy, of Gq, introduced in Theorem 1.1. As a piece
of notation, let g¢ : Gq, — A¢ denote the composition of .. and the natural
inclusion A* C A{, and likewise for gg and gy,. Expressions like UgW Uy or geg,ey,
are a short-hand notation for the Afxgh—valued character of Gq, given by the tensor
product of the three characters.
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Let V¢, Vg and Vy, be the Galois representations associated to f, g and h in
Theorem 1.1.

The purpose of this section is describing in precise terms the close connection
between the diagonal cycles constructed above and the three-variable triple-product
p-adic L-function. In order to do that, let us introduce the Aggnh-modules

(5.3) Vi =Ve@Vy®@Vi(~1)(5) = Ve ® Vg @ Vi(enher eg e 7).

cyc=f
and
(5.4) Vi (M) = V(M) ® Vg (M) ® V(M) (~1)(5).

The pairing defined in (2.17) yields an identification H''' (X)) = H} (X0, Z,)®3(2) (%)

As explained in (1.26), Vlgh(M ) is isomorphic to the direct sum of several copies
of V;{gh and there are canonical projections wg, wg, wn which assemble into a
G q-equivariant map
Drgn  HY(XL) = HA (Ko, 2,)%(2)(5) — Vign (M),
Recall the three-variable A-adic global cohomology class
Koo (61w eow™ Le3w™ ™5 1) = Kkoo(1,1,1;1) € HY(Q, HM (X))

introduced in (4.1).
Set Cy(f, g, h) := (aq(f) —g—1)(aq(g) —g—1)(aq(h) —g—1). Note that C,(f, g, h)
is a unit in Agen, because its classical specializations are p-adic units (cf. (4.2)).
Definition 5.2. — Define
1 —k —£, —m, 1 T
. (Koo o °, o5 1 H 'V M
Cq(f,g,h) w@t,g,h (R (61&) €W €3w )) € (Q fgh( ))

to be the projection of the above class to the (f, g, h)-isotypical component.

k(f, g, h) =

In the above definition, we normalize k(f, g, h) by the constant C,(f, g, h) so that
the classical specializations of k(f, g, h) at classical points coincide with the classes
K1(fas 9o, ha) introduced in (4.2).

Let

resy : H'(Q, Vi, (M) = H' (Qp, Vig (M)

denote the restriction map to the local cohomology at p and set
K’P(fv g, h) = resp(n(f, g, h)) € Hl(va VI‘gh(M>)

The main result of this section asserts that the p-adic L-function .fpf (t”‘,g,ﬁ)
introduced in §5 can be recast as the image of the A-adic class k,(f, g, h) under a
suitable three-variable Perrin-Riou regulator map whose formulation relies on a choice
of families of periods which depends on the test vectors f, g, h.

The recipe we are about to describe depends solely only on the projection of
Kkp(f,g,h) to a suitable sub-quotient of Vlgh which is free of rank one over Aggp,
and whose definition requires the following lemma.
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Lemma 5.3. — The Galois representatan foh S endowed with a four-step filtration
++ -
0CVgn C Vfgh C Ve C Vfgh

by Gq,-stable Aggn-submodules of ranks 0, 1, 4, 7 and 8 respectively.

The group Gq, acts on the successive quotients for this filtration (which are free
over Agen of ranks 1, 3, 3 and 1 respectively) as a direct sum of one dimensional
characters,

Veen h f, Vegn V; h
Vigh =™ G SO OmS o = e O0g o = e
fgh fgh fgh
where
neh = (UeU, Uy, x scyc(efgggh)1/2, Nigh = PeWeWh X e (EpEgln)” 1/2,

1/2 1/2
) 7

h — _ — — — 1 —
M = X7 U U X eoye(ep M egEn) MEn = X Vs Wy X (greg e ")

77g =Xg "W Wy 1\Ilh X ECyC(gfE en)'/?, N = Xg\ij\I/h\Ijgl x (§f_l§g§1:1)1/27

M =X " Wn Wy Wt X eope(gpggen Y2 iy = xn sl Wy x (g g tep) 2,

Proof. — Let ¢ be a Hida family of tame character x as in §1.3. Let %4 denote
the unramified character of Gq, sending a Frobenius element Fr, to a,(¢) and recall
from (1.12) that the restriction of V¢4 to Gq, admits a filtration

0= Vy = Ve >V, =0

with
Vi~ AUy Xeqeeye) Vi = Ag(vg).
Set
-1/2_— —1/2
ViL = VieVie Vi e e ),
VtJ“rgh = (Vf®V+ ®V+ + V+®V ®V+ + V+ ®V+®Vh)( C_yc -1/2 _1/2 _1/2)
Veeh = (Vi®Vg®V{ + Vi@ V@V + Vi © Vg ® Vi) (eher 1/2 ;1/2 12y

It follows from the definitions that these three representations are Agn[Gq,]-

submodules of Vttgh of ranks 1, 4, 7 as claimed. Moreover, since X rxgxn = 1, the rest
of the lemma follows from (1.12). O

A one-dimensional character n : Gq, — C is said to be of Hodge-Tate weight
—j if it is equal to a finite order character times the j-th power of the cyclotomic
character. The following is an immediate corollary of Lemma 5.3.

Corollary 5.4. — Let (v,y,z) € Wegy, be a triple of classical points of weights

(k,€,m). The Galois representation Vfi,gy,hz is endowed with a four-step Gq,-stable
filtration
T
0 C ‘/f 7gy7h C ‘/f 7gy7h - ‘/f agy7h - ‘/fz:gyah ’

and the Hodge-Tate weights of its successive quotients are:
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Subquotient Hodge-Tate weights
Ve g, h. =4l
Verg,n./ Ve g, . e, e, T
Vergun Ve gon, | — g — 15 — 1, B — 1
‘/}’m;gy7hz/‘/};,gy,hz W% —2
Corollary 5.5. — The Hodge-Tate weights of ij’gy’hz are all strictly negative if

and only if (k,€,m) is balanced.

Let V?h and V%h(M) be the subquotient of VJfrgh (resp. of VJfrgh(M)) on which Gq,
acts via (several copies of) the character
(5.5) g = uE" x o8"
where

- \Ilfh is the unramified character of Gq, sending Fr,, to X;l (p)a,(f)a,(g)ta,(h)~1,

and

— @?h is the Aggn-adic cyclotomic character whose specialization at a point of
weight (k,€,m) is el . with t := (=k 4 £ +m)/2.
The classical specializations of V%h are
—k—0—-—m+4

2

where the coefficient field is L, = Q,(f:, gy, h.).
Wt'?ga}ll, while ¢ < 0 when (z,y,2) € Wtfgh'

Recall now from §1.4 the Dieudonné module D(Véyhz(Mp)) associated to (5.6).
As it follows from loc. cit., every triple

(M1, w2,ws) € D(Vet (Mp)) x D(Vg: (Mp)) x D(Vy,. (Mp))

*
Yy

(5.6) ) 2 Ly (X e, g v ) (1),

Note that ¢ > 0 when (z,y,2) €

yhz Fy— -
Vert i =Vg ® V;y ® Vi (

gives rise to a linear functional 71 ® wy @ ws : D(foyhz (Mp)) — L.
In order to deal with the p-adic variation of these Dieudonné modules, write
h
VEH (M) as
h h
VE(M) = U(0F")
where U is the unramified Aggn-adic representation of Gq, given by (several copies

of) the character UE".
As in §1.4, define the A-adic Dieudonné module

D(U) := (USZp")“%» .
In view of (1.29), for every (z,y,z2) € Ween there is a natural specialisation map
Vg, D(U) — D(U;-‘iyhz)

h. yhz
where Uéy = U ®ngen Qp(fe, gy, h2) ~ fo (Mp)(-t).
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Proposition 5.6. — For any triple of test vectors
(f.8.h) € SFI(M, xs)[f] x S (M, xg)[g] x SF4(M, x1)[h],
there exists a homomorphism of Aggn-modules
(g Qugr Qwy.) 1 D(U) — Qg gn

such that for all A € D(U) and all (z,y,2) € Ween such that £, is the ordinary
stabilization of an eigenform £, of level M :

1
Eo(£9)E1 (£9) A V* g U* .
EoEE (52 < VsV © g @)

Va,z (A g ® wgr @ wye)) =
Recall from (1.31) that
&) =1—x""BEp' ", &) =1 x(p)ag ">

Proof. — Since U is isomorphic to the unramified twist of Vg ®V;‘ ® V., this follows
from Proposition 1.5 because & (fy) = & (£2*) and & (f2) = &1 (f2%). O

It follows from Example 1.4 (a) and (b) that the Bloch-Kato logarithm and dual
exponential maps yield isomorphisms

loggk : H'(Q,, V™) =5 D(VE"™), ittt >0,
=D

exp : H'(Qp, VE™) (V) if t <0.
Define
k—t-m _q 3
(5.7) EPR(p gy = 1P T 0 %0 1-pProg,on.
’ ’ - Itm—k—2

1—p 2 o a;ylal;l 1-pcay, Bg, Bn. '
The following is a three-variable version of Perrin-Riou’s regulator map constructed
in [PR95| and [LZ14].
Proposition 5.7. — There is a homomorphism
Lt gn s HY(Q,, VE*(M)) — D(U)

such that for all k, € Hl(Qp,Vgh(M)) the image Lrgn(Ky) satisfies the following
interpolation properties:

(i) For all balanced points (x,y,z) € Wtkgll”
(=1)"
t!

(ii) For all points (z,y,z) € Wffgh;

Vay.: (Legn(kp)) = (=1)"- (1= )1 E7M(a,y, 2) - expig (Va2 (Kp)).

Proof. — This follows by standard methods as in [KLZ17, Theorem 8.2.8], [LZ14,
Appendix BJ, [DR17, §5.1]. O

Proposition 5.8. — The class k,(f, g, h) belongs to the image of Hl(Qp,V;;h(M))
m

Hl(Qp,VIgh(M)) under the map induced from the inclusion V}"gh(M) — Vzgh(M).

Ve,y,z (‘Cf,gh("ap» = : 5PR(=737 Y, 2) - IOgBK(Vz,y’Z("Lp)%
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Proof. — Let (z,y, 2) € Wg,), be a triple of classical points of weights (k, £, m). By the
results proved in §4, the cohomology class p(f;, gy, h.) is proportional to the image
under the p-adic étale Abel-Jacobi map of the cycles appearing in (4.8), that were in-
troduced in [DR14, §3]. The purity conjecture for the monodromy filtration is known
to hold for the variety A% x A% x A™ by the work of Saito (cf.[S97], [N98, (3.2)]).
By Theorem 3.1 of loc.cit., it follows that the extension ,(f;, g,,h;) is crystalline.

Hence x,(f;, gy, h.) belongs to H} (Q,, Vflgy,hz(Mp)) C HY(Q,, sz,gy,hz (Mp)).
Since (k,¢,m) is balanced, Corollary 5.5 implies that ij_’gy’hz is the subrepre-

sentation of Vfi,gy,hz on which the Hodge-Tate weights are all strictly negative. As
is well-known (cf. [F90, Lemma 2, p.125|, [LZ19, §3.3] for similar results), the fi-
nite Bloch-Kato local Selmer group of an ordinary representation can be recast a la
Greenberg [G89] as

Hfl(va ‘/fi,gy,hz) = ker (Hl(QP7 vai,gy,hz) — Hl(IP7 ‘/f'i,gy,hz/‘/;'j,gy,hz)> )

where I, denotes the inertia group at p.

Since the set of balanced classical points is dense in Wgn for the rigid-analytic
topology, it follows that the A-adic class kp(f, g, h) belongs to the kernel of the natural
map

HY(Qp, Vg (M) — H' (1, Vi, (M) /Viy, (M).
Since the kernel of the restriction map
HY(Qp, Vigy (M) [V, (M) — H' (I, Vi, (M) / Vi, (M)
is trivial by Lemma 5.3, the result follows. O

Thanks to Lemma 5.3 and Proposition 5.8, we are entitled to define
(5.8) kj(f.gh)” € HY(Qp, VE'(M))
as the projection of the local class k,(f, g, h) to V?h(M).

Theorem 5.1. — For any triple of A-adic test vectors (f', g, Fl), the following equality
holds in the ring Qf gn:

<£f-,gh('<']]oc(f7g7h)7 )a Ure ® W= ®Wﬁ* > = gpf(ig?}ul)'

Proof. — Tt is enough to prove this equality for a subset of classical points that is
dense for the rigid-analytic topology, and we shall do so for all balanced triple of
bal

crystalline classical points (z,y,z) € Wean such that £, g¢ and h,, are respectively
the ordinary stabilization of an eigenform f := {7, g := g, and h := hZ of level M.

Set K, = kf(f,g,h)” and £ = (L¢gn(k, ), N @ wg+ @ wy.) for notational sim-
plicity. Proposition 5.6 asserts that the following identity holds in L,:

Vm’y,z([,) = <Vz’y’z(£f’gh(li;))7n‘“:; ® W ® w]a:>.

Recall also from Proposition 1.5 that

1 * * *
Mg = m€w1(nf*)> Wgs = Eo(glemy (wy),  wi. = Eo(h)ew] (wy.)
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and
(-1

t!

Vz,y,Z(Ef,gh(’{;)) = : EPR(% Y, 2) IOgBK(Vw,y,z(“;D
by Proposition 5.7.

Recall the class x(f,g,h) = k(f;, gy, h?) introduced in (4.8) arising from the
generalized diagonal cycles of [DR14]. As in (5.8), we may define H;{;(f,g, h)~ €
Hl(Qp,V?ch(M)) as the projection to VJ?h(M) of the restriction at p of the global
class k(f,g,h).

It follows from Theorem 4.1 that

_ Eb(z,y, 2 _
(wlvwlawl)*ym,y,z(np) = ( Y ) x’{g(fagah)

(1= B¢/ay)(1 = Bg/ag)(1 — Br/an)

where

P (@,y,2) = (1 — ayByBup™ ) (1 — BragBup~ ) (1 — BrByonp™ ) (1 — B BeBrp ™).
The combination of the above identities shows that the value of £ at the balanced
triple (z,y, z) is

(_1)t i gbal(x, Y, Z)SPR(xa Y, Z)

Vo (L) = &) x {logaic (s (£, 9, ),y @ wye @ )

Besides, since the syntomic Abel-Jacobi map appearing in [DR14] is the compo-
sition of the étale Abel-Jacobi map and the Bloch-Kato logarithm, the main theorem
of loc. cit. asserts in the present notations that

. o _ 1\t gf
I/m’yyz(gpf(f,g,h)) = ( t:'l) 80((}6),(317(?) <10gBK(H£(fvgvh)_)v77f* ®W§; ®wh*>

where

ENx,y,2) = (1= Braganp™) (1 — BragBup™®) (1 — BrByanp™®) (1 — BBy Brp~°).
Since
ENx,y,2) = EPN(x,y, 2) x EFR(z,y, 2)

and the sign and factorial terms also cancel, we have

V.o (L) = Vay.- (27 (£,8,0)),

as we wanted to show. The theorem follows. O
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RECIPROCITY LAWS
FOR BALANCED DIAGONAL CLASSES

by

Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci

Abstract. — This article constructs a 3-variable balanced diagonal class k(f, g, h)
in the cohomology of the Galois representation associated to a self-dual triple (f, g, h)
of p-adic Coleman families. Its first main result (Theorem A of Section 1.1) estab-
lishes an explicit reciprocity law relating x(f, g, h) to the unbalanced Garrett—Rankin
p-adic L-function attached to (f, g, k). The class k(f, g, h) arises from the p-adic in-
terpolation of diagonal classes in the Bloch-Kato Selmer groups of the specialisations
of (f,g,h) at balanced triples of classical weights. As a consequence, the value of
k(f,g,h) at a specialisation (f,g,h) of (f,g,h) at an unbalanced triple of classical
weights is a p-adic limit of crystalline classes. Our second main result (Theorem B of
Section 1.2) shows that the obstruction to the crystallinity of an appropriate deriva-
tive of k(f,g,h) at (f,g,h) is encoded in the central critical value of the complex
L-function of f ® g ® h.

To Bernadette Perrin-Riou on her 65th birthday
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1. Description and statement of results

The reciprocity laws alluded to in the title of this work concern the diagonal class
arising in the cohomology of the big Galois representation attached to a self-dual
triple of Coleman p-adic families of cusp forms. Our construction of this class builds
on the push-forward of a canonical generator of an invariant space of locally analytic
functions along the diagonal morphism of a modular curve into the corresponding
triple-product threefold. It constitutes a crucial step towards the proof of the main
results of this paper and of those of our other contribution [BSV20a] to the present
volume.

The specialisations of the diagonal class at triples of classical weights in the so-
called balanced region, in which each weight is strictly smaller than the sum of the
other two, give rise to cohomology classes admitting a similar description in terms
of invariant theory which are closely related to diagonal cycles in Chow groups of
Kuga—Sato varieties. As a consequence, the diagonal class belongs to a big Selmer
group, called the balanced Selmer group, which interpolates in the geometric region
of balanced weights the Bloch—Kato Selmer groups of the triple tensor product rep-
resentations of the corresponding modular forms.

The first main result of this paper — Theorem A of Section 1.1 — pertains to the
specialisation of the diagonal class to the three unbalanced regions where one weight
is at least equal to the sum of the other two. The explicit reciprocity laws proved
therein identify the image of the diagonal class by a branch of the Perrin-Riou big
logarithm corresponding to the choice of unbalanced region as the 3-variable p-adic
L-function interpolating the central critical values of the Garrett—Rankin complex
L-functions attached to the triples of weights in that region.

Our second main result — Theorem B of Section 1.2 — proves that the specialisation
of the diagonal class at an unbalanced point is crystalline at p if and only if the
corresponding central critical value is zero. This criterion follows directly from the
reciprocity law of Theorem A combined with Jacquet’s conjecture proved by Harris—
Kudla when the p-adic L-function for the corresponding unbalanced region does not
have an exceptional zero in the sense of Mazur—Tate—Teitelbaum. The exceptional
cases can only occur at unbalanced triples in which the modular form of dominant
weight is multiplicative at p. These subtler cases require the proof of an exceptional
zero formula for the 3-variable p-adic L-function, combined with an analysis of the
derivatives of the Perrin-Riou logarithm at the unbalanced point and the costruction
of an improved class.

Applications to the arithmetic of elliptic curves obtained from instances of the
exceptional case constitute the object of the main results of our other contribution
[BSV20a] to this volume, and represent one motivating feature of the present work.
The Hida families considered in this setting respectively interpolate the weight-two
modular form attached to an elliptic curve A over the rational numbers and two
weight-one theta series associated to the same quadratic field K and subject to natural
arithmetic conditions. In this setting, we establish a factorisation of the triple product
p-adic L-function along the line (k,1,1) as a product of two Hida—Rankin p-adic L-
functions attached to A/K, which implies a relation between the fourth derivative
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at weights (2,1,1) of the former p-adic L-function and the product of the second
derivatives at k = 2 of the latter. This translates into a formula for the Bloch—Kato
logarithm of the specialisation of the diagonal class at (2,1,1) as a product of formal
group logarithms of Heegner points or Stark—Heegner points, depending respectively
on whether K is imaginary quadratic or real quadratic. This result provides a bridge
between the diagonal class arising from the geometry of higher dimensional varieties
and the theory of rational points on elliptic curves, lending also some support to the
conjecture on the rationality of Stark—Heegner points.

1.1. The three-variable reciprocity law. — Fix a prime p > 5, algebraic clo-
sures Q and Q, of Q and Q, respectively, and embeddings Q — Q, and Q — C.
Let L be a finite extension of Q, and let

FF= an(k)-q" € O(Up)[d],

gt= an(l) q" € O(Ug)[[CI]]
and h'= Z cn(m) - q" € O(Un)[q]

be primitive, L-rational Hida p-adic families of modular forms of tame conductors
Ng, Ng and Ny, centres ko, l, and m, and tame characters x ¢, xg and xp respectively
(cf. Section 5). Here Ny is a positive integer coprime to p, Uy is an L-rational open
disc centred at k, € Z>1 in the p-adic weight space W, and O(Uy) is the ring of
analytic functions on Us. For each k in Uf' = {k € Ut NZ>s | k =k, mod 2(p— 1)}
the weight-k specialisation f} = > ons1an(k)-q" € LIglNSk(Ngp, x5) is a p-stabilised
newform of weight k, level I'1 (Ng) N 'o(p) and character xf. In particular the p-th
Fourier coefficient a,(k) is a unit in the ring Ay of functions a € O(Uy) satisfying
|a(z)|, < 1forallz € Up. If k > 2 then fj is the ordinary p-stabilisation of a newform
fiin Si(Ng,xf). If k = 2 then either f5 = fi is new or it is the p-stabilisation of a
newform f5 of level Ny. A similar discussion applies to g* and h*.

Let (&, u,) denote one of pairs (f*, k,), (g*,1,) and (h*,m,). If u, = 1, then the
weight-one specialisation &% of &* is a cuspidal-overconvergent (but not necessarily
classical) ordinary modular form. Throughout the paper we make the following

Assumption 1.1. — Ifu, = 1, then ﬂ 18 a p-stabilisation of a classical, cuspidal
and p-regular newform of level 'y (Ng), without real multiplication by a quadratic field
in which p splits.

A weight-one eigenform has real multiplication if it is equal to the theta series
Uy =D x(a)- ¢ associated with a ray class character x of a real quadratic field
K, where a runs over the non-zero ideals of Og and Na = |Ok/a|. Moreover, a
normalised weight-one eigenform £ = 3, - an(§) - ¢" of level I'1 (Ng) and character
Xe is said to be p-regular if its p-th Hecke polynomial X2 — a,(€) - X + xe(p) is
separable. We refer to Remarks 1.4 and to Section 5 below for explanations on the
relevance of Assumption 1.1 for the main results of this paper.
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Let N be the least common multiple of N¢, Ng and Np. A level-N test vector
for (f*, g%, h*) is a triple (f, g, h) of Hida families of common tame level N, having
(f*, g% h*) as associated triple of primitive families (cf. Section 5). For each k in
U;l the weight-k specialisation f, of f is an ordinary cusp form of weight k, level
I''(N)NTy(p) and character x ¢, which is an eigenvector for U, and Ty for all primes
¢t Np, with the same eigenvalues as f{. Similarly for g and h. Fix a level-N test
vector (f,g,h) for (f*, g% h*).

We make throughout this paper the following crucial self-duality assumption.

Assumption 1.2. — xf-Xg - Xh = 1.

Set ¥ = U x U x Uy!, where Uf' = Uf' U {ko} (so that U§' = Ug" if k, > 2),
and Ugl and U, ¢l are defined similarly. Assumption 1.2 implies that k + [ 4+ m is an
even integer for all w = (k,l,m) in UJS1 x U x Ug!, hence ¢, = (k+1+m —2)/2 is
a positive integer. Let ¥ ¢ be the set of w in ¥ such that k& > [ + m, define similarly
Y4 and Xp, and denote by Yy, the complement in X of the union of X ¢, g and Xy,
One calls Xy, the balanced region.

Denote by £ one of the symbols f,g and h and correspondingly by £ one of f,g
and h. Let 0 = A¢[1/p] be the space of bounded analytic functions on U and set
Ofgh = ﬁf@)Lﬁg@Lﬁh. Associated with (f, g, h) one has:

o Garrett-Rankin square root p-adic L-functions fp'f(f,g,h) in Opgn, interpo-
lating the square roots of the central critical values L(f{ ® g} ® h%,,cy) of
the complex Garrett—Rankin L-functions L(ff ® g; ® hi,, s) for classical triples
w = (k,l,m) in the region ¥¢ (cf. Remark 1.8(1) and see Section 6 for details).

e An Ojgp-adic representation V(f,g,h) of Gq = Gal(Q/Q), satisfying the
following interpolation property (cf. Section 7.2). For each classical triple
w = (k,l,m) in X let V(f{,g},hi,) be the central critical twist (i.e. the ¢,-th
Tate twist) of the tensor product of the Deligne representations of f}, g/ and h,.
Then the base change V(f;,9;, hym) of V(f,g,h) under evaluation at (k,I,m)
on Opgp is isomorphic to @;_, V(fi, g}, h%,), for some integer a > 1 which is
independent of (k,l,m) € ¥ (cf. Section 7.2).

o A balanced Selmer group HL ,(Q,V(f,g,h)) C HY(Q,V(f,g,h)), which in-
terpolates the Bloch—Kato Selmer groups Sel(Q, V(fx, g;, b)) for all balanced
triples (k,1,m) € Xpa1 (cf. Section 7.2).

e Perrin-Riou big logarithms

Le = Loge(f.g.h): H. (Qp, V(f.9,h)) — Ofgn,

satisfying the following interpolation properties. Say that & = f to fix ideas.
Then for all balanced triples w = (k,l,m) in a subset of ¥, which is dense in
Us x Ug x Uy, and for all local balanced classes 2 in H},,(Q,, V(f,g,h))

Ly (resp(g))(w) = ¢ (S 91 hom) - Ing(ffw)(n?k@) Wg, ® whm)'

Here &¢(fi,9;, hm) is an explicit non-zero algebraic number, the class %, in
H (Qp, V(fy, 91, hm)) is the specialisation of 2 at w, log, is the Bloch-Kato
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logarithm and 7% ® wg, ® wh,, is the differential considered in Section 7.3, to
which we refer for details.
According to a conjectural picture envisioned by Perrin-Riou the L-functions
fpf( f,g,h) should arise from a global balanced class via the logarithms %;. Our
first main result confirms this expectation.

Theorem A. — There is a canonical class k(f,g,h) in HL,(Q,V(f,g,h)) such
that, for € = f,g,h, one has

L (ves, (5(f, 9, h))) = Z5(£.9,h).

Remarks 1.3. —

1. The equality displayed in Theorem A determines the class x(f, g, h) only up to
addition by an element in a suitable (conjecturally trivial) restricted Selmer group.
Nonetheless Section 8.1 gives a geometric construction of a canonical three-variable
balanced class x(f, g, h) satisfying the conclusions of Theorem A.

2. Theorem 8.1 and Proposition 8.3 express the specialisation of x(f,g,h) at a
balanced triple (k,1,m) € Yy as an explicit multiple of a suitable Selmer diagonal
class k(fy,9;, hm) € Sel(Q,V(fi,9;, hi)) associated in Section 3 with (fy, g, b))
(cf. Proposition 3.2). The latter is in turn related to the values of pr(f,g, h) at
(k,1,m) by an explicit reciprocity law (cf. Proposition 3.6). Theorem A then follows
from analytic continuation.

3. Both the square-root p-adic L-function fpg (f,g,h) and the big logarithm
Ly = Zoge(f.g,h) genuinely depend on the choice of the level-N test vec-
tor (f,g,h) for (f*,g*,h*). On the other hand the big Galois representation
V(f,g,h) = Vn(f*, g* k') and the balanced class

"{(.fvgvh) = K:N(fﬁ’g%hﬁ)

depend on the test vector (f,g,h) only through its level N and the systems of eigen-
values defined by (f*, g%, h*) (cf. Sections 5 and 8.1).

4. The construction of k(f, g, h) given in Section 8.1 applies more generally to a
triple (f, g, h) of (not necessarily ordinary) Coleman families. The theory of Perrin-
Riou big logarithms for Coleman families is well understood (cf. [Liul5, Nak14]), and
the p-adic L-function fpg (f, g, h) has recently been constructed in [AI20]. The proof
of Theorem A should extend to this more general setting without serious difficulties.

Remark 1.4. — Let (&%, u,) denote one of pairs (f*, k,), (g°,1,) and (h*, m,). When
u, = 1, Assumption 1.1 guarantees that the big Galois representation V(£) and its
maximal Gq,-unramified quotient V(§)~ are free over 0 (cf. Section 5 below for
more details). It is likely that Theorem A can be proved without this assumption, at
the cost of extending scalars to the fraction field of 04y, in the definition of x(f, g, h)
and in the statement of the explicit reciprocity law. On the other hand, the freeness
of V(&) and V(&)™ are crucial in the proofs of Theorem B below and of the main
result of our contribution [BSV20al].
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Remark 1.5. — By using different methods, extending those of [DR16], the contri-
bution of Darmon and Rotger [DR20] to this volume gives an alternate construction
of the 3-variable diagonal class.

Remark 1.6. — The class s(f, g, h) is constructed by interpolating diagonal classes
in the Bloch-Kato Selmer groups Sel(Q, V (f;, 9;, hm)) for all triples (k,l,m) € Ypa).
By using systems of étale sheaves attached to spaces of locally analytic functions
and the big Abel-Jacobi map defined in equation (156), this geometric problem is
reduced to the simpler one of constructing a canonical invariant in a space of locally
analytic functions. This invariant element plays a central role in the construction,
carried out in [GS20] (cf. also [Hsi20]), of a balanced triple-product p-adic L-function
interpolating the square-roots of the central critical values L(ff ® g ® hi,,c,) for
triples w = (k,l,m) in the balanced region X,. We remark that a similar method
can be applied in other settings, for example for the interpolation of generalised
Heegner cycles. In this case, the relevant invariant function was instrumental for
the definition in [BDO07] of an anticyclotomic two-variable p-adic L-function. The
resulting big Heegner class gives rise via an explicit reciprocity law to the p-adic L-
functions considered in [BDP13, AI19]. See also [JLZ20] for a related construction
in the Heegner case.

1.2. Specialisations at unbalanced points. — Let w, = (k,l,m) be a classical
triple in the unbalanced region ¥ ;. The following assumption will be in force in this
section (cf. Remarks 1.8).

Assumption 1.7. — The local sign e¢(f}, 9}, h%,) is equal to +1 for each rational
prime £.

Theorem B stated below relates the specialisation of the big diagonal class
k(f,g,h) at w, to the central value of the complez Garrett—Rankin L-function
L(fi®g;®@h;,s). This relation is particularly intriguing and subtle when fpf(f, g,h)
has an exceptional zero at w, in the sense of Mazur—Tate—Teitelbaum.

Let Hg = Hg(w,) be the g-improving plane in Uy x Ug x Up, defined by the equation

kEk—l+m=k—-1+m.

Let Ogn = ﬁg®Lﬁh and (shrinking Ug and Up, if necessary) let vg : Opgn — Ogn
be the map sending F'(k,I,m) to its restriction F(I —m +k+m —[,1,m) to Hg.
Set V(f,g,h)|nu, = V(f,g,h) ®,, Ogn and denote by

/ﬂ(f,g,h”yg S H1<Q7V<f’g’h)|Hg)

the image of x(f, g, h) under the morphism induced in cohomology by 4. Define the
analytic g-Euler factor

. Xg(p) - bp(1) (h—l4m—2)/2
(1) gg(f>g7h’)_1 cp(m)ap(lferkerfl) p Eﬁgh-

Section 9.3 proves the factorisation

(2> K;(tf’g7h>|7-[g :Sg(.fagvh’)"i;(fvg7h)
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for a canonical g-improved balanced diagonal class

ﬂ;(fvgvh) € H&al(Qp,V(fvga h)|7‘lg)

This is not interesting nor surprising if £,(f, g, h) does not vanish at w,. On the
other hand, if £,(f;,, g;, b)) = 0 this implies that the specialisation of x(f, g, h) at w,
vanishes independently of whether the complex L-function L( f{ ® g} ® hi,, s) vanishes
at the central point s = ¢,,. This phenomenon is the first source of exceptional
zeros in the present setting. Since we are limiting our discussion to Hida families, the
vanishing of &,(f, g, h) at w, is equivalent to the following conditions:

) wo=(2,1,1), plle(f), pte(gr)-c(ha) and xa(p) - ap(2) - by(1) = cp(1),

where ¢(f,),c(g;) and c(hq) denote the conductors of f,,g; and h; respectively. In
particular g, and h; are classical weight-one eigenforms.

The second source of exceptional zeros for .pr (f,g,h) at w, is of a different (non
geometric) nature (cf. Section 9.2). It is related to the vanishing at w, of the analytic
f-unbalanced Euler factor

by(l) - cp(m) i
4 £* , ,h -1 P 14 (k—1 m)/2eﬁ ,
(4) 7(f.9.h) G alimik—1—m)’ gh

which on the f-improving plane in Uy x Ug x Uy, defined by the equation
k—l-m=k—1l—m

interpolates a different Euler factor of .,fpf (f,g,h). In the present ordinary scenario,
this vanishing is equivalent to the following conditions:

(5)  wo=(2,1,1), plle(fo); pre(gr)-clha) and xp(p) - bp(1) - ¢p(1) = ap(2).

We say that the unbalanced triple w, in X ¢ is exceptional if the conditions displayed
in Equation (3) or those displayed in Equation (5) are satisfied.

Remarks 1.8. —

1. Assumption 1.7 is in place to guarantee that for weights in the unbalanced
region the Garrett—Rankin complex L-functions involved in the definition of the triple-
product p-adic L-function have sign of the functional equation equal to +1, and that
the corresponding central values can be described in terms of trilinear forms arising
on GLyq (cf. [HK91]). On the other hand, Theorem A holds regardless of this
assumption and does not exclude the possibility of vanishing of the diagonal class for
sign reasons.

2. The exceptional zero condition (3) is symmetric in g and h. Precisely, define
Hu, V(F,9,h)|n,, 5(F,g,h)|n, and Ex(F, g, h) by switching in the above definitions
the roles of g of h. Then

k(f,9,h)lu, = En(f,g,h) -k, (F,g9,h)

for a unique canonical h-improved diagonal class k}(f,g,h) in the global Galois
cohomology of V(f, g, h)|s,.

3. The restriction of the class x(f, g, h) to the plane H ¢ also factors as the prod-
uct of &¢(f,g,h) and a canonical class r}(f,g,h) in the Galois cohomology of
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V(f,g,h)|3,. This factorisation is uninteresting in the present setting, as the Euler
factor £¢(f, g, h) does not vanish at any classical point of the region X¢.

4. Under Assumption 1.1, the exceptional zero conditions (3) and (5) are mutually
exclusive. Indeed, if one of them holds, then the other is satisfied precisely if the form
g (or equivalently hf) is p-irregular.

5. The setting of Coleman families displays a richer collection of exceptional cases,
encompassing multiplicative forms of higher weight, for which the statement of The-
orem B below is expected to hold (cf. the forthcoming paper [BSV20c]).

Define the diagonal class

H*(.fka g, hm) € Hl(Qa V(fk,glv hm))
by the following recipe. If the conditions stated in Equation (3) are not satisfied, then

K*(fkaglahm) = K‘(fkvglahm)

is the specialisation of k(f, g, h) at the classical triple w, = (k,1,m). If Equation (3)
is satisfied, one defines

H*(.f%gla hl) = "Q;(‘f%gla hl)a
where the global class x(f5, g1, h1) is the specialisation of the g-improved diagonal
class k3 (f,g,h) at w, = (2,1,1). (Note that «}(fs, g1, h1) = —k;(f3, 91, h1).)

Theorem B. — The diagonal class k*(fy, g;, hm) is crystalline at p if and only if
the complex L-function L(f} ® g} ® hi,, s) vanishes at s = EHEm=2,

Acknowledgements. The authors are grateful to F. Andreatta for helpful conversations
about his work with A. Iovita and G. Stevens on overconvergent Eichler—Shimura iso-
morphisms. They also thank the referees for their detailed comments and corrections,
which resulted in a significant improvement of our contributions to this volume.

2. Cohomology of modular curves

In a first reading of this paper it will be sufficient to get acquainted with the main
definitions and notations of this section. The precise description of the various Hecke
operators will be necessary for crucial computations in the arguments of later sections
(see in particular Section 8). The exposition follows [Kat04, Section 2].

2.1. Modular curves. — Let M > 1 and N > 1 be positive integers such that
M + N > 5. Denote by

Y (M,N) — Spec(Z[1/MN])
the scheme which represents the functor

S—— {isomorphism classes of S-triples (E, P, Q)},

where S is a Z[1/M N]-scheme, F is an elliptic curve over S, and P and @) are sections
of E over S such that M - P =0, N-Q = 0 and the map Z/MZ x Z/NZ — E which
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on (a,b) takes the value a - P+ b- @ is injective. More generally, for each rational
prime £ > 1, we consider as in [Kat04] the schemes
Y(M(),N) — Z[1/(MN] and Y(M,N(¢)) — Z[1/¢MN].
The Z[1/¢M N]-scheme Y (M (£), N) classifies 4-tuples (E, P,Q,C), where (E, P,Q)
is as above and C is a cyclic subgroup of E of order /M which contains P and is
complementary to @ (viz. the map Z/NZ x C — E which sends (a,z) to a- Q + x
is injective). Similarly Y (M, N(¢)) classifies 4-tuples (F, P, @, C') where C' is a cyclic
subgroup of order /N which contains @ and is complementary to P. Denote by
E(MaN) - Y(MaN)a
and E(M,N({)) — Y(M,N({))

the universal elliptic curves over Y(M, N), Y (M (¢), N) and Y (M, N (£)) respectively.

Let H={z € C | §(z) > 0} be the Poincaré upper half-plane and set

['(M,N) = {v in SLy(Z) such that v = (}9) mod (¥ &) }.

Then
(6) Y(M,N)(C) = (Z/MZ)" xT'(M,N)\H,
where the class of (a,z) in (Z/MZ)* x H corresponds to the isomorphism class
of the triple (C/Z ® Zz,az/M,1/N). The Riemann surfaces Y (M({), N)(C) and
Y (M,N(¢))(C) admit a similar complex uniformisation by (Z/MZ)* x H.

There is an isomorphism of Z[1/¢M N]-schemes

@e: Y (M, N(£)) =Y (M(£),N)

which on the 4-tuple (E, P,Q,C),s in Y/(M, N(£)) (for some Z[1/¢M N]-scheme S)
takes the value

©u(E,P,Q,C)= (E/NC,P+NC,t"(Q)NC + NC, (¢~ (Z-P)+ NC)/NC),
where £71(-) is the inverse image of - under multiplication by £ on E. On complex
points (cf. Equation (6)) this is induced by the map (Z/MZ)*xH — (Z/MZ)* xH
which sends (a, 2) to (a,?- z). If
denotes the base change of E(M({), N) — Y (M ({), N) under ¢y, there is a natural
degree-¢ isogeny

Ae s E(M, N(€)) — @y (E(M(£), N)).

When M = 1 one denotes by
(7) Yi(N)=Y(1,N) and Yi(N,¢)=Y(1,N(¥))
the affine modular curves over Z[1/N] and Z[1/N/] corresponding to the subgroups
['1(N) and Ty (N, £) = T1(N) N Ty (£orde(N)+1) of SLy(Z) respectively. Similarly one
writes

Ei(N)=E(1,N) and E;i(N,{)=E(1,N(0))

for the universal elliptic curves over Y7(N) and Y7 (IV, ) respectively.
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2.2. Degeneracy maps. — Let M and N be as in the previous section, and let ¢
be a rational prime. Let

Y (M,N0) 25y (M, N () 25 Y(M, N)
and Y(M¢,N) 25y (M(0), N) 25 Y(M, N)

be the natural degeneracy maps (e.g. w(E,P,Q) = (E,P,{ - Q,Z - Q) and
vw(E,P,Q,C) = (FE,PQ)), and define

pry : Y(M,N¢) — Y(M,N) and pr,:Y(M,N{)— Y(M,N)
by the formulae
pI‘l(E,P,Q):(E,P,K'Q) and prﬁ(E7P7Q):(E/NZQ7P+NZQ7Q+NZQ)

Under the isomorphism (6) the map pr; (resp., pr,) is induced by the identity (resp.,
multiplication by ¢) on the complex upper half-plane H. Unwinding the definitions
one easily checks the identities

(8) pry =vgopue and pr, = 0 g0 fig.

The degeneracy maps py, fie, Ve, Vs, pr; and pr, are finite étale morphisms of
Z[1/M N/{)-schemes.

2.3. Relative Tate modules and Hecke operators. — Let N, M and /¢ be as
in the previous section and let S be a Z[1/M N{p|-scheme. For every Z[1/M N {p)-
scheme X write Xg = X Xz mnep) S and denote by A = Ax either the locally
constant sheaf Z/p™Z(j) or the locally constant p-adic sheaf (cf. [FK88, Definition
12.6]) Z,(j) on Xy, for fixed m > 1 and j € Z. Moreover fix an integer r > 0.

The previous sections yield the following commutative diagram, in which the
smaller squares are cartesian.
(9)
E(M,N)s <— E(M,N({))s X 0, (E(M(€),N)s) — E(M({),N)s — E(M,N)s

UM,Nl UM,N(e)i \L UM([)ANi J{UM,N

Y(M,N)s <2 Y (M,N(l)) g =————=Y (M, N({))s — > Y (M({), N)s —= Y (M,N)g

Here var, N, var(e),n and vpr n(e) are the structural maps, one writes again vy and 7,
(resp., A¢) for the base changes to S of the corresponding degeneracy maps (resp.,
isogeny), and the unlabelled maps are the natural projections.

If Y(-)s denotes one of Y (M, N)g,Y(M(¢),N)s and Y (M, N({))s, set
(10) T(A) = R'v.Z,(1)®z, A and J*(A) = Homa(Z/(A),A).
Here Rv., is the g-th right derivative of v., : E(-)sy —> Y (+)et and one calls

7 < 7(2,)
the relative Tate module of the universal elliptic curve E(-) — Y(-). The perfect
cup-product pairing
T. @z, T. — R°v.Z,(2)
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and the relative trace R2v.*Zp & Z,(—1) give the perfect relative Weil pairing
(11) (s '>E(-)poo T Oz, T —> Z,(1),

under which one identifies .7.(—1) with .7* = Homgz (.7, Z,). It is a consequence of
the smooth base change theorem (cf. Corollary 4.2, Chapter IV of [Mil80]) that .7.(A)
and J*(A) are locally constant p-adic sheaves on Y7(NV)g, of formation compatible
with base changes along morphisms of Z[1/N M/{p]-schemes S — S. (This justifies
the choice to suppress the dependence on S from the notations.) Define

L (A) =Tsym, 7. (A) and 7 ,.(A)=Symm’.7"(A4),

where for any finite free module M over a profinite Zp-algebra R one denotes by
Tsymp M the R-submodule of symmetric tensors in M®" and by Symm’, M the max-
imal symmetric quotient of M®".

Notation. — When Y (-)s = Y (1, N)g is the modular curve Y7 (N)g associated with
the congruence subgroup I'1(/V), and the level N is clear from the context, we use
the simplified notations

(12) ZL(A) =L N (A), L =2(2Zy), S (A)=S1nNr(A) and 7 = S (Z,).
If there is no risk of confusion, we use the same simplified notations to denote the étale
sheaves .2 n(¢),»(A) and 7 n(p),»(A) on the modular curve Y (1, N(£))s = Y1(N,{)s
of level T'; (N) N Ty (£ (N)+1) (cf. Equation (7)).

Throughout the rest of this section let # denote either .Z ,.(A) or . ,(A). Ac-
cording to the proper base change theorem [Mil80, Chapter VI, Corollary 2.3] and

the diagram (9), associated with the finite étale morphisms vy and 7, one has natural
isomorphisms

(13) vi(Zin) = Fune and ) (Fin) = FM0),N>
which induce pullbacks
(14)
vy Hét(Y(Mv N)Svg\;\n/I,N) vy
He (Y (M, N(0)s, 51 nwy) Hg (Y (M (), N)ss Zy0),n)
and traces (cf. [Mil80, Lemma 1.12, pag. 168|)
(15)
Vew Hét(Y(Mv N)SvylrvI,N) Do
HE (Y (M, N())s: Z11 noy) H, (Y (M(0),N)s, Ziry.n5)

Similarly the (finite étale) isogeny A\, induces morphisms
(16) Mew: Firney — €0 (FTrwyn) and N 0p (Friyn) — T

More precisely, associated with the f-isogeny A, there is a trace Ap. 0o A} —> id. As
vodg = vpr N(r), Wwhere v : @ (E(M(€),N)s) — Y (M({), N)s is the first projection, it
induces a map vas n()« © A — V«. Applying R! and using the natural isomorphisms
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©; (R'nr(ey,neZp(1)) = R',Z,(1) and \jZ,(1) = Z,(1), this in turn induces a
morphism RlvM7N(5)*ZP(1) — @} (RlvM(gLN*Zp(l)), and finally the push-forwards
Ao« which appear in Equation (16). The pullbacks are defined similarly, after replacing
the trace Mg o A} — id with the adjunction morphism id = Mg, o Aj. Together with
¢ the previous morphisms give a pushforward

(17) @ew = @ou 0 Aex : Hoy (Y (M, N(0)s, T 11 (o)) — He(Y (M (0), N)s, Ty 0y )
and a pullback
Op =\ opp  Hy (Y(M(0),N)s, Fiypy.n) — Hep(Y (M, N(0)s, Fiy noy)-
Define the dual ¢-th Hecke operator
T} =ve 0o ®j oy : Hy(Y(M,N)s, Fiy ) — Hu(Y (M, N)s, Ziy ).
We also consider the ¢-th Hecke operator
Ty =g 0 ®povy  Hy (Y(M,N)s, Ziy n) — Hi&(Y (M, N)s, Zip n)-

As customary, if the prime ¢ divides M N, we also denote by U, and U, the Hecke
operators Ty and T respectively.

For each profinite Z,-algebra R and each finite free R-module M, the evaluation
map induces a perfect pairing

TsympM ®pr SymmprM™* — R,

where M* = Homp(M,Z,). This defines a perfect pairing %, ®z, ./, — Z,, hence
a cup-product

(18)

()t Ha(Yi(N)q, Z0(1) ®z, He o(Yi(N)q, 7r) — H

et,C(Yi (N)Q7 Zp(l)) = ZP’
which by Poincaré duality is perfect after inverting p. The Hecke operators T, induce
endomorphisms on the compactly supported cohomology H, é}t,c(Yl (N)g, "), and by
construction Ty and T}, (resp., T, and T}) are adjoint to each other under (-,-),. In

addition, the Eichler—Shimura isomorphism (cf. Chapter 8 of [Shi71])
(19) Hy(Yi(N)q, %) ©z, C = M,12(N,C) @ S,42(N,C)

(depending on a fixed embedding Z,, — C) commutes with the action of the Hecke
operators T, on both sides.
After replacing the left hand square in the diagram (9) with the cartesian square

E(M,Nt)g ——— E(M,N(£))s

'UM,NE\L J('“M,N(Z)

He

Y(M,Nt)s ———= Y (M,N({))s

one defines as in Equations (14) and (15) the maps uj and pe.. For - = 1,£ one can
also define as above morphisms
(20)

; pr., ) pr* )
Hét(Y(M7 Nﬂ)Say]?\n/I}NZ) — Hét(Y<M7 N)S7y]7\a/[,N) — Hét(Y<M7 NE)Sva/[,NZ)v
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which according to Equation (8) satisfy the identities
(21) pry, = Ve o fies, PI] = g 0Vy, Pry, = Vg0 Ppiopgy and pry = pgo @y oy,

As a consequence, if deg(pg) denotes the degree of the finite morphism gy, one has
the relations

(22) deg(pe) - To = prg, opry  and  deg(pe) - Ty = pry, o prj.

2.3.1. Diamond and Atkin—Lehner operators. — We recall here the geometric
definition of the diamond and Atkin—Lehner operators on the cohomology groups
H (Y(")s,-ZI) (where Z7 are the sheaves introduced in the previous section). For
simplicity we limit the discussion to the modular curves Yi(-) of level I'1(+), and
denote by .7, the étale sheaf .#] on Yi(:)s.

For every unit d in (Z/NZ)* the diamond operator (d) : Y1(N)s — Y1(N)g is
the automorphism of Y;(N)g defined on the moduli problem by sending (F, P) to
(E,d - P). Denote by P;(N) the universal point of order N of E;(N)s. The pair
(E1(N)s,d-Pi(N)) is an elliptic curve with I'; (NV)-level structure over Y7 (IN)g, hence
there exists a unique isomorphism (d) : E4(N)s = F1(N)s which makes the following
diagram cartesian:

(d)
Ei(N)s ———— = E1(N)s

Yi(N)s —— 2 = Vi (N)s.

This induces automorphisms (d) = (d)* and (d) = (d), of H},(Y1(N)s, %, ) which are
inverse to each other.

Assume in the rest of this Section 2.3.1 that p does not divide N and that S is a
scheme over Z[1/N, p,]. Set ¢, = e2 /P For every elliptic curve E denote by E, the
kernel of multiplication by p and by (-, ) E, " E, x E, — p, the Weil pairing. Since
p 1 N the curve Y1 (Np) classifies triples (E, P, @), where E is an elliptic curve and
P (resp., Q) is a point of exact order N (resp., p). (More precisely a pair (E, Pny),
where I is an elliptic curve over and Py, is a section of exact order Np, corresponds
in the above identification to the triple (E,p - Pnp, N - Pnp).) The Atkin-Lehner
operator wy, = we, : Y1(Np)s = Y1(Np)s is the automorphism of Y1 (Np)s defined by

wy(E,P,Q)=(E/Z-Q,P+Z-Q,Q' +Z-Q),
where Q' € E, is characterized by (Q,Q’) B, = Cp- There is a natural commutative
diagram

Er(Np)s —2> w’(E1(Np))s — E1(Np)s

UNpl l iw

Y1(Np)s =—=Y1(Np)s —— Y1(Np)s,

in which the right-hand square is cartesian and w, is a degree-p isogeny. As in
Equations (13)—(17), associated with the previous diagram one has a Atkin—Lehner
operator



14 MASSIMO BERTOLINI, MARCO ADAMO SEVESO, AND RODOLFO VENERUCCI

wy + Hy (Yi(Np)s, Fr) — Hy (Yi(Np)s,wy(Fr)) — Hy (Y1(Np)s, )
and a dual Atkin-Lehner operator

wy, : Hyy(Yi(Np)s, Z,) = Hy (Yi(Np)s, wy(F,)) = Hiy(Yi(Np)s, ).
More generally, let @ be a divisor of Np such that @ and Np/Q are coprime. After
replacing the pair (p, N) with (Q, Np/Q) in the previous construction, one defines
the Atkin—Lehner operators W on Hélt (Y1(Np)s, Z,).

2.4. Deligne representations. — Let

=" an(f)g" € (N, xy)

n=1

be a normalised cusp form of weight k > 2, level I';(N) and character x;. Set
N, =N/ porde(N) and assume that f is an eigenvector for the Hecke operator T} for
every prime £ { N,. (In particular f is an eigenvector for U, if p divides N.)

Let L/Q, be a finite extension containing the Fourier coefficients of f. Define

(23) H (Y1(N)q, Zi-2(1))L — V(f)

to be the maximal L-quotient on which 7, and (d) = (d), act as multiplication by
ae(f) and x s (d) respectively, for all £ 1 N, and (d) € (Z/NZ)*. If f is new of conductor
N then V(f) is the dual of the Deligne representation of f: for every prime ¢ { Np
an arithmetic Frobenius Frob, € Gq at ¢ acts on it with characteristic polynomial

det (1 — Frob|V(f) - X) =1 —as(f) - X + xp(£) - £F71 - X2

In general V(f) = @j_, V(fP"™) is (non-canonically) isomorphic to the direct sum of
a finite number of copies of V (fP"™), where fP'™ is the primitive form (of conductor
a divisor of N) associated with f. Dually let

V*(f> — Hé}t,c(yrl(N)Q?yk72)L

be the maximal L-submodule on which the Hecke operators 7Ty and (d) = (d)" act as
multiplication by a,(f) and xs(d) respectively, for every prime ¢t N, and unit d mod-
ulo N. (Since f is cuspidal, one can replace the compactly supported cohomology H, é}t’c
with the full cohomology Hj, in the definition of V*(f).) If f is new of level N then
V*(f) is the Deligne Gq-representation of f. In general V*(f) = @;_, V*(fPr™) for
a positive integer a.

Because (by construction) 7, and (d)" are respectively the adjoints of Ty and (d),
under the morphism (-, )\, defined in Equation (18), the latter induces a pairing

(24) () V() @ VI(f) — L,

which is perfect by Poincaré duality [Mil80, Chapter VIJ.
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2.5. Comparison with de Rham cohomology. — Let A be a subring of C,.
Write v : £ — Y for one of the universal morphisms vy n et cetera that as been
previously introduced. Denote by

ydR = ydR(’U) = Rlv*(ﬁE — QlE/Y)
the relative de Rham cohomology of E/Y and for every r > 0 set
ydR,'r = Symmfﬁy ydR.

Let w = U*Q}E /v be the invertible sheaf of relative differentials on E/Y. The vector
bundle “4r is equipped with the Hodge filtration

0—w—Yr —w ' —0

and with an integrable Gauf—Manin connection V : Zyr — Z4r Qoy Q%/ /K For all
r > 0 these give rise to the Hodge filtration

(25) W = W ® SaRr—1 — SaRr

and to an integrable connection on .#4R ,, denoted again by V.

Set Zyr = Homg, (Zur, Oy) and ZLyr,» = Tsymy, Zgr, equipped with the in-
duced Hodge filtration and integrable connection (denoted again by V). If # = ., &
define the de Rham cohomology groups

_ A o
Hip (Y, Zar,r) = B (Y, Zar,r = Farr oy Qy/i)

v . .
(where the complex Far,» — Zar,r oy Q%, /K 18 concentrated in degrees zero and

one). As in Section 2.3 one defines on HgR(K Far,r) Hecke operators Ty and T}, for
every prime ¢ (when Y = Y(M, N)), and diamond operators (d), for every unit d of
Z/NZ (when Y =Y (N)).

Taking A = Q, the comparison theorem of Faltings—Tsuji [Fal88, Tsu99] (and
the Leray spectral sequence for vy, cf. the proof of [BDP13, Lemma 2.2]) gives a
natural, Hecke equivariant isomorphism of filtered Q,-vector spaces

(26) Dar (H&(Y1(N)q,» Fr)Q,) = Hir(Y1(N)q,, Zar.r);

where Dgr(-) = H(Q,, - ®q, Bar) with Bgqr Fontaine’s field of p-adic periods, and
the filtration on the de Rham cohomology arises from the Hodge filtration on %gr (cf.
Equation (25)). Denote by M,.15(N, Z) the Z-module of modular forms of weight r+2,
level 'y (V) and integral Fourier coefficients, and set M, 2(N, R) = M,12(N,Z)®z R
for every ring R. It then follows that canonically

(27)  Fil'Dar(Hi(Yi(N)q,: #)q,) ©a Qlux) = Mriz(N, Qp) ©q Qi)

for every 1 < i < k —1 (cf. [BDP13, Lemma 2.2]). Under the isomorphisms (26)
and (27) the space Fil' H} (Y1 (N)q, Zar.») corresponds to the image of M, (N, Q)
under the Atkin—Lehner operator wy.

Let f and L/Q, be as in the previous section and assume that L contains Q(un).
Define

Vir(f) — Hig(V1(N)q, . -Lark—2)L
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to be the maximal submodule on which T, and (d), act respectively as ay(f) and
x¢(d) for every prime £ { N, and every d € (Z/NZ)*, and dually (cf. Section 2.4)

Hip(Yi(N)q,. ZLo—2(1))r — Var(f).

(Here Zur,-(j) = Zuar,r as flat sheaves and Fili,i”dR,T(j) = Fil”jde,T.) The com-
parison isomorphism (26) gives

(28) Dar(V(f)) = Var(f) and  Dar(V*(f)) = Var(f),
and Equation (27) implies that they restrict to canonical isomorphisms
(29) Fil'Var(f) = Sp(N, L)~ and  Fil'Viz(f) = Sk(N, L);.

Here f* =3 o an(f)-q" € Sk(N,Xy) is the dual of f and Sk(N,L). denotes the
L-module of cusp forms in Sk (N, L) which are eigenvectors for the Hecke operators
Ty and (d), with the same eigenvalues as -, for all primes £ { N, and units d in Z/NZ.
One denotes by

(30) wy € Fil'Vi(f)

the element corresponding to f under the second isomorphism in Equation (29).
The pairing (24) and the isomorphisms (28) induce a perfect duality

(31) () Var(f) ®r Var (f) — Dar(L) = L,
which together with the isomorphisms (29) gives rise to perfect pairings
(32) ()5t Sk(N, L) g @1 Vg (f)/Fil' — L

and (-, )¢ Var(f)/Fil® @, Sk(N, L)y — L,

under which we often identify Vi (f)/Fil' with the L-linear dual of Si(N, L) -.
Denote by

(33) fU=wn(f)=N"1 (N2)™" - f(~1/N2)
the image of f under the Atkin—Lehner isomorphism

WN Sk:<N7 Xf) = Sk:(N7 )Zf)

and define

(34) ny € Var(f)/Fil!

to be the element which represents the linear functional
(fw7 : )N

35 Jp= " : S (N,L)s~ — L.

(35) N T (N, L)y

Here (pu,v)n = ffY1(N)c ﬁ(z)y(z)yk% (with 2 = x + iy) is the Petersson scalar
product on Si (NN, C). The a priori C-valued functional J; indeed takes values in L
(cf. [Hid85, Proposition 4.5]).

Assume that ord,(N) < 1, that p does not divide the conductor of X, and
that a,(f) is a unit in €. Then the Gq,-representations V'(f) are semistable, viz.
Dar(V'(f)) = Ds(V'(f)). It follows that Dqr(V"(f)), hence Vi (f) by Equation
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(28), are equipped with an L-linear Frobenius endomorphism ¢. Enlarging L if nec-
essary, let ay € 0* be the unit root of the Hecke polynomial

hip=X>—ap(f) - X +xs0)p" ' = (X —ay) - (X - 8y)

of f. As proved in [Sai97| the characteristic polynomial of the Frobenius endomor-
phism ¢ acting on Vi (f) is a power of hy ,, and

(36) Vir(f) = Fil'ViR (f) @ ViR (f)F=.
As a consequence 7y lifts uniquely to a differential
(37) nf € Var(f)?=.

3. Diagonal classes

Notation. In this section Y7(N) = Y1(N)q denotes the modular curve of level
I'(N) =T(1,N) over Q and J = Z; y denotes the relative Tate module of the
universal elliptic curve E1(N) = E1(N)q (cf. Equation (10)).

Fix a geometric point 7 = ny : Spec(Q) — Yi(N) and denote by Gy =
7$*(Y1(N),n) the fundamental group of Y;(N) with base point 7. Then the stalk .7,
of J at 7 is a free Z,-module of rank two, equipped with a continuous action of Gy .
Choose an isomorphism of Z,-modules § : 7, = Z, & Z, satisfying (cf. Equation

(11))
(38) (2.9) . = &) NEW)

for every x,y € J;, (where one identifies A’ Z? and Z, via (1,0) A (0,1) = 1) and
denote by
on : Gn — Autz, (7)) = GLa(Zy)

the corresponding continuous group morphism. According to Proposition A 1.8 of
[FK88| the map which sends .% to its stalk %, gives an equivalence between the
category of locally constant p-adic sheaves on Y7(N)s and that of p-adic represen-
tations of Gn. Then restriction via oy allows to associate with every continuous
representation of GL2(Z,) into a free finite Z,-module M a smooth sheaf M® on
Y1(N) satisfying Mt = M.

Let S;(A) be the set of two-variable homogeneous polynomials of degree i in
Alz1, z2], equipped with the action of GLy(Z,) defined for every g € GL3(Z,) and
P($1,$C2) S Sz(A) by

gP(z1,32) = P((z1,22) - g),
and let L;(A) be the A-linear dual of S;(A), with GL2(Z,)-action defined
by gu(P(z1,29)) = (g~ P(x1,22)) for every g € GLa(Z,), p € Li(A) and
P(x1,22) € S;(A). Then (as sheaves on Y7 (N)q) one has (cf. Equation (12))

(39) Zi(A) = Li(A)* and 7(A) = S;(A)°".

In particular 7, is isomorphic to L1(Z,), hence Z,(1), = N’ 7, = det™!, where
det’ : GL(Z,) — Z is defined by det’(-) = det(-)? for j € Z. As a consequence, for
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every j € Z and every p-adic representation M of GLa(Zp):
(40)  H°(GLy(Zp), M @ det ™) — H(Gn, M @ det ™) = HY (Y1 (N), M (4)).

Let » = (r1,72,73) € N3 be a triple of nonnegative integers satisfying the following
assumption.

Assumption 3.1. — 1. r1 +ro+1r3 =2 -7 withr € N.
2. For every permutation {i,j,k} of {1,2,3} one has r; +rj > ry.

Let S, denote the GL3(Z,)-representation S;, (Z,) ®z, Sr,(Zyp) ®z, Sr,(Z,), which
we identify with the module of six-variable polynomials in Z,[x,y, z] which are ho-
mogeneous of degree 71, ro and r3 in the variables @ = (z1,22), ¥y = (y1,y2) and
z = (21, 22) respectively. Following the Clebsch-Gordan decomposition of classical
invariant theory, define (cf. Assumption 3.1)

T—7T3 rT—Tr2 rT—Tr1
(41) Deth, = det (331 56'2) - det <x1 x2> - det <y1 y2> ,
Y1 Y2 Z1 22 21 22
which is a GL2(Z,)-invariant of S, @ det™":
Det}y € H(GLy(Z,), Sr @ det™").
After setting .7, = .7, (Zy) ®z, L1, (L)) ®z, -S7,(Z,), denote by
(42) Detly € Hg(Yi(N), (1))
the class corresponding to DetR, under the natural injection (40). Let
pi : Yi(N)? = Yi(N)
be the natural projections, let
’Eﬂ[T‘] = P15 (Zy) Xz, P57y (Zp) Xz, P53 (Zyp)
and set
wN,'r = Hg’t(Yl (N)3Qa %r])(r + 2)
Since Y1(N)gq is a smooth affine curve over Q one has
H«gt(Yl(N)%v '5ﬁ[7'] (T + 2)) =0,
hence the Hochschild—Serre spectral sequence
Hp(Q7 Hgt(Y(%v 5/[7_] (T + 2))) = H§t+q(Y1(N)3a c5”[7‘] (T + 2))
defines a morphism
HS : HY (Yi(N)?, Ly (r +2)) — H(Q,Wyr).
Let d: Y1(N) — Y1(N)?3 be the diagonal embedding. As
EY'(N) = EJ(N) xy, (s Y1(N)

is isomorphic to the base change of u%, : ET(N) — Y1(N)3 under d, there is a natural
isomorphism d*.#},) = .%;. of smooth sheaves on Y7 (N )et- The codimension-2 closed
embedding d then gives a pushforward map

d. : HY(Vi(N), (1)) — HAYi(N)?, Sy (1 +2)),
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and one defines the diagonal class of level N and weights r + 2:
(43) Fnr =HSod,(Dethy) € H'(Q,Wy)

as the image of Det, under the composition of d, with HS. Let Wy, =Wy » ®z, Qp
and let H}, (Q, Wy ») be the geometric Bloch-Kato Selmer group of Wy ,. over Q, viz.

geo
the module of classes in H'(Q, Wy ) which are unramified at every prime different
from p, and whose restrictions at p belong to the geometric subspace

Hgleo(va W) = ker (H'(Qp, W) — H'(Qp, Wi, ®q, Bar))

(cf. [BK86, Section 3]). The results of [NN16] (cf. the proof of Theorem 5.9) yield
the following crucial proposition.

Proposition 3.2. — The class kK » belongs to Hgleo(Q, W r).

The bilinear form det” : L;(Z,) ®z, Li(Z,) — Z, ® det™" defined by

det"(p@v)=p® V(($1y2 - xzyl)i)

for all u,v € L;(Z,) becomes perfect after extending scalars to Q,,, hence induces an
isomorphism of GLy(Z,)-modules

i1 5i(Qp) = Homgq, (Li(Qp), Qp) = Li(Qy) ®z, det”.

Under the equivalence -¢* this corresponds by Equation (39) to an isomorphism of
sheaves

(44) S; %(Qp) = z(Qp) ®Zp Zp(fi)
Define the sheaves %, on Yi(N) and %, on Y1(N)? as above, and set

(45) Vne = HE(M(N)§, L) 2 —7) and Vi, =Vn, ®z, Qp
The tensor product of the s, gives an isomorphism s, : Wy 5 = Vy .. Set

(46) KN = Srx(Rne) € Hyoo(Q, Viv,r).

Remarks 3.3. — 1. We strived to define diagonal classes with values in the repre-
sentations Vi, as the corresponding cohomology groups are those which are exten-
sively studied in the literature (cf. Sections 4 and 5).

2. For every 0 < j < ¢ denote by [z1, z2]; the projection of x?j ®x§§i_j in S;(Qp).
Then [z1,72]; is a Qp-basis of S;(Qp) and one writes [x1, x2]} for the dual basis of
L;(Qp). A direct computation shows that s; : S;(Qp) = L;(Q,) is given by the
formula

17+ (1) -silonal) = fovsaal
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Set k=71 4+2,1l =719+ 2 and m = r3 + 2, and consider three cuspidal normalised
modular forms

£=Saulf) q" € SN, xy),

n>1

9= _an(g) - q" € SiN,xy),
n>1

h= Zan(h) . qn S Sm(N7 Xh)
n>1

of level I'1 (), weights k,l and m and characters xy, xy and xp. Assume in the rest
of this section the following

Assumption 3.4. — 1. The triple (f, g, h) is self-dual, that is x5 - xg - xn = 1.
2. The forms f,g and h are eigenvectors for the Hecke operators Ty, for every £ 4 N.
3. If p divides N then f,g and h are eigenvectors for the Hecke operator U,.

Note that Assumption 3.4.1 implies Assumption 3.1.1, id est that k 4+ [ + m is an
even integer. Moreover, Assumption 3.1.2 states that the triple (k,[,m) is balanced
(with the terminology introduced in Section 1.1). Set

(47) V(f.9,h) =V(f) @ V(g) @ V(R)((4—k —1—m)/2).

The Kiinneth decomposition and projection to the (f, g, h)-isotypic component give
a morphism of Gg-modules

(48) prfgh : VN,’I‘ ®Qp L —» V(fvgv h)
and one defines the diagonal class associated to the triple (f, g, h) by

K/(.ﬂgvh) = prfgh(ﬁN,r) S Hglco(Q7 V(f,ga h))

3.1. The explicit reciprocity law (cf. [BSV20b]). — Let r and (f,g,h) be
as in the previous section. In particular » and (f,g,h) satisfy Assumption 3.1 and
Assumption 3.4 respectively. In addition, assume in this section that ord,(N) < 1,
that the conductors of xf, x4 and xp are all coprime to p, and that the forms f,g
and h are p-ordinary (viz. their p-th Fourier coefficients are p-adic units).

Lemma 3.5. — For e in {geo, fin,exp}, the Bloch-Kato local conditions
H(Qp V(f,9:h)) — H'(Qp, V(f,9,h))
(cf. [IBK86, Section 3]|) are all equal.

Proof. — Set w = (k,l,m). For & = f, g, h, denote by &* the newform of conductor
N¢|N and weight v = k, 1, m associated to &, and set

V = V() @1 V(g) @ V(1) (4= k=1 —m)/2).

Since V' (§) is isomorphic to the direct sum of a finite number of copies of V(&%) (cf. Sec-
tion 2.4), it is sufficient to prove the statement after replacing V' (f, g, h) with V. More-
over, since V' is isomorphic to its Kummer dual V* = Homp, (V, L(1)), it is sufficient to
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prove that HY (Q,,V) equals H (Q,,V) (cf. Proposition 3.8 of [BK86]). Accord-
ing to [BK86, Corollary 3.8.4], the quotient H}, (Qp,V)/HZ,(Qp, V) is isomorphic
to D/(¢ — 1)D, where D is the crystalline module Deis(V) = H°(Q,, V ®q, Beris)
associated with the restriction of V' to Gq,,, and ¢ is the crystalline Frobenius acting
on it. We are then reduced to prove the claim

(49) D=t = 0.

The assumptions ord,(N) < 1 and p { cond(xe¢) guarantee that V(F)[aq, is
semi-stable, hence so is Vl]gq, . Denote by Dy (&*) = H°(Q,, V(€*) ®q, Bst) and
Dy = H°(Q,,V ®q, Bst) the semi-stable Fontaine modules of V(€)lcq, and Vicg,
respectively. One has

Dy(¢) =L-a¢® L - by,
where a¢ and bg are g-eigenvectors with eigenvalues a, (&%)~ and p'~“xe(p) "1a, (%)
respectively (cf. Section 2.5). Moreover the monodromy operator N¢ on Dy (£F) is
zero if p f Ng, and satisfies N¢(ag) = be and N¢(bg) = 0 if p||Ne. Consider the set
B, ={a,,b, :-=10,f,g, h} of elements of
Ds = Dai(f*) @1 Dsi(9°) ©1 Dsi(h') ®q, Deris(Qp((4 = k =1 —m)/2))

defined by

a, =ay®a;®a,® t(4fkflfm)/2’ a{: _ bf ®a, ®a, @ t(ﬁlfkflfm)/27

b,{: =ay ® bg ® bh ® t(4—k:—l—’m)/27 bw _ bf ® bg ® bh ® t(4—k‘—l—m)/2

et cetera, where ¢ is the canonical generator of Deyis(Qp(1)). Then B, is an L-basis of

p-eigenvectors of Dy with respective eigenvalues &, = {«,,,8;, : - =0, f, g, h}, where
o = pc(w)—l af _ pc(w)—k . ap(fu)
ap(f*)ap(g*)ay(h?) ’ Y xr(p)ap(gh)ap(h) ’

a9 and ol are defined similarly, and 3;, is defined by the equality
D-ay B, =1
Since the forms f, g and h are ordinary and w is balanced, one has
ord,(B;,) < 0 < ord,(ad,) < ordy(cv,)

for - = 0, f,g,h and &€ = f, g, h. In particular the L-module D%~" (hence D¥=1) is
contained in the space generated by the eigenvectors a$, for & = £, g, h.

Define e¢ € {0,1} to be 1 (resp., 0) if p divides (resp., does not divide) the conductor
Ne of €= f,g,h, and set e, = €5 + €4 + €}. According to Theorems 4.5.17 (namely
the Ramanujan—Petersson conjecture) and 4.6.17 of [Miy89] one has

|a§1|oo — p(su,—Q-sg—l)/Z

for £ = f,g,h, where || denotes the complex absolute value. As a consequence
DE=" vanishes if e, = 0 or g, = 2. If £, = 1, say ; = 1, then D¥~" is contained in
L-a% @ L-al. On the other hand, the monodromy operator N on Dy satisfies

N(a?)=bl and N(a")=b?,



22 MASSIMO BERTOLINI, MARCO ADAMO SEVESO, AND RODOLFO VENERUCCI

hence DE="N=° vanishes in this case. Finally, if £, = 3, then

N(af,) = bf, + b,
for each permutation (&,¢’,¢") of (f, g, h), hence D¥=! = D;’;ZLN:O = 0 also in this
case, thus proving the claim (49). O

It follows from the previous Lemma 3.5 that, upon setting
(50) Var(f,9,h) = Var(f) ®1 Var(9) ®r Var(h)((4 — k — 1 —m)/2),

the Bloch—Kato exponential and the isomorphism (28) give an isomorphism

epr : VdR(f7 9, h)/FﬂO = Hgleo(QPa V(f?ga h))

Similarly for the dual representations define

(51) Vir(f.9,h) = Vi (f) @1 Var(9) ©r Var(h) ((k +1+m - 2)/2).
Then the perfect dualities (31) (for f, g and h) yield a natural isomorphism

VdR(f: 9, h)/FﬂO = FﬂOVd*R(f7 9, h)v7

where -V = Homyp (-, L). Its composition with exp, ' defines an isomorphism

(52) logp : Hgl;co(Qpa V(fv 9, h)) = Filovd*R(f, 9, h)v
For every global Selmer class k in HéCO(Q, V(f,g,h)) one simply writes log,(x) as a
shorthand for log, (res,(x)).

Denote by w, € Fil' 'Viz(9) and wj, € Fil™ 'Vjz(h) the differentials corre-
sponding to g and h respectively under the isomorphism (29), and recall the class
ng € Var(f)¥= defined in Equation (37). Since Fil'Vi5 (f) equals Vi (f) and
l+m—22>(k+1+m—2)/2 by Assumption 3.1(2) one has
(53) nf ® wy @ wy, € Fil'ViR(f, g, h).

Assume in the rest of this section that p does not divide N. For every s in Z denote
by

M (N, L) C Z,[q] ®z, L
the space of p-adic modular forms of weight s and level T'1(N) defined over L. Let

Ss(N,L) Cq-O[q] ®z, Qp

be the subspace of cuspidal p-adic modular forms. M (N, L) contains naturally the
space My(T'1(N,p), L) of classical modular forms of level I'y(N,p) = T'1(N) NTy(p)
and g-expansion in L[q]. It is equipped with the Hecke operators U = U, and V =V,
which are described on g-expansions by

U(Zan-qn):ZanP.q" and V(Zan.q”)zzan,qm

n=0 n=0 n=0 n=0
respectively. Serre’s derivative operator d = ¢ - d% on L[q] restricts to a morphism

d:M,(N, L) = My,o(N, L).



RECIPROCITY LAWS FOR BALANCED DIAGONAL CLASSES 23

For every s > 2 Hida defined in [Hid85| an ordinary projector
eord : Mg(N, L) —» M2 (T (N, p), L)

onto the space M™(I'; (N, p), L) of classical ordinary modular forms of level T'y (N, p),
which is a section of the natural inclusion M™% (T';(N,p), L) < Mg(N,L). Given
5 € Sl(Fl(Nap)7L) and ’(/} € Sm(rl(va)aL) set

ERUEY) = eora(dPTT2EM xp) € SPUTL(N, p), L),

where &Pl and d*—=)/2¢lPl are defined as follows. Note first that t = (k — 1 —m)/2
is a negative integer by Assumption 3.1. The p-depletion £[P) € S;(N,p) is defined by
¢l = (1 — VU)E. If € has g-expansion Zn>1 an(€) - "™ then

= 3 au©) -

(n,p)=1
hence the limit of p-adic modular forms

telp) 1 t+(p—1)p"
dtelvl _nlggod (p=1)p" ¢
defines a p-adic modular form of weight 142t such that d—*(d*¢[Pl) = ¢lPl) and d*¢[P) x4
belongs to Si(N, L).

Let & € Sk(N, xe, L) be a eigenvector for the Hecke operators Ty, for all primes
£1 N. Assume that ¢ is p-ordinary, viz. T,(§) = ap(§) - £ for a unit a,(€) in 0*. Let
ag and B¢ be the roots of the p-th Hecke polynomial X2 — a, (&) - X + xe(p)p*~! of
&. Enlarging L if necessary, assume that a¢ and 3¢ belong to L, and order them in
such a way that ay € 0* is a p-adic unit and 8y € p*~! - 0*. Then the (ordinary)
p-stabilisation of &:

(54) €al(q) = &(q) — Be - &(¢P) € SF™(T1(N, p), xe)

is a normalised eigenvector for the Hecke operator Ty, with the same eigenvalue as &,
for every prime ¢ { Np, and is an eigenvector for U, with eigenvalue a. Taking £ to
be one of f,g,h and f* = wy(f) gives rise to the p-stabilised forms fy, ga, o and
f2=(f")q in Sg(T'1(N,p), L). Define (cf. Sections 2.5 and 6)

( w —ord

= h
= T
( a)fof)NP

In [BSV20b] we proved the following explicit reciprocity law. Its proof uses the
ideas and techniques introduced in [BDP13, DR14, BDR15, KLZ20]. In particu-
lar it relies on Besser’s generalisation of Coleman’s p-adic integration and the work of
Bannai—Kings, Nekovar and Niziot [Nek04, Niz97, Niz01, Bes00, BK90], which
forces the assumption p { N in the statement.

(55) gpf(fowgomhoz) =

Proposition 3.6 ([BSV20b]). — Assume that p does not divide N, and that the
eigenforms f,g and h are p-ordinary. Then

logp(’%(f’g’h))(n}x ® wy ®wh) = E(f’gvh) 'gpf<fa7gaaha)7
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where

e (-2 (- )

1 Lroggn) (1 Booge) (1 - Bulign) (1 Belaf)

3.2. Comparison with Gross—Kudla—Schoen diagonal cycles. — This section
elucidates the relation between the diagonal classes introduced above and the Gross—
Kudla—Schoen diagonal cycles. It will not be used in the sequel of this paper.

Let the notations and assumptions be as in the previous section. In this section
only we also assume r; > 1 for j = 1,2,3. As in [DR14, Section 3.1] fix three
subsets A = {ay,...,ar,}, B =1{b1,...,b,} and C = {c1,...,¢ry} of {1,...,7} of
cardinalities r1, 7o and r3 respectively, such that AN BN C = ). This is possible by
Assumption 3.1. For 1 < j <, let pj : EY(N) = E1(N) Xy, vy - Xy, vy BE1(N) —
E;(N) be the projection from the r-fold fibered product of F1(N) over Y1(N) onto
its j-th component. Define

E(f,g,h) = (

T r def " ”
(56) Ny = (pa,pB,pc) : E{(N) — ET(N) = E{*(N) xq E{*(N) xq ET*(N),
where pg = pa, X -+ X pa,, : E{(N)— E*(N) and pp and pc are defined similarly.
Then tn» = tn,a,B,c) is a closed immersion of relative dimension dim ET(N) —
dim B (N) = r + 2, and one defines the generalised Gross—Kudla—Schoen diagonal
cycle of level N and weights r + 2 (cf. Section 3 of [DR14]) as

(57) ANy = v e(BI(N)) € CH(E](N)),

where CH’ (+) is the Chow group of codimension-j cycles in - modulo rational equiv-
alence.

For i € N denote by &; = u4 x ¥; the semi-direct product of p = {£1}* with the
symmetric group ¥; on i letters. The permutation action of ¥; on Ei(N) and the
action of ps on E;(N) induce an action of &; on Ei(N). Define the character v; :

S; — {£1} by ¥i(s1,...,5,0) =sgn(o) - s1--- s, and set &; = 5 > ges; Vil9) - g.
Then ¢; gives an idempotent in the ring Corr(Ej(N))q of correspondences on Ef(N)
with rational coefficients. Set ¢, =&, ® €., ® £, € Corr(E](N))q. The Lieberman
trick (cf. the proof of Lemme 5.3 of [Del71]) shows that ¢, kills the cohomology
group HJ (ET(N)q, Q) for every j # 2r + 3, hence the image
Clet (57‘ ’ ANW‘) € HgtTH(ET(N)a Qp(r +2))
of €, - Ay, under the cycle class map
cley - CH™ (B (N))q — HE T (BT (N), Qp(r +2))
belongs to
Fil’HZ T (ET(N), Qu(r +2))

= ker (HZ (BT (N), Qp(r +2)) ™ HE (BT (N)q, Qplr +2)
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where m : ET(N)q — E7(N) is the projection. As a consequence one can consider
the Abel-Jacobi image

AT (er - Any) =HSoclgy (e - Any) € HY(Q, e - HE TP (ET(N)q, Qp(r +2)))
of €, - A, under the composition of the cycle class map cle; with the morphism
(58) HS:Fil"HZt(ET(N),Qu(r +2)) — HY(Q,HZ (BT (N)q, Qp(r +2)))

arising from the Hochschild—Serre spectral sequence. According to the Lieberman
trick the Leray spectral sequence associated with the structural map ET(N) — Y;(N)?
induces a natural isomorphism

(59) Lo : er-Hy 72 (BT (N)q, Qpr+2)) 2 Hy (Yi(N)g, Fir)) @2, Qpr+2) = Wi .
Denote by

Lee : HH(Q, e - HE T (ET (N)q, Qp(r +2))) = HY(Q, Wi)
the isomorphism induced in Galois cohomology by L,..

Proposition 3.7. — The image of AJf;t(aT - An.y) under the isomorphism Ly, is
equal (up to sign) to R p.

Proof. — To ease notation set E° = E;(N), Y = Y1(N), tr = N, and denote by
u” = u}y the structural morphism

uh xQui2 xqui} : ET(N) — Yi(N)3.
Let ¢, : E" — E?" be the proper morphism defined by

(P ) = ({Pa APy 1 AP ),

so that ¢, is the composition of ¢, with the natural map d, : E*" — E".
Define

R = R*"u¥Z,, % =R"u'Z, and %" = R*u7Z,.
Then ¢, induces relative pull-back and pushforward maps
95 R (r) — 2y, and V. Z, — B (r)
which are adjoint to each other under the perfect relative Poincaré duality
R (r) ®z, R (1) — R4ruzTZp(2r) ~7Z,

induced by the cup-product pairing. (They induce on the stalks at a geometric point
y : Spec(Q) — Y the pull-back HZ (E2", Z,(r)) — HZ (Ey,Z,(r)) = Z, and push-
forward Z, = HY (E;,Z,) — HZ (E}",Z,(r)) associated with ¢, x, Q respectively.)
The Leray spectral sequences associated with the morphisms «?" and u” identify
the Q,-linear extensions of HY, (Y, %2 (r)) and HZ (Y3, 2" (r +2)) with direct sum-
mands of HZ (E?",Q,(r)) and HZ ™ (E™, Q,(r + 2)) respectively. (This is again a

consequence of the Lieberman trick, cf. [Del71].) By the functoriality of the Leray
spectral sequence, under these identifications ¥, and d, are compatible with the
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absolute push-forward maps attached to ¢, and d,, viz. the following diagram is
commutative:
(60)

T HY(Y, %7 (1) q, —— > HA(YS, 2 (r 4+ 2))q,

Lerayi Lerayi

s ”
He?tr+4(E ) Qp(r +2)).

Qy

Hgt(E’"7 Qp) - HéQtT(EZTa Qp(r))
On the other hand the compatibility of the cycle class
cley : CH2(E™)q — HZMH(E™, Qu(r +2))

with proper push-forwards and the definition of the diagonal cycle A, = Ay, yield
the identities

et (Ar) = clet 0 trs (ET) =ty (1) = dise 0 114 (1).
In addition, using again the functoriality of the Leray spectral sequences, one has the
commutative diagram

HA (Y3, B (r +2))q, —— o HL(Y®, 10 (r + 2))q, —2 HY(Q, W)

Leray l \L Leray

. T r rx OHS T I
Fil’HZ T (B7, Q,(r +2)) - HYQ, e - HY (B, Qp(r +2))),

where pf,) : 2} — Ir] is the natural projection and W, = Wy ,.. Since &, acts as
the identity on .7}, the previous three equations prove that (cf. Equation (59))

Lr* (AJf)t(E'I’ . A,")) — HS Op[r] o d* o ﬁr*(l)

After setting Det” = Det'y, to conclude the proof of the proposition it is then sufficient
to show that

(61) Det” = py 0 V(1) € Hg (Y, S5 (1)),
where p, : #*"(r) - Z.(r) is the natural projection. Let S = S(Z,) be the

standard representation of GL2(Z,). Recall the geometric point 7 : Spec(Q) — Y and
the isomorphism ¢ : 7, = S @ det™" fixed above (cf. Equations (39) and (44)). The
GLj(Z,)-representation %" (r),, contains S®?"® det ™" as a direct summand, and p, :
R (r)y — Lp(r)y = Sp ® det™" is the composition of pr : Z%"(r), - S®*" @ det™"
and the natural projection pr,. : S®?" @ det ™" — S, @ det™". Let 92, : Z,, — Z*"(r)
be the relative push-forward associated (as above) with the morphism E" — E?"
which sends the point (P, ..., P,) to (P1, P1,..., P, P.). Then

(62) Oy = 0p 007,
where 0. = 04 p,c is any fixed permutation of {1,...,2r} satisfying
0r (Pt Pry. oy PryPy) = (Payy ooy Pay s Poyyeooy Py Py Poy )

for every point (Py,..., P.) of E". The image of 1 under the composition
prody, : Zy, = HY(Ey, Zy) — HE (B, Zy(r)) = Z% (1) — S®*" @ det™"
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(where one writes again 99, for the morphism induced by 92, on the stalks at n) is
equal to

F, = (a:®y—y®a:)®7),
where x and y give a Z,-basis of S C Z,[x,y]. It then follows by the definition of

Det” (see Equation (42)) and Equation (62) that in order to prove the claim (61) is
it sufficient to prove (setting Det” = Det'y)

(63) Det” = pr,. 0 . (F.).

The previous formula is easily verified if r < 2 or r = (2,2,2) (hence r = 3). Assume
now r > 3 and r # (2,2,2). Then at least one of [ANB|, |ANC| and |BNC| is greater
or equal than 2. Without loss of generality one can then assume ro = min{ry,ro, 73}
and that the sets A and C' are of the form

A={1,ras3,...,ar,} and C=A{c1,...,Crs—2,1,7}.

Let s = (ry —2,r9,73 — 2) and s = r — 2. Then s satisfies Assumption 3.1 and
one can chose as above a permutation o5 = 04, g,c, of {1,...,2- (r — 1)} relative
to A, = {as,...,ar,—1}, B and C, = {c1,...,¢r;—2}. Extend o5 to a permutation
(denoted by the same symbol) of {1,...,2r} by o5(i) = i fori = 1,2, 2r—1, 2r Without
loss of generality one can then assume that o, = 04 g c is the composition of o5 with
the permutation o, of {1,...,2r} defined by 0,5(2) = 2r — 1 and o, 5(i) = i for
1 # 2,2r — 1, hence by induction on r one has

2
pr,. 0 0y (F,) = pr,. 0 opjs (F1 © 04(Fs) ® Fy) = det <i11 i;) - Det®.

Since r —ry = s — sy +2 and r —r; = s — s; for j # 2, this proves Equation (63), and

with it the proposition. O

4. Big étale sheaves and Galois representations

Sections 4.1 and 4.2 collect the technical background entering the construction of
the three-variable diagonal class of Theorem A. In particular they present a slight
extension of the overconvergent cohomology theory developed by Ash—Stevens and
Andreatta—Tovita—Stevens in [AS08, AIS15].

Notation. In this section N is a positive integer coprime with p. Set T' = T'1 (V, p),
let Y denote the affine modular curve Y;(V, p) of level I' defined over Z[1/Np] and
let u: E — Y be the universal elliptic curve E1(N,p). Denote by C), the universal
order-p cyclic subgroup C1(N,p) of E1(N,p).

4.1. Locally analytic functions and distributions. — Let L be a finite exten-
sion of Q, with ring of integers &' and maximal ideal m = 7 - &. Let W be the
weight space over Q,, viz. the rigid analytic space over Q, which parametrises the
continuous characters of Zy. It is isomorphic to p — 1 copies of the open unit disc,
indexed by the powers w’ of the Teichmiiller character w : F, — Z;. We identify
Z x Z/(p — 1)Z with a subset of W(Q,) by sending the pair (n,a) to the character
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(n,a) : Zy, — Zy, defined by (n,a)(u-w) =u"-w® for every u € 1 + pZ, and w € F}.
Given k € W and z € Zj, we often write 2" for ().

Let U C W be a connected wide open disc defined over L. Write U N'Z for the set
of characters in U(Q,) of the form (n,iy) for some n € Z with n(mod p — 1) = iy,
where iy € Z/(p — 1)Z satisfies k[p: = w' for every k € U. Denote by O(U) the
ring of rigid analytic functions on U, and by Ay € O(U) the set of a € O(U) such
that ord,(a(x)) > 0 for every & € U. The O-algebra Ay is isomorphic to the power
series ring O[T]. In particular it is a regular local ring, complete with respect to the
topology defined by its maximal ideal my = (7, T). Let

Ky Ly — Ay
be the character sending 2 € Zy to the analytic function xy(z) € Aj; which on t € U
takes the value

ry(2)(t) = 272
In what follows let (B, k) denote either the pair (Ay, kyr) or (&, ) for some r € W(L),
and write mp for the maximal ideal of B. For every nonnegative integer m > 0 let
LA,,(Z,,B) be the space of functions «y : Z, — B converging on balls of width m,
viz. for every [a] € Z/p™Z one has y(a+p™z) =}, 5 cal7) 2" for a sequence c,(7)
in B which converges to zero in the mpg-adic topology. We always assume that U is
contained in a connected affinoid domain in W and that the function sending z to
ku (1 + pz) belongs to LA,,(Z,, Ay). The latter condition is guaranteed by taking
m = m(U) big enough.

Define T = Zy x Z, and T" = pZ, x Z;. Right multiplication on ZIQ) by the

semi-group

7 7 Z Z
— D P / — D P
Yo(p) = <pr Zp> C Matay2(Zy) (TGSP-, Yo(p) = (pr Z;) C Matzxz@p))

preserves the subset T (resp., T'). In particular both T and T’ are preserved by scalar
multiplication by Z; and right multiplication by the Iwahori subgroup

To(pZy) = Zo(p) N 4 (p)
of GL2(Z,). Define

Apon = {f :T — B | f(1,2) € LA,(Z,, B) and
(64) fla-t) =k(a) - f(t) for every a € Z, t € T}7

and similarly define A/ = as the space of functions f : T — B such that f(pz,1)

K,m

belongs to LA, (Zy, B), and f(a-t) = x(a) - f(t) for all a € Z; and t € T'. Set
Aim=Am®eLl, D,,= HomB(A;i’m, B) and D, ,,=D,.,,®cL,

K,m
where the superscript - denotes either § or /. We equip A, m with the mp-adic
topology and D, ,,, with the weak-* topology, viz. the weakest topology which makes
the evaluation-at-f morphism continuous for every f in A, .. The B-module A,
is preserved by the left action of ¥j(p) on functions f : T- — B given by v - f(t) =
f(t- ), for every v € ¥y(p) and t € T'. This equips A, ,, with the structure of a

K,m
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B[¥;(p)]-module, and induce on D, ,, the structure of a right B[ (p)]-module. If
(B, k) = (Au, ku) we write Ay, and Dy, as shorthands for A, ., and D ..

Remark 4.1. — For any function f : T — B define f, : Z, — B by fo(z) = f(1, 2).
The map which to f associates f, gives an isomorphism of B-modules between A,; ,
and LA,,(Z,,B). This intertwines the action of X((p) on A ,, with the one on
LA,,(Z,,B) given by

- folz) =(a+c2)" fo <b+d2>, where o = (Z Z)

a—+cz

The B-module LA,,(Z,, B) is isomorphic to the product szo_l B[T]°, where B[T]°
is the set of power series Zn%) by - T™ in B[T] with lim,_, b, = 0 in the mp-adic
topology. Under this isomorphism, for every 0 < a < p™ — 1 and every n > 0, the
power T™ in the a-th factor of LA,,(Z,, B) corresponds to an element f,, € A m.
Every f € A, » can be written uniquely as f = > cpm 1150 ban(f) + fan with
limy, 00 ba,n(f) = 0 for every 0 < a < p™ — 1. A similar discussion applies to A;7m.

4.1.1. Hecke operators. — Set Z(p) = X5(p) N GL2(Q,), and recall that I' denotes
the congruence subgroup I'y (V) NTy(p) of SLa(Z). Let M be a right Ey(p)-module
(e.g. M =D, ,,). Given o € Zy(p) one defines a Hecke operator

T, : H(I',M) — H(T', M)

as follows (cf. [AS86a, Section 1.1]). Write I'oT = []!'7, T'o; with o; € Ey(p), and
define t; : T' — T by 05 -y = t;(7) - 04(y) (for some 1 <i(y) < n,). If € € H/(I', M)
is represented by the homogeneous j-cochain & : IVt1 — M then T, (&) = cl(&,),
where &, : T+t — M is defined by

(Y05 ,75) = i:ﬁ(ti(%), s ti(y)) - o

For every prime ¢ denote by oy (resp., o;) the diagonal matrix with diagonal (1,¢)
(resp., (¢,1)). If oy (resp., o;) belongs to Zy(p) set T, = T, (resp., T; = Taé). As
usual one also writes U, for T}, if ¢ divides Np. The previous discussion then equips
H'(T,Dy.m) (resp., H'(T', D}, ,,,)) with the action of the p-th Hecke operator U, (resp.,
p-th dual Hecke operator UI’)), as well as with the action of the Hecke operators Tj
and T for every prime £ # p.

Let N be a left Z(p)-module (e.g. N = A, ) and let N°P denote the abelian
group N equipped with the structure of right Z;(p) ~!-module by n -7 = 71 - n for
every n € N and 7 € Zy(p)~ . After identifying H(I', N) and H*(T', N°P) define
for every o € Z(p) the Hecke operator T, on H*(I', N) to be the Hecke operator
T,-1 on H(T', N°P) defined in previous paragraph. This equips H'(I', A, ) (resp.,
H'(T, Al ,,)) with the action of the p-th Hecke operator U, = T, (resp., p-th dual
Hecke operator U;) =T %), as well as with the action of the Hecke operators T, = T,

and T, = T, for every prime ¢ different from p.
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4.1.2. Atkin—Lehner operators. — Let @ be a positive divisor of Np, such that Q
and Np/Q are coprime. Consider any matrix

_(Qa b
WQ = (Np Qd € My(Z)
such that det(wg) = Q and d =1 (mod Np/Q@). Such a matrix satisfies
(65) F:WQ~F-WE?1.

If p divides @, then right multiplication by wg on Z% maps T onto T’, hence
induces a topological morphism of B-modules wq : Al ,, — Ay . Together with

K,m
conjugation by the inverse of wg on I' (cf. Equation (65)), it yields a morphism of
pairs wq : (I', A}, ,,,) — (I'; Ak ), which in turn induces a morphism

(66) wg : H'(T, AL ) — H'(T, Acm).
A direct computation proves that, for each z in H*(T', A, ), one has

Upowy(z) =wpoUyo (p)y (x) and U, owny(z) = wny o Uy(z),
where (p)y = T, is the Hecke operator on H'(T', A}, ,,,) associated with any matrix
ap in SLa(Z) of the form a,, = ( pfh. %) withd =1 (mod p) and d = p (mod N). The
dual of wq : Aj ,,, — Axm yields a map wq : Dy m — Dy, ,,, which together with
conjugation by wgp on I' induces as above a morphism
(67) wg : HY(T, Dy ) — H'(L, D, ).
For each y in H'(I', D, ,,) one has

(68) wy 0 Up(y) = U;) ©Wp © <p>N (y) and wnpoUy(y) = U1/) o wnp(Y)-

If p does not divide @, then wg belongs to I'g(pZ,), and for - = ),/ one defines
(69) wq: H'(T, D} ) — H'(I',D;,,,) and wg: H'(T, A, ) — H'(T, 4, )
to be the Hecke operators T, introduced in Section 4.1.1.

4.1.3. Specialisations and comparison. — Let k =r +2 € U and let 7, € Ay be a
uniformiser at k — 2 (hence 7 and 7, generate my). There are short exact sequences
of ¥j(p)-modules (cf. [AIS15, Proposition 3.11])

Tk Pk

(70) 0 At At

A;“,m - 07

Tk Pk

0 Dym D

D, ,, —=0.
The morphisms pj, are defined by the formulae
pr(f)(2,y) = f(z,y)(k)  and  pr(p)(v) = p(yw)(k)

for every f € Ay, (z,y) € T, p € Dy, and v € A, ., where yy(z,y) = ry(z) -
(L,y/2) £ T =T and yu(2,y) = su(y) - v(z/y, ) f T =T

Let r € U N Z3o be a nonnegative integer. Viewing two-variable polynomials as
analytic functions on T' gives a natural map of X(p)-modules S,.(0) — A.. ., and

r,m?
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dually a morphism of ¥ (p)-modules D,.,,, — L,.(0). Together with the comparison
isomorphisms between étale and Betti cohomology:

(71)  H(Yq, 7 (0)) = H'(T',S,(0)) and Hi(Yq, % (0)) = H (I, L.(0))
they induce comparison morphisms
(72)  Hy(Yq,#(0)) — H'(T,A,,,) and H'(T,D,,,) — Hi(Yq, Z:(0)).

The second isomorphism in Equation (71) is Hecke equivariant, hence so is the second
morphism in Equation (72). On the other hand the first isomorphism in Equation
(71) (resp., morphism in Equation (72)) intertwines the actions of the Hecke opera~
tors Uy, Ty, U,, T; on the left hand side with those of Hecke operators U, Ty, Uy, Ty
respectively on the right hand side (whenever the latter are defined).

4.1.4. Slope decompositions. — Let % be a Q,-Banach algebra, let N be a module
over A, let u be a A-linear endomorphism of N, and let h € Q. Following [AS08]
one says that N admits a slope < h decomposition with respect to w if there exists a
(necessarily unique) direct sum decomposition

N = Néh@N>h

into #[u]-modules such that the conditions 1-3 below are satisfied. One says that a
polynomial P(t) in A[t] has slope < h if every edge of its Newton polygon has slope
< h. Let Z[t]S" be the set of polynomials in Z[t] of slope < h and whose leading
coefficient is a multiplicative unit. For every P(t) € B[t] write P*(t) = t¢(P). P(1/t).
1. NS" is finitely generated over 2.
2. There exists P(t) € B[t]S" such that P*(u) kills NS".
3. For every P(t) € B[t]S" the endomorphism P*(u) of N>" is an isomorphism.
Let m and U be as in Section 4.1, let k =r+2 € U(L), and let h € Q>¢. Set

77“ = {(La Aﬁm’ UP)7 (L7A;”,m7 U;Ia)a (Lv DTﬂ’m Up)v (Lv D;“,mv U;)}
and
7-U = {(ﬁUvAU,mv Up)v (ﬁUv /U,mv U}/))’ (ﬁUaDU,vap)v (ﬁUv b,mv U;I;)}v

where O is a shorthand for Ay[1/p]. Recall that Ay is isomorphic to the power series
ring O[T, equipped with the topology defined by the maximal ideal my = (7, T),
hence Oy is isomorphic to the L-module L[T]° of power series in L[T] with bounded
Gauf norm. If s is a real number satisfying 0 < s < 1, define ||, : L[T]° — R0
by [>2,50an - T"|s = sup,>¢s" - |an|p. Then |-|s is an L-Banach algebra norm on
L[T]°, which is independent of s and induces the (7, T)-adic topology on &[T]. This
corresponds to an L-Banach algebra norm on Oy, which restricts to the my-adic
topology on the &-submodule Ay. The discussion on slope < h decompositions then
applies to each triple (%, M, u) in 7, UTy. The following proposition is a consequence
of the work of Coleman and Ash-Stevens [Col97, AS08] (see also [AIS15]).

Proposition 4.2. — Let (%, M,u) be a triple in T, UTy. If r € UNZxg, one also
allows (%, M, u) to denote either (L, S.(L),U,) or (L, L.(L),U,), with U, = Uy, U,).

p
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1. Up to shrinking U if necessary, the %B-module H*(T', M) admits a slope < h
decomposition with respect to w. Moreover, for - = (0,1, the specialisation maps py
defined in Equation (70) induce Hecke equivariant isomorphisms

Pk : Hl (F, A'Uﬁm)gh ®AU AU/ﬂ—k = Hl(rv A;ﬂ,m)gh
and py : H'(T, Dy, )" @4, Au/my, = HY(T, D;.,,,)<".

2. Assume thatr = (n,a) € Z>o xZ/(p—1)Z withn =a (mod p—1) and h < n+1.
Then (for - = 0,1) the natural maps S,(L) — A, and D, . — L.(L) induce
Hecke equivariant isomorphisms

HYT, S, (L)S" =2 H\(T', 4,,,)S" and H'(T,D,,,)S" = H'(T',L.(L))S",

where the superscript <'h in H'(I', -)S™ refers to the slope decomposition with respect
to the endomorphism U,,.

Let r be a nonnegative integer and let h € Q3¢ such that h < r + 1. As the
étale cohomology groups Hy, (Yg, )1 and H} (Yq, %)L are finite-dimensional over
L, they admit slope <'h decompositions with respect to U,. Part 2 of Proposition
4.2 then implies that the comparison maps defined in Equation (72) induce natural
isomorphisms of L-modules (cf. the last lines of the previous section)

(73) Hélt(YQ,Yr)fh =~ HY(T, Apyn)S" and  HY(T, D,n)S" 2 HY (Yo, 20)7"

One obtains similar isomorphisms after replacing A, ., and D, ,, with A} and D;.,,
respectively.

4.2. Etale sheaves. — Let .7 = T (p),N be the relative Tate module R'w,Z,(1)
of E over Y (cf. Equation (10)). Fix a geometric point 7 : Spec(Q) — Y and
denote by G = Gn ,, the fundamental group 7$*(Y, n). Fix in addition an isomorphism

£ 9,27, Z, of Z,-modules such that, for every z,y € .7, one has
(74) (z, ?J>Epoo =¢&(x) AN¢(y) and g(cp,n) =F,-(1,0),

where (-, ~>Epoo is the Weil pairing, A\’ 72 =7, via (1,0) A (0,1) =1, and & : B, ,, =
F, ®F, is the reduction of £ modulo p. The action of G on .7, and the isomorphism
& give a continuous morphism ¢ : G — GLa(Z,). Since the subgroup C,, of E,
is preserved by the action of G, the second condition in Equation (74) implies that
o factors through a continuous morphism ¢ : G — T'g(pZ,). Let S;(Yz) be the
category of locally constant constructible sheaves on Yz with finite stalk of p-power
order at 1, and for every topological group G denote by My(G) the category of
finite sets of p-power order, equipped with a continuous action of G. Taking the
stalk at 7 defines an equivalence of categories -, : S§(Yz;) = My(G), whose inverse
€t My(G) = Sy(Ya) restricts via o to a functor -¢° : My(To(pZy)) — Sf(Yer).
(Here both G and T'g(pZ,) have the profinite topology.) Define Mcs(G) to be the
category of G-modules M which are filtered unions M = J,o; M; with M; € M;(G)
for every i € I, and M(G) C Mcs(G)N to be the category of inverse systems of
objects of Mcs(G). Define similarly Scis(Yer) and S(Ye) C Seis(Yer)N. If G denotes
one of G and T'y(pZ,), the functor -** extends to -** : M[(G) — S(Yzt). Let (M;)ien
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be an inverse system of G-modules and let M = lim M;. If the inverse system (M;);
defining M is clear from the context, we say that M belongs to M(G) to mean that
(M;); does. If this is the case we write M for (M;)¢t.

More generally for every scheme S one defines the category S(Ss) as above. For
every & = (F;)ieN € S(Set) set

H},(S,7) = R (LmD(S,))(F); and B, (S, F) = lim Hj (S, ),
so that (Hgt(S7 Z) is the continuous étale cohomology in the sense of [Jan88] and)
there are short exact sequences
(75) 0 — R'im H.'(S,.7;) — HL (S, F) — B, (S, F) — 0.
—i
One similarly defines compactly supported cohomology groups HY (S,.#) and

ét,c
H; (S, F) (cf. [Jan88]).
Let (B, k) be as in Section 4.1. The modules A, ,,, and D, ,, belong to M(T'(pZ,)):

D, ., =limD, . /FiVD, .
: par s :
Ap i =TAL fp A
: pa I :
and A, ,,/mp- A, = JFili;A4, .,
Jjzi
where (Fil/ D;, m)j>o0 is a decreasing filtration by B[¥;(p)]-submodules on D, ,,,, such

that D;{,m/Filj is finite for every j, and where (Fil; ; A, )
on A, . /mi- A by B[5;(p)]-submodules of finite cardinality. Precisely one defines

j>i is an increasing filtration

FiljD,;”m = {,u €D | 1(fam) € ml; " for every 0 < a < p™ — 1 and n < j}
(cf. [AIS15, Definition 3.9 and Proposition 3.10]) and
Fil; j A, = T B (fam +mj) C A, /my- A,
O0<asp™ —1,n<j

where (fa,n)o<a<pm—1,n>0 is the orthonormal basis of .A;g,m defined in Remark 4.1.
Denote by

A;ﬁ,m = 'Af::n and D.n,?n = D;::u
the images of A, ,, and D, ,, respectively under -** : M(T'¢(pZ,)) — S(Ys). For
every j > 0 set

m

. g j .
A/{,m,j - An,m/mB ’ An,m’

. _ . . ]
Dmm,j = Dmm/Fll ,
. _ - ét
Ami = A
. _ - ét
and D, ., ; =D,

so that \A, ,, is a shortened notation for the inverse system (A,
D.. = (D

K,m

.m,j)jen and similarly

w.m.j)jeN- If Sis a Z[1/Npl|-scheme one can define for every prime £ { Np
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(resp., prime ¢|Np, unit d € (Z/NZ)*) Hecke operators T, (resp., U;, (d)) acting on
H (Ys, A, ;) and Hy (Ys, D, ,, ) (cf. Section 2.3 or [AIS15, Section 5]). We list
below some of the basic properties satisfied by \A, ,, and D, .. Let S be a Z[1/Np|-
scheme and let x : Z* — B* be a continuous character. Let B/m(x) € My (Io(pZ,))
be a copy of B/m%; equipped with the action of I'g(pZ,) defined by v-b = x(det(7))-b,
and let B(x) = lim; B/my(x). If C,,, . denotes either A, . or D, . = define
C,;s,er,-(X) = C,:c,7rz,~ ®B B(X) and c;@,m(X) = C;@,m(X)ét = C;i,m ® (B/mlB(X))géN As
usual, if (B, k) = (Ay, k), one sets Cyy . =Cp oy

e For each k =r+2 € U(L), each j € N and - = (),/, the specialisation maps

(70) induce morphisms

Pk * AU,m,j (X) - A.r,m,j (X) and Pk : DU,m,j (X) - D;’,m,j (X)a
which in turn induce in cohomology specialisation maps
(76) Pk : Hélt(Y55 AU,m(X)) — Hélt(YS7
and  pg: Hét (YS7DU,m(X>) — Hét(ys’
) =2 HY(T',D, ,. .), which in-

A, (X))
D;. (X))

e There are natural isomorphisms Hgt(YQD'

K,m,j K,m,J
duce isomorphisms (cf. Theorem 3.15 of [AIS15])
(77) Hélt (YQa D;-c,m) = H}et (YQa D;c,m) = Hl(rv Dnm)
and Hé‘@C(YQ’ Dmm) = Hét,c(YQ7’D;i,m) = }Ic1 (F’ Dn,m)

of B-modules compatible with the action of the Hecke operators and with the
specialisation maps p,. Here HJ(T',-) = HI=Y(T,I(-)) is defined to be the
(j — 1)-th cohomology group of I with values in the I'-module

I(-) = Homz(Div’ (P(Q)), )
(cf. Proposition 4.2 of [AS86b]).
e There are natural maps Hg (Yq, A, ;) — H'(T, A, ), inducing an iso-

é Ky, J
morphism of B-modules (cf. Lemma 4.3 below and the discussion preceding
it)
(78) Hét(YCDA;ﬁ,m) = HI(F“’AN,m)
compatible with the action of the Hecke operators and with the specialisation

maps. In light of the exact sequence (75), the isomorphism (78) yields a Hecke
equivariant short exact sequence of B-modules

(719 0— R11<i_r£; HO(YQ,A' — Hélt(YQ, A, ) — Hl(r,Am) — 0.

K,m,j)

e The B-modules H{ (Yq, D;, ,,,) and HE (Yg, A, ,,) are equipped with natural
continuous actions of Gq which commute with the Hecke operators and the
specialisation maps. Moreover as G'q-modules

(80) H}et (YQa ,Dﬁ,m(X)) = Hét (YQ7 D;@m)(XQ)
and  He (Yo, A (X)) = B (Y. Ar ) (XQ),
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where xq = x o X;ylc : Gq — B* and Xcye : Gq — Z, is the p-adic cyclotomic
character. A similar statement holds for the compactly supported cohomology
Hét,c(YQ’ Dmm) .

We equip H'(I, D, ,,,), H! (T, D, ,,,) and H'(I', A, ) with the structures of
continuous Gg-modules via the isomorphisms (77) and (78) respectively. If
h € Qs (and U is sufficiently small) the slope < h submodules H*(T', D}, ,,,)S",
He (T, Dy, )S" and HY(T, A St of HYT, DY )q,y He(T, Dim)q, and
H' (T, A, ,.)q, respectively (cf. Proposition 4.2) are preserved by the action
of GQ.

Set Ay; = (Ay/m?)® and Ay = (Ayj)jen € S(Yer). There are canonical
isomorphisms of Ay-modules

tracey : H2(I', Av) =2 HZ (Yg. Av) = Ap.

ét,c

The evaluation morphism AU,m Ay Db,m — Ay and the trace tracey induce
a cup-product

Hl(F?AU7m) DAy H&(vaUm@) — Hz(raAU) = AU7

under which the Hecke operator U, acting on H 1(F,AU’m) is adjoint to U,
acting on Hcl(F,’D'U’m). This in turn induces for h € Q¢ (and U sufficiently
small) morphisms of Ay[1/p]-modules

&J,m  H' (F7 Ab,m)gh — HomAU[l/P] (H(} (Fv DU,m)ghv AU[l/p])'

Define det : Tx T — Z5 by det((z1,72), (y1,%2)) = T1y2—T2y1, and denote by
dety : T x T' — Aj; the composition of det with xy : Z3 — Aj;. Evaluation
at dety defines a I'-equivarint bilinear form Dy, ®4,, ijym — Ay. Together
with tracey (cf. Equation (81)) this induces a cup-product pairing

dety; : H'(T, Dy,m) ®a, He (L, Dy,,) — HZ(T, Ay) = Ay

under which the Hecke operators U, and U; are adjoint to each other. For
every h € Qxq the (inverse of the) adjoint of det;; induces an isomorphism of
Ay [1/p]-modules

Com  Homay (1/p(HE (T, D) S" Au[1/p]) = HY(T, Dy ) S
Similarly one defines an isomorphism
Cuym HomAU[l/p](Hcl(F7 DU,m)<h7 AU[l/p]) = Hl(ra D{J,m)gh'

Let h € Q>¢. If U is sufficiently small the composition of (i, with £y, gives
a morphism of Gg-modules

SU,h * Hl(FaAU7m><h(K’U) — Hl(FaD&,m)gha

where Ky : Gq — A}y is defined by ky(9) = kv (Xeyc(g)) for every g € Gq.
For every integer k = r+ 2 in UNZ such that h < k — 1, the following diagram
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of L|GqJ-modules commutes.

SU,h

(84) HY(T, Ay ) S (k) H'(T, Dy;,,,)S"

<h Sr <h
H(’}t(YvaT)L (’I“) Hét(YQagr)L

By a slight abuse of notation, here one writes again p, for the composi-
tion of the specialisation map pj : HY(T, Ay.,)S" — HY(T, Aypn)S" (resp.,
px : HYT, Dy, )S" — HY(T,D;,,)S") with the comparison isomorphism
H'T, Ar)Sh = HY (Yo, #)<" (vesp., HY(T,D.,)S" = HNT,.%)5")
defined in Equation (73). Similarly the composition of (7, ,,, with & . gives a
morphism of Gq-modules

sy H'(T, Ay ) S (ky) — HY(T, Dy) "

and the diagram of Ggq-modules obtained by replacing Ay, Db,m and sy p
with A7y, Dum and sy, respectively in Equation (84) commutes.

o The Atkin-Lehner operators w,, (resp., wyyp) defined in Equations (66) and (67)
are Gq-equivariant (resp., Gq(,,)-equivariant).

Due to the lack of a reference, we explain how to construct the crucial isomorphism
(78). Let - denote either the empty symbol or 7, and let Fil; A, ,, = (Fil; ;A )¢
be the étale sheaf on Y associated with the finite B/m’B[I']-module Fil; ;A; ... The
comparison isomorphisms between étale and Betti cohomology yields isomorphisms

comp, ; : Hy (Yq. Fil; j A, ) = H' (L, Fil; j A, ).
The étale cohomology of the affine scheme Y commutes with filtered direct limits.
Moreover, since the group I is finitely generated, the cohomology functor H(T,-)
commutes with filtered direct limits (cf. Exercises 1 and 4 on page 196 of [Bro94]).
Taking the direct limit for j — oo of the isomorphisms comp; ; then gives isomor-
phisms of B/m’B-modules

Comp; : Hl (F7 A;i,m,i) = He];t (YQ7 A;c,m,i)?
which in turn entail an isomorphism of B-modules

comp : lim H'(T, A, ,. ) 2 HE, (Yq, A, )
1 e ’
The sought for isomorphism (78) is defined as the composition of the comparison
isomorphism comp and the natural map H'(T', A ,,) — Jim, H'(T, A, ), which

is an isomorphism by Lemma 4.3 below. The Hecke equivariance of the isomorphism
(78) is proved precisely as in Sections 3.2 and 3.3 of [AIS15].
Lemma 4.3. — The natural maps

HY(T, A, ,,) — lm H'(T, A

n,?n,i)

are isomorphisms of B-modules.
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Proof. — We adapt the proof of [AIS15, Lemma 3.13| to our setting. To ease nota-
tion, set A; = A, ; and A=A, .. For each I-module M, let

(T, M) 0 — ML oy, M) L o2, M) —s -
be the usual complex of inhomogeneous cochains computing the cohomology groups
HI(,M) = Z/)(I', M)/im(d’~1), where C(T, M) is the group of maps from I'V to
M and Z%(I', M) = ker(d’). Denote by d* (resp., d?) the differentials in C*(T,.A)
(resp., C*(T', A;)), so that one has the following commutative diagram with exact
rows. (Recall that by definition 4; is a shorthand for A/m?; - A.)

dO

ZU(T, A) HY (T, A)

| !
(@)

A 0

To prove that 1 is an isomorphism, it is then sufficient to show that ¢ is surjective and
that ¢ is an isomorphism. The cokernel of ¢ is contained in R* Jim, (A;/HO(T, A)),
which vanishes since the maps A;11/H®(T, Ai+1) — A;/H°(T, A;) are surjective.
Moreover, as A = lim, A;, the natural map C* (r,A) — lim, C* (T, A;) is an isomor-
phism, hence so is ¢ by the left exactness of the inverse limit. O

4.3. The ordinary case. — This section explains the relations between the ordi-
nary (id est slope < 0) parts of the modules H* (T, Dy ) and the big ordinary Galois
representations considered in [Hid86, Oht95, Oht00]. This will be particularly rel-
evant for the study of the eigencurve in a neighbourhood of a classical weight-one
eigenform (where the Eichler—Shimura isomorphism of [AIS15] does not apply).

Since H'(T', D}, ,,,) is a profinite group (as Dj, ,, is), the limit e 4 = lim, o UT',”I
defines an idempotent in the B-endomorphism ring of H'(T', D}, ,,,). (Here as usual
(B, k) denotes either (Ay,sy) or (€,r) with r in W(L), and - denotes either the
empty symbol or /.) Set

Hl(F7D;e,m)<0 = e;)rd ' Hl(F’Dn,m)

This is a finite Ag-module, which recasts H'(T', D;, ,,,)S" after inverting p.
Following [Hid86, Oht95], define

T = lim Hi, (i (VD) g, Zp(1),

where r € Z>; and the transition maps are given by the traces pr;, induced in
cohomology by the degeneracy maps pr; : Y1 (Np™™) — Y1 (Np") introduced in
Equation (8). As the maps pr;, are Hecke-equivariant, the module T is equipped
with the action of Hecke operators T, (resp., U;), for each prime ¢ not dividing
(resp., dividing) Np. Moreover, the action of (Z/p"Z)* on H} (V3 (Np")q,Zp(1)) via
diamond operators makes T a module over o = Z,[Z7]. Let

D = Homzp(Step('I'/)7 Z,)
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be the right X{(p)-module of measures on T’, where Step(T’) is the set of Z,-valued
step functions on T’. Section 4.1.1 equips H*(T', D’) with the action of Hecke operators

U, and T}, for - = 0,7 and ¢ a rational prime different from p. A slight variant of
Lemma 6.8 of [GS93] yields a Hecke-equivariant isomorphism of o-modules
(85) T=H'(,D),

where the action of the Iwasawa algebra ¢ on the right hand side arises from that of
the group Z% = Z5 - (1) — X{(p) on D"

Each measure p in D’ extends to a Ay-linear morphism uy : €(T',Ay) — Ay on
the space €(T', Ay) of Ay-valued continuous functions on T’. The map sending pu to
the restriction of uy to Ay, — €(T', Ay) defines a morphism of ¥f(p)-modules

D' — Dy,
which in turn induces a Hecke-equivariant morphism of Ay-modules
(86) H'(I,D') ®, Ay — H'(T', Dy ,,.),
where Ay has the structure of o-algebra arising from ry : Z; — Ay
After setting
T3 = eq - T @ Av,
the composition of the maps (85) and (86) yields an isomorphism of Ay-modules
(87) Shy,m : Ty = HYI, Dy, )< (1),

which is Hecke-equivariant and Gq-equivariant. In order to prove this, let r be a
positive integer in U. Since H?(T,-) vanishes for each I'-module - of finite cardinality
(and Dy, ,, is profinite), evaluation at k = r + 2 on Ay induces an isomorphism

(88) H' (L, Dy ) S° @y Av/me = HY(L, D, )0

/
r,m

(89) HY(D,D.,)<° = HI(T, L,(0))<°,

which for j = 1 recasts the isomorphism displayed in Part 2 of Proposition 4.2 after

Moreover, for each j > 0, the natural map D..,, — L.(0) induces an isomorphism

inverting p. (Indeed a direct computation shows that (p]’:[i ?) € X{(p) maps the
kernel K., of D}, — L(&) into p"™' - K. for each 0 < i < p—1, from which one
deduces that the anti-ordinary projector e/ 4 kills H/(T',K; ) for each j > 0.) On
the other hand, the inclusion S, (Z,) — %(T’,Z,) dualises to a specialisation map
px : D' — L,.(Z,), and Hida’s control theorem (cf. [Hid86, Oht95]) shows that the
isomorphism (85) and py, induce a Hecke-equivariant isomorphism

(90) Cora * T @0 0/ T = H'(T, L (Z,))< ",

where I, is the ideal of ¢ generated by [1+p]—(1+p)" and [u] — ", with 4 a generator
of Fy and [] : Zy — o* the tautological map. It follows from Equations (88)-(90)
that the base change of Shy ,, along the projection Ay — Ay /7y, is an isomorphism.
Together with Nakayama’s Lemma, this implies that Shy,,, is surjective, and that
ker(Shy,m) @A, Au/mk is a quotient of the 7j-torsion submodule of H'(T, Dy, ,,)<°.
The latter is in turn a quotient of H°(I',D}.,,)S?, which vanishes by Equation (89).
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Another application of Nakayama’s Lemma then proves that Shy ,, is injective, thus
concluding the proof of the claim (87).
Set 0y = Ay[1/p] and denote by

h(U) = b(N,U) — Enda, (H'(I,Dfy,,,) ) [1/p]

the Hecke algebra generated over Oy by the dual Hecke operators (U, )q nps (17)enp
and ((d))ae(z/nz)~ acting on H' (I, Dy, )S°. For each positive integer r and - = 0,7,
let h'(Np") be the ring generated by the Hecke operators (U, ) np, (T;)enp and
({d))ac(z/nz)- acting on the space Ma(Np") of complex modular forms of weight 2.
Conjugation by the Atkin-Lehner isomorphism wypr € Isoc(Ma(Np”)) restricts to
an isomorphism h(Np") = h/(Np"), sending U, and Ty to U; and T respectively. Set

(91)  hpe = €oa - 1<i_rrTl(h‘(NpT) ®z Zp) and  hiy,e(U) = hiype @6 O,

where the transition maps in the inverse limit defining Ay e (resp., My, ) are induced
by the inclusions My (Np") C Ma(Np"+1) (resp., the maps My(Np") — Ma(Np™T1)
sending f(z) to f(pz)). The Atkin-Lehner operators (wnpr)r>1 induce an isomor-
phism of Ay-modules between hype (U) and Ry, (N), and since h(Np") acts faith-
fully on H} (Y1(Np")q, Zp(1)) (cf. Equation (19)), the Shapiro isomorphism Shy,,
defined in Equation (87) yields an isomorphisms of ¢y-modules

(92) hnpee (U) = H(N,U).

sending the Hecke operators Ty and U, to the corresponding duals 7, and Ué.
Denote by C = C(N) = Spf(hnp~)q, Berthelot’s rigid fibre of the formal spectrum

of hnpe (cf. Section 7 of [dJ95]). The structural maps © — hype yield a finite and

flat morphism « : C — W, and Equation (92) gives an isomorphism of &y-modules

(93) h(U) = 0(C xwU)

mapping the dual Hecke operators Ty (¢ { Np) and U; (q|Np) in the left hand side
to the corresponding Hecke operators Ty and U, in the right hand side, where O/(-)
denotes the ring of bounded analytic functions on -.

Section 6 of [Pil13] gives an isomorphism between C and the ordinary locus
¢! = €°Y(N) of the Buzzard-Coleman-Mazur eigencurve 4 = % (N) of tame
level N, mapping the Hecke operators in hnpe to the corresponding Hecke operators
in 0(€°"). In light of Equation (93), this gives isomorphisms

(94) h(U) = 6(6° xw U)

mapping the dual Hecke operators in the left hand side to the corresponding Hecke
operators in the right hand side.

Remark 4.4. — If U is a sufficiently small open disc in W centred at an integer
k, > 2, and h is a non-negative rational number satisfying h < k, — 2, then the
overconvergent Eichler—Shimura isomorphism [AIS15, Theorem 1.3 implies that the
isomorphism (94) holds after replacing ™4 with the slope < h locus of %, and h(U)
with the Hecke algebra acting on the slope < h subspace of H 1(F,D{]m). On the
other hand, their result does not apply when U is centred at k, = 1 (and h = 0), a
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crucial scenario for the applications of the main results of this paper to the arithmetic
of elliptic curves (cf. [BSV20a]).

5. Hida families

As explained in Section 6 of [AIS15] (see also Section 6 of [GS93]), the big Ga-
lois representations associated to p-adic Coleman—Hida families (generically) appear
as direct factors of the cohomology groups H 1(F7DU7m). This section recalls these
results, paying particular attention to the case (not covered in loc. cit.) where the
open disc U is centred at weight 1 in W(Q,). To simplify the exposition we limit the
discussion to Hida families. This suffices for the applications we have in mind (and
requires no mention to the theory of (p,I')-modules and trianguline representations).

Let M be a positive integer coprime to p, let U C W be an L-rational open disc
centred at a positive integer k, € Z>1, and let x be a Dirichlet character modulo M.
Let 0y = Ay[1/p] be the ring of bounded analytic functions on U, and let

U'={keUNZ|k>2and k=k, mod 2-(p—1)}

be the set of classical points of U. An Oy-adic cusp form of tame level M and tame
character y is a formal g-expansion

=Y aufik)-q" € Ovlq]

n>1

such that, for each classical weight k € U°', the weight-k specialisation

Fo= Y an(fik) - q" € P (Mp, ).

n>=1
is the g-expansion of a p-ordinary cusp form in S™(Mp, x)r. Here

Sy (Mp, X))z = €ord - Sk(Mp,X) 1,

where eo.q = lim,_ s U;” is Hida’s ordinary projector acting on the L-module
Sk(Mp, x) 1, of cusp forms of weight k, level 'y (M) N To(p), character x and Fourier
coefficients in Q N L (under the fixed embedding Q <+ Q,,). Denote by S (M, x)
the Opy-module of Op-adic cusp forms of tame level M and character y. It is
equipped with the action of Hecke operators Ty, for primes £ 1 Mp, and Uy, for primes
£|Mp, which are compatible with the usual Hecke operators on S,‘grd(M p,x) for each
k € UL A cusp form f in SP4(M,x) is normalised if a1(f;k) is the constant
function with value one on U. A (L-rational) Hida family of tame level M, tame
character y and centre k, € Z>1 is an Oy-adic cusp form f € SFd(M, x), for some
U as above, which is an eigenvector for the Hecke operators U, and T}, for each
prime ¢ { Mp (equivalently such that, for each k € U, the weight-k specialisation
fi is an eigenvector for the Hecke operators U, and Ty, for all primes £ { Mp.) A
normalised Hida family f € SgF4(M, y) is new (or primitive) of tame level M if the
conductor of the eigenform f, is equal to M for all k > 2 in U'. To each Hida family
F € Sgrd(M, x) is associated a unique pair (Mg, f*), where My is a positive divisor
of M and f* =37~ an(k)-¢" in Sgr4(My, x) is a new Hida family of tame level My
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such that Up,(f) = ap(k) - f and T;(f) = ae(k) - f for all primes £{ M. We call Mg
the conductor of f and f* the primitive Hida family associated with f. Moreover, we
denote by

ST M, xp)[fF] — Sg(M, xy)
the Op-module of Hida families in SgF4(M, yf) having f* as associated primitive Hida
family. A level-N test vector for f* is an element of SF4(M, x¢)[f*] of the form

(95) f= Y rafiaY,
0<d|M/Mj
for analytic functions (r4)q in Oy without common zeros in U.
Fix in the rest of this section a positive divisor N¢ of N and a normalised eigenform

]ﬁo = Z Qp * qn € Mko(rl(Nf) N FO(p)7Xf)L
n>1
of weight k, > 1, level Ngp, character x¢ : (Z/NyZ)* — L* and Fourier coefficients
in L, satisfying the following (cf. Assumption 1.1)

Assumption 5.1. — One of the following statements 1-2 holds true.
1. The form f,go is cuspidal of weight k, > 2, p-ordinary (id est ap, is a p-adic unit
under the fized embedding Q — Qp) and its conductor is divisible by Ng.
2. The form f,iu 1s a p-stabilisation of a cuspidal and p-regular weight-one newform
of level Ny, without real multiplication by a quadratic field in which p splits.

The previous assumption guarantees that the eigencurve x : €(Ng) — W (cf.
Section 4.3) is ¢tale at (the L-rational point corresponding to) fi . In case 5.1(1)
(resp., case 5.1(2)) this follows from Corollary 1.4 of [Hid86] and Section 6 of [Pil13]
(resp., Theorems 1.1 and 7.2 of [BD16]). As a consequence, there exists an open
connected disc Uy in Wy, centred at k,, and a section Uy — € (Ny) ®q, L of k®q, L
mapping Uy isomorphically onto an open admissible neighbourhood of f,ﬁo. In light
of Equation (94), this yields an idempotent ey in the Hecke algebra (cf. Section 4.3)

def

H = h(Ng, Uy),
and an isomorphism of Oy, -algebras between egs - H and Oy, . Let
(96) p:H— Oy,

be the composition of this isomorphism with the projection onto eg: - H.

For each positive integer n, denote by A/ C 3((p)NM2(Z) the set of integral matri-
ces o = (‘g 2) satisfying det(a) =n, d=1 mod N, ptd and ¢ =0 mod Np. Define
T = > aca; Ta, where Tj, is the endomorphism of HY(T1(Ng) N Fo(p),ijfym)go
introduced in Section 4.1.1 (and m = m(Uy) is sufficiently large). The dual Hecke
operator T, belongs to H (cf. [Shi71, Chapter 3]), and after setting

an(k) = an(fﬁv k) = QD(TT/L)a
the formal g-expansion

£ =3 aulk) - q" € Oy, lg]

n>1
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ord

is the (unique) cuspidal primitive Hida family in SUf (Ng, x¢) of tame level Ny and
character x s specialising to f,go at k,. For each positive integer n, it is an eigenvector
for the Hecke operator T,, with eigenvalue a, (k).

The rest of this section summarises the main result from Hida theory needed in
the sequel of the paper. Fix a level-N test vector

£ € SN, xg) L]

for f*. To ease notation, set Ay = Ay, 0y = Oy, D}, = Dy, ,,, and Dy, = Dy,
(where as usual - denotes either the empty symbol or 7). Denote by k—k, a uniformiser

at k, in Ay, so that Oy is a module of power series in L[k — k,] which converge for
any k in Us. One has kg, (t) = w(t) =2 . <t>k_2 for all t € Zy, and
ko—2 .  k—2

(97) KUy = Woge ~ " Feye : GQ — Af.

Here weye and ey denote the composition of the p-adic cyclotomic character
Xeye : Gq — 2y,

k—2
cyc 1

with the projections w : Z; — F; and (-) : Z, — 1+ pZ, respectively, and &
the Aj-valued character which on g € Gq takes the value Keye(g)R 2

S

e For every classical weight k£ > 2 in de the weight-k specialisation f, is old at
p. Indeed f;, = f, is the ordinary p-stabilisation of an eigenform f = fj in
Si(N, xr) (cf. Equation (54)), hence ap(k) = af is the unit root of

X2 S X ot = (X =) (X - )

(We refer the reader to [Hid86]| for more details.)
e To ease notation, set

V = H'(I'1(Ny) NTo(p), Df ,,,)S°(1) and  H = b(Ng, Uy).

According to the main results of [Oht00] and the isomorphism (92), there is a
short exact sequence of H[Gq,]-modules

(98) 0—VH—V-—V —0,

where V* are finite free &p-modules. The Gq,-module V™ is the maximal
unramified Op-quotient of V, and an arithmetic Frobenius acts on it as mul-
tiplication by the p-th Fourier coefficient a,(k) of f*. Moreover, there are
canonical isomorphisms of H-modules Y1 2 Hpar and YV~ = Homg, (H, Oy),
where Hpar is the quotient of H acting faithfully on the parabolic subspace
H} o (Tg, DY ,,,)S°(1) of the cohomology group V.

Applying the idempotent ep: (defined before Equation (96)) to the short
exact sequence (98) gives a short exact sequence of 0¢[Gq,]-modules

(99) 0— V(T — V(f) — V(fH —0,
where (for - equal to one of the symbols @), + and —)
V(fﬁ) = efn -V
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is a free Op-direct summand of V'.

e The 0;[Gq]-module V(f*) has rank two over &, and is unramified outside
Ngp. For every prime £ not dividing Ngp, the characteristic polynomial of an
arithmetic Frobenius Froby in Gq at £ is given by (cf. Equation (106) below)

det(1 — Frobe|V(f*) - X) =1 —ae(k) - X + x¢(£) - ki, (0) - £ X

In particular the determinant of V'(f¥) is given by (cf. Equation (97))
(100) deto, V(F) = Xf - Xeye - vy = X5 - whee '+ kbt

As the arithmetic Frobenius Frob, € Ggq, acts on V™~ as multiplication by
ap(k), one deduces isomorphisms of 0¢[Gq,]-modules

(101) V()T = 0p(1+ Ky, + x5 —ap(k))  and  V(f)™ = Gf(ap(k)),

where for every a € A}" one writes @ : Gq, — A}" for the continuous unramified
character satisfying a(Frob,) = a.
e Recall the level-N test vector f for f* fixed above, and define

H'(T, DY ,,)S(1) — V(f)

to be the maximal Op-quotient of H! (F,D]’c7m)<0(l) on which the dual Hecke
operators Ty, U, and (d)" act respectively as multiplication by a,(k), ap (k) and
X5 (d), for each prime ¢ not dividing Np and each unit d in (Z/NZ)*. This is
equal to the Gg-modules V(f*) = ez - V introduced above when N = Ny and
f = f*. In general, the 0y [Ggl-module V(f) is (non-canonically) isomorphic
to the direct sum of a finite number of copies of V(f*). In particular, V(f) is
a free Oy-module, and there is a short exact sequence of 0f[Gq,]-modules

(102) 00— V(AT —=V(EF) —V(EF —0

with V(f)* free of finite rank over &, and V(f) —» V(f)~ the maximal
unramified Op-quotient of V(f).
Dually, define

V*(f) — H01 (Pa Df,m)go(_HUf)

be the maximal Op-submodule of H!(T, Dy ,,)S°(—ky,) on which the Hecke
operators Ty, U, and (d) act respectively as multiplication by a(k), a,(k) and
X7 (d), for every prime ¢{ Np and every unit d in (Z/NZ)*. Then V*(f) is an
Of|Gql-direct summand of H}(T', Df )< (—Kyy, ), isomorphic to the @p-dual
of V(f). Indeed the bilinear form dety, defined in Equation (82) induces a
perfect pairing of 0;[GqJ-modules (cf. [Oht00] and Section 4.3)

(103) (g 2 V() @g, VI(F) — O

Let V*(f)* < V*(f) be the maximal unramified submodule of the restriction
of V*(f) to Gq,, and let V*(f)~ be the quotient of V*(f) by V*(f)*. There
is then a short exact sequence of 0y[Gq,]-modules

0— V() — V() — V() —0,



44 MASSIMO BERTOLINI, MARCO ADAMO SEVESO, AND RODOLFO VENERUCCI

and the bilinear form (-, -) 5 induces perfect, Gq,-equivariant pairings
(104) (2)g VI @0 VDT — 6.
Because H!(T, D];m)go is an Op-direct summand of H!(T, D; ), there are
natural Jy[Gq]-projections
(105)  prg s H'(T, D ,,)(1) — V(f) and prf : Hi (L, D) (—kr,) —> V(f).

e For all classical points k in de the specialisation map pj in the right column
of Equation (84) gives rise to an isomorphism of L{Gq]-modules

(106) pi 2 V(F) ®ap Ap/(m) = Hg (Yi(N, p)q, Li—2(1) 5z =V (fi)-
Here
Hélt(Yl (N’ p)Q?D?k—Q(l))L — Hélt(Yl (N’ p)Qv fk—2(1))f;

is the maximal quotient on which 77, Ul', and (d)l act respectively as multiplica-
tion by as(k), ap(k) and x ¢(p) for any prime £ { Np and any unit d in (Z/NpZ)*.
If t : Y1(Np) — Y1(NV,p) is the natural projection (viz. the one induced by the
identity on H under (6)), the second isomorphism in Equation (106) is the one
induced by the pull-back

t*: Hy (Yi(N,p)q, Zi—2(1)) — Hg (Yi(Np)q, Zi—2(1)).
If kK, = 1, so that f;, = Zn21 an(1) - ¢™ is a classical, cuspidal weight-one
Hecke eigenform (cf. Assumption 5.1), then the weight-one specialisation
V(fi) =V () @, Ag/(m1)

of V(f*) yields a canonical model of the dual of the Deligne-Serre representation
attached to ff. More generally, if f; is classical, set V(f;) = V(f) @a, Ag/m1
(which is non-canonically isomorphism to the direct sum of a finite number of
V(£%).) In order to have coherent notation and terminology, we still denote by

(107) p1:V(F) ®a, Ap/(m1) — V(f1)

the identity map, and refer to it as the specialisation map at weight one.
Similarly for each classical weight k in U;é1 there are natural isomorphisms
of L[Gq,]-modules

(108) pr V() ©ap Mg /() = V7 (S)

(cf. the discussion following Equation (84)). Moreover for each x € V(f) and
y € V*(f) one has

(109) (,y) ¢ (k) = (o (@), o (¥)) 4, »

where (-, -) ¢ is the perfect bilinear form defined in Equation (24).

e For each k in de and - = ), ¥, one has short exact sequences of L[Gq,]-modules

(110) 0—V(f)t — V(i) =V (i)~ —0,
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where V(f;,)” is the maximal Gq, -unramified L-quotient of V(f;), and
V*(f)T is the maximal Gq,-unramified L-submodule of V*(f;,). The special-
isation maps (106) and (108) induce isomorphisms

(111) pr V()T @ L=V (fi)*.
According to Equation (101) the inertia subgroup Iq, of Gq, acts on V(f;,)"
via, Xfy_cl, and trivially on V(f,)~. If k¥ > 2, applying Dgr(-) to the previous
exact sequence and using Equation (28) gives natural isomorphisms

(112) Deris(V(f,)7) = VdR(.fk)/Fﬂo and FﬂOVdR(fk) & Dexis(V () 7)-
Similarly Iq, acts trivially on V*(f;)" and via x1;* on V*(f;)~, hence Equa-
tions (28) and (110) give

(113) Deis(V*(fi) ) = VJR(fk)/Fﬂl and Fﬂlvd*R(fk) = Deris(V*(f1)7)-

e The Atkin-Lehner operator wy, introduced in Equation (67) induces an iso-
morphism of Ty [Gq(cy)]-modules (cf. Equation (68))

WNp - Hl(F>DU7m)<O = Hl(F>D/U,m)<07

intertwining the action of the dual Hecke operators Uy, Ty and (d) on the left
hand side with that of the Hecke operators U, Ty and (d>71 on the right hand
side, for each prime ¢ not dividing Np and each unit d modulo N. Since the
form fl:o is cuspidal, it induces Galois equivariant isomorphisms

(114) Wy V() L+ ko, +x5) 2 V()
for - equal to one of the symbols @), + and —.
e Set
(115) D*(f)" = (V)" (1 + kuy +xg)z,207) 7% [1/p),

where V*(f)™ is a Gq,-stable Ag-lattice in V*(f)~, and Z;r is the ring of
integers of the p-adic completion Q;r of the maximal unramified extension
of Q,. (Note that V*(f)~ (1 + Ky, + xy) is an unramified Gq,-module, cf.
Equations (101) and (104).) It is a free finite &p-module (of rank one if f = f*
is primitive). For each classical point & in de, the isomorphism (111) and the
second isomorphism in Equation (113) induce a specialisation isomorphism

(116) g D) ex L= (VA(f) (k=14 xp) 8, QY) " = Fil'Vin(£,).

As V*(f,,)” (k — 1) is unramified, in the previous equation one identifies the
middle term with the tensor product of Deis(V*(fi,) ), Deris(Qp(k — 1)) and
Deris(L(xf£)). The second isomorphism then arises from Equation (113), the
canonical isomorphism Deis(Qp(k — 1)) = Q,, and the isomorphism between
Deiis(L(xf)) and L sending the Gauf sum Zae(Z/c(Xf)z)* Xf(a) ® Clnp) Of
the primitive character xy attached to xz to the identity, where c(xy) is the
conductor of xy and ((y,) is a primitive c(x#)-th root of unity.
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In light of the isomorphisms (87) and (114), the main result of [Oht00] and
Theorem 9.5.2 of [KLZ17] yield an Eichler—Shimura isomorphism

(117) ES; : D*(f)” = Sg (N )57,

whose base change along evaluation at a classical point k& € U;l is equal to
the composition of the specialisation isomorphism (116) with the isomorphism
Fil' Vi (1) = Sk(Np, L)y, defined in Equation (27). One defines

(118) wy € D*(f)~
to be the image of the Hida family f under the inverse of ES}, so that

(119) pe(ws) = wy,
for each classical point k in de (cf. Equation (30)). (When k, > 2, the overcon-
vergent Eichler—Shimura isomorphism proved in [AIS15] extends these results

to Coleman families of slope at most k, — 2.)
e Set

* * 2 Sury G D
(120) D*(f)" = (V' (£)"®z,2y7) " 1/,
where V*(f)" is a Gq,-stable Ag-lattice in V*(f)*. The perfect duality (-, ),

(cf. Equation (104)), the Atkin-Lehner isomorphism w;p (cf. Equation (114))
and the Eichler—Shimura isomorphism ES; give rise to an isomorphism

ES; : D*(f)* = Homg, (Sgi* (N, x1) (5], OF),

whose base change along evaluation at k € de on Jf equals the composition
of the specialisation isomorphism

* ~ * Anr\ G P AU * .
(121) pe: DY ()Y @ L= (VH(fi)1 ®q, Q)F) % = Viw (i) /Fil*
arising from Equations (111) and (113), and the isomorphism
Vir(fi)/Fil' 2 Homp (S, (Np, L)f:, L) = Homy (Sk(Np, L)y, , L),

where the first map is the adjoint of the perfect duality (-, '>fk defined in Equa-
tion (32) (cf. Equation (109)), and the second is the dual of

(71)’6"72 “WNp : Sk(Np, L)fk = Sk(Np, L)f}:

We claim that (shrinking Uy if necessary) there exists

(122) ny € D'(£)°
such that, for each classical point k in U§', one has (cf. Equation (34))
(123) pr(ng) = (p = Dap(k) - ng,.

Indeed, write f = >, 74 - f*(q?), with functions (Ta)aj(n/np) in Op without
common zeros. For each positive divisor d of N/Ng, the Q-rational morphism
vag : Y1(N,p)q — Yi(Ng, p)q arising from multiplication by d on H (cf. Equa-
tion (6)) induces a Gq-equivariant morphism vg. @ V*(f) — V*(f*) (cf.
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Equation (77)), which in turn induces vg. : D*(f)~ — D*(f*)”. Under the
Eichler-Shimura isomorphism ESg, the latter gives rise to a map

va. : SN x2) ] — ST (Ng xa) ] = O - £,

Set Traceg = Y, 7a - Vds, and define the big differential 775 € D*(f)* to be the
image under the inverse of ES}r of the linear form sending the Hida family f’

in S[‘};d(N, x#)[f7] to the first Fourier coefficient of Traces(f’):

ES{ (i1f)(f') = a1 (Traces (f')).
It follows from the definitions and Equation (109) that

- — (_1\ko—2 . (fkafk)Np .
Pk(nf) = ( 1) (.f]iv.f]g)pr nf,

for each classical point k in de. As explained in the proof of Lemma 2.19

of [DR14], the elements (—1)*~2. (fn’“f# are interpolated by an analytic
(fk,fk)pr

function & on Uy, which does not vanish at k, (as f} is non-zero by the
definition of level-N test vector for f*). Shrinking Uy if necessary, one can then
assume that &% is a unit in Of, and define the sought-for J-adic differential
Ny tobe (p—1)- éaf_l - ap(k) times 7jy.

e Similarly as in Equations (115) and (120), for - = %, define the Jp-module

(124) D(F) = (V(F) (), Z2) % [1/p],

where V(f)" is a Gq,-stable O-lattice in V/(f)", v~ is the trivial character and
vt = —1 — Ky, (so that the twist of V(f) by v’ is unramified, cf. Equation
(101)). The pairings (-,-); defined in Equation (104) and the isomorphism
Deris(L(x)) = L sending the Gauft sum G(xy) to the identity induce perfect
dualities of Op-modules (denoted again by the same symbols)

(125) ()5 : D) @6, D ()T — 6.

Similarly as in Equations (116) and (121), for each classical point k € U§', the
specialisation maps (111) and the isomorphisms (112) give rise to specialisation
isomorphisms of L-modules

(126)  pi: D(f)*T @k L = Var(£,)/Fil° and  px: D(f)” @ L 2 Fil’Var(fp).

Under the isomorphisms (116), (121) and (126), the base change of (125) along
evaluation at k on Oy is compatible with the perfect duality (31).

o If k, = 1, the representations V(f;) and V*(f,) are Artin representations
unramified at p. After setting V' (f;)* = V' (f)* @1 L (for - = 0, %), one has a
decomposition of Gq,-modules

V(f)=VI(f)TeV(fi).
Indeed, according to Assumption 5.1(2) one has

V()T = V()00 and V()T = V()T
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where Frob, is an arithmetic Frobenius, agp, = ap(l) and oy, - ﬁfl =Xt (p).
In order to have a uniform notation (cf. Equation (112)), if k, = 1 one sets
Vir(f1) = Daris(V'(f;)) and defines

(127) VdR(.fl)/Fﬂo = DcriS(V(f1)+) and FﬂOVdR(.fl) = Deris(V(f1)7)-

Similarly set Fil' Vi3 (£1) = Denis(V*(f1)7) and Vi (£1)/Fil' = Deris(V*(£1)F).
The pairing (103) then induces a perfect and Gq-equivariant duality

V(f) oL V*(f) — L,

under which V(f;)" is the orthogonal complement of V*(f;)". This in turn
induces on the crystalline Dieudonné modules a perfect pairing

(128) (g, Var(f) @ Ve (f1) — L,

which identifies Fil’Vyg(f;) and Vagr(f,)/Fil° with the duals of Vs (f;)/Fil'
and FillVd*R( f1) respectively. One finally defines

(129) wy, = p1(wy) € Fi'Vir(fy) and ny = p1(ny) € Vir(f,)/Fil'

as the specialisations of wy and 1y respectively at weight one.

6. Garrett—Rankin p-adic L-functions

Fix three primitive L-rational Hida families

fﬁ: Z an(k) : qn € S((};d(Nf,Xf)v

n>1
g'= Z bn(l) - q" € Slojl;d(Ngng)
n>1
and hu:ch(m)'qneslc}i?(]vh7xh)'
n>1

Let N be the least common multiple of Ng, Ng and Ny, and let
fe S(‘};d(N, Xf), g€ S’,‘};d(N, Xg) and h € S,‘}id(N7 Xh)

be Hida families with associated primitive forms f*, g* and h* respectively. Suppose
that Assumption 1.2 holds true, namely Xxf - xg - Xn is the trivial character modulo
N. Denote by %%™ the set of classical triples w = (k,l,m) in ¥y such that p does
not divide the conductor of f,, g; and h,,.

For any w € X% one has f, = (fi)a:9; = (91)a and Ry, = (hy)a for (unique)
p-ordinary eigenforms fi, g; and h,, of common level N (cf. Equation (54)). Similarly
fi.g; and k!, are the ordinary p-stabilisations of newforms f;,g; and hf, of levels

N¢, Ng and N}, respectively.

Lemma 6.1. — There exists a Hida family wy (f) in Sf];d(N, Xf) such that, for any
ke de with p not dividing the conductor of f., the weight-k specialisation wy (f)x
is the ordinary p-stabilisation of fi¥ = wn(fk)-
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Proof. — A direct computation (see Proposition 1.5 of [AL78]) shows that
wy opr, = ((p,1)) -pryowy and wy opr] =prjowy

as morphisms from Hle(Yl(N)Qp,YdR,k,Q)L to Hle(Yl(Np)Qp,ydRyk,g)L, where
{(p,1)) is the diamond operator associated with (p,1) under the identification
Z/NpZ =7Z/NZ x F,,. As a consequence

(130) (f)a = (prt 0wy — % prto wN) fe

=wp o (pff - p%}l 'pr,*)) fo = wn(fy)-

The lemma follows from the previous equation and [KLZ17, Proposition 10.1.2],
namely the existence of a morphism wy : Sg;d(N, Xf) — Sg;d(N, Xf) which spe-
cialises to the Atkin-Lehner operator wy on the ordinary part of Si(I'1(V, p), x¢) for
each classical weight & in Uf' (cf. Equations (69) and (117)). O

According to the previous lemma and the results of [HT01, DR14, Hid85] Hida’s
method (cf. [Hid85]) can be applied to construct a square-root Garrett—Rankin p-adic
L-function

fpf(‘f7g7h) € ﬁfgh

such that, for each classical triple w = (k,l,m) in chen, one has

(131) ,pr(f,g7h)(w) :jpf(fkaglvhm)a

where fpf(fk,gl,hm) is the p-adic period associated in Equation (55) to the p-
stabilisation of the triple (fx, g1, hm)-

Remark 6.2. — The p-adic L-function £/ (f, g, h) slightly differs from the one
denoted by the same symbol in [DR14]. Precisely our fpf (f,g,h) is equal to their
.,iﬂpf (wn(f*),g,h), where f* is the Hida family which specialises to the dual of f, for
each k in UJEI.

6.1. Test vectors and special value formulae. — In this section assume the
following hypotheses (cf. [Hsi20]).

Assumption 6.3. —
1. There is a triple (k,l,m) in ¥ such that the local sign ,(ff, g;, hi,) is equal to
+1 for all primes q|N.
2. The greatest common divisor of Ng, Ng and Ny, is squarefree.
3. There is a classical point k in de such that V(f}) is residually irreducible and
p-distinguished.

Under these assumptions, Section 3.5 of [Hsi20] implies the existence of an explicit
level-N test vector (f*,g*, h*) for (f*, g% h*) such that the Garrett—Rankin triple
product p-adic L-function

Lp(fn7gu7hﬁ) _ gpf(f*’g*7h*)2



50 MASSIMO BERTOLINI, MARCO ADAMO SEVESO, AND RODOLFO VENERUCCI

satisfies the following interpolation property (see Theorem A of loc. cit.). For all
w = (k,I,m) in 5"
(132)
L(k,l,m)  E(ff.g] hin)’ L(f; ® g} ® h,,, =52
LP(flgaglahgn) = Qi(klm)) & ( . lg ﬁ HL kQ(k l2) -
" o(FH)? - Eu(fi)? T . (fk,fk)Nf

)

where the notations are as follows.
e a(k,l,m) € Ofgp, is a linear form in the variables k,l and m and
(133)
L(k,m,l) = ((k+1+m—4)/2)!- ((k+1-m—2)/2)!- ((k+m—1-2)/2)!- ((k—1—m)/2)!.

o Set ¢,y = (k+1+m—2)/2, ap = ap(k), B = xz(P)p* 1 /aw, au = by(l) et
cetera. Then

(134)
E(ff gl ) = <1_ﬁkagam> (l_ﬂkﬁ;am) (1—/3’““!@”) (bwjﬂm),
b b pv pew
(135) (fk)—lfﬁ and gl(flg):17p-ﬂl;k'

e For each rational prime ¢ dividing N, Loc, is an explicit non-zero rational
number, independent of w.

e Let w(f}),m(g}) and mw(h%,) be the cuspidal automorphic representations of GLy
attached to ff, g/ and h?, respectively, and set II, = 7(f}) ® 7(g}) ® m(hi,).
Then

L(ff®@g @hl,, s)=Ll,,s+B—k—1—m)/2).
Thanks to the results of Garrett and Harris-Kudla [Gar87, HK91] one knows
that L(f{ ® g; ® h%,, s) admits an analytic continuation to all of C and satisfies
a functional equation with global epsilon factor £(II,, 1/2) equal to +1 relating
its values at sand k+1+m — 2 —s.
This is proved by Hsieh in Theorem A of [Hsi20] relying on the special value
formulae of Garrett, Harris-Kudla and Ichino [Gar87, HK91, Ich08|.

7. Selmer groups and big logarithms

Let (f*,g%,h*) and (f, g, h) be as in Section 6.

7.1. A four-variable big logarithm. — Let (cf. Section 5, in particular Equa-
tions (97), (102) and (101))

M(f.g.h); = V(H)~ELV(g) LV (h)* (Wil ™ w5 ™).
This is a free Opgp-module on which Gq, acts via the unramified character

V:Gq, — GuQrp — ﬁ;gh
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defined by

_ XgXn(p) - ap(k)
(136) U (Frob,) = b,(0) - c(m)

(cf. Equation (101)). Let Ocye C Qp[J —jo] be the ring of bounded analytic functions
on an open disc Uey. centred at j, = (ko — lo — m,)/2, and let k23 : Gq — 07, be

cyc cyc

defined by rzf(g) = exp,(—j - log,(Xcye(9))). Denote by Ofgn the tensor product

cyc

Opgh®q, Ocyc and define the Ofgp[Gq,]-module

(137) M(fvga h’)f = M(f7ga h)f®Qpﬁcyc (w;yj;:o ! H(?y?:) .

Denote by Z = Zpgn the set of integers such that j = j, (mod p — 1) and set
Y =3YxZ. Foralw= (kl,m)eXlet ¥, : Gq, — L* be the composition of
U with evaluation at w on Opgp and define M(f,,g;,hm)r = M(f,g,h)f @, L as
the base change of M (f, g, h) under evaluation at x on Ofgp, which is isomorphic to
L(V,,)® for some positive integer a > 1. If z = (w,j) € ¥ then evaluation at = on
Ofgn induces a natural isomorphism of L[Gq,]-modules

po s M(f,g,h)f @2 L= M(fy,gp, hm) f(—3).
If
Apgh = Np@oAg& o AR
then
M(f.g,h)y =M(f,g,h)¢[1/p]

for a Aggn[Gq,]-module M(f, g, h)y, free of finite rank over Aggp. Let Z;‘r =W(F,)
be the ring of Witt vectors of an algebraic closure of F,, and define

~ o~ NG
D(faga h’)f = (M(fag, h)f®ZpZ2r) [1/]9}
and
D(f797 h)f = D(.fvga h)f®Qpﬁcyc-
(Note that D(f,g,h)s is naturally isomorphic to D(f)"®,D(g)*&®rD(h)", cf.
Equation (124).) As M(f, g, h)y is unramified and free over Aggpn, D(f, g, h); is a free

Opgn-module of the same rank as M(f,g,h);. For all classical triples w = (k,l,m)
in ¥ the specialisation maps (106) induce a natural isomorphism

Pw - D(fagvh)f Quw L= Dcris(M(fk-vglah'rn)f)

Let t, denote Fontaine’s p-adic analogue of 274, which depends on a fixed choice of a
compatible sequence (= of p"-th roots of unit for n > 0. The element ¢ = ¢, @y is
a canonical generator of Deis(Q,(1)), and gives rise to a generator ' of Deyis(Qp (7))
for each i € Z. For any x = (w, j) in ¥ define the isomorphism

(138) Pz * D(f,g, h’)f Rz L= Dcris (M(.fkvgla hm)f(*j))-

by the formulae p, (a®B) = B(j) - puw(a) @t 7, for each o € D(f,g,h); and B € Oeye.
If j < 0 then the Bloch—Kato exponential map gives an isomorphism

CXPy ¢ DcriS(M(fkagla hM)f(_j>) = Hl(vaM(fmglahm)f(_j))a
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and one writes log, for its inverse. If j > 0 denote by

exp; : Hl(QmM(fkvglahm)f(*j)) — Dcris(M(fkaglvhm)f(*j))

the Bloch-Kato dual exponential map. The following proposition is a consequence
of the work of Ochiai [Och03] and Loeffler—Zerbes [LZ14], which extends previous
work of Coleman—Perrin-Riou [Col79, PR94]| (see also Theorem 8.2.3 of [KLZ17]).

Proposition 7.1. — There exists a unique morphism of Ofgpn-modules

Ly:H(Qp, M(f,g,h)f) — D(f,g,h)s

such that for any © = (w,j) in ¥ with W, (Frob,) # p'*/ and any Z in
HY(Q,, M(f,g,h)s) one has

) ; e g

220, = (1 g ) (1- 205y {Um log, (%) i §<0
W (Froby) p't jlexpi(2;) if 70

where L§(Z), and 2, are shorthands for py o L§(Z) and p..(Z) respectively.

7.1.1. Opgn-adic differentials. — Recall the Op-modules D*(f)* (resp., D(f)*) in-
troduced in Equations (115) and (120) (resp., Equation (124)), and define similarly
D*(¢)* and D(€)* for € = g, h. Then (cf. Section 7.1)

D(f7g7 h)f = D(.f)_®LD<g)+®LD(h)+®Q,, ﬁCyC7
and one defines dually
D*(f,g,h); = D*(f)*®rD*(9)”&rD"(h)”®q, Ocyc,
so that the perfect dualities (-, ->€, for € = f,g,h (cf. Equation (125)) yield a pairing
(139) <'a '>fgh : D(fvga h’)f ®5’th D*(f7ga h)f — ﬁfghu

Moreover, identifying Deis(Q, (7)) = Q, - t* with Q,, (i € Z), the isomorphisms (116),
(121), (126) (and their analogues for g and h) give specialisation isomorphisms

(140)  p.: D(f,g,h); ®, L = Fil’Var(£,) ®r Var(g,)/Fil° @1 Var (hy,)/Fil°
and
(141) pe: D*(f,g,h); @, L= Vin(f,)/Fil' @ Fil'Vig(g,) @1 Fil' Vi (hn),

for each classical 4-tuple © = (k,l,m,j) in ¥ with k,I,m > 2.
Define the Opgn-adic differential (cf. Equations (118) and (122))

(142) Nfwgwh = Nf @wg @wp @1 € D*(f, g, h);.

According to Equation (119), Equation (123), and the discussion following Equation
(126), for each x = (k,I,m, j) € ¥ with k,l,m > 2 and each p in D(f,g,h); one has

(143) <I‘l’777.fwgwh>fgh (x) = (p - 1)ap(k) : <pw(l'l')7nfk® w91® wh7n>fkglhm ’

where (-, -) Fog o 18 the product of the perfect dualities (-, -) ¢ introduced in Equation
(32), for £ equal to f;, g; and h,,.
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Define the four-variable f-big logarithm
= — def / 5 - 5
(144) gf :gog(.fvgvh) = <‘Cf(')7nfwgwh>fgh :HI(QZHM(fvgvh‘)f) — ﬁfgh,

to be the composition of £y with the linear form (-,nfwgwn) 4., on D(f,g,h);.
Mutatis mutandis the previous constructions apply after replacing f with a = g, h.
One obtains four-variable a-big logarithms Ly : H (Qp, M(f,g,h)a) — Ofgn.

7.1.1.1. Weight-one specialisations. — With the notations introduced in the last
part of Section 5 (cf. Equations (127)—(129)), the isomorphisms (140) and (141) and
the definition of the pairing (-, '>fkgzhm extend to all classical 4-tuples = = (k,l,m, j)

in ¥, independently on whether the weights k,l and m are geometric or not (id est
equal to 1). Moreover, if k£ > 2, Equation (143) still holds.

7.2. The balanced Selmer group. — Define the continuous character
Efgh : GQ — ﬁf*gh
by the formula

(4holommo)/2 o () (4=k—l=m)/2

Efgh(g) = wcyc(g) yc(g
for every g in Gq, and the Opgn[Gql-representation
V(.faga h’) = V(f)®LV(g)®LV(h) ®ﬁfgh Efgh-
Equations (103) and (114) imply that V(f, g, h) is Kummer self-dual: the product
of the perfect dualities [-,-]¢ : V(§) ®g, V(§) — O¢(1 + Ky, + x¢) defined by
[z, yle = (z, wg,;(y))g yields a perfect, skew-symmetric duality (cf. Assumption 1.2)

['a ']fgh : V(.fag7h‘) ®ﬁfgh V(f).q’h’) — ﬁfgh(l)a
whose adjoint identifies V(f, g, h) with its own Kummer dual. Moreover, for all
w = (k,l,m) in 3 the specialisation maps (106) induce isomorphisms

(145) Pw V(fvg,h) ®ngV(fk,glvhm)

(cf. Equation (47)), where - ®,, L denotes the base change under evaluation at w.
Define a decreasing filtration .Z V(f) on V(f) by ZIV(f) = V(f) for every j < 0,

FW(f) =V ()t and FIV(f) = 0 for j > 2, and similarly .Z V(g) and .Z V (h).

Let & V(f,g,h) be the tensor product filtration:

)

FV(f.g.h)=| Y. FV(H@LFV(9)OLF V(h)|Qop,m Esgh-
ptgtr=n

This is a decreasing filtration of V(f,g,h) by Opgn|Gq,]-submodules, satisfying
F4V(f,g,h) = 0 and .Z°V(f,g,h) = V(f,g,h). The annihilator of .Z'V(f,g,h)
under the duality [-,-]fgn is equal to F4V(f, g, h), hence the adjoint of [, ] ¢gn
induces isomorphisms of Orgp[Gq,]-modules
(146) gt'V(f.g,h) = Homg,,, (s 'V (f,g. h). Opgn(1))
(where gr'V (f,g,h) = FV(f,g,h)/F+1). If one sets

V(f,g.h) s =V(f)~©LV(g) &LV (h)* @6y, Efgn,
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and defines similarly V(f,g,h), and V(f, g, h)p, then

(147) er’V(f,9.h) =V(f,g.h); ®V(f,g.h)g ®V(f. g, h)n

as Opgn|Gq,]-modules. It follows form Equation (146) and the definitions that the
inertia subgroup Iq,(,,) of the absolute Galois group of Q(u,) acts on gr’V(f,g,h)

and gr’V(f, g, h) via the characters nﬁ_’éj‘*m‘Z)/Q and /igégk_l_m)ﬂ respectively. In

addition, Equations (146) and (147) show that gr2V(f,g,h) and gr'V(f,g,h) are
isomorphic respectively to the direct sum of a finite number of copies of

l+m—k ltk—m ktm—1 k—l—m+2 mo_l—k+t2 l—k—m+2
p 3 2 3 3 3
Reyce @D Keye @D Keyc and KReyce @D Keye @D Keye

as Iq(y,)-modules (where k2. = Opgn(ke,.)). In particular, for each i € Z one has

(148) H°(Q,,er'V(f.g,h)) =0.
Define the balanced local condition
Hkl)al(QPa V(.f,ga h‘)) = Hl(Qp,y2v(fagv h))

In light of Equation (148), the morphism induced on the first Gq,-cohomology groups
by the inclusion .#2V(f,g,h) — V(f,g,h) is injective, hence we can, and will,
identify the balanced local condition with a submodule of H'(Q,, V(f, g, h)), namely

Hp(Qp V(f,9.h) = Im(HY(Qy, Z°V(f,9.h)) — H'(Qy, V(f,g.h))).
For - = f, g, h, one denotes by p. both the natural Gq, -equivariant projection
p.: F2V(f.g.h) — V(f,g,h).
arising from Equation (147) and the morphism
p-: H}:1>a1<QP7 V(fag’ h’)) — Hl(QP7 V(faga h))

it induces in cohomology.
For all morphisms of L-algebras ¢ : Opgn, — O, set

V@(f?.q’h)' = V(f7gvh’) ®<,0 ﬁtp a’nd Lg.‘/v<,9(.f7gvh) = yV(f,g7h) ®L,0 ﬁtpa
denote again by by p. : V,,(f,g,h) - V,(f,g, h). the natural projections, and define

Htl)al(Qp7th(fvg’h)) = Im(Hl(Qpaﬁ2th(f7g’h)) — Hl(Q[)a Vkp(fag7h))) N

If w= (k,l,m) is a triple in ¥ and ¢ is evaluation at w, we identify V,(f, g, h) with
V(fs,g;, hm) under the specialisation isomorphism p,, (cf. Equation (145)).
One has the following crucial lemma.

Lemma 7.2. — If w = (k,m,l) € Eya is a balanced classical triple, then

(149) H&al(QPa V(fka g, hm)) = Hf}m(QZN V(fk7 g1, hm))’

where H} (Qyp,-) is the Bloch-Kato finite local condition (cf. Lemma 3.5). As a
consequence, the Bloch—Kato exponential map gives an isomorphism

CXPp * VdR(flﬁglv hm)/FﬂO = Héal(QZN V(flwgl’ hm))
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Proof. — Set V' =V (fy,9;, hm), and consider the exact sequence of Gq,-modules

0— FV —V —V/F?—0.
The discussion preceding Equation (148) shows that .#2V has Hodge-Tate weights

k+l4+m—-2 k+1l—m k+m-—1 l+m—k
2 ) 92 ) a'nd 5

2 2
while V/.%? has Hodge-Tate weights
k—l-m+2 l—-k-m+2 m-k—1l+2 4—k—1l—m
5 , 5 , 5 and 5 .
Since w is a balanced classical triple, it follows that all the Hodge-Tate weights of
F2V (resp., V/.F2) are positive (resp., non-positive), hence

(150) tgyr (F2V) = Dgr(F2V) and Fil’Dyr(V/.Z2) = Dar(V/.F?)

(where tgyg(-) = Dgr(-)/Fil’). The second equality implies that H! ,(Qp, V/.7?)
vanishes (cf. Corollary 3.8.4 of [BK86]), and since .# 2V is isomorphic to the Kummer
dual of V/.#2, this in turn implies H(Q,, #2V) = H},,(Qp,.#?V) (cf. Proposition
3.8 of [BK86]). As H (Q,,V) = Hg.(Q,, V) by Lemma 3.5, one deduces that
H} (Q,,V) contains the balanced subspace H{,(Qp, V). On the other hand, Equa-
tion (150) shows that the inclusion .#2V —— V induces an isomorphism between the
tangent space of .72V and that of V. It follows that H} ,(Qp,V) is contained in
the image of H, ,(Qp, #2V), hence a fortiori in the balanced subspace H},(Q,, V).
Since Helxp(Qp, V) = H} (Qp, V) by Lemma 3.5, this concludes the proof of the first
statement. The second statement follows from the first and Lemma 3.5. O

7.3. The three-variable big logarithms. — Let w = (k,I,m) be a classical
triple in ¥. If w € Xy, is balanced, then the differential n;‘k ® wg, @ Wh,, belongs

to FilOVd*R(fk,gl, h.,) by Equation (53). In this case denote by
logp : Héad(QZh V(fk:vgl? hm)) = VdR(fkvgla hm)/FﬂO

the inverse of the Bloch-Kato exponential (cf. Lemma 7.2), and define

10gp('>f = Ing(')<n?k® Wy, ® whm) : Hgal(Qp’ V(fk»glv hm)) — L
to be the composition of log, with evaluation on n;‘k ® Wy, ® wp,, - Here one identifies
Var (i, 915 ) /Fil° with the dual of Fil’Vi; (fi, g, hm) under the product of the
perfect dualities (-,-), introduced in Equation (31), for &, = fi, g, hm.-
If w belongs to X ¢ denote by
eXP; : HI(QP, V(fi, 91 hm)) — FﬂOVdR(fkaZahm)

the Bloch-Kato dual exponential map, and by
eXp;(')f = eXp;(') (W?k Y Wg, ® whm,) : Hl(QP? V(fk7 g hm)) — L
its composition with evaluation at n;‘ék ® Wy, ® Wh,,. As above, here one identifies

FilOVdR(fk,gl, h,,) with a subspace of the dual of V5 (fy,9;, hm) under the tensor
product of the pairings (-,-), defined in (31) and (128). (If either [ or m is equal to
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1, the definitions of Var (fy, 9;, hm) and Vii (fi, g, hm) given in Equations (50) and
(51) are understood in light of the conventions of Section 5, cf. Equation (127).)

To ease notation set a = a,(k), B = x7(p)p"~1/ak, cu = b,(l) et cetera. Recall
that for each classical triple w = (k,I,m) in ¥ one writes ¢, = (k+1+m — 2)/2
(which belongs to N by Assumption 1.2).

Proposition 7.3. — There is a unique morphism of Oggn-modules

Ly = Zog(f.g,h) : Hpo(Qp V(f.9. k) — Ofgn
such that, for all w = (k,l,m) € ¥ with ayBBm # p° and 3 € H},,(Q,, V(F,g,h))

(1 - mﬁ%) . {%1ogp(3w)f if W€ Sha
(17%) (k—cw—l)!exp;(f)w)f if weXy
where 34 = puw«(3). Moreover Ly factors through

prs Hoa(Qp, V(£,9,h)) = H'(Qp, V(. 9, b))
Proof. — Set My = M(f,g,h)s, V=V (f,g,h) and V; =V (f,g,h);. Let
V: Opgh — Ofgn

ZL5(3)(w) = (p— Doy -

be the surjective morphism of L-algebras which sends the analytic function
F(k,l,m,j) to its restriction F(k,l,m,(k —1 — m)/2) to the hyperplane de-
fined by the equation 2j = k — 1 — m. (Here we implicitly shrink the discs Uy, Uy
and Up, if necessary, in order to guarantee that (kK — I — m)/2 takes values in the
disc Usye fixed in Section 7.1.) Unwinding the definitions one finds that ¢ induces an
isomorphism of Opgn[Gq,]-modules (denoted by the same symbol)

(151) V: My ®y Opgn = V.
We claim that this map entails an isomorphism
(152) V.t H(Qp, My) ®9 Opgn, =2 H'(Qp, Vy).

Granting this, one can define .Z¢ by the composition
L Hin(Qp, V(F.9,h) 7 HY(Qy, V(£,9.h)y)
ZLr®id

9t —
— H'(Qp, M(f,g.h)f) ®9 Opgn = —  Ofgn,

where jf is the four-variable f-big logarithm defined in Equation (144). Unravelling
the definitions, one checks that the interpolation property satisfied by % is a direct
consequence of Proposition 7.1. It then remains to prove the claim (152).

As M ¢ is a free module over the domain @fgh, the claim (152) is equivalent to the
vanishing of the (2§ — k + I + m)-torsion submodule of H?(Q,, M¢). Set

A= Afgh ®Zp Acyr:v

where Acyc is the Zy-module of functions in Oy bounded by one. The f-algebra
Afgh is isomorphic to a power series ring in four variables with coefficients in &.
In particular, it is a regular local complete Noetherian ring with finite residue field
(hence a UFD). Write My = M;[1/p] for a A[Gq,]-module My free of finite rank over
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A. For every discrete or compact A-module - write Z(-) = Homeont (-, Qp/Zp) for its
Pontrjagin dual. According to the local Tate duality and the Pontrjagin duality

(153) H3(Qp, Mp)[2) — ki + L+ m] = 2D (p(~1))5% /(25 — ks + L+ m) ) [1/3],

Let Frob, be the arithmetic Frobenius in G" = Gal(Q}"/Q,) and let v be a topo-
logical generator of G} = Gal(Qy(up=)/Qp) (recall that p is odd). By construction
(after identifying Gaébp with the product of_G;;r and G¥') Frob, acts on My as multi-
plication by ¥, = W(Frob,) and v acts on My(—1) as multiplication by the inverse of
[, = wlitio . 414 where w, = weye(7) and v, = Keye(7y). This yields

P(Mp(-1))9% /(2§ — k + 1+ m) = @@((\11—11\1“—1)[% —k +l+m])
i=0 o e

for some positive integer a (cf. Equation (137)). We prove that the module
A

— 27—k +1
(\Ijoflarofl)[g * +m]

is killed by a power of p, which together with Equation (153) proves the claim (152).
If j, # —1, the function T, — 1 is a unit in Aeyc[1/p], hence A/(¥, — 1,T, — 1) is
killed by a power of p. Assume then j, = —1 and let F' = F(w, j) be an element of
A whose image in A/(¥, — 1,T, — 1) is killed by 2§ — k + I + m. This implies that

l+m-—-k-2) Flw,-1) = (¥,(w) — 1) - G(w)

for some G(w) in Aggn. As j, = —1 there is a classical triple w = (k,[,m) € ¥
such that [ +m — k — 2 = 0 and such that p does not divide the conductor of f,g,
and h,,. According to the Ramanujan—Petersson conjecture the inverse of ¥, (w) has
complex absolute value ,/p for every such w (cf. Equation (136)). As a consequence
l+m — k — 2 is not an irreducible factor of ¥, — 1, hence the latter divides F'(w, —1)
by the previous equation. This proves that F' belongs to the ideal generated by ¥, —1
and j + 1. As (T, —1)/(1 + j) is a unit in Acye[1/p], it follows that p™ () . F maps
to zero in A/(¥, — 1,T, — 1) for a non-negative integer N(v,) independent of F, as
was to be shown. O

We call .} the three variable f-big logarithm. Mutatis mutandis, for @ = g, h one
defines a-big logarithms

‘i’pa : Héal(QPv V(fvgah)) — ﬁfgh’
which factor through pa. : HL,(Qp, V(f,g.h)) — H (Q,, V(f,g,h),) and satisfy

similar interpolation properties.

8. Proof of Theorem A

This section proves Theorem A stated in the Introduction.
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8.1. Construction of «(f, g, h). — Fix a nonnegative integer ¢ > 1, which will be
made sufficiently large below. For § = f,g,h and - = 0,/ set A, = At o Ay = Ay, ,
D; =Dy, , and D, = Dy, , (cf. Section 4 for the relevant definitions). Similarly, for
anyu € U¢NZ,set A, = A, ., D, =D, ,, A, =A,, and D, =D, .
Set
(T X T)O = {(tl,tg) eTxT | det(tl,tg) S Z;},

where det((z1,22), (¥1,%2)) = 192 —x2y1. Let (T xT)? be the complement of (Tx T)g
in T x T. Note that (T x T)g and (T x T)" are open compact subsets of T x T,
preserved by the diagonal action of I'g(pZ,). Identify A,@An = Ag®eAp with a
space of locally analytic functions on T x T, homogeneous of weights kg = Ky, and
kn = Ky, in the first and second variable respectively. The orthonormal basis of
Ag®Ay, arising from Remark 4.1 gives a decomposition of I'g(pZ,)-modules

A9®Ah = (A9®Ah)0 @ (.Ag®./4h)0,
where (Ag®Ap)o and (Ag&.Ap)° consist in locally analytic functions supported on
(T x T)o and (T x T)Y respectively. Let Apgrn, = Af®eAg®eAp and define the
characters v} : Zy — Af p, and Kfgp, 2 Zy — Af gy, by

iy () = ()l tmehem /2. () Erm kD

and  Kjgn(u) = wlu)betobme0)/2 ) krEm=0)/2

for every u = w(u) - (u) in Zy = Fy x 1+ pZ,. (Recall by the discussion preceding
Equation (97) that r¢(u) is equal to w(u)k=2- (u)*72, and similarly for kg and Kp.)
Here one uses Assumption 1.2, which guarantees that the quantity k, + [, + m, is an
even integer. Define similarly k7 and rj,, so that rfg, = &} + kg + K}, (again with
additive notation). After noting that det : Zf) X Zg — Z, maps T" x T to Z;, let

Det = Det{?" : T/ x T x T — Aggn

be the function which vanishes identically on T/ x (T x T)" and on an element (x, y, 2)
in T" x (T x T)g takes the value

Det(z,y, z) = det(x, y)"» - det(ax, z)" - det(y, z)"*.
Because kj +kj, = Ky, one has Det(u-x,y, z) = rf(u)-Det(z,y, 2) for every u € Z,
hence for + big enough Det(z,y,, z,) belongs to A} for every (y,,2,) € T x T.
Similarly Det(z,,y, 2,) € Ag and Det(x,,y,, z) € Ap for every (z,,2,) € T' x T
and (x,,y,) € T’ x T respectively. Moreover
Det(x -7,y -7,z - ) = det(y)"Fs» - Det(x, y, 2)

for every v € Tg(pZ,). As a consequence Det can be identified with an element of

}®A9®Ah(—m}kgh), which is invariant under th? diaAgonal action of I'yg(pZ,) (cf.
Section 4.2). Since the I'g(pZ,)-representation .A’f®Ag®.Ah corresponds to the pro-
sheaf A} ® Ag @ Ap on Y = Yi(N,p) under the functor - (cf. loco citato) this
yields

(154) Det{f" € HY(Y, A} ® Ay @ Ap(—Kjgn))-
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Let I' =T'1(N,p) and let d : Y — Y2 be the diagonal embedding. Define

(155) w(F,9,h) = % w(f.9,h)° € HYQ,V(F.g.h)),
P
where
K(f,g.h)° = AJLS" (Det{gh)

is the image of the big invariant Detf\,%l under the big Abel-Jacobi map AJ gtgh defined
by the following composition.

HY, (Y, A0 Ag © Ap(—rfgn)) 5 HE(Y?, A R Ay K An(—KEgn) @2, Zp(2))
2, HY(Q, HE, (YG: Ay K AG KAL) (2 + Kf )

(156) 5 HY(Q, HY D, A& HY(L, Ag)& L HY (T, AR) (2 + Kign))
(oSG F(Q, HY(T, Ag)ér HM(T, Ag)or HY(T, Ap)(2 + K}gn))
Lot HY(Q, HY(T, D) S0 HY(T, D) S°@ HY(T, D},)S°(2 — Kfgn))

T HN(QV(HELV(9)DLV (R)(-1 — kign)) = H'(Q.V(£.9.h)).

Here kg, - Gq — Afgh denotes the composition of /@fgh with the p-adic cyclotomic
character xcyc. The first arrow is the push-forward by the diagonal embedding d.
The morphism HS arises from the Hochschild-Serre spectral sequence and Equation
(80). (Note that Hy(Yg,7) vanishes for every pro-sheaf 7 € S(Y), as follows
easily from Equation (75) and [Mil80, Chapter VI, Theorem 7.2].) The map K comes
from the Kiinneth decomposition and the projection in Equation (79). The morphism
(wp, ®1d ®1d). is the one induced in cohomology by the Gq-equivariant Atkin-Lehner
operator wy, : H'(T', A}) — H'(T, Af) (cf. Sections 4.1.2 and 4.2). The penultimate
arrow sggn« is induced by the tensor product of the morphisms of Ggq-modules

HY T, Ay) —» HYI',Ag)S° 22 HY(T, D))S%(—ky,)

for a = f,g,h, where the first map is the projection to the slope < 0 part and
Sa = 81,0 is defined in Equation (83). Finally pryg, denotes the tensor product of
the Gq-equivariant projections pr, defined in Equation (105).

8.2. Balanced specialisations of k(f,g,h). — Let w = (k,l,m) € Xy, be a
balanced triple of classical weights, let » = (kK — 2,1 — 2,m — 2) = w — 2, and let
r = (r1 + 72 +13)/2. Recall the diagonal classes

%Np,r € geo(Q WNP T‘) and KNp,r = ST*(F&NPJ‘) geo(Q VNP ”')

introduced in Equations (43) and (46), and define the twisted diagonal class
(157)
'%T(flm glv h'rn) = pr‘fkglhm* (S'I‘* ((w; oY ld by ld)* (’E"‘Npﬂ‘))) € Hgleo(Qa V(.fkv gla h?n))-

Here pry, g p,, is the projection defined in Equation (48) and
(w;) ®id ®id), : Hl(Q(MP)» Wipr) — Hl(Q(Np)a Wipr)
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is the map induced by the dual Atkin-Lehner operator
wy, + Hy(Yi(Np)q, 7) = He(Y1(Np)q, )

(cf. Section 2.3.1) and the Kiinneth decomposition on Wy, .. A priori the class
&1 (fy, gy, hm) then lives in the geometric subgroup of HY(Q(1p), V (fs, 91, bm)). On
the other hand the forms f., g; and h,, have level 'y (N, p) = I'; (N)NT(p), hence the
cohomology class Ky, is in the image of the map induced in Gg-cohomology by the
pull-back HE (Y1(N,p)gy: Fr)(cw) —> HE(Yi(NDP)g, /1)) (cw) = Wip,r. Because
the Atkin-Lehner operator wj, acting on HY (Y1(N,p)q, %k—2) is Gq-equivariant,
this implies that x'(f,,g;, hm) is fixed by the action of the Galois group of Q(u,)
over Q, hence can naturally be viewed as a geometric class in HY(Q, V (£, g;, hm))-

With the notations already introduced one has the following

Theorem 8.1. — For each balanced triple w = (k,l,m) in Xpa one has

(p_ 1)O[fk . pw(’%(fagah)) = (1 - afkpﬁrgfrfhm) ! KT(fk7gl7hm)'

Before giving the proof of Theorem 8.1 we deduce the following

Corollary 8.2. — k(f,g,h) lies in the balanced Selmer group H.,,(Q,V(f,g,h)).

Proof. — By definition one has to prove that the class
resgz p(k(f, g, k) € H(Q,V(f,9,h)/F°V(f,9,h))

is zero, where res z , is the composition of the restriction at p and the map induced by
V(f,g,h) - V(f,g,h)/F?. According to Proposition 3.2 for every balanced triple
w = (k,l,m) in Xy, one has

resp (”T(fkagz, hm)) € Héeo(Qp, V{(fi g1 hm))-
Let X9, be the set of (k,l,m) in Y. such that p does not divide the conductors of
i, 9; and h,,. One has

Hgleo(QmV(.fkﬂgk?hm)) = ker(Hl(QzH V(fkvglﬂhm)) — Hl(vaV(.fmghhm)/yQ))
and
g, By, B, 1

for all w = (k,1,m) in X¢_, (by the Ramunajan—Petersson conjecture). The previous
two equations and Theorem 8.1 imply that the class resgz ,(k(f, g, h)) specialises to
zero in HY(Q,, V(fs, 91, hm)/F?) at every w in ¥¢_|. Because ¢, is dense in Uy x
Ug X Up, to conclude the proof it is then sufficient to show that H'(Q,, V(f, g, h)/F?)
is Opgn-torsion free (hence a submodule of a reflexive Opgn-module), which implies
that ﬂwezgal(k —k,1—1l,m—m)-HY(Q,, V(f,g,h)/Z?) = 0. This is a consequence
of the following claim. If p € gy, is irreducible and one sets O, = Ofgn /(p), then

(158) H(Qp,V(f,9,h))F* ®e,,, Op) = 0.
The rest of the proof is then devoted to the proof of this claim.
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Section 7.2 shows that there is a short exact sequence of Gq,(,,)-modules
ﬁ@(ef)@a ® ﬁp(eg)@a ® ﬁ@(eh)@a — V(f.g,h)/7? ®6rgn Op — ﬁp(efgh)ﬂaa’

where a is a positive integer and the characters 0. : Gq,(,,) — O, are defined by

Opgh = ffE‘;Zk_l_m)/Q ~ap(k) - Bp(l) - Ep(m),
O = ’igjcilierz)/z “XF Bp(l) - Cp(m) - &p(k)’l

and similarly for 04 and 0. Set prgn = 4—k—1—m, set py = k—l—m+2 and define
similarly pg and pp. Denote by p, and 0, one of p. and 6. respectively. If @ - Ogp is
different from one of the ideals pq - Opgn, then H%(Iq, (), V (f, g, h)/F* @6, Op)
is trivial and (158) holds true. Assume now p = u - g4 for a unit u in Opgp, so that
fo is an unramified character of Gq,( According to the Ramanujan—Petersson
conjecture one has

Bp)

|0a (Froby ) (w)| = /p
for all w € 37, NV (p) (where | -| is the complex absolute value and V() is the zero
locus of p). Shrinking the discs U. if necessary, we can assume that ¢ , NV (p) is
non-empty (otherwise p would be a unit). The previous equation then implies that
the characters 6. are non-trivial and (158) follows. O

Proof of Theorem 8.1. — According to [Mil06, Section I1.7] for every n,i > 1 there
is a trace isomorphism

Traceyn : H2"P3(Y", 0 /m(n 4+ 1)) = 0/m".

ét,c

(See Chapter II, Section 2 of loc. cit. for the definition of Hl'ét,c(Y",)7 denoted
H.(Y™,-) there.) For all finite smooth sheaves .# of ¢'/mi-modules on Y?, Tracey
and the cup-product define perfect pairings

(159) (- -)yn = Traceyn o U: H. (Y™, Z) @ H2' TP (Y™ G (n+ 1)) — O0/m’,

ét,c

where ¥ is the dual of .# (cf. Chapter II, Corollary 7.7 of [Mil06]). Denote by .%, in
Sf(Yet) the sheaf associated to Fil; ;A,, , for u > 0 and fixed j > i > 0, and by ¢, the
O /mi-dual of .Z,. One has a Hecke equivariant diagram of adjoint morphisms, where
the Hecke operators are defined by constructions similar to those of Section 2.3.
(160)

)y

HG (Y, F], @ Fry ® Fpy(r)) % HG (Y9, @9, @G, (2-71)) O /m!
“| < |
HL(Y3, L RF,, R T, (r+2) x HE (Y39, RY, KG, (2-1)) Y i

Let A: and A be shorthands for A, and Ajﬂ respectively. Similarly as above,
the orthonormal basis of A,®.A, arising from Remark 4.1 gives a decomposition of
To(pZ,)-modules

Au®Au = (Au®-/4v)0 ® (Au®~’4'u)07
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where (A,®As)o (resp., (A,®.A45)°) can be identified with a space of locally analytic
functions on T x T supported on (T x T)g (resp., (T x T)?). This in turn induces
similar decompositions

T @ Ty = (P @ F))o®(F @) and 9, 0%, = (9. %) ® (Y ©%,)°.

Let ¢t : Y1(Np) — Y1(N,p) = Y be the natural projection. To ease notations, let
Det € Hy (Y, A, ® A, ® A, (r)) denote the image of Det};, under the composition
of the push-forward ¢, with the natural map

He(’:)t(K yﬁ ® ,54,‘2 ® yTz (T)) — Hgt(yv’ A:"I ® ‘A’fz by A"3 (’I“))

For j = j(i) large enough, let D = D} ; € HY (Y, ) ® Py, @ Fp,(r)) be a represen-
tative of Det (mod m’) (cf. Section 4.2), and let Dy = Dj ;, be its projection to the
cohomology group HY (Y, Z) & (F., ® Z,)o(r)). By construction

(161) (p—1) - pu(Det) =1limD7 ;.

For all z in H, (V3,9 K¥,,K¥,, (2—7)) one has the equalities (cf. Equation (160))

(4:(0 = D), 18 UF2(2)) s = (0= Do, (10 UF2(2))),,
= (D=Do, 5" (126" (12 UP(2))))
) =(D,6"(1 @ Up(1®6%(2))))y
=y (0,65(U) @1 (19 6%(2))))
=p " (D,d(U, ®121(2))),,
=p"" - (d.(D),U; ®1®1(2))

Y

Y

Y3

where 6 : Y — Y2 is the diagonal embedding. To justify the third equality one notes
that

1®6* 01U 1@ U,0l®d*

(resp., 1@ U, 01®§*) takes values in the submodule H, (Y, %/, @ (4, ®%,,)0(2—7))
(resp., in HY, (V. 9, ©(%,,%,,)0(2—r))), and that Hf, .(Y.9, 0(%,%,,)o(2-1)) i
orthogonal to H2t7C(Y, Fh(Fr,@Fr,)°(r)). (Compare with the proof of Proposition
5.4 of [GS20].)

All the other equalities in Equation (162) but the fourth are standard. To prove the
remaining equality, let 7 : Y — Spec(Z[1/Np]) and w = 7 x 7 : Y2 — Spec(Z[1/Np])
be the structural maps. Let Rm and Rm be the d-functors associated in [FK88,
Chapter I, Definition 8.6 with the compactifiable maps 7 and 7, so that by definition
HE (Y,-) = H (Z[1/Np|, Rm-) and Hf, (Y?,-) = H§ (Z[1/Np], Rm-) for any
q = 0 (cf. Section IL.7 of [Mil06]). If & denotes the étale sheaf &, X (¥,, @%,,)(2—7)
on Y2, one can lift the Hecke operators 10U, and U} ®1 on Hét,c(Y2, %) to morphisms
(denoted by the same symbols) Rm¥ — Rm% (cf. Section 2.3). The diagonal
embedding 6* : Y — Y2, the morphism of sheaves

B:6'G =G @Y, @9, (2—1) — O/m'(2)
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defined by the cup product with D, and the trace morphism

try : Rm0/m‘(2) — 0/m'[-2]
(see the discussion preceding Theorem 7.6 in [Mil06, Chapter II, Section 7]) induce
amap ¥ = try o B0 d* : Rm¥ — 0/m'[-2]. In order to prove the forth equality

in Equation (162) it is then sufficient to prove that the composition Z = do01® U,
agrees with W = y¢(p)p" ™" -9 o U, ® 1. By using the Kiinneth isomorphism

Rm¥ =~ Rm¥Y! ®% Rm(Y,, ® 9, (2 — 1)),

the sought for equality Z = W follows from the same formal computation as in the
proof of Proposition 2.9 of [GS20).

Since the operators 1®US? and Uy @1®1 acting on Hj, (YV?,9) RZ,,KY, (2—7))
are the adjoints under (-,-)ys of the operators 1 ® U;?Q and U, ® 1 ® 1 acting on

HL (V3 7 K F,, ®Z,,(r+2)), and since (-,-)ys is perfect, Equation (162) yields
(1@U,®Up,)0dy(D—=Dg) =p" ™ - (U, @1 ®1) 0d,(D).
In light of Equation (161), this implies
(163) (p—1)-1®U, ®Up,) oKoHS od, o p,(Det)
=(1eU,0U,—p ™ -U,®1®1) oKoHS o d,(Det)

in H (Q, H (T, AL )&, H*(I', Ay, )® L H (', Ay, ) (r+2)), where A;, is a shorthand for
A;, ,, and the morphisms K, HS and d, are defined as in Equation (156), after replacing

the big étale sheaf A ® Ag ® Ap, with A, ® A,, ® A,,. To ease notations write ©
(resp., #) for the left (resp., right) hand side of Equation (163).

For each nonnegative integer v and .%,, = ., %, let
Hélt<Y1 (Np)Q, Fu)o — Hét(yl(Np)Qa Fu)L

be the L-direct summand on which the diamond operator (d) acts trivially for each
integer d coprime to p and congruent to one modulo N, so that the pull-back t*
yields an isomorphism between H} (Yq, #.)r and H} (Y1(Np)q,#.)°, with inverse

p%l times the push-forward t,. For - = (), 7 denote by
Cy 't Hélt(Yl(Np)QﬂSﬂu)O — Hl(FvAu)

the composition of ¢, with the comparison morphism introduced in Equation (72).
By construction

(c), 8¢, @Cry)s 0K (Rnp,r) = K 0 HS 0 d.(Det)

(where the morphism K which appear in the left hand side refers to the Kiinneth
decomposition of Wy = H3, (Y1(Np)g,#r))(r + 2)), hence

® = (., D¢, ®cr,)w 0 (1QU, @U, —p" ™™ - Up®1® 1) oK (Rnp.r)
(cf. the discussion following Equation (72)). Since w, o ¢}, = ¢, o w), where w/

P’ P
is the Atkin-Lehner operator defined in Section 2.3.1 and w, is the one defined in
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Equation (66), and since w),U, = (p)y Ujw, as endomorphisms of Hf, (Y1(Np)q,-%u),
one deduces
(164) wp, r+(W) = cpy 0 (1 ® UZ’, ® U; —p" " D)y U]; R1® 1) o w;’f* oK (Rnp.r),

where w), f = w, ®id ® id, w;)’f = w]’7 ®id ®id and ¢, = ¢, @c., cy, .
Taking h = 0 and replacing Ay and Dy, with A, and D), (for u € N) respectively in
the definition of the map sy, (cf. Equation (83)) yields a Gg-equivariant morphism
Su,0 - Hl(F7 Au)go(u) — Hl(r, D;)</07

which intertwines the action of U, on the source with that of U, on the target. If

comp,, : HY(T', D)0 — HL(Yi(Np)g, Z)5°
denotes the composition of t* : H} (Yg, Zu)r — H} (Y1(Np)q, Zu)o with the com-
parison isomorphism defined in Equation (73), then (cf. Equation (44))

1
p—1
as maps from H} (Y1(Np), Yu)fo(u) to H(T, fu)fo. Set sp0 = 8p, 0®85,,008r,,0
and comp,. = comp,, ® comp,, ® comp,. . It then follows from Equation (164) and
the definition of the twisted diagonal class x'(fy, g;, hm) that the equality

(166)
Qh,, Xr(p)p' e
! (1_ f f’“>~l<éT(.fk,gz,hm)
aglah7n

(165) COMP,, 0 Sy,0 O Cy = Sux

PTf g, Ry O COMPyy ©Sp 0 owp,f*(‘) =

holds in H} (Z[1/Npl,V(f,g;, hm)). (Here DIf, g.h,, 1S the tensor product of the
projections pr. defined in Equation (23), for - equal to f;,g; and h,,.)
By construction, one has
Ko HS o d, o p,,(Det) = p,, oKoHS o d,(Det),

where the maps K,HS and d, which appear in the right hand side are the ones in-
troduced in Equation (156). Since the maps p,, and comp, are Hecke-equivariant,
and since s, intertwines the action of U, on HY(T, A,)S? with that of U; on

HY(I', D!,)S'° (for each nonnegative integer u), it follows that
(167) & = (p — 1)ag,ah,, - Prf g p,, © COMP,, O Sr0x © Wy, fx O Py © K0 HS 0 d,(Det),
where one defines
o= Pry g ks © COMPyy © 8y 0x O wp, 1+(9).
One has wy, 740 pyy = py Wy r«. Moreover the diagram (84) and Equation (165) yield
1 1 1
]fl “Sux O Cy O Pyt = E © COMpP,, © Pyt2 © SU,,0

as morphisms from H(I', A¢)<0(kg) — HZ (Y1(Np)g,-Z.)5 °, for (€, u) equal to one
of the pairs (f,k—2), (g,l—2) and (h, m—2), (cf. the discussion following the diagram
(84)). (With a slight abuse of notation, in the previous equation one writes ¢, * for the
S0 and HY(T, A,)<° induced

o

COMP,, © Sy 0 © Put2 =

inverse of the isomorphism between H} (Y1(Np)q, )
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by ¢,.) Finally, with the notations introduced in Equations (105) and (106), one has
the following equality of Gq-equivariant maps from H'(T, D;)S0(1) to V(fy):

Prg, © COMP,, © Pyut2 = Put2 O Pre.
It then follows from Equation (167) and the definitions of ({> and) x(f,g,h)° that

(168) prfkglh,m* © COIMPy.y © Sy 0% © wp,f*(o) = aglahm * Pw (H(fagv h)o)'

As XgXgXn = 1 by Assumption 1.2, and by definition ag,8g, = xg(p)p">**,

an,, Br,, = xn(p)p™t! and 2r = ry + ro + 73, the theorem follows from Equations
(163), (166) and (168). (Recall that x(f,g,h)° = ay(k) - (f,g9,h).)
O

8.3. p-stabilisation of diagonal classes. — Write in this section

for every integer M > 3. Recall the degeneracy maps pr; : Y1(Np) — Yi(N), for
1 =1, p, defined in Section 2.2.

Let w € ¥pa and 7 = w — 2 be as in the previous section. Assume k,l,m > 3
and that p does not divide the conductors of f,,g;, and h,,. As in Section 6 let
f = frx (resp., g = g; and h = h,,) be the cusp form of weight &k (resp., [, m), level
I'i(N) and character x¢ (resp., xg, xn) Whose ordinary p-stabilisation is f;, (resp.,
g;, hyy). It is an eigenvector for the Hecke operator Ty, with the same eigenvalue as
fi (resp., g;, hy,), for every prime £ 1 Np, and an eigenvector for T, with eigenvalue
ap(f) = ag + By, (vesp., a,(g) = ag, + Bg,, ap(h) = an,, + Br,,). Assume without
loss of generality that 3, belongs to L for @ = f., g;, hm, and denote by

Hg* : VN;D,T ®Qp L — VN’,,- ®Qp L
the morphism (cf. Equations (20) and (45))
(169)

By, B Bh,
Hg* = (pr1* - prl : prp* & Pry, — pl%ll : prp* & Pry, — pmil : prp* .

A direct computation shows that the composition pry, o II7, factors through the
projection pry, g ., hence IIZ, induces a morphism

?kglh,m* : V(flwglahm) — V(fk’aglv hm)

of L[|Gq]-modules, which is indeed an isomorphism (see Equation (48) for the defini-
tion of the projections pry ), and prfkglhm). Note that r = (r1,7r2,73) and (fx, g1, om)
satisfy Assumption 3.1 and Assumption 3.4 respectively, hence the class k(fx, g, hm)
in HY(Q, V (fx, g1, hm)) is defined. Denote again by

?k,glhm* : Hl(Qa V(fkagbhm)) — Hl(Q7V(fkvgl7hm))

the morphism induced in Galois cohomology by 0%,

m*"
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Proposition 8.3. — Assume k,l,m > 3 and that p does not divide the conductors
of fr,9; and h,,. Then

Frgihom = (’%T(-fkv g hm))

18 equal to

o, (1- ) (1 S (1 Onadn) g,

Proof. — Fix a geometric point 1 : Spec(C) — Y (1, N(p)), corresponding to the class
of z in H under the isomorphism (6). With a slight abuse of notation denote again by
n the complex point v, o : Spec(C) — Y (1, N), and by 7 both the complex points
wpon:Spec(C) — Y(1(p),N) and 7, o ¢, on : Spec(C) — Y (1,N). Then n and 7
correspond respectively to the classes of z and p - z under the analytic isomorphisms
(6). With the notations of Section 2.3 (see in particular the diagram (9)) write

Ty = R 01 Ny Zp(1), TP = Ry vuZp(1) and T = R'oy n.Zy(1)

for the relative Tate modules of E(1, N(p)) — Y (1,N(p)), E(1(p),N) — Y (1(p),N)
and E(1,N) — Y (1, N) respectively (cf. Section 2.3). There are then natural iso-
morphisms

(170) Tpym E2p DLy -2= 7, and ‘Z;(p) =272y, ®Zy pz= T

Here the subscripts n7 and 7} denote the stalks at 1 and 7 respectively, and for each w
in H one writes

Zp@Zp W= Hl(C/Aw,Z) X7z Zp

for the p-adic completion of the integral homology of the complex elliptic curve C/A,,,
where A, = Z®Z-w. As in Sections 3 and 4.2, after identifying 7, , with Z, © Z,
under the Z,-basis {1, z}, the natural action of the étale fundamental group G, =
T (Y (L, N(p)),m) (resp., ¥ = x{ (Y (1(p). N). 7)) on Ty, (xesp., ")) gives a
continuous representation o) : Gy — I'(1, N(p)) ®z Zp = GL2(Z,) (6@ : GP) —
I'(1(p), N) @z Z, — GL3(Z,)), where I'(1, N(p)) (resp., I'(1(p), N)) is the subgroup
of matrices in (24) in SLy(Z) with c=0,d=1 (mod N) and ¢ =0 (mod p) (resp.,
b =0 (mod p)). For each i > 0 set

)i = Symmizp Tpy(—1) and ﬂ(p) = Symmizpﬂ(p)(—l),

where as in Section 2.3 the Tate twists J,)(—1) and 7 (?)(—1) are identified with
the duals of 7, and .7 under the Weil pairings on E(1,N(p)) and E(1(p), N)
respectively. Then the stalks of 7, ; and %(p ) at 1 and 1), viewed as representations

of G,y and G®) respectively, correspond via 0(py and o) to the T'(1, N(p))-module
S; = Si(Z,) and the I'(1(p), N)-module S; (cf. Section 3). As a consequence, for each
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j 2 0 and u € Z there is a natural inclusion (cf. Section 4.2)

A7) HOT(LN(p)), S ® det ™) ———— HO(Gy, S @ det ™)

Hgt(y(lv N(p)), *jﬂ(p),i ®Zp Zp(u))7

and an isomorphism
HL (Y (L, N(p)q, L)) = H (L(L,N(p)), i),

and similarly for the data (I'(1(p), N),G®, Z(p)) in place of (I'(1, N(p)), G(p), L (p),i)-
As already explained in Section 3, there are similar isomorphisms after replacing o,
with the representations ¢ : G — GLa(Z,) (resp., ¢ : G — GLy(Z,)) arising from the
action of G = 754 (Y (1, N),n) (resp., G = 7Y (1, N),7)) on the stalk at 5 (resp., 1)
of & = %(Zy). Under these isomorphisms, the maps

(172) e = )i 2 80 2 (Fpidy — () 2 i
and A= (A), 85 2 () — (Fpyidn 2 Si
induced respectively on the stalks at 7 and 1 by the morphisms (16) are given by

(173) N L(P) = ((1) 2) P and NA(P)= <g (1)> P,

for P in S;. Indeed the base change A; : C/A, = E(1,N(p)) x,, C — E(1(p), N) x5
C = C/A,, of the p-isogeny ), along 7 is induced by multiplication by p on C, hence
the map Aqs 7 » T (p) it induces on the Tate modules is represented by (6’ (1)),
once one identifies J,) and .7 ® with Z? under the Z,-bases {1, z} and {1,pz} (cf.
Equation (170)). Because the dual isogeny Aj of Aj is the map C/A,. — C/A,
induced by the identity on C, and A;. and A}, are adjoint to each other under the
Weil pairings on C/A, and C/A,,, Equation (173) follows.

After this preliminary discussion, we divide the proof into three steps. For each
triple 4, j, k of elements of {1, p} write

Plijrs = Py ® Prj @ PTyy ZNPJ‘(”) - ZNP>7‘(n)7

forn € Zand Z =V or Z = W, and denote by the same symbol the map they induce
in Gq-cohomology. For any curve X over Q write d : X — X 3 for the diagonal
embedding.

Step 1. One has the identities in H'(Q, Vy »(r + 2)):

(174) Prii. (Knpr) = (p2 —1)-kny and prppp*(”Npm) = (P2 —p" - KN

As the element Det” = Detyy is invariant under GL2(Z,), it defines under the
inclusion (171) an element Det” in H, (Y (1, N(p)), S p),i(r)), and similarly elements
(denoted by the same symbol) in HY, (Y (1(p), N), H),i(r)) and HE (Y (1,N), ().
According to Equation (173) and the definition of Det” in Equation (41) one has

(175) Ap«(Det™) = p" - Det”,
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where A7, = AL @ A2 @ A2 @id : S, @ det™" — S, ® det™ ", hence (since , has
degree p+ 1)

Upx © px © Ap,(Det”) = (p+ 1)p" - Det” € HY (Y (1,N), % (r)).
Retracing the definitions of Section 2.3 and using Equation (21) this gives
pr,.(Det”) = (p? — 1)p" - Det”.

The previous equation and the functoriality of the Hochschild—Serre spectral sequence
implies (cf. Section 3)

PTppps (FNpr) = Spx0HSODI, , 0d,(Det”) = sy.0HSod,opr,, (Det”) = (P*=1)p" Kn.p

This proves the second identity in Equation (174). The first one is proved by a similar
(and simpler) argument.

Step 2. The following identities hold in H'(Q, Vi (1 + 2)):
(176)

prpll*(K;NpJ‘) =p-1) -T,®ideid(kN); Pripp« (Knp,r)

(p—Dp~ " - T, ®id @ id(kN,r);

Prip(fnpr) = (0= 1) - ld @ T, ®id(knr);  Pryips(Bnpr) = (p = Dp" ™ - id ® T, ® id(kn,r);

prup*(H’Np.,r) =(p-1)-id®id® (k) PLpp1s (knpr) = (@—1p' ™" - id®id® T;(KN,T)-

We prove the second identity in the first line. Note that the finite étale cover 7, is
not Galois. To remedy this let ¥ : ) — Y (1, N) be a finite étale Galois morphism
which factors through 7, o ¢, : Y(1,N(p)) — Y (1,N), say ¥ = 1, o ¢, o o with
a:Y — Y(1,N(p)). Denote by G = Gal(?) its Galois group. For each u > 1
denote by 7, = vp. : H{(Y (1, N(p)), p),u) = H' (Y (1,N),.#,), and similarly set
Tt =wv,. Set

7";:* = Ups O Pps © )\Z*a
R
T =T ® 7'(';2* ® m2*

7’ _ T1 T2 T3
and i, =T @ @ W,

where 4, j, k is any triple of elements of {1, p}. Moreover for each morphisma : X — Y
of curves over Q write @ = a Xxq a xq a : X3 — Y3. With these notations it follows
directly from the definitions that

(177) Tlpps © Ty = (P +1)%p" 17 . T @ id @ id.
On the other hand, after setting
KNpr = Srx 0 HS 0 dy 0 9" (Det”),
one has (p + 1) deg(a) - Ky » = Fx(k}y, ), hence
(b + 1) deg(a)® - 775, (k) = A7 0 s 09" 0 9. (1, )

= Z )\;* O Oy O (91 X g2 X 93)*(’%7\/17,7')'
(91,92,93)€G3
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For each g,h € G one has 7r" o )\“ oy 0g, =Pt -, = p" - U o hy, hence the
previous equation yields

(178)
(p+1) deg(a)* - 77 0 T (Riv,r)
= pr2+r3 Z (Vp* o )‘;l* & Ups © Ppx & Upy © ‘Pp*) O Oy O gl*(/{]k\]p,'r‘)
(91,92,93)€G?
— (p+ 1) deg(@)* - (Vpe @ Fpy © Ppe @ Py © ) © (A @i @) (W ):
where k%, ,. = Spx 0HS0dy 0 (7, 00)*(Det™). According to Equations (41) and (173)
Ape (BNpr) = Aph @ ML @ AL (K ) = P - Kip
and A" o AJL(P) = <€ 2) -P=p"-P,

for P in S,,, hence (since 2r = r; 4+ ro + r3) one can rewrite Equation (178) as

(179) ﬂ{pp* o ﬂ;;p(HN,‘f‘) = (p + 1)2p7‘ ! Tr{pp*(’{;\/'p,r)'
(Note that, regarding the natural isomorphism of Equation (171) and its analogue for
Y (1,N(p)) as equalities, the pullback by 7, o ¢, is identified with the identity.) In
addition Equation (8) gives
(180) prlpp*(KN;DJ‘) = 71-iﬂpp* o l"’p*(KN;DJ') = (p - 1) 'Wz‘pp*(’{;\fpm)'
Equations (177), (179) and (180) finally give

(p+1)°D" - Pryppu(finpr) = (p = 1)(p+1)*p"*" - Ty @ id @ id (k).

This proves the second identity in the first line of Equation (176). The other equalities
in the second column (resp., the equalities in the first column) are proved by a similar
(resp., similar and simpler) argument.
Step 3. We can now conclude the proof of the proposition.
Applying the projector pry, ., (see Equation (48)) to the identities (174) and
(176) gives
Pri11«\KNp,») fgh = (p —1)-k(f,g.h);
ppp* KNp,r)fgh = pr(p _1) (fvg, )7
Prp11s (Fnp.r) fgn = (P — 1)Xr(Pap(f) - £(f,

(kNp.r)
( )
(knp.r)
(181) prlpp*<KNP7"')f‘] = "R f
( )
(KNp.r) s
(Fnp.r)
(KNpr) £

 h);
) &(f5 9, h);
PTip1«\KNp,r)fgh = Xg(P)ay(9) - k(f,9,h);
i ) &(f,9,h);
Priips (KNp,r) fgn = (P — 1 Xn(p)ap(h) - K(f, g,h);
= (p—1)p" "ay(h) - 6(f, g, h).
Here (f,g.h) = (fi:91, hm), prijk*(lin’r)fgh is a shorthand for the image of
DTk (KNp») under pryop. = DTy, o5 ., and we used the identity 7, = T}, o (p) as

prppl* KNIL
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endomorphisms of H} (Y1(N)gq,-Zi(j))q,- Because the map
si: Hy (Y1(Np)q, i) = Hy (Y1(Np)q,-£)(—i)

intertwines the action of the dual Atkin—Lehner operators w}’j on both sides, it follows
from the definitions that

(182) H?gh* (HT(fka g hm)) = prfgh* (H?* ((U}; ®id® id)*(HNp,’r‘)>> .
It it easily checked that
pr,, ow,=p'-pr;, and pry ow), = (p) - pr,,

as morphisms from H} (Y1(Np)q, %) to Hi (Y1(N)q,-Zi). As a consequence, setting
<p>/f = (p) ®id ®id and writing ay = ay,, By = By, , g = ag, et cetera, one has

1Ty, o (w, ®id @ id)
/ ﬂf 6 ﬂh
= <<p> : prp* - ? ! prl*) ® (prl* - 1)7‘273-1 ! prp*) & <pr1* - W : prp*)
/ 5 By (Pl Br (v BBy

= <p>f ! prpll* - ? “Prigi« — W ' prppl* - : prplp* + pT2+2 : prlpl*

p’l‘ngl

ByBn BB (p)f ~ ByBybn

prat2 " Pliip« pratrst2 " Plppps pratrst3 "Plipps-

+

Together with Equations (181) and (182) this yields
H?gh* (HT(fkagl’ hm)) = (p - 1) ! Opf(fvga h) : H(f>g7 h)v

where (recalling that a,(£) = ag + B¢ and agfe = xe(p)p*~* for £ € Sy(N, x¢), that
2r =1y +ro + 3 and that xgxgXn(p) = 1 by Assumption 1.2)

Br _ xs@)Bean  x£(@)BeBn  xg(p)orgfn
gf(f’g’ h’) =ay + 6f o ﬁf o ; o pr2+r37r+1 o pT2+T3*’I‘+1 - prs+r27r+1

Xz P)BeBr | Xg(p)BragBy Xg(p)ﬂf5§+)2h(p)ﬂfﬁhah Xn(p)Bs B,
pT3+T27r+1 pT2+2 pr2+2 pr3+2 pr3+2

(183) + Xt (P)Bobn | XgW)BBr _ _cBrBebn 53234,
pT2+7“3—7’+1 pT2+T’3—T+2 pT1+T2+Ts—T+3 pT1+T2+T3—7’+3
_ ( BrBgan  BragBn  BrBeBr | Xn(P)BiB;

pr+2 pr+2 pr+2 pn +7r2+3

pr +2 pr +r3+3 p7'+7'1 +4

BragP BB BBy
—or (125 (- ) (- 52)

This concludes the proof of the proposition. O

Xr(P)B?  Xq(p)B3BE Xf(p),é’j’é,@gﬁh>
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8.4. p-stabilisation of de Rham classes. — Let w = (k,,m) be a classical triple
in 3, such that p does not divide the conductors of f;,,g; and h,,. As in the previous
section denote by fx, g; and h,, the modular forms of level T';(N) with ordinary p-
stabilisations fy, g; and h,, respectively. For each integer M > 3 denote by Vi ,.(M)
the (k414 m — 2)/2-th Tate twist of the tensor product of the de Rham cohomology
groups H(}R(Yl (M)q,,ar,r; )L, for j =1,2,3. Then the restriction of the morphism

Virr(N) — Vir.»(Np)
defined by

* Bfk * * ﬁg, * * ma *
(prl - ph1 "pry | @[ pry — p1 "pry, | @ | pry— pm—1 "Pry

to the (f, g, h)-isotypic component of Vg .(N) gives a p-stabilisation isomorphism

Fegihm - Var (frs 95 hin) = Vi (£ 915 Bom)-

Lemma 8.4. — Assume that p does not divide the conductors of fi,g;, and h,.
Then
By By
Quk « _ k k [e%
0% g1, (15, @ g @ wh,, ) = (p = Do, (1 Ty 1- by, ) T
Proof. — Set 113" = prj — p[i% - pry, set IIf, = pry, — p[i% - pr,,, and define simi-

larly IIf* and II9. By the definition of p-stabilisation (cf. Equation (54)), one has
19 (we) = we,, for any & € Si(N, L)y, , and similarly for II?* and II%" . In particular
(184) ;" (wg,) = wg, and II}"(wp,,) = Wh,,-
According to Equation (3.4.5) on Page 76 of [Shi71], one has
(@, b")pr = M™% (a,b) ;s

for any cuspidal forms a and b of weight n and level I'y (M), where we recall that
W = wp(-) is a shorthand for the image of - under the Atkin—Lehner operator wys
defined in Equation (33), and (-,)s is the Petersson product on S, (M, C) defined
after Equation (35). It follows that (cf. Equation (34) and the discussion following it)

w o TI%* (w _ (flgj?gg)Np _ (fkvfa)Np _ (fkaf)N
(185) (g oy T §)>f’“ (BN (Fes fdnp (fro fr)n

for each & in Sy (N, L)y, , where £¥ = wyp(éa)-
The (easily verified) relations wap opr} = pryown and wyy,opry, = p
yield

k—2 pl‘f own

1, 0wy o 11" = (pro, = 5 oy, ) o (b= 22 prt) o

20p+1 57
=(p-1) (T;—W—i—pf;-Tp) owN.
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As ap(fr) = ayp, + By, and T) o wy and T}, o wy act respectively as a,(fx) - wy and
Xf(P)ap(fr) - wn on ViR (fx), a direct computation then gives (cf. Equation (183))

By, By,
II7, ocwn oHa*:p—l)a‘(l—’“ 1— —2 | -wy
k p k ( i afk pOéfk

as morphisms from Vi (fx) to Vi (fr). Because II?* and IIf, are adjoint to each
other under the pairings (-,-) ; and (-,-) £, this implies

(M (g ) oy O T o))y
(p— 1oy, ( — %) (17 ﬁi> = (g, wn (we)) 5,

3/ pog,
()N ([N

(&N (frs fo)n

for each € in Sx(N, L), = Fil'Viz(fr). As the composition wy, o TI{* gives an
isomorphism between Sy (N, L)y, and Sk(Np, L)y:, and the isomorphism

I« Var (i) = Vir (fi)
commutes with the action of the Frobenius endomorphism on both sides, comparing
Equation (185) with Equation (186) yields the identity

By, ) < Bs,
O (%) = (p— 1o <1 BT —E ) %
k (Ufk) ( ) L ay, pay, U
(cf. Equation (37) for the definition of the differential 7% ). The lemma follows from

(186)

the previous equation and Equation (184). O

8.5. Conclusion of the proof. — This section concludes the proof of Theorem A.
According to Corollary 8.2 the class x(f, g, h) belongs to H{,,(Q,V(f,g,h)). Let
Y9, be the set of balanced triples (k,,m) such that k,l,m > 3 and p does not divide
the conductors of f;,g, and h,,. Let & denote one of f,g and h. Because X} is
dense in Uy x Ug X Up, in order to prove Theorem A it is sufficient to show that

(187) gg(lﬂ(f,g,h))(’LU) :jpg(fkagbhm)

for every w = (k,1,m) in X¢_,, where to ease the notation one writes

Ze(k(f, g, h)) = ZLe(resy((f, 9, h))).
Fix such a triple w and to ease notation set ay = ay, , 85 = By, ,ay = ag, et cetera.
Consider first the case & = f. Write as usual r = (ry,7r2,73) = (k— 2,1 —2,m —2).
Since p does not divide the conductor of f;,g; and h,,, the Ramanujan—Petersson

conjecture gives
(1 - ﬁf) (1 - ﬁf) (1 _ afﬂg§h> 0
af poy prt

Moreover f;, = fo (resp., g; = ga, Rm = hq) is the ordinary p-stabilisation of a cusp
form f = fi (resp., g = gi, h = hy,) of level T'y(N). Proposition 7.3, the definition of
log,(-) and Lemma 8.4 then prove that

(=)™ (r =)t Ly (5(f. g, h)) (w)
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is equal to

(1— 2o )
(1_ &) (1_ L‘) (1_ afBgBh,) - log, (#(f. 9. h)w) (5, (1 © wg @ wr)),

pr2

where £(f,g,h)w € HL (Qp, V(fi, g1 hm)) is the image of k(f, g, h) under the spe-
cialisation map p,, (and as usual log,(-) is a shorthand for log,(res,(-)) for all global

classes - in Hy (Q, V(f,9;,hm))). As T1$7, is the transpose of 1§ ., the functori-

ality under correspondences of the Faltings comparison isomorphism for E;(N) and
of the Leray spectral sequence (from which Equation (26) is deduced) imply that

(188) log, (<(£, 9, h)w) 0 115, = log,, (115,1,.(+(f,9, k) )

as functionals on FilOVd*R( fyg,h). According to Theorem 8.1 and Proposition 8.3
H?gh*(n(fv g, h’)w)

equals
o (-2 (- 228 - 282) (- 248) st

The previous three equations show that % (H( 5,9, h)) (w) is equal to the product of
o (1 ) (1= g (1 22 (1 - 22
- R )
af paf

log,, (k(f,9,h))(nF @ wy ® wh),
which in turn is equal to ﬁpf (fi,9;, hm) by the explicit reciprocity law Proposition
3.6. This proves Equation (187), and with it Theorem A, for £ = f.
The proofs of Equation (187) for €& = g,h are similar. We give the details for
& = g. Exchanging the roles of f and g in the constructions of Sections 7.1, 7.3, and
8.4, (the resulting) Propositions 7.3 and 8.4 proves that

(D)7 (r =)t Ly (k(£, 9, h)) (w)

1 — 2tbyon
(1_ @) (<1 Bj) (3 BfagBh,) -log,, (k(f, 9, h)w) (5, (wr @15 @ wp)).

pr2

and

is equal to

Qg pPQyg

Equations (188)—(189) (which are symmetric in (f, g, h)) then prove that the special
value 2, (k(f, g, h))(w) is the product of

(_1)r—r2 (1 _ a;fi;xh) (1 - a;?ifh,) (1 - 5;?1(;,1) (1 _ ﬁ;éjgh>

A (-5 0-%)
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and

logp (K(f7 9, h)) ((Uf ® 77(; ® wh)
This is precisely the formula for £J(fy,g;, hy) obtained by replacing the triple
(fx,9;, hm) with (g, fi., hm) in the statement of the explicit reciprocity law Propo-
sition 3.6, thus concluding the proof of Theorem A.

9. Proof of Theorem B

This section proves Theorem B stated in the Introduction. The notations and
assumptions are as in Section 1.2. Then (f, g, h) is alevel-N test vector for (f*, g*, h*)
and w, = (k,[,m) is an unbalanced triple in Y.

For the convenience of the reader, we briefly describe the contents of the different
subsections. Section 9.1 proves Theorem B assuming that w, is not exceptional in
the sense of Section 1.2. Section 9.2 proves an exceptional zero formula for the big
logarithm %5 when w, is exceptional of type (5), viz. in the exceptional case arising
from the vanishing at w, of the analytic f-Euler factor 5}“( f,g,h) introduced in
Equation (4). Section 9.3 constructs the improved diagonal classes x;(f,g,h) and
k3 (f, g, h) introduced in Section 1.2. Their construction is nontrivial only when the
g-Euler factor £;(f, g, h) defined in Equation (1) vanishes at w,, that is when w, is
exceptional of type (3) (cf. Section 1.2). Section 9.4 finally proves Theorem B when
w, is exceptional.

9.1. Proof in the non-exceptional case. — This section proves Theorem B when
w, is not exceptional.

Lemma 9.1. — The Bloch—Kato finite, exponential and geometric subspaces of the
local cohomology group H*(Qp, V (£, g1, hm)) are all equal.

Proof. — We use the notations introduced in the proof of Lemma 3.5. As in loco
citato, it is sufficient to prove that DZ="N=" vanishes.
Since k > [+ m, one has ord,(af) < —1 and ord,(8;,) < — 1 for - = (), g, h, hence
h

DE=" is contained in the L-module generated by a.,,ad, al and bl . Moreover

oo = pE /2] [l | = pEw=2ee=D/2 and |8S | = pBereu=1/2
for £ = g, h (cf. loco citato for the notation). It follows that D;‘Z:l is equal to zero if
ew=0o0r¢g, =2. If g, =3, then D;‘Z:l is contained in L-ad @& L - aﬁj and
N(r-af +s-a)=(r+s)-bl +7 bl +s-b?,
for each 7, s in L, hence DE="N=0 = 0. Ifg,, = ¢ = 1 for £ = g, h and {¢,¢} = {g,h},
then D;Dt:l is contained in the L-module generated by a,, and a$,, and
N(r-a,+s-a8) =r-a% +s-bl,
hence DZ=N=0 = 0. Finally, if ¢,, = er =1, one has
N(r-a,+s-al +t-a +u-bl)=r-af +s5-b" 4+t bl +u-b,,

hence D¥=1N=0 vanishes also in this case, concluding the proof of the lemma. O
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In light of Lemma 9.1, in order to prove Theorem B it is sufficient to show that
(190) exp,((fx, 91, hm)) =0 if and only if L(fi®g;®@hi,, (k+1+m—2)/2) =0,

where expy, is the Bloch-Kato dual exponential and expy(-) = expj(res,(-)) for any -
in the global cohomology group HY(Q, V (fi,a;, hm))-

Set
(191) V(£ g hm)™ =V (F)* @1 V(g) @0 V' (h)(c),
where ¢. = 4 —k—1l—-—m)/2and c. = (k+1+m—2)/2if - = 0 and - = x
respectively. Because k > [ + m the inclusion V*(fy, g, )™ — V*(fi, 91, hm)
and the projection V(fi,9;, hm) — V(fi, g}, b))~ induce isomorphisms
(192) D(V*(fs 91 hom) ™) = Vir (£ 12 915 hin) /FiL”
and FilOVdR(fkagbhm) = Dst(v(fkaglvhm)i)

respectively. (If g; or h,, is a weight-one modular form, the modules Var (fi, g, bm)
and V3, (f4, 91, hm) are defined using the conventions introduced in the last item of
Sections 5, cf. Equations (127) and (129) and Section 7.1.1.1.) Let

() frgimn : FIPVAR (fi g1 hon) @1 Vig (Fio g1 hom) /Fil” — L

be the perfect pairing induced on the de Rham modules by the specialisation at w, (cf.
Equations (106)-(109)) of the tensor product of the pairings (-, ), defined in Equation
(103), for € = f, g, h. (According to Equation (109), if k, [ and m are all geometric this
is also induced by the tensor product of the pairings (-, ) ¢ introduced in Equation
(31), for & = fi.,9;,hm.) By construction V(f;,g;, hm)s is a Gq,-submodule of
V(fx,9;, hm)~, and the image of

DCriS<V(.fkvgla hm)f) — Dst(V(fka g, hm)_> = FﬂOVdR(fk?gla hm)
(cf. Equation (192)) is orthogonal under (-,-) 5 /5, to the kernel of the projection

Vir (fr> 915 hm)/FﬂO = Dst(V*(fkvgh hm)+) I DcriS(V*<fk7gl» hM)f)a
where V*(fi,,9;, hum) s is the c.-th Tate twist of V*(f,)T @ V*(g;)” @1 V*(hm) ™.
Moreover, after setting z, = (w,, (k —1 — m)/2) (and identifying D.,is(Q, (7)) with
Q, - '), one has by definition (cf. Section 7)

Dcris(V(fkvgl7 hm)f) = D(.f’g7 h)f ®JJO L
and Dcris(V*(.fkagb hm)f) = D*(.fagv h)f ®xn L.
By Corollary 8.2 the class k(f,g,h) is balanced, viz. its restriction at p is the
image of a (unique) class &(f,g,h) in H'(Q,, Z2V(f,g,h)). Let &(f, 9, hm)

be the specialisation of &(f,g,h) at w,, and let k(fy,g;, hn)s be its image in
HY(Q,,V(fs,9:, hm) ) under the morphism py, (cf. Section 7.2). As the diagram

(193) Hl(Qpﬂy2V(fkvglvhm)) Hl(QP7V(.fk7gl7hm))

g |

HY(Qp, V(fi: 91, hm) f) HY(Qp, V(fi: g1, him) ™)
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commutes, the previous paragraph reduces the proof of Equation (190) to the following
claim.
(a) The Garrett L-function L(f} ® gi ® hi,,s) vanishes at s = (k+1+m — 2)/2
if and only if
<exp;(/€(fk:7gl7hm)f)7u>fkglh =0

m

for all differentials y in D(f,g,h); ®,, L. Here expy, is the Bloch-Kato dual
exponential on H'(Q,, V(f5,9;, hm)y) and (-, '>fkgzhm is the specialisation at
z, of the bilinear form (-,-) ¢, defined in Equation (139).

As (f,g,h) varies through the level-N test vectors for (f*,g*, h*), the speciali-
sations at x, of the associated Ofgp-adic differentials npwywp, (cf. Equation (142))
generate D*(f,,g;,hm) ¢ ®;, L. This follows from the results of Sections 2.5, 5 and
7.1.1. As a consequence the claim (a) is equivalent to

(B) The Garrett L-function L(f{ ® g} ® h¥,,s) vanishes at s = (k+1+m —2)/2

if and only if

(expy(k(Fr, g1, him) p), Wfkwglwhm>fkglhm =0

for all level-N test vectors (f,g,h) for (f* g* h*), where ng wg wh, in
Deris(V*( £ 915 hm) ¢) is the specialisation of ngwgwn at x, (cf. Section 7.1.1).

Remark 9.2. — As explained in Remark 1.3(3), the class (f, g, h), hence &(f, g, h)
and a fortiori (fy,g;, hm)ys, is independent of the choice of the level-N test vector

(f.g,h) for (f*,g°, h7).
Assume in the rest of this section that w, is not exceptional. This implies that

ﬂf g, an #p(k+l+m—2)/2
k 1 m

for each test vector (f,g,h). (As usual By, = xf(P)p*~1/a,(k), hence the previous
equation is a consequence of Equation (5) and the Ramanujan—Petersson conjecture.)
According to Theorem A, (the proof of) Proposition 7.3 and the previous equation,
for each level-N test vector (f,g,h) one has

gpf(fkwgh h’m) = (g)wo : <eXp;;(H(-fk>gl’ hm)f)7 nfkwglwh"”>fkglhm

for a non-zero algebraic number &,,,. The statement (3) can then be rephrased as

(v) L(ff @ g] @ hi,, (k+1+m —2)/2) = 0 if and only if £/ (f,,g;, hm) = 0 for
all level-N test vectors (f, g, h) for (f*,g*, h*).

Under the current Assumption 1.7 on the local signs e,(ff, gi, h%,), the claim () is a

consequence of Jacquet’s conjecture proved by Harris-Kudla in [HK91]. Indeed, as

w, is not exceptional, there exist test vectors (f, g, h) such that pr(fk,gl, h,,)is a

non-zero multiple of the complex central value L(ff ® gf @ h%,, (k+1+m —2)/2) (ct.

Section 6 and [DR14, Theorems 4.2 and 4.7]).
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9.2. Derivatives of big logarithms I. — Assume in this section that the unbal-
anced classical triple w, in Xy satisfies the conditions displayed in Equation (5) of
Section 1.2. In particular w, = (2,1, 1).

Denote by # = ., the ideal of functions in Opgp, which vanish at w,. The
exceptional zero condition (5) and Proposition 7.3 imply that the big logarithm 2
takes values in .#. According to loc. cit. £} factors through the morphism induced
by the projection ps : F2V(f,g,h)) — V(f,g,h)s and we write again

Ly HY(Qp, V(f,g,h)s) — 7

for the resulting map. The aim of this section is to prove Proposition 9.3 below, which
gives a formula for the derivative of £ at w,, namely for the the composition of 2%
with the projection .# — #/.#2. In order to state it we need to introduce further
notations.

Since X£(p) = xgxr(p) and x£(p) - ap(2) = bp(1) - ¢, (1) under the current assump-
tions, the G'q,-representation

V(£2)ss EV(F.9.h)5 @u, L=V(f2)” @ V(g @ V(h1)*

is isomorphic to the direct sum of a finite number of copies of the trivial p-adic
representation of G, = Gq, (cf. Section 7.2). Let sz be the Galois group of the
maximal abelian extension of Q,,, and let

rec, : Qy0Q), = ng®Qp

be the reciprocity map of local class field theory, normalised by requiring that
rec,(p~') is an arithmetic Frobenius. Identify H'(Q,, Q,) = Homcont(ng, Q,) with
Homeont (Q}, Qp) under recy, so that

(194) HY(Qyp, V(£2)55) = Homeons (Q), Q) @q, V(£2) 35
and Deis(V(f2)55) =V (f2) -

Under these identifications the Bloch-Kato dual exponential exp’ on H'(Qy, V( f2)55)
satisfies

(195) exp, (Y @ v) = (e(1)) -v € V(f2) g
for all ¢ ® v in Homeont (Qy, Qp) ®q, V(f2) 55, Where
e(1) = (1+p)®log,(1+p)~" € Z:2Q,.
Similarly the Gq,-module

VA (f)bs L V() L Vi(g))” @1 V()"

is isomorphic to the direct sum of several copies of the trivial representation of Gq,,
hence DcriS(V*(fg);gﬁ) = V*(fQ)Eﬁ and Paragraph 7.1.1.1 give a perfect pairing

(- '>f2glh1 1 V(f2) 55 ®L V*(f2)3_@ — L.
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For each 3 = ¢ ®v in H(Q,, V(f2)5): with ¢ € Homeont(Qy, Qp) and v € V/(f3) 55,
and each ¢ in Q*, define (cf. Equation (129) and the discussion preceding it)

3(a) =v(@) v € V(f)gs

and
3(0)r = —1)ap(2) - (3(a), 05, ® wg, @Why )y o €L

Let 3 in H'(Q,, V(f,, 91, h1)) be the specialisation at w, of a balanced class 3 in
HL L (Qp, V(f,g,h)), that is 3 = py,«(3). Then 3 is the natural image of a unique
class Q) in H'(Q,, 2V (f,g,h)). Define

(196) Vf =D« (pwo*@))) € Hl(va V(f2)[;ﬁ)
and exp;(j)f :(p - l)ap(2) : <eXPZ(Uf)a77f2 ® Wg, ® wh1>f291h1'

The following key proposition studies the derivatives of the logarithm %%, extend-
ing some of the results of [Ven16]. Its proof exploits the existence of an improved big
logarithm for the restriction of .Z to the improving plane Hy defined by the equation
k =14 m. Part 1 of the proposition is a crucial ingredient in the proof of the main
result of our contribution [BSV20a], and Part 3 is essential for the ongoing proof of
Theorem B in the exceptional case (cf. Section 9.4). Part 2 is not used elsewhere in
the paper and is stated for completeness (and with future applications of this work
in mind). Before stating the proposition, we introduce some notation.

For the proof of Theorem B, we are especially interested in the improving line Hpq
in Uy x Ug x Up, defined by the equations k = I+1 and m = 1; it is the intersection of
the improving planes Hq (introduced in Section 1.2) and Hy. Let resgg : Opgn — Oy
be the morphism sending the analytic function F'(k, I, m) to its restriction F(I1+1,1,1)
to the improving line H ¢4. For each Opgp-module M, denote by M|z, = M @res,, O
the base chance of M along resyg, and for each m in M denote by m|y,, the image
of m under the projection M — M|, . Set

V(-fgvhl) :V(f7gah’)|7'lfg and V(fgahl)f :V(f7gah)f‘7'[‘fg'

Shrinking Ug and U}, if necessary, assume that [ + m belongs to Uy for each (I, m)
in Ug x Up, and recall the analytic f-Euler factor

bp(l) - cp(m)

197 Ei(f.g.h)=1— —F=—b

(197 G = ) s m)
introduced in Equation (4). (We also recall that a,(k), b,(l) and c¢,(m) are the p-th
Fourier coefficients of the primitive Hida families f*, g* and h* associated respectively
with f, g and h.) In the present exceptional zero scenario (cf. Equation (5)) it vanishes
at (I, m) = (1,1). Denote by

g}k(fgvhl) = g;(f’g7h)‘Hfg € ﬁg
the restriction of 5}‘(]", g,h) to Hysg. Finally define the analytic -Z-invariants
L5 = —2-dloga,(k)|k=2, £5" = —2-dlogby(l)[i=1 and £} = —2-dlogc,(m)[m=1.

We can now state the main result of this section.

S ﬁg®Lﬁh

Proposition 9.3. —
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1. Let 3 € H'(Qp, V(f,g,h)s) and let 5 = pu,(3) € H(Qp,V (fz)/;g) Then
21— 1/p) - Z(3) = (37 1)s — 7 - 3(e()y) - (o
+(£Z“-3(( )r—3(p f) (
+ (3 5(e(0); —57Y)y) - (m
2. Let 3 be a local balanced class in HY,;(Qp, V(f,g,h)) and let 3 = py,(3) be its
w,-specialisation in HL, (Qp, V(f2,91,h1)). Then
2(1—-1/p) - Z5(3)
is congruent modulo 2 to
((ggm = 2) - 0=+ (g~ 2) - (m— 1)) - expy(3)s-
3. There exists a morphism
L tanny, P H (Qp V(fg,h1)g) — O

such that, for each local class 3 in H (Q,, V(fg,h1)¢) and each positive integer
1 >1in Ug congruent to 1 modulo p — 1, one has

g(l) : ‘j(fg hl)f(B)(l) = ( - 1)ap(l + 1) ’ <exp;(3), nfz+1wgzwh1>fz+1gzh1>

where &(1) =1 — X220 and 5 = py(3) in HY(Qp, V(fis1, 90 b)) is the

weight-l specialisation of 3. Moreover, the following diagram commutes.

1)
-1 (mod #2).

2L

Hl(QP7V(f7gvh)f) ﬁfgh
reng*i J{reng
€5 (£9:01) L7 (59.ny)
HY(Q,. V (g, h1);) Vg,

Proof. — Let € : ﬁfgh — Opgn be the map which sends the analytic function
F(k,l,m,j) in Ofgp to its restriction F(k,l,m,0) € Opgp, to the hyperplane j = 0
(see Section 7.1 and note that j, = 0). Because M (f, g, h)s is equal (by definition)
to the base change M(f,g,h); ®: Ofgn, this induces in cohomology

Ex t Hl(QmM(.fvgah)f) — Hl(QpaM(f7g7h’)f)'

A slight generalisation of [Ven16, Proposition 3.8] stated in Lemma 9.4 below gives
an improved big dual exponential

L5 HY(Qp, M(f,g,h);) — D(f,g,h)s
such that, for all classes 3 in H(Q,, M(f,g,h)¢) and all w = (k,l,m) € ¥, one has
(198) (1 —p L. \I/w(Frobp)) L3(3)(w) = exp™(3uw),
where W, is the composition of the unramified character ¥ : Gq, — ﬁ; ah introduced

in Equation (136) with evaluation at w, exp* is the Bloch—-Kato dual exponential on
HY(Qp, M (f1, 91, hm)¢), and 3, is a shorthand for p,.(3). (Precisely, after setting
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KX = Opgn, # = M(f,g,h)s and & = U, then one has L% = &xpj, with the notations
of Lemma 9.4.) Recall the big logarithm %y introduced in Equation (144), and let

Zf  H (Qp, M(f,g,h)s) — Ofgn
be the composition of L} with the base change
(- MfwgWn)pgn ®= Opgn : D(f,g,h) s = Opgn
of the linear form (-, 7fwgwn) ¢, along €. Equation (198) and Proposition 7.1 yield
(199) g0 s = (1-U(Frob,) ") - Zfoe,.

~ Define ¢ = py, : Opgh — Ocyc by o(F(k,l,m,j)) = F(w,,j) and denote by
M(f5,9,,h1) the base change M (f,g,h)s ®, Ocyc. Note that in the present setting
Gq, acts on M(f5,91,h1) ¢ via the character k3, and for all integers j divisible by

cyc?
p — 1, evaluation at j on Oy induces a natural isomorphism (cf. Sect. 7.1)
(200) V(f2)55(—) = M(f2,91. k1) ®; L.

The results of Coleman and Perrin-Riou (see Section 4 of [PR94]) then give a mor-
phism of & .-modules

gcyc : Hl(QpaM(f%glahl)f) — ﬁCyC
M

such that, for all classes 3 in H'(Q,,
j =0 (mod p—1), one has

(f2,91,h1)s) and all integers j > 0 satisfying

(201) Zeye(3)(4) = j!(l(i;_pj_)l) exp”(3;) -

Here 3; is the image of 3 in H'(Q,, V(f3)55(—j)) under the morphism induced by
(200) and one writes again
exp”(")s = (p — 1)ap(2) - <eXp*(')vnfzwglwh1>fzglhl

for the composition of the linear form (p — 1)a,(2) - (-, 77f2w91wh1>f gihy OO V(£2)ss
291
with the Bloch—Kato dual exponential map

exp” : Hl(Qw V(fQ)E,@(_j)) — V(f2)§ﬁ ®Q, Q- 7 V(fz),gg

(cf. Section 7.1 and Equation (194)). According to Proposition 3.6 of [Ven16] (see
also [Ben14, Proposition 2.2.2]), for all classes 3 in H*(Q,, M (f,,g;,h1)s) one has

d _ _
d—ijC(S)jzo =@1-1/p)" 57y,
where 3 is a shorthand for 3¢. Moreover Proposition 7.1 and Equation (201) yield the
identity
(203) 00T = Loyeo u.

Let 3 be a class in H'(Qy, V(f,g,h)f) and let 3 = pu,(3) € H(Qp, V(f2)33)
be its specialisation at w,. As explained in the proof of Proposition 7.3 (see in

(202)
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particular Equations (151) and (152)), the class 3 can by lifted to an element 27 in
HY(Qp, M(f,g,h)¢) via the map induced in cohomology by the isomorphism

M(f,g.h);/(2j —k+1+m) M(f.g.h)=V(f.g.h);,
and one has
(204) Z4(3) (k1 m) = 2y (2) (kL (k — L—m) /2),
for any such lift 2. As (cf. Equation (136))
2-(1-W¥(Frob,) ") =£2" - (I-1)+ & (m—1) - - (k—2)+ -,

where the dots denote the terms of higher degree in the Taylor expansion at w,,
Equations (199) and (203) yield that 2(1 — 1/p) - Z5(Z) is equal to

2 (1= W(Froby) ™) (1= 1/p) - L (. (2)) + 201 = 1/p) - Loyel0a(Z)) + -+,
which in turn agrees with
3e@))r- (L5 - U=+ LR (m—1) = L5 (k—2)) +2-5(p" )y -5+

by Equations (195), (198) and (202). This proves Part 1 in the statement.
To prove Part 2 let 3,9),3 and ys be as in Equation (196), so that

(205) expp,(3)r = vy(e(l))s

(cf. Equation (195)). Note that the L|G,]-module .#2V (f,, g,, h1) splits as the direct

sum of its submodules V(fQ);rﬁ =V (fy,91,h1)g, V(f2);a =V (fy,91,h1)n and
V(£2)ps =V (f2) @1 V(g1)" @1 V (k)"

(cf. Section 7.2). Moreover, if V(fz)gﬁ denotes the tensor product of V(f,)",V(g;)™"
and V(hy)* (that is #3V (£,, g,, h1) with the notations of Section 7.2), the projection
V(f2)ss — V(f2)5 gives rise to a short exact sequence of Gq,-modules

(206) 0—V(f2)is D V(f)es V(f2)gs — 0.

It follows that the image of H'(Q,, #2V(f,,g1,h1)) under ps. equals that of
HY(Q,,V(f,)pp) under 7, hence

(207) vy € 1 (H'(Qp, V(f2)s5)) -
The short exact sequence (206) defines an extension class ¢y in
Extriq,) (V(f2)55: V(f2)hs) = H(Qp, L(1)) @ Homr (V(£2)55, V(£2) 55 (1)

After identifying H'(Q,, L(1)) with Q;@L under the Kummer isomorphism, this
defines a morphism

LQf : Hl(QPa V(-fZ)Eﬁ) = Homcont(Q;a L) QL V(f2)§5
— V(fZ)?i_ﬂ(il) = H2(Qp7 V(fQ);,B),

where the last isomorphism arises from the invariant map H?(Q,, L(1)) 2 L of local
class field theory. A direct computation, carried out in Lemma 9.5 below, shows
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that L, is equal to the connecting morphism HY(Q,, V(fQ)EB) — H%(Q,, V(fz)gﬁ)
associated with the exact sequence (206). It then follows from Equation (207) that
(208) Lg; (9s) = 0.

According to Theorem 3.18 of [GS93] ¢y is of the form q; ® 0y for some linear
form 65 : V(f2)55 — V(fz);ﬁ and q; in Q&L such that ord,(qs) # 0 and

L5 = log, (ay)/ordy(ay)-
Then
logqf = log, —£%" - ord,, € Homcont(Q;, L)

is the branch of the p-adic logarithm which vanishes at qy and L - log, @V (f3) 54
is contained in the kernel of L,,. Taking the long exact sequence associated with
(206) one easily checks that the kernel of Ly, has the same dimension as V(f;) g5,
hence L - logy, @V (f2)55 is equal to the kernel of Ly,. Equation (208) then yields
s = log,, @vy for some vy in V(f;)g5, hence

(209) vr(p~") = L5 vy = LF" 9y (e(1)).
Part 1 of the proposition and Equations (205) and (209) give
2(1=1/p)- Z5(3) = 2(1 = 1/p) - Z o py+ (D)

Part 1

= (0s07 s — £ vs(e()r) - (k- 2)
(25 (e =0 (077 ) - =1+ (L8 (e =0y (7)) - (m = 1)
qu(m) Uf(e(l))f . ((Egn - S}n) . (l . 1) + (S?zn _ 2;}1) . (m _ 1))

exp(3)s - ((,23“ - SE}“) (-1 + (22“ — Saf“) < (m — 1)) (mod .#?),
as was to be shown.

We finally prove Part 3. Taking # = Oy, # =V (fg,h1); and ® =resgg o ¥ in
Lemma 9.4 gives an improved big dual exponential

gxpt/(fg,hl)f : Hl(QINV(fg?hl)f) — D(.fgvhl)a

where D(fg,h1)r = (V(fg, hl)f®zngr)c% [1/p] and V(fg, h1)s is a Gq,-invariant
Ag-lattice in V(fg, h1)y. Note that D(fg, h1); is naturally isomorphic to the base
change of D(f,g,h) along resgg : Opgn —> Oy, and define

L tamy, P H (Qp V(fg,h1)g) — O

to be the composition of gxp*v(fg,hl)f with the base change

Eq. (205)

(- Nfwgwn) ®ress, Og : D(fg,h1)s — Oy
along resgq of the linear form (-, nfwgwh>fgh on D(f,g,h)s. After noting that
1 — U(Frob,) (I + m,l,m) =E(f.g,h) and 1—p " T,(Frob,) = &(1)

for each positive integer [ > 1 in Uy congruent to 1 modulo p—1, where w = (I+1,1,1)
in Hyg, the interpolation property satisfied by 2y (g n,), and the commutativity of
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the diagram in the statement follow directly from Equation (143) (cf. Section 7.1.1.1
for the case | = 1), Proposition 7.3 (and its proof) and Lemma 9.4. O

The following two lemmas have been invoked in the proof of Proposition 9.3.

Lemma 9.4. — Let R be a complete local Noetherian ring with finite residue field of
characteristic p, and let Z = R[1/p]. Let M be a free R-module of finite rank, equipped
with the action of Gq, given by a continuous unramified character ® : Gq, — R*.
Set # = M[1/p]. Then there exists a morphism of %-modules

Euply : HY(Qp, M) — (Mg, Z2) 50 [1/p]

such that, for each continuous morphism of Z,-algebras v : R — Qp and each class

3 € HY(Q,,.#), one has

v(Epp(3)) = (1—p~' - @, (Frob,)) ™ - expi(3.),

where the notations are as follows. Set 0, = v(R) and L, = Frac(0,). The un-
ramified character ®, : Gq, — O is the composition of ® with v, the class 3, in
HY(Qy, L,(®,)) is the image of 3 under the map induced in cohomology by v, and

expl : HY(Qp, Lu(®,)) — Deris(Ly(R)) = (0,(D,) Rz, Z5) 2w [1/p]

is the Bloch—Kato dual exponential.

Proof. — When # = O¢ and .# = Oyf(ay(k)), this is [Venl6, Proposition 3.8|.
Mutatis mutandis, the proof of loco citato works in this more general setting. O

Lemma 9.5. — Let M and N be two finite dimensional L-vector spaces, equipped
with the trivial action of the absolute Galois group G, of Qp, let

(210) 0— M1) -5V N—0
be a short exact sequence of (continuous) L[Gp]-modules, and let
qv € Extyg (N, M(1)) = Q) ®z, Homy (N, M)

be the corresponding extension class (where one identifies H'(Q,,Z,(1)) with the
p-adic completion Q;, of Q, via the Kummer map). Then the connecting morphism

(;V : Hl(QpaN) — Hl(QpaM(l))
associated with the short exact sequence is equal to the composition
Ly : H(Qp, N) 2 Homeont (Q}, Zp) @z, N <5 M = H*(Q,, M(1)),

where the first isomorphism arises from the local Artin map recy, : Qp — G;b (send-
ing p~* to an arithmetic Frobenius), the second isomorphism arises from the invariant
map inv, : H*(Qp, Z,(1)) £ Z,, and ey is evaluation at gy (under the product of the
natural dualities Q; Rz, Homcont(Q;, Z,) — Z, and Hom (N, M) ®;, N — M ).
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Proof. — Identify M (1) with a subspace of V' via the injective morphism «, and fix
an L-linear section 0 : N — V of 5. Under the natural isomorphisms

ExtlL[Gp](N, M(1)) = ExtlL[Gp] (L,Homy (N, M)(1)) = H(Q,, Homy (N, M)(1)),
the extension class of (210) is represented by the 1-cocylce
§V = €V,0 : Gp — HomL(M, N)(l)

defined by the formulae
g9(o(n)) —a(n) =&v(g)(n)

for each g in G, and each n in N.
For each 1-cocycle (id est continuous morphism of groups) ¢ : G, — N, the image
of ¢ under the connecting map Jy is represented by the 2-cocycle 09 (¢) defined by

5 (9)(g: 1) = g(a(p(h))) — a(e(gh)) +ale(g)) = &v(9)(w(h)) = &v Uev ¢ (g, 1),
where Uy, : C?

cont (Gim HOIHL(N, M)(l)) ®L C’c.ont (GP7 N) — O(;ont (Gp7 M(l)) denotes
the cup-product induced on continuous cochains by the evaluation pairing

ev: Hom;(N,M)®, N — M

(cf. Sections 3.4.1.2 and 3.4.5.1 of [Nek06]). If (-, ), denotes the composition of the
cup-product pairing induced in (1, 1)-cohomology by Ue, with the M-linear extension

invy 1 H(Qp, M(1)) = H*(Q,, Zy(1)) ®z, M = M
of the local invariant map inv,, it follows that
(211) invar (Ov (@) = (cl(€v), @)y -
where cl(-) denotes the class represented by -. Under the natural isomorphisms
H'(Qp,Homy (N, M)(1)) = H'(Qp, Zy(1)) ®z, Homp (N, M)

and H'(Qp,N) = H(Q,,Z,) ®z, N, the pairing (-,-),, corresponds to the product
of ev and the local Tate duality

(1) s H(Qpy Zp (1)) @z, H'(Qpo Zy) = H*(Qy Z,(1)) =5 Z,
associated with the multiplication pairing Z,(1) ®z, Z, — Z,. Finally one has

(k(q), x) = x(recy(q))

for each x in H'(Q,,Z,) and each ¢ in Q}, where  : Q) — H'(Q,, Z,(1)) denotes
the Kummer map (cf. Proposition 1 in Section 2.3 of [Ser67]), hence

<CZ(£V)7 SD>CV =€y (80)7
which combined with Equation (211) concludes the proof. O
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9.3. Improved diagonal classes. — This section proves the existence of the big
g-improved diagonal class introduced in Equation (2) of Section 1.2.

Section 8.1 associates to the ordered triple of Hida families (f, g, h) the big diag-
onal class k(f,g,h) (which is symmetric in the forms g and h). After identifying
the big Gq-representations V(f,g,h),V(g, f,h) and V(h, f,g) under the natural
isomorphisms, a priori the three classes

k(f.g.h), k(g f,h) and k(h,f,g)
in HY(Q,V(f,g,h)) may be different. This is indeed not the case.

Lemma 9.6. — The classes k(f,g,h), (g, f,h) and x(h, f,g) are equal.

Proof. — Let X7, be the set of balanced triples w = (k,{, m) such that p does not
divide the conductors of f,, g, and h,,. Since H(Q,V(f,g,h)) is a torsion-free
O¢gn-module and X7, is dense in Uy x Ug x Up, one has

() (k—kl-1,m—-m)-H(QV(f,g h) =0

weRP,)

It is then sufficient to prove that the three classes in the statement have the same
specialisation at each balanced classical triple w in 3¢ ). Because the map 1%, .

(defined after Equation (169)) is an isomorphism at each point (k,l,m) of £{ ,, this
is a consequence of Theorem 8.1 and Proposition 8.3. O

We now construct the g-improved balanced diagonal class

(212) ‘%;(fagv h) € H’éal(Q7 V(f797 h)|Hg)

satisfying Equation (2) of Section 1.2.
Set Agh = Ag®gAp, so that Ogp, = Agn[1/p]. For every Aggp-module M, define

M|’Hg =M Qv Agh

to be the base change of the Ag¢p-module M under the morphism vg : Agen — Agn
sending the analytic function F'(k,l,m) to its restriction F(I — m + 2,1, m) to the
g-improving plane Hg (cf. Section 1.2). A similar notation applies to Oggp-modules
and sheaves of Agpp or Ogpp-modules.

Remark 9.7. — The space A;@.Af@/lhmg is identified with a subspace of the
Agn-valued functions f on T’ x T x T that are locally analytic and such that

flte oty -yt 2)= ug(t’;ftgjgtgh) fz,y,2).

(This can be seen by applying [GS16, Lemma 7.3] with X = T’ X T x T to reduce
the statement to the fact that the formation of locally analytic function - without the
homogeneity property imposed - is compatible with base change.) Conversely, such a
function f can be assumed to be in the image of A}®A9®Ah|Hg, by increasing the
radius of convergence in the definition of Ay = Ay, . Ay = Ay and A, = Ay ..
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Consider the analytic function Dy : T' x T x T — Aggn defined by the formula
Dy(x,y,2) = det(m,y)”z . det(m,z)“} . det(y,z)(k+m*l*2)/2

for each (z,y,z) in T' x T x T with @ = (a1,a2) for a = x,y,z. (Because we
apply an integer power to the last determinant, there is no need to restrict to the
domain T’ x (T x T)p as we did in the definition of Det in Section 8.1.) Then
Dety := vg oDy : T' x T xT — Agp is a locally analytic function satisfying the
homogeneity property of Remark 9.7. It also satisfies the invariance property
Det(x -7,y 7,2 - 7) = det(y)"sasn . Det} (- v,y 7,2 7).
Applying Remark 9.7 and recalling that kg = vg o Ky fpe We have thus defined
(213) Det} € H(To(pZ,), Ay @A & Ak, (—rq)).
With the notations of Sections 4.2 and 8.1, let

A;&Af&Ah‘Hg = A;@Af@)flhﬁ_ﬁg and A;@Af(@Ah‘Hg = d*(AggAngﬂyg)
be the étale sheaf on Y3 associated with the representation Af®A;®Ah\HQ in

M(Ty(pZ,)?) and its pull back under the diagonal embedding d : ¥ — Y3
respectively, so that one has a natural inclusion

(214)  H(Lo(pZy), Ag®As @ Anln, (—kg)) — Hg (Y, Ay ® A @ Anly, (—kg)).
On the other hand, consider the following composition.

HE (Y, Ay @ Ap @ Apln,(—kg))

(215) 5 H(Y®, Ay 0 Ay B Anls, (~rg) @2, Zy(2))
= HY(Q, HE (Y5, Ay R Ay K Ay, ) (2+ Kg))

Because HY, (Y(%7 ) vanishes for every pro-sheaf .7 € S(Y3) (cf. the discussion fol-
lowing Equation (156)), one has a natural isomorphism

HE (Y5 Ay BAf B Aplw,) = HE (Y, Ay RAg KA 3, -
Moreover, as in Equation (156), the base change along vg of the projection arising
from the Kiinneth decomposition et cetera induce a map
(216)  H'(Q, HZ (Y5, A K AG KA )|n, (2 + Kg)) — H'(Q,V(g, £ h)|n,),
and we denote by
(217)  AJE" L HG(Y, Ay © Ap © Anl, (—rg)) — HY(Q,V (g, . R)la,)

the composition of the maps (215) and (216).

Identifying V(f, g, h)|#, and V (g, f, h)|3,, one defines the sought for g-improved
diagonal class (212) to be the image of Det, under the big Abel-Jacobi map defined
in Equation (217), multiplied by the normalising factor ﬁ (cf. Equation (155)):

b

agfh *
b, (1) AJZ; (Detg).

tig(f,9,h) =
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(Here one views Det; as a global section of the étale sheaf Ay @Ay @Ap |3, (—Fg) via
the inclusion (214).) The balancedness of x(f, g, h) follows from a similar argument
as the one in the proof of Corollary 8.2.

We now verify that «(f, g, h) satisfies the identity displayed in Equation (2):

(218) ’i(f7gvh’)‘7'lg :gg(fag’h)'KZ(fvgah)~

Let HS' be the intersection of Hg with U;l x U x Ugl. As HY(Q,V(f,g.h)|n,) is
a torsion-free Ogyp-module, in order to prove the previous equation it is sufficient to
show that

(219) pus((F, g, ) = Eg (£ G, om) - (kg (£, 9, h))

for each classical triple w = (k,I,m) in the subset
bal __ cl
Hy' = {(k,l,m) € Hq | m > 3}

of ’Hgl, where py, : V(f,g9,h) — V(f},9;, hm) is the specialisation map (cf. Equation
(145)) and &;(fy, gy, hm) is the value of £(f,g,h) at (I,m). The set Hp is the
intersection of H4 with the balanced region ¥y,;. Moreover Lemma 9.6 and Theorem
8.1 yield

(p = Dbp() - 0w« (k(f, 9, h)) = Eg(fi 91 o) - “T(ghfmhm)

for each w = (k,I,m) in Hgal. (Recall from Equation (157) that the definition of
the twisted diagonal class k'(g;, fi, hm) is not symmetric in the forms f;, g; and h,,,.
Indeed, after identifying V' (g;, f, bm) with V(f1, g;, ), it follows from Theorem 8.1
and Lemma 9.6 that the class (g;, fi., h) is in general not equal to ' (fy, g;, hm).)
To prove Equation (219), and with it Equation (218), it then remains to prove that

(p - 1)bp(l) : pw* (HZ(fMQa h)) = HT(QZ& fk7 hm)
for each w = (k,l,m) in Hgal. After unwinding the definition, this is in turn a direct
consequence of the identity
pw(Det)) = Det;\,(;f),
where r(w) = (I — 2,k — 2,m — 2), which holds true in Sy(,) — A]_,@Ap_2@Am_2
for each balanced triple w = (k,l,m) in ’Hgal by the very definitions of the invariants
Det, and DetY;, (cf. Equations (213) and (41)).

9.4. Conclusion of the proof. — Assume that w, = (2,1, 1) is exceptional. As
in Section 9.2, denote by Hyg the intersection of the improving planes Hg and Hy,
that is the set of triples in Uy x Ug X Uy, of the form (I + 1,1,1). Denote by

L] (fg,m) = L] (f,9,h)u,, € Oy

the analytic function on Ug which on I takes the value .,Sﬂpf(flﬂ,gl, h;) (cf. Equation
(55)). Define similarly

g}k(fgvhl) = g;(f’g7h)|7{fg € ﬁg and gg(.fgah1> = gg(fvgah”?-lfg € ﬁg-
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Lemma 9.8. — Let hy be the modular form of weight one and level T'y(N) with
p-stabilisation hy. One has

gpf(fgahl) = S}k(fgvhl) : gg(fgahl) ’ gpf*(fg’ h1)7

where fpf*(fg,hl) is the analytic function in Og which on the classical point | > 1
in U;l takes the value

(wn (f)i+1,h1 - g)Np
(wn (Fir1, wn (F)is1)np

Moreover, the following two conditions are equivalent.
1. .pr*(fQ,gl, hy) is zero for all level-N test vectors (f,g,h) for (f*,g* h*).
2. The complex central value L(f5 ® g} ® hi, 1) vanishes.

gpf*(fH»l? g, h) =

Proof. — Set U = U, denote by (-,-)u : SFUN, X¢) ®ow) SN, xf) — OU)
the O(U)-adic Petersson product (cf. Section 7 of [Hid93]) and define

(U

)
(wn (F)+1, ora(h1 - 9))U
(wn(F)41,on(f)+1)u

Here wy(f) is the Hida family introduced in Lemma 6.1, wx(f)+1 is the family in
Serd(N, xy) whose specialisation at the classical point m > 2 equals wy(f,,,,) and
€ora 1s Hida’s ordinary projector from the space of O(U)-adic cusp forms of tame level
N and character xs onto SF4(N, vy), cf. [Hid93]. (Concretely eoa(h1 - )i equals
eord (h1-g;) for each classical point [ in U¢!, where the idempotent e,.q occurring in the
right hand side is equal to lim,, U”'.) By construction the value of pr*(fg, h1)

gpf*(fgv hl) =

at a classical point m > 1 equals 92” “(fip1,90 7).
Recall the operator V =V, on L[[q]] defined by V (3 cng™) = > ¢n¢"". Then

hy=(1-pn, - V)h1 and h[lp] =1 —ap, - V)hy

with ap, - Bn, = Xxn(p), and similarly ggp] = (1 —ag, -V)g;. Since g[p] -V(hy) is
p-depleted (viz. its n-th Fourier coefficient is zero if p|n), it is killed by egq, hence

(wn (fis1)r 91 V(hl))Np = ag, - (wn(fi1), V(g; - hl))Np
- #‘me (wn(fi1) 91 ~h1)Np

(To justify the last equality, note that eoq 0V = U, L. eqra and U, acts on wy (f; 41)
as Xf(p) -ale.) Then

. h[P] —|1= Qg, Vh,y . -h
(wN(fH‘l) €o d(gl ))Np < )Zf(P)ale (wN(fl+1)’gl 1)Np
Similarly the vanishing of eqq (g%p I V(h1)) yields

(wn(fi31). 90 hl)Np = (1 - )Zg(p)agl> (wn(fiz1) 90 h1)Np

OzthZle
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Using once again the identity eg.q (g%p] -V(hy)) = 0 one deduces that gl”!-h; —g,- h[lp]

is killed by eora, hence the previous two equations give (cf. Equations (55) and (131))

f w) = (wN(fm),eord(ng] ~h1))Np
gp (.fag>h)( ) - (wN(fl+1)awN(fl+1))

(1= aglahl 1_ Xg(p)agl . (wN(fl+1)7gl : hl)Np
>Zf(p)Oéfl,.p1 ahlaf1,+1 (wN(.fl+1)7wN(.fl+1))Np
= g}k(.fag7 h)(U}) ’ 5g(f7ga h)(w) : gpf*(fbklvgl? hl)
for each I > 1, where w = (I+1,1,1). (See Equations (1) and (197) for the definitions
of &(f,g,h) and Ef(f,g, h) respectively.) This proves the first statement.
The second statement follows from the main result of [HK91] and Theorem 3 of
[DN10]. (Note that (wn(f2), g1 - h1)y, = 0 for each level-N test vectors (f, g, h) for
(fF, g%, h*), cf. the discussion preceding the statement of [DN10, Theorem 3|.) O

As in Section 9.2, for each Opgp-module M denote by M|, = M ®res;, Og the
base change of M along the morphism resgg : Opgp, — Oy sending F'(k,l,m) to
F(l+1,1,1), and for each m in M denote by m|4,, the natural image of m in the
quotient M|y, of M. Finally, if £ is equal to one of f,g and h, define

ty..‘/(fg7hl) :f.V(f,g,h”Hfg and V(fg,hl)fz‘/(f,g,h)d’;{fg
Lemma 9.9. — The map

Hl(Qp? f2V(fg’ hl)) — Hl(va V(fga hl))
induced by the inclusion F2V (fg,h1) — V(fg, h1) is injective.

Proof. — Set M =V (fg,h1) and M¢ = V(fg, h1)e. The statement follows from the
vanishing of H%(Q,, V(fg,h1)/#?), which in turn follows from the claim:

(220) H(Qp,g1"M) = H°(Qp,gr' M) = 0.

To prove the claim, recall from Section 7.2 that the inertia subgroup of Gq(,,) acts on
gr'M = M/FM via the character rl}, hence H°(Q,, gr? M) = 0. Moreover, denote

cyc
by @, ®, and ®j the Ogy-valued unramified characters of Gq, sending an arithmetic

: Xf(P)-ap(+1) _ Xgq(p)-bp(l) Xn(p)-cp(1) ;
Frobenius to ij;,ﬁl).cpu) , af{’lfl)_cp(l) and af,?lﬁl)c-bp(l) respectively. Then Gq_(,,)

acts on My, M, and M}, via the characters ®¢, ®, - Hiyc and @y, - Ky respectively (cf.
Section 7.2). According to the Ramanujan—Petersson conjecture the complex numbers
ap(141) and by (1) have absolute values p'/2? and p{‘~1)/2 respectively for each classical
point [ > 3 in Uy, hence H°(Q,, M¢(j)) = 0 for £ = f,g,h and each integer j.
Since gr2M is isomorphic to the direct sum of My, My and My, and since gr' M is
isomorphic to the Kummer &g-dual of gr?M (cf. Section 7.2), the claim follows. [

We can now conclude the proof of Theorem B in the exceptional case.
Recall the g-improved balanced class x}(f,g,h) in Héal(Q,V(f,g,h)mg) con-
structed in Section 9.3. By the definition of the balanced condition (cf. Section 7.2),
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the restrictions at p of the classes x(f, g, h) and x;(f, g, h) are the images of classes

R(fag7h)eHl(Qp7y2V(fvg7h)) and RZ(fvgah)eHl(QpathV(fvgah)h{g)
respectively. Denote by

R(fgvhl)zk(f7gah)|?{fg and R’Z(fgvhl):k_j;(f7gah)|7{fg

their restrictions to the improving line H g, and set
H(fg7h1)f :pf*(k(fgahl)) and HZ(fgvhl) :pf*(k;(fgahl))7

where ps 1 Z2V(fg,h1) — V(fg,h1)s is the natural projection (cf. Section 7.2).
According to Equation (218) and Lemma 9.9 one has

k(fg,h)r =Ey(fg,h1) -k, (fg,hi)y.
It then follows from Theorem A, Part 3 of Proposition 9.3 and Lemma 9.8 that

LI (£9. ) = L7 (4., (5 (Fg. 1))

Evaluating both sides of the previous equation at I = 1 and using once again Part 3
of Proposition 9.3 one gets the identity

(221) "gpf*(f%glv hl) =p- a’p(2) ! <6Xp;(/€;(f2, ['AD) hl)f)7 Nf,Wg, Why >f291h1
where #7(f5,91,h1)s is the weight-1 specialisation of k3 (fg, h1);:
H;(vagh h’l)f = pl*(’%;(.fga hl)f) € Hl(Q}’H V(fQ)gB)

Similarly as in Section 9.1, we claim that the following statements are equivalent.

(a) The complex central value L(f5 ® g} ® h}, 1) vanishes.

(b) ,fz[,f*(fg,g17 hi) = 0 for all level-N test vectors (f,g,h) for (f*,g*, h*).

(C) eXpZ(H;(f2vgla hl)f) =0.

(d) exppres, () (£, g3, b)) = 0.

(e) ky(f2;91,h1) is crystalline at p.

(As usual, here £}(fy,9,,h1) in H'(Qp, V(fy,91,h1)) denotes the specialisation of
Ky(f,g,h) at w,.) The equivalence between (a) and (b) is proved in Lemma 9.8.

As (f,g,h) varies through the level-N test vectors for (f*, g h'), the differen-
tials ng,wg, wh, generate the L-module V*(fz);gﬁ = DdR(V*(fQ)EB) (cf. Section 9.2).
Equation (221) then proves that (b) and (c¢) are equivalent to each other. (Recall that
k(f,g,h), hence r;(f,g,h), is independent of the choice of the level-N test vectors
(f,g,h) for (f*,g* h"), cf. Remark 1.3(3).)

The equivalence between (c¢) and (d) follows, as in Section 9.1, from the balanced-
ness of the improved diagonal class. More precisely, the projection

p7 : V(fZaglahl) — V(vaglﬂh’l)i

induces an isomorphism between Fil’Vyr(f,, g, h1) and Dar(V (£, 91, h1)”), hence
(d) is equivalent to the vanishing of the dual exponential of p, (res,(k(fs, g1, h1))). In
addition, since V(f3)55 = V(f2, 91, h1)y is a Gq,-direct summand of V(f5, gy, 1)~
(cf. Section 9.2), and since #}(fs, gy, h1) is balanced at p, the diagram (193) yields

p: (I‘esp<l€;(f27g1,h1))) = K;(.vaglahl)fa
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thus proving the equivalence between (c) and (d).
Finally, the equivalence between (d) and (e) follows from Lemma 9.1. This con-
cludes the proof of Theorem B in the exceptional case.
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BALANCED DIAGONAL CLASSES AND RATIONAL POINTS
ON ELLIPTIC CURVES

by

Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci

Abstract. — Let A be an elliptic curve over the rationals with multiplicative re-
duction at a prime p, and let K be a quadratic field in which p is inert. Under a
generalised Heegner assumption, our previous contribution [BSV20] to this volume
attaches to (A, p, K) balanced diagonal classes in the Selmer groups of the p-adic
Tate module of A over certain ring class fields of K. These classes are obtained as
p-adic limits of geometric classes in the cohomology of higher-dimensional Kuga—Sato
varieties. The main result of this paper relates these diagonal classes to p-adic loga-
rithms of Heegner or Stark—Heegner points, depending on whether K is complex or
real respectively.

To Bernadette Perrin-Riou on her 65th birthday
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1. Description and statement of results

Let (f,g., ha) be a triple of p-adic Hida families of common tame level N. Assume
that f interpolates the weight 2 cusp form attached to an elliptic curve A/Q with
multiplicative reduction at p, and that g, and h, respectively specialise in weight 1 to
(p-stabilised) theta-series g, and h,, associated to the same quadratic extension K/Q,
having good reduction at p and inverse characters. Let x(f,g,, o) be the diagonal
class constructed in our previous contribution [BSV20] to this volume. This article
builds on the main results of loc. cit. to relate (a component of) the Bloch-Kato
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logarithm of the specialisation at (2,1, 1) of k(f,g,, ha) to the product of the formal
group logarithms of two Heegner points, respectively Stark—Heegner points when K is
imaginary, respectively real. See Theorem A below for the precise statement, holding
under Assumption 1.1.

Our strategy goes along the following lines. Let iﬂpf (f, 9o ha) denote the restric-
tion to the line (k, 1, 1) of the triple product p-adic L-function .,?pf (f,94, ha) defined
in loc. cit.. Section 3 shows that fpf (f,9asha)? factors as a product of two Hida-
Rankin p-adic L-functions attached to A/K. A suitable extension of main result of
[BDO07], resp. [BD09] for K imaginary quadratic, resp. real quadratic shows that the
second derivative at k = 2 of the above mentioned Hida—Rankin p-adic L-functions
is equal to the square of the formal group logarithm of a Heegner point, resp. Stark—
Heegner point. Theorem A of [BSV20]| describes .iﬂpf(f,ga,ha) as the image by
a branch of the Perrin—Riou logarithm of the restriction of x(f,g,,ha) to the line
(k,1,1). Theorem A of this paper then follows from Proposition 2.2, which extends
results of [Ven16] to obtain a formula for the second derivative of the Perrin-Riou
logarithm of the above class at k = 2.

More precisely, let A/Q be an elliptic curve of conductor Nyp, having multiplicative
reduction at a prime p > 3 (hence p { Ny). Let K/Q be a quadratic extension of
discriminant dx coprime with Nyp and quadratic character ex : (Z/dgZ)* — po.
Let

f=Y an(A)-q" € So(N;p,Z)"
n>1
be the weight-two newform associated with A by the modularity theorem of Wiles,
Taylor—Wiles et al., and let

vy Gg — Q* and v, : Gx — QF

be two ray class characters of K. Write Ny = NfJr . fo, where fo is the product of
the prime divisors of Ny which are inert in K/Q. We make the following

Assumption 1.1. —
1. (Heegner hypothesis) p is inert in K/Q, N;~ is square-free and EK(—Nf_) = +1.
2. (Modularity) When K/Q is real, both vy and vy, have mized signature.
3. (Cuspidality) The characters vy and vy, are not induced by Dirichlet characters.
4. (Self-duality) The central characters of v, and vy, are inverse to each other.
5. (Local signs) The conductors of vy and vy, are coprime to p - dg - Ny.

6. (Residual irreducibility) The F,[Gql-module A,(Q) of p-torsion points of A is
irreducible.

Let ve denote either v, or v, and let L/Q, be a finite extension containing the
Fourier coefficients of f and the values of v¢. In light of Assumption 1.1, the two-
dimensional L-representation Indg(yg) of Gq induced by v¢ : Gg — L* is odd and
irreducible. Thanks to the work of Hecke [Miy89, Section 4.8|, it arises from the
cuspidal weight-one theta series

§=" ve(a) N € Si(Ne, xe)-
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Here the sum runs over the ideals a of Ok which are coprime to the conductor f¢ of vg,
Na denotes the norm of a, N¢ = di - Nf¢ and x¢ = ex - Ve, where 7 Gq — Q"
is the central character of v¢. The form £ is primitive of conductor N¢ and the dual
of its Deligne—Serre L-representation is isomorphic to Indg(ug).

Since p is inert in K/Q, one has a,(§) = 0 so that the p-th Hecke polynomial of £
is equal to

X2+ xe(p)-
Let ag € 0* be a fixed square root of —x¢(p), and write
. X¢\p
(1) o =&(q) = Be - €(¢7) € S1(Nep, xe),  with fe = z(g) = —ag

for the corresponding p-stabilisation. (Here we assume that L contains cg.) Since
Xg * X is the trivial character, without loss of generality we may assume that the
roots oy, By, an, B, are ordered in such a way that

(2) ag-ap = Bq - Br = ap(A) = £1.

As explained in Section 5 of our contribution [BSV20], the work of Hida and Wiles
implies the existence of a unique triple (f*, g%, h!,) of L-rational primitive Hida fami-
lies of tame conductors (N, Ny, Ni) and tame characters (xf, X g, x») which specialises
to the triple (f, ga, ha) at w,. Note that the triple (f*, g*, h*) satisfies Assumptions
1.1 and 1.2 stated in Section 1 of [BSV20] (cf. Equation (1) and Assumption 1.1.3),
and that w, = (2,1,1) is ezxceptional in the sense of Section 1.2 of loc. cit. (cf.
Equation (2)).

With notations as in Section 1.1 of loc. cit., denote by N the least common multiple
of Ny, Ny and Ny, by V(f, 94, ha) the big Galois representation attached to any choice
of level-N test vector for (f*, g%, h!,) (cf. Remark 1.3(3) of loc. cit.), and by

(190 o) € HLy(Q,V(F, 90 ha))

the corresponding diagonal class. In [Hsi20] Hsieh constructs a distinguished level- N
test vector (f, g, ha) (denoted (f*, g%, k) in [BSV20, Section 6.1]) for (f*, g%, hf),
and computes explicitly the local constants which appear in the interpolation formulae
satisfied by the p-adic L-function fl-f(f,ga, h,) (cf. Sections 1.1 and 6.1 of loc. cit.).

Let V,(A) = Tay(A) ®z Q be the p-adic Tate module of A with Q,-coefficients,
let Y1 (N¢p) be the open modular curve over Q of level I'1 (N¢p), and let V(f) be the
f-isotypic quotient of Hi (Y1(Np)g, Qp(1)) (cf. Sections 2.1 and 2.4 of [BSV20]).
Fix a modular parametrisation

Poo : Y1(Nyp) — A.

This induces an isomorphism of G'q-modules

(3) Poox : VI(f) = Vp(4)
which we often consider as an equality in what follows. Set
V(f.9:h) = Vp(A) @q, V(g) @1 V(h),

where V(§) = V(&) is the canonical model of the dual of the Deligne-Serre represen-
tation of £ = g, h arising from the specialisation of V(£,) at weight one (cf. Section 5
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of [BSV20]). The fixed test vector (f,g,,hs) and modular parametrisation ., de-
termine a projection V(fy, 9,1, Pa1) — V(f,g,h) (denoted w, in Section 2 below),
mapping the specialisation at w, of k(f,g,,ha) to a global class
Kaa(.faga h) € Hl(Qv V(f,g, h))
Let ¢ be the non-trivial element of Gal(K/Q) and let v§ : Gk — L* be the
conjugate of v¢ by ¢. By Assumption 1.1(4) the characters
p=vg-v, and Y =v,-v;

are ring class characters of K (i.e., ¢¢ = ¢~ and ¥° = ¢~1). Note the factorisation
of Gq-representations

(4) V(f,9,:h) = V,(A) ® Indg () © V,(A) @ Indg ().
In particular the Bloch-Kato Selmer group Sel(Q, V (f, g,h)) decomposes as
(5) Sel(Q, V(f,g,h)) = Sel(K,, Vp(A))¥ & Sel(Ky, V,(A)Y,

where K./K denotes the ring class field having the same conductor as - and
Sel(K.,V,(A)) is the submodule of the Selmer group Sel(K.,V,(A)) ®q, L of
Vp(A) ®q, L over K. on which Gal(K./K) acts via the inverse of -.

It follows from Equation (4) and the Artin formalism that the Garrett triple prod-
uct L-function L(f ® g ® h,s) = L(V(f,g,h), s) factors as the product of the Rankin
L-functions L(A/K, ¢, s) and L(A/K,,s), which have both sign —1 in their func-
tional equation by Assumption 1.1.1. In particular L(f ® g®h, s) vanishes to order at
least two at s = 1. Theorem B of [BSV20] in the exceptional case then proves that
the diagonal class kqa(f,g,h) is crystalline at p, hence belongs to the Bloch—Kato
Selmer group Sel(Q, V (f, g, h)) of the representation V(f,g,h) of Gq:

Faa(f;9,h) € Sel(Q,V(f,g,h)).
Write g for either ¢ or 1. The articles [BD07] and [BDO09] (see also [GSS16])

associate to f and p a p-adic L-function

interpolating the central values of the L-series L(fx/K, o, s) of the base change of fj
to K twisted by 0. Their definition, which depends only on the primitive family f*,
is recalled in Section 3.2 below.

Write K, for the completion of K at the inert prime p. Noting that p splits
completely in K,/K, let Frob, in Gal(K,/Q) be the Frobenius element determined
by the fixed embedding of Q into Qp, mapping K, to K,. Denote by

log,,, + A(Kp)L = A(Kp)®L — K, ®q, L

the L-linear extension of the composition

A(Kp)®QP = Hf-lin(Kp7 V(f)) loﬁ; tanKp (f) =~ Kp7

where H  is the finite subspace of H!, tan Kk, (f) is the tangent space of the de Rham
module H°(K,,V(f) ®q, Bar). the first isomorphism arises from the map oo and
Kummer theory, log, is the Bloch-Kato logarithm and the second isomorphism is
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evaluation at the canonical differential w; in the dual of tang, (f) associated with
[ (see Section 2.5 of [BSV20], in particular Equations (29), (30) and (32)). Under
our running assumptions, the p-adic L-function L,(f/K, o) vanishes at k = 2 to
order at least two. An extension of the main results of [BD07] and [BDO09] in
the imaginary quadratic and real quadratic setting respectively — see in particular
[GSS16, LMY17, LV14, Mok11| — prove the existence of a non-zero algebraic
constant Q € Q* such that
2

d
(6) C?‘ : WLp(f/K, 0)k=2 = Q- logf}f(Pg)7

where ¢y = ¢;(poo) € K, is an explicit non-zero p-adic constant (depending on o)
introduced in Section 2.2 below (see also Remark 1.2), and the point P; in A(K))L
are defined as follows.

If K is imaginary quadratic, choose a primitive Heegner point P in A(K,) and let

P, = Z o(c)™'-P° and Py :PQ+E-P§r°bP for e = a,(A).
seCal(K,/K)

Note that the global point P is viewed in Equation (6) as a local point via our fixed
embedding of Q into Qp. When p is quadratic one checks that Frob, acts on P, via
a sign €, (see for example the discussion in Section 4 of [BD07]).

If K is real quadratic, the local point P, in A(K,) is defined as in the above
formula, by exploiting the action of Pic(O,) on a Stark-Heegner point P € A(K,)
attached to K,, where Pic(O,) = Gal(K,/K) is the Picard group of the order O, of
K corresponding to K, via class field theory.

Remark 1.2. — The main results of [BD07, BD09] are stated in terms of the
logarithm
logy = log,, OSO%alte P A(K) — Kp,

where g4 is the Tate period of Aq,, ¥Tate : K;/qf‘ =~ A(K,) is the Tate parametri-
sation and log,, : K — K, is the branch of the p-adic logarithm which vanishes
at ga (see Section 2.2 below for more details). The p-adic constant c¢; € K (de-
fined in Equation (14) below) accounts for the discrepancy between log, and the
logarithm log,, . introduced above (cf. Lemma 2.1 below). The nontrivial element
of Gal(K,/Q,) acts on ¢y as multiplication by € = a,(A), hence C? belongs to Q.
Similarly logif (Pg) belongs to L, so that the identity (6) takes place in L.

Denote by
,pr(f7ga7ha) € ﬁ.f

the restriction of fpf(f,ga, h,) to the line (k,1,1). Theorem 3.1 below shows the
factorisation formula

(7> gpf(f>gavha)2:'Q{'Lp(f/Kvﬁp)'LP<f/K’w)7

where &/ is a bounded analytic function on Uy such that <7(2) is an element of Q*.
Under the assumptions of this section, Proposition 2.2 gives a formula for the
second derivative of the Perrin-Riou big logarithm of a balanced class along the line
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(k,1,1) at the point k = 2. Combined with [BSV20, Theorem A], this gives the
equality

d2
(8) C? ’ W"%pf(f7 Yo, h’a)kZQ = Q ! logﬂﬁ (TGSP(Haa(f7 g, h)))a
where Q is an explicit constant in Q* and loggg (resp(naa (f, 9, h))) is the evaluation
of the p-adic Bloch-Kato logarithm of resy,(kqq(f,g,h)) at a canonical differential
Wi ® wg, ® wp, (see Section 2 for details).
Combining Equations (6), (7) and (8) yields

Theorem A. — For Q in Q* one has the equality
logﬁﬁ (resp (HOLOL(fj g, h))) =Q- logwf (Pgi) : logwf (P{/:))

Remark 1.3. — As observed in Remark 1.3(3) of [BSV20] the general results at
the basis of the arithmetic applications considered in this section hold in the context
of Coleman families. In light of the main results of [Sev14, Sev12], there should be
no serious difficulty in extending Theorem A to encompass the case of Heegner and
Stark—Heegner cycles associated with multiplicative cusp forms of even weight k > 2.

Recall that the complex L-function L(f ® g ® h, s) attached to V(f, g, h) vanishes
to order at least 2 at s = 1 by Assumption 1.1.

Corollary B. — Let K be imaginary quadratic. If o = ¢ or 1 is quadratic, assume
that € = €,. Then

2

ds?

Proof. — Under the current assumptions P; is non-zero whenever P, is non-zero.

Corollary B then follows from Theorem A combined with S.-W. Zhang’s proof of the
Gross—Zagier formula for Shimura curves [ZhaO1]. O

L(f ®g® h, $)s=1 #0 — IOgﬁﬁ (resp (Haa(faga h))) #0.

Remark C. — Theorem A and a suitable converse to the Gross—Zagier—Kolyvagin
theorem show that the equivalent statements of Corollary B are also equivalent to the
equality

(9) Sel(Q,V(f,9,h) = L Kaalfrg,h) ® L-kpp(f,g,h),

that is the Selmer group Sel(Q, V' (f, g, h)) is generated by the global class ko (f, g, k)
and its counterpart xgs(f,g,h) defined by replacing the pair (g, ha) With (gg, hg)
(cf. Equation (2)).

To show that the equality (9) follows from the non-vanishing of the second deriva-
tive of L(f ® g ® h, s), one notes that this condition implies that Sel(Q, V' (f,g,h))
is two-dimensional by the Gross—Zagier-Kolyvagin theorem. The classes kqo(f, g, h)
and kgg(f,g,h) are both non-trivial by Corollary B, hence one is reduced to prove
that they are linearly independent. This follows again from Corollary B, noting that

log g (vesy(k35(f, 9. 1)) =0
since the Selmer class #gs(f, g, h) arises from the balanced class x(f,gg, hp).
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Conversely, assume that the classes koo (f,g9,h) and kgg(f,g,h) generate the
Selmer group Sel(Q, V(f,g,h)), so that

(10) dimg Sel(Q, V' (f,9,h)) < 2.
Granting a converse of the Gross—Zagier—Kolyvagin theorem of the form
(11) dimp Sel(K,,Vyp(A))2 <1 = ord=i1L(f/K, 0, s) = dimy, Sel(K,, V,(A))°

for o equal to ¢ and v as above, one concludes readily as follows. Since the sign
of the functional equation of L(f/K, g, s) is —1, Equations (10) and (11) imply that
L(f/K,o,s) has a simple zero at s = 1 for p = ¢ and v, hence L(f ® g ® h,s)
has a double zero at s = 1. The above converse theorem may be approached by an
extension of the methods of the forthcoming work [BLV17], which prove Birch and
Swinnerton-Dyer formulae for general families of anticyclotomic characters of p-power
conductor and are suited to extend such formulae to arbitrary ring class characters.

In the real quadratic setting, the next result relates the (local) Stark—Heegner
points to the (global) Selmer group Sel(Q, V' (f,g,h)).

Corollary D. — Assume that K is real quadratic. If the Stark-Heegner points P
and Py are both non-trivial, then dimz, Sel(Q, V (f,g,h)) = 2.

Proof. — Theorem A implies that kaa(f,9,h) and kgg(f, g, h) are non-zero. The
same argument as in Remark C shows that these classes are linearly independent. [

Remark E. — Under the assumptions of Corollary D, the definition of koo (f, g, h)
and kgg(f,g,h) combined with Theorem A imply that the Stark—Heegner point P;
(0 = ¢, ) arises as the restriction at p of a Selmer class in Sel(K,, V,(A4))2. We
refer the reader to the contribution [DR20] by Darmon—Rotger to this volume for an
extensive discussion of this application (see in particular Theorem A of loc. cit.).

2. Derivatives of big logarithms II

This section should be regarded as a continuation of [BSV 20, Section 6], where a
study of multivariable Perrin-Riou logarithms is undertaken. After the preliminary
Sections 2.1 and 2.2, Proposition 2.2 in Section 2.3 establishes a formula for the second
derivative of the Perrin-Riou big logarithm of a balanced class along the line (k, 1,1)
at the point k = 2, which constitutes a crucial ingredient in the proof of Theorem A.

Let (f,g,h) and (f*, g%, h!) be as in Section 1. Denote by (f,g,,ha), or more
simply (f,g,h), any level-N test vector for (f*,g%,h?) (where N is as in Section
1). Throughout this section Assumption 1.1 is in force. In particular Assumption
6.3 of loc. cit. is satisfied (as 4,(Q) is p-distinguished by Tate’s theory, since p > 5,
cf. Section 2.2 below), hence one can consider the distinguished level-N test vector
(f*, g%, k) introduced in Section 6.1 of loc. cit.. (To ease notations, the latter was

simply denoted (f,g,,ha) in Section 1).
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2.1. The projection wggn and the class kqq(f,g,h). — Associated with the
choice of a test vector (f,g,h) = (f,g,,ha) we define a Gq-equivariant projection

(12) @gh : V(fo,91.h1) — V(f, 9ar ha)

by the following recipe. Let & denote one of f,g, or h,. For each positive integer d
dividing N/N¢ denote by

Uq : Yl(Nap) — }/I(Nﬁvp)

the degeneracy map corresponding to multiplication by d on H under the analytic
isomorphism defined in Equation (6) of loc. cit.. The Q-rational map vy induces
pull-backs v} : V*(&*) — V*(€) (for - = 0, %), which in turn induce morphisms
vy D*(&9)F — D*(€)F and v : HY(Q,, V*(¢*)) — HY(Q,, V*(£)') between the
associated period rings and Galois cohomology groups. As d runs over the positive
divisors of N/Ng, the images of D*(£*)* under the operators v} generate D*(£)*
over O¢. As a consequence, if wg and 7, (for - =0, 4) denote the Og-adic differentials
associated to € in Equations (118) and (122) of loc. cit. respectively, one has

ny = vp(nf), wg=vglwg) and wp =vi(wy)

with Og-linear combinations vz of the operators vj. (See Section 5 of [BSV20],
especially Equation (95), Equations (117)—(123) and the discussion following them,
for more details.) Denote by ve. : V(§) — V(&°) the dual of vi under the perfect
pairing (103) of loc. cit. and set

Wegh = Vfsx & Vgx & Vpsx ! V(f,g,h) — V(fuvgnghua)'

With a slight abuse of notation, the map (12) is defined as the base change of w¢gp un-
der evaluation at w, = (2,1,1) on Opgp, (cf. Equations (106) and (107) of [BSV20]).
Recall the modular parametrisation

fixed in Section 1 (cf. Equation (3)) and set
Wy = Poox Vid o Wr*grhk * V(vaglahl) — V(f, gcwha) = V(f7g7h)7

(where id denotes the identity on V(gq) @ V(ha) = V(g) @ V(h).) Then with the
notation of Section 1 (cf. Remark 1.3(3) and Theorem B of [BSV20])

taa(f,9:h) = @u(K(f2, 91, 1)) € Sel(Q, V(f, g,h)).

For each local crystalline class 3 in H} (Qp, V(f, ga, ha)) define the 33-component
of its p-adic logarithm by

IOgﬂﬁ(ﬁ) = <10gp(5)’wf ® wg, & wha>fgaha ’

where wy is the differential associated with f in Equation (30) of [BSV20], the weight-
one differentials wy, and wy, are the specialisations of wg —and wj, . at weight one
(cf. Equation (129) of [BSV20]), and the pairing (-,-), ;. arises from the product
of perfect dualities (-,-), introduced in Equations (31) and (128) of [BSV20], for
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& = f,9a,ha. Finally for any global Selmer class « in Sel(Q, V(f,g,h)) define (cf.
Equation (8))

logﬂﬁ(resp(n)) = logﬁﬁ(mp),
where k), € HE (Qp, V(f, as ha)) is defined by poox ® id(kp) = resy(k).

2.2. Tate’s theory and the constant c;. — The Tate parametrisation (cf. Chap-
ter V of [Sil94]) yields a rigid analytic isomorphism
PTate : B, — Ak,
between the Tate curve
Eq, = GSEKP/(]%
over K, and the base change A, of A to K. Here G:Tilg’ K, is the rigid multiplicative

group over K, and g4 € pZ, is the Tate period of Aq, (cf. loc. cit.).
Denote again by

PTate * ‘/;D(EqA) = VP(A)
the isomorphism of G'k,-modules induced by the Tate parametrisation on the p-adic
Tate modules with Q,-coefficients, and define
©PTate = @iite O Poox - V(f) = VP(EQA)
as the composition of its inverse with peox @ V(f) = V,(A) (cf. Equation (3)). It
induces a morphism of filtered modules (denoted by the same symbol)
©Tate : Dar, i, (V(f)) = Dar,x, (Vyp(Eq,)),
where Dyr,x,(-) = HOY(K,,- ®q, Bar) is Fontaine’s de Rham functor.
The projection G:;fi K, — E,, gives rise to an exact sequence of G -modules
(13) 0— Qp(l) — VP(EQA) — Qp — 0.

Applying Fontaine’s de Rham functor Dar r, (-) = HOY(K,, -®q, Bar) to the previous
exact sequence yields a morphism Dar x,(Vp(Eq,)) — Dar,x,(Qp) = K, which
restricts to an isomorphism Fil’Dyg s, (Vp(Ey,)) = K. Define

14 € Fil'Dar k, (Vy(Ey,))

for the generator corresponding to the identity of K, under this isomorphism. On the
other hand, the newform f corresponds (under Faltings’ comparison isomorphism) to
a canonical generator wy of Fil’Dar , (V(f)) = Fil'Vi3 (f) ®q, K, (cf. Equations
(29) and (30) of [BSV20], noting that V(f)(—1) = V*(f)). The non-zero p-adic
constant

cy € K;
which appears in Equation (6) of Section 1 is defined by the identity
(14) pTate<wf) = Cf . lA.

With the notations of Section 1, the following lemma shows that Equation (6) is a
restatement of the main results of [BD07, BD09] (cf. Remark 1.2).



10 MASSIMO BERTOLINI, MARCO ADAMO SEVESO, AND RODOLFO VENERUCCI

Lemma 2.1. — Up to sign, one has the identity

°f ) - logy .

] -
%801 = deg(pmo

Proof. — Let u € Oj be a p-adic unit and let P = @rage(u) be its image in A(K})
under the Tate parametrisation, so that

(15) log 4 (P) = log,,(u),

where log,, : K — K, is the p-adic logarithm.
For V' equal to one of Q,(1),V,(A), V,(Ey,) and V(f), denote by tangy (V) the
tangent space of Dyr, i, (V') and by

logy : Hy (Kp, V) — tangy, (V)
the Bloch—Kato logarithm (viz. the inverse of the Bloch-Kato exponential map for
V', which is an isomorphism). After identifying O%p@Qp, resp. A(K,)®Q, with the
finite subspace of H' (K, Q,(1)), resp. H*(K,, V,(A)) via Kummer theory, one has
(16)
log,, (u) = <logQP(1)(u), 1>m = <logvp(EqA)(u), 1A>W = <10gvp(A)(P),goTate(lA)>W,

where

(s Dar,x, (Qp(1)) ®k, Dar.x,(Qp) — Dar.k,(Qp(1)) = K,

is the pairing associated with the multiplication m : Q,(1) ®q, Qp — Q,(1), and
for A equal to either A, or E,,, the morphism

(o tang e, (Vo(A)) @, Fil’ Dar xc, (Vo (A)) — Dar,xc, (Qp(1)) = K,y

is the one induced by the Weil pairing W : V,(A) ®q, Vp(A) — Qp(1). (The first
identity in Equation (16) is well known, while the others follow from the functoriality
of the Bloch—Kato logarithm and of the Weil pairing, after noting that the Weil pairing
on E,, and the multiplication map m are compatible via the exact sequence (13).)

Under the natural isomorphism between V,(A) and H{ (Ag, Q,(1)), the Weil pair-
ing agrees (up to sign) with the cup-product pairing

H(Aq, Qp(1)) ®q, Hey(Aq, Qp(1) — Hi(Aq, Qp(2) = Q,(1)
associated with the multiplication map Q,(1) ®q, Qp(1) — Q,(2), hence

(logy, (4)(P), ¢rate(La))y, = deg(poo) - {108y (1) (9en (P)), Prow © PTate(La)) -
By the definitions of log,, ; and cy, the right hand side of the previous equation equals

d
eg(Pos) log
Cf
Together with Equations (15)-(16), this prove that log,, (P) and %- log 4(P) are
equal for each point P € A(K),) in the image of (9}}? under the Tate parametrisation.
Since (’);{p has finite index in E,, (K,), this concludes the proof. O

ws (P)-
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2.3. An exceptional zero formula and Equation (8). — As above, denote by
(f,9,h) = (f,9.,ha) alevel-N test vector for (f*, g%, ht). Let

3¢ Htl)al(Qm V(f,g,h))

be a local balanced class such that

3% pu.(3) € Hh(Qp, V(S g1, h1)).

In other words we assume that the specialisation 3 of 3 at w, = (2,1, 1) belongs to the
Bloch-Kato Selmer finite subspace of H'(Q,, V(f5,91,h1)). The aim of this section
is to prove the following exceptional zero formula for the analytic function

Zr(3:k,1,1) = go.g(fvgah)(3)|(k,l,m):(k:,1,1) € 0y,

viz. the restriction to the line (k,1,1) of the image of 3 under the Perrin-Riou loga-
rithm 2y = Zog(f,g,h) (cf. [Venl6]). In light of Theorems A and B of our article
[BSV20], taking (f,g,h) = (f*, g}, h}) and 3 = res,(k(f,g,h)) in its statement
yields the key Equation (8) used in Section 1 to derive Theorem A.

Proposition 2.2. — One has ordg=2Z5(3;k,1,1) > 2 and (up to sign)

c2.d72$(3'k:11) - gl (1 _l'log (=1a10))
e L3 s = B ; 65 (@sgn(3))-

We first prove a simple lemma. As in Section 1.1 of [BSV20], denote by Ay the
ring of analytic functions on Uy bounded by one, so that 0 = Af[1/p]. Let
P GQp — A}k

be a continuous character such that ®(-)g—2 is the trivial character, and let V be a
free Op-module of finite rank on which Gq,, acts via ® - xcye. Let V =V @3 L be the
base change of V' under evaluation at k = 2 on fp. Multiplication by k —2 on V
gives rise to an exact sequence

17) - — HY(Q,, V) "3 H(Q,,V) — H'(Q,,V) = HT(Q,, V) — - .

As ®(-)g=2 is the trivial character of Gq, the representation V' is the direct sum of a
finite number of copies of L(1), hence there are natural isomorphisms

H'(Q,, V)= Q;®V(-1) and H*(Qp,V)=V(-1)

arising from Kummer’s theory and the invariant map inv, : H*(Q,, Q,(1)) & Q,
respectively. One considers the previous isomorphisms as identities in the rest of this
section. Define

By - QuOV(~1) 25 HX(Q,, V) — H(Q,, V) @5 L = V(-1),

where the second map is the natural projection (and the isomorphism comes from
the exact sequence (17), since H3(Q,, V') vanishes). Because ®(-)gx—2 is the trivial
character its derivative defines a morphism

d
dikq)(')k:2 € Hl(vaL) = Homeont (Qy, L),
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where the isomorphism is induced by the reciprocity map
rec, : Qy©Q,, = Gapr®Qp
(normalised as in [BSV20, Section 9.2]). Taking the tensor product over L with
V(—1) this induces a morphism (denoted by the same symbol)
d
—o
dk

Lemma 2.8. — By = %@(')kzg.

(V=2 : QRV(—1) — V(-1).

Proof. — Without loss of generality one can assume that V' is equal to Of(® - Xcyc),
hence V' = L(1). Let = q®v be an element of Q*®L and let ¢, : Gq, — L(1) be
a l-cocycle representing it. Let ¢, : Gq, — Of(® - Xcyc) be the 1-cochain defined
by viewing ¢, as a function with values in 0f. Clearly é,(-)g=2 = ¢;. If d denotes
the differential in the complex C¢,.(Qp, O (P - Xoyc)) of inhomogeneous continuous
cochains of Gq, with values in 0f(® - xcyc), then

deg(o,7) = (®(0) = 1) Xeye(0) - ca(T) = %(b(a)k:2 ) (chc(O') ’ Cw(T)) (k=2)+---,

where the dots denote higher terms in the Taylor expansion at k = 2. This and local
class field theory yield
d d
— —P(Ns_ - ) = —¢ —2 U,
Bv (z) mvP(dk (Vr=2Ucl(cz) 2 (@)g=2 - v

where U is the cup-product associated with the multiplication map L&, L(1) — L(1).
The lemma follows. [

Proof of Proposition 2.2. — By assumption 3 = 2,(2)) is the image of a (unique)
cohomology class Q) in H'(Q,, 2V (f, g, h)) under the map induced by the inclusion
v: F2V(f,g,h) = V(f,g,h). Set

= pwo*(ﬁ.)) € Hl(Qp>y2V<f27glvh1))7

so that 3 = pu,«(3) is the image of y under the natural map. By construction (cf.
[BSV20, Proposition 7.3])

(18) L5 (3) = L5 (ps(D))-

If @ and o denote either « or 3, define as in Section 9.2 of loc. cit. (cf. the proof of
Proposition 9.3 of loc. cit.)

V(fa)eo = V(f2) @1 V(g1)e @1 V(h1)o,

where - = 0,4+ and V(&) = V(&) and V(&)o = V(&)™ for € = g,h. In
the present setting the form &, is regular, viz. ¢, and f¢, = —oag¢, are distinct,
hence V(&) is equal to the subspace V (&;)¥P»=* of V(¢,) on which an arithmetic
Frobenius Frob, acts as multiplication by e¢ (cf. Section 9.2 of loc. cit.). It follows
that for - = () and - = & there are canonical direct sum decompositions

(19) V(f2:91,01) = V() e ©V(F2)ap ©V(F2)5a © V(F2)5s
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of L[Gq,]-modules. In particular V(f;,g1,h1); = V(f3)55 is a direct summand of
V(f3,91,h1)" (cf. Equation (191) of loc. cit.), hence

pr«(n) =0

since by assumption 3 is crystalline (cf. Section 9.1 of loc. cit., in particular Equation
(193)). As a consequence

(20) pr+D)=(k=2)De+1-1) - D+ (m—-1) Ym
for classes 9. in H(Q,, V(f,g,h)s) (cf. the proof of Proposition 7.3 of loc. cit. or
[Ven16, Lemma 5.6]). Set

Ve = pwo*(@k) € Hl(va V(f27glﬂ hl)f)'

Because Z% is Opgp-linear, Equation (18), Proposition 9.3(1) of loco citato and The-
orem 3.14 of [GS93| give

(21)

D) 3ok 1 Dk = o)y — £ (1)) =~ ()
YR O, R L k=2 =90 7)f ¥ Dk fﬁordp(qA) Delga)f,

where

1
—5 ¢ = dlogay (k) k=2

is the logarithmic derivative at k = 2 of the p-th Fourier coefficient a,(k) of f*
(cf. Section 9.2 of [BSV20]). In particular this implies that the quantity yx(ga)y is
independent of the choice of 9, satisfying Equation (20).

As shown in the proof of Proposition 9.3 of loc. cit. the class of the extension

(22) 0— V(fz)gg — V(fa)ps — V(fz)Eg —0
in

EthL[GQP}(V(fQ)Ega V(fz)/?g) = Q,@q,Homp (V(f2) 55, V(fz)gﬁ(_l))
is equal to

a5, = qa®0y,

for an isomorphism d¢, : V(f3)55 — V/( fz)gﬂ( —1), and the connecting morphisms 83}2
associated to (22) satisfy
(23) 9%,(v) = 4a®dys,(v) = q,Uv and 93, (p®v) = —p(qa)- 0, (v) = —qz,U(p®0)

for all ¢ in Homeont(Qy, L) and v in V(f;) 545, where U is the cup-product induced by
the evaluation map. Define

V(s = (V(f) @6, fii;ckm) @L V(g @L V(h)*.
These are 0f[Gq,]-modules, sitting in a short exact sequence
0—=V(flzs — V(Fles — V(flzs — 0

which specialises to (22) under evaluation at k = 2 on 0. Identify the Op-module
V(f)sp with the direct sum of V(f)gﬂ and V(f)z5 under a fixed Op-splitting of the
previous exact sequence. There is then a continuous map

a5 : Gq, — Homg, (V(£)55. V() 5s)
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satisfying the following properties. For all v* € V/( f)gﬂ and 0 € Gq, (cf. Equation
(101) of loc. cit.)

Weye(0) - KELE (0 _ o K?éy_ck/Q o) _ _
(24) o(vt) = cyel0) - Keye (9) s and o(v ):—T/Jf( ) ( )~'U +qf(o,v7),

¢f¢gl d}hq (U) wgll/Jhl (0)
where 9y : Ggp — A} is the unramified character of Gq, which sends an arith-
metic Frobenius Frob, to a,(k), and similarly vg ,vp, : Ggp — 0™ are defined by

g, (Frob,) = b,(1) and 9p, (Frob,) = c,(1) respectively. (Here one uses that both
xf and Xg - Xn are equal to the trivial character.) Moreover the specialisation

a5 (Je=2 : Gq, — Qp(1) ®q, Home, (V(£y) 54, V(£2)55(—1))

of gy at k = 2 (via Home, (V(f) 54,V (F)f5) ®2 L = Homp(V(£y) . V(£2) ) Is &
1-cocycle satisfying

(25) cl(ar(Jr=2) = gs,-
For future reference denote by ®f : Gq, — A} the character
(26) Op = kB2 gy

50 that @y (-)r=s is the trivial character and Gq, acts on V(f)$; via Xcye - @5
Denote by

Vs € H'(Qp, V(f)ps) and Dips € H (Qp, V(£)55)
the images of 9) and )i under the maps induced by the projections

F2V(f.g,h) — F*V(f, g1, h1) — V(f)sp

and

V(f,g,h)f - V(fvglvhl)f = V(‘f)gﬁ

respectively. (Here V(f,g,,h1) =V (f) @ V(g,) ®L V(hl)(/@éy}k/?). Note that the

discussion leading to Equation (19) yields a similar canonical decomposition of the
O¢|Gql-module V(f,g;,h1).) According to Equation (20) the cohomology class 9 sg
is represented by a 1-cocycle of the form

Ygg = Yﬁtﬁ @ (k-2)- Yﬁ_ﬁ : GQp — V(f)[gﬁ,
for 1—.c0chains Yis  Gq, = V(f)sp- Using Equation (24) the cocycle relation for
Ygp gives
(27) dYﬁ"’B(U, 7)=—(k—2)-qs(0,Yg5(7)) and dY;=0.

In particular the specialisations yz5 : Gq, — V(fQ)'ﬂB of Y5 at k = 2 are both

1-cocycles and by construction
(28) i (035) =vpp and (k—2)-cl(Y5) = (k—2)- Vs,
where Ugﬁ = cl(ygﬁ) € Hl(Qp,V(fg)é:B) are the classes represented by ygﬁ, the

map i} is the one induced by the inclusion it : V(fz)gﬁ — V(f,)pp and pgs in
HY(Q,,V(f,)pp) is the image of y under the map induced by the projection onto the

P
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direct summand V (f,) s of Z2V(fy,91,h1). The second identity in Equation (28)
implies

De(qa)r =g5(q4) s
(cf. the remark after Equation (21)), hence Equation (21) can be rephrased as

1 d? -1
29 1- )2 23k, s = ————— 1 .
(29 (1-3) sk 1 Dime = s w30
In light of Equations (24)—(26) and Lemma 2.3, the first equalities in Equations (27)
and (28) yield
(30)  —0f,(v55) = vy (cl(az, (0,y55())))

d 1

= _va;ﬁ (Ugﬁ) = —@‘I’f(‘);ﬂ)kﬂ Ty loqu(UEB)-
More precisely, the first equality follows from Equation (23), the second from Equa-
tions (25) and (27) and the definition of 5V(f)2rg’ and the third from Lemma 2.3.
Finally, for each unit u in Z5, one has (cf. Equation (26))

d d _ d _ 1
a5 2 (Whe=2 = %ny/f H(recy(u))p=2 = @(“m s = 5 logy(u)

and
%éf(p)k:Q = Qg Qh - %ap(k’)k:2 =5 %
which in light of the identity £3" = (l:zi’; ((Zi)) proved in [GS93, Theorem 3.14] yields

the last equality in Equation (30). (Here one denotes again by
logy, : QuAV (£2)45(—1) — V(f2)45(=1) = Deris(V(f2) 55)

the morphism induced by log,, = log, fiji"(((f]’:)) -ordy, 1 Q) — Q).
As the connecting morphisms 8;22 and —8} are adjoint to each other under the
cup-product induced by (-,-) ¢, 1, , Equations (23), (29) and (30) combine to give

(31)

1 d? 1 _
<1 B p> g 2Ok ez = 50 s (1080, (05). 7 (1, 8, ©ma) ) g,

Since f has trivial character, one has V*(f) = V(f) (—1) for - = 0, + (cf. Sections
2.5 and 5 of [BSV20]). There are then natural Gal(K,/Q,)-equivariant isomorphisms

FillDdR,Kp(V*(f>) o FiloDdR’Kp(V(f)) o Dcris,Kp(V(f)_) =V(f)~ ®q, Kp,
under which we identify the differential (cf. Section 2.5 of loco citato)
wy € Fil'Viz(f) = Fil' Dag &, (V*(f)) 9K/ Q0)

with an element of V(f)~. Lemma 2.4 below proves that
2
°f

0w Qwy, Qwp, ) =t—F"—

’ nf ®wgo¢ ®wha
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in V*(f);gﬁ =V(f)T(-1) ®q, V*(9)~ @1 V(h)~, hence by construction

- deg(poo) .
(32) 0z, (nf, ® wg, ©wh,) = £ 5= T (wr @ Wy, ©wn.),
!
where @} ), = v};®vg®u}, is the adjoint of @wggp under the Poicaré dualities (-, -) ,, 4,
and (-, ) fo0.h1- Finally, the first identity in Equation (28) gives

(33) log,,(n55) = ma5(10g,(3)),
where mgg is the composition
Dar(V(f2: 91, hl))/FﬂO = Dy(V(f2, 91, 01)") — Dcris(v(-fZ)g,B)

arising from Equations (191) and (192) of [BSV 20| and Equation (19). Since by con-
struction the 33-logarithm loggs factors through the projection s, the proposition
is a direct consequence of Equations (31)—(33). O

Lemma 2.4. — Let
9 V()™ — KyaV(f)T(-1)
be the connecting morphism associated with the eract sequence of Gk, -modules
0— V()T — V() — V() —0.
Then 0y = qa®8¢ for an isomorphism
8 V()T — V(N (1)
satisfying, up to sign, the following identity in V (f)T(—1):

c
Op(wr) = Ty
T deg(poe)
Proof. — Consider the following diagram of Q,[G i, ]-modules with exact rows, in

which all the vertical maps are isomorphisms.

(34) 0——=Q,(1) —=V,(E, Qp 0
PTate l ¢ Tate J/ PTate l

00—V, (A)* Vp(A) ——=Vp(4)” —=0
] T N

0——=V(f)* V(f)m —=0

Here prate is the map induced on the p-adic Tate modules by the Tate uniformisation
E,, = Ag,, and the first row is the short exact sequence induced by the natural

projection Gm k, — Eqa (cf. Introduction).
The class in

Xt (¢, 1 (Qpy Qp(1)) = H' (K, Qp(1) = K;©Q,
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represented by the first row equals g4®1, hence the associated connecting morphism
OTate : Qp — K;®Qp

satisfies

(35) OTate(1) = qa®1.

After setting

Yaa = : Ordp S Homcont(K;a Qp) = Hl(Kpa Qp)v

ordy(qa)
this implies

(36) (Yga» Orate(1)),, = 1,
where
<'v '>m : Hl(Kp’ Qp) ®Qp Hl(Kp’ Q;v(l)) — Kz)

is the local Tate pairing attached to the multiplication m : Q, ®q, Q,(1) — Q,(1).
Moreover, the Diagram (34) and Equation (35) imply that the connecting morphisms

Oa: VyA) — KLGVo(A) (1) and 0y : V()™ — K;&V()*(-1)
associated respectively to the second and third rows of Diagram (34) are of the form
(37) 0a=qa®04a and Of =qa® Iy
for isomorphisms d4 : V,(A)” — V,(A)"(=1) and 67 : V(f)~ — V(f)T(-1).

Up to sign, one has the identities

(wr,0p(wr))p = (Vaa ®wyp, Op(wp)) ¢

1
= deg(pn) (Vg @ Poox(@r); 04 (90 (Wr)) ) wen

(38) = % : <’Y¢IA ® (P%ate(]‘% 8A(<p%ate(1))>Weil
= ﬁ ) <7qA ® (p';ate(l)’ ‘PJTrate(aTate(l)»Wcil

C
f
= . ate (1 ’

deg(poo) <’Y(ZA’8T t ( )>m

where (-, )yeir : H (Kp, Vo (A) ") @q, H (Kp, Vp(A)~) — K, is the local Tate pairing
associated with the Weil paring on V,(A). Indeed, the first equality follows from
Equation (37). The second equality follows (up to sign) from the functoriality of
Poincaré duality under finite morphisms of curves and its compatibility with the Weil
pairing on elliptic curves. The third equality follows from the definition of ¢; (cf.
Equation (14)). The fourth equality follows from Diagram (34). The fifth and last
equality follows from the functoriality of the Weil paring under isogenies, after noting
that the Kummer duality between Q,(1) and Q, induced by the Weil pairing on
Vp(Eq,) is equal (up to sign) to the multiplication map m.

Since V(f)T(—1) = Deyis(V(f)™) is a one-dimensional Q,-vector space generated
by 1y and (wy,ny) ; = 1, the lemma follows from Equations (36) and (38). O
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3. Factorisations of p-adic L-functions

This section is devoted to the proof of Theorem 3.1 below, viz. the crucial factori-
sation formula (7) of Section 1, under the assumptions listed therein. In light of the
discussion of Section 1 (see Equations (7) and (8)) and of Section 2, this is the last
step in our proof of Theorem A.

The reader is cautioned that the notations for p-adic L-functions in force here are
consistent with those of [BSV20, Section 6] and differ slightly from those of Section
1. Thus L,(f* g* h*) denotes the square of the triple product square-root p-adic
L-function gpf (f*,g*, h*) attached to our fixed choice of test vector (f*,g*, h*), and
the restriction of L,(f*, g%, h*) to the line (k,1,1) is denoted

Lp(fﬁvgﬁhhli) = Lp(fﬁ»gou ha)

(recall that g* and h* interpolate the chosen p-stabilisations g, and h,, respectively).
Accordingly, the Hida—Rankin p-adic L-functions associated to the ring class charac-
ters ¢ and 1 are denoted by L,(f*, ) and L,(f*,v) (as observed in Section 1, they
depend only on the primitive family f*).

Theorem 3.1. — Up to shrinking Uy if necessary, there is a factorisation

Lp(fﬁag?h hnl) =4 - Lp(fn/Kv 90) ' Lp(fu/K7 w)a
where &/ € Of is a bounded analytic function on Uy such that

< (2) € Q(gi, h1)",
Q(gi, hY) being the field generated by the Fourier coefficients of g§ and h.

3.1. The Mazur—Kitagawa p-adic L-function. — Let y be a Dirichlet character
of conductor coprime to N¢p. For every classical point k € U;l let L(f{,x,s) be the
Hecke L-series of f{ ® x, defined as the analytic continuation of the Dirichlet series
> ons1 X(n)an(fi)-n~° converging absolutely for R(s) > (k+1)/2. A result of Shimura
gives complex periods Qoo (f)T and Qoo (ff) ™ in C* satisfying the following properties.
One has

QOO(f]i)+ : QOC(f]:)i = (f]nw f]i)prT(k)a
where r(k) is equal to one if k = 2 and to zero otherwise. Upon setting
Qoo (ffx) = Qoo (f7)7EX
(sign(x) being the sign of x(—1)) the quantity
(k/2—1)!-a(x) - L(fi, x. k/2)
(—=2mi)k/2=1 - Qoo (£, X)

belongs to the number field Q(ff,x) generated over Q by the Fourier coefficients
of fi and the values of x. Here g(x) = > ae(z /e z)- X(a) - G is the Gauk sum of

(39) L(f]i»Xvk/Q)alg = S Q(f]g;aX)

X = x~!, where ¢, is the conductor of y and (., = e*/°x. One calls L(f, X, k/2)alg
the algebraic part of the central critical value L(f{, x, k/2).
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According to a result of Mazur and Kitagawa (cf. [Kit94, GS93, BD07]) the
algebraic central values L(f}f, X, k/2)alg, defined for k € U¢, can be interpolated by
an analytic function

Lp(fuaX) € ﬁf7

which we call the Mazur-Kitagawa p-adic L-function of (f*,x). More precisely, up
to shrinking Uy if necessary, there exist for every k € U;l non-zero p-adic periods

AL AL €Qp, with AT =1,

such that
(40)

: __ ysign(x) P* " x(p) P21 x(p) "
Ly(f*,x)(k) = A : (1 - W) (1 —er(p) - ap(k))'L(fkaXvk/2)alga

where e;(p) = 0 if k = 2 (ie. if f is p-new) and e;(p) = 1 otherwise (i.e. if f} is
p-old).

Remark 3.2. — 1. The p-adic L-function L,(f*, x) is the restriction to the central
critical line s = k/2 of a two-variable p-adic L-function

LY(£1x) = LY®(f%,X) (k. §) € Op&0.yc

of the weight variable k € Uy and cyclotomic variable j (cf. [BSV20, Section 7.1]).
For every classical point k € de one has

LMR(F5 ) (R, 5) = X000 Ly (F5,%) (),

where L, (f},X) = Lp(ff, X)(J) € Oeye is the cyclotomic p-adic L-function of fi®@x (cf.
[MTT86]) defined as the Mellin transform of a measure on Z; x (Z/c,Z)* associated
to the sign(x)-modular symbol attached to f/. In order to construct Lg/IK(f”, X) one
interpolates these modular symbols, and the p-adic periods )\f are the error terms

arising from the p-adic interpolation.
2. If k=2 and

x(p) = ap(2)
(with ap(2) = ap(A) = 1), the Euler factor 1 — A

ap (k)
(40) vanishes. In this ezceptional zero situation (cf. [MTT86]) L,(f*, x) vanishes at
k = 2 independently of whether the complex L-series L(f,x,s) vanishes at s = 1 or

not.

2—1
?) which appears in Equation

3.2. Hida—Rankin p-adic L-functions attached to quadratic fields. — Let
K/Q be a quadratic field of discriminant coprime to N;p, satisfying the Heegner
hypothesis given in Assumption 1.1(1). To lighten notations, assume in the real
quadratic case that N ;= 1 (so that one works with forms on GL3).

The Hida—Rankin p-adic L-function attached to the pair (f*,0) (0 = ¢ or 1)
introduced in [BD07] and [BD09] is an analytic function

Lp(fu/K7 Q) € ﬁf
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satisfying the following interpolation property. For every classical point k € U}l

ph—2 2
A L0 = 002 (1 L) LUK 0 k2

where the algebraic part of L(f}/K,o,k/2) is defined by

(/2 —1)12. dlE=1/2
(2mi)=2 - Qoo (ff, 0)
Here L(f}/K,0,5) = L(fi ® ¥,,s) is the Rankin-Selberg convolution of f; and
the weight-one theta series ¢, associated to o, and the complex and p-adic periods

Qoo (ff, 0) and Q,(f}, o) are defined as follows.
When K is real quadratic, then

sign 2 sign 2
Qoo (F7:0) = (o (FI=@), Q(ffr0) = (F9)%,
When K/Q is imaginary quadratic, one sets
Qoo(f]iv Q) = (flgv f]:)prT(k) ’

where r(k) =1 if k = 2 and r(k) = 0 otherwise.
We finally recall the definition of the p-adic periods Q,(ff, ¢) in the imaginary case.
With the notations of Assumption 1.1 let B,q be the definite quaternion algebra with

discriminant N oo. As explained in Section 2 of [BD07] the form f} gives rise, via

(42) L(fi/K,0,k/2)ag = L(f}/K, 0,k/2) € L.

the Jacquet-Langlands correspondence, to a weight-k eigenform ¢ on B* of level
So(pN*t,N™) C B*, having the same system of Hecke eigenvalues as fi. This form
is unique up to multiplication by a non-zero scalar. As in loc. cit., for every k > 2
(resp., k = 2) normalise ¢y by requiring that its Petersson norm is equal to 1 (resp.,
that it takes values in Z). This characterises ¢ up to sign for £ > 2. According
to Theorem 2.5 of loc. cit. (up to shrinking Uy if necessary) there exists an Op-adic
family ¢ of eigenforms on B* whose specialisation at a classical point k € U is
equal to Ag(k) - ¢y, for some

Ap(k) € L™ with Ap(2)=1
(see Section 2 of loc. cit. for the details). The definition of L, (f*/K) given in Section 3
of loc. cit. depends on ¢o, and one sets Q,(ff, 0) = Ag(k). In particular Q,(f, o) = 1.
3.3. Proof of Theorem 3.1. — The decomposition of Galois representations
Vig)@r V(h) = Indg(yg) 1 Indg(yh) = Indg(ga) &) Indg(w)
yields for every k € U;l a factorisation of complex L-functions
(43) L(fi ® g@h,s) = L(fi,/K, ¢, s) - L(f;,/ K1), 5).

The imaginary case. Assume that K/Q is imaginary quadratic and let k be a
classical point in U;l N Zs5. Then the complex period Qo (ff,0) is equal to the
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Petersson norm (f}, f’i>pr’"(k)7 hence Equations (42), (43) and [BSV 20, (133)], give
(44)

D 1,1) LU @g@h k) 2%iootedn
2alhID) w22 (fT fI3, i

With notations as in [BSV20, Section 6], one finds from Equations (1) and (2)
2 2

ph/2-1 ph/2-1 P2 2
15 EfLgL R :(1_ ) (1+ ) :(1_ ) .
o g anlF) () a2
Since Q,(f{, 0) is equal to the quaternionic period A (k) for both o = ¢ and o = ¢ (cf.

the discussion following Equation (41)), Equations (42), (41), (44), (45) and [BSV 20,
(132), (135)] yield

(46) Ly(f*.93,h3) (k) = o5 5 - - Ly (£ K, ) (k) - Ly(£*/ K, 9) (k)

for every k € U;l N Z~5, where one writes

L(fli/K7 L) k/2)a1g'L(fli/K7 v, k/2)alg'

1 22k—4—o¢(k:,171)
and o =—"7———"H+

Ne(k)2 - &) - &(F7) ¢ e
Since Loc, is a non-zero constant in Q* for every v|N, and p does not divide dg, the

values @70 € Q* for k € UJ‘ZI are interpolated by a unit in 05. Equation (46) then
reduces the proof of Theorem 3.1 to the following statement.

Ik = Loc,.

v|N

Lemma 3.3. — There exists a bounded analytic function o/ € Of salisfying the
following properties.

1. (k) = g 1 for infinitely many classical points k € UJ‘il.

2. o/ (2) is a non-zero element in Q*.

We defer the proof of Lemma 3.3 to Section 3.4 below.

The real case. Assume that K is real quadratic and let k € U;l N Z~5. Define the
quantity
_ 1

Ao Ay o) - E(fr)
By a similar argument as in the imaginary case, one reduces the proof of Theorem
3.1 to the following statement.

(47) D1k

Lemma 3.4. — There exists a bounded analytic function g, € Of satisfying the
following properties.

1. “ar, (k) = dau, k for infinitely many classical points k € U}l.

2. gL, (2) is a non-zero element in Q*.

3.4. Proofs of Lemma 3.3 and Lemma 3.4. — According to Proposition 5.2 of
[BDO7] there exists an analytic function @& € @ (denoted 7 in loc. cit.) such
that, for every k € U;l NZso

(k) Ao,k

= and @4, (2) € Q™.

dB (k) =
ar, (k) AoAL Dby
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In particular, after shrinking Uy if necessary, the analytic function ,Qigb is a unit in
Of. This implies that Lemma 3.3 follows from Lemma 3.4, hence to conclude the
proof of Theorem 3.1 it is sufficient to prove the latter.

To prove Lemma 3.4 we consider triple product p-adic L-functions associated to
f* and two weight one Eisenstein series attached to the characters which appear in
the following lemma.

Lemma 83.5. — There exists two Dirichlet characters x and v satisfying the follow-
1ng properties.

1. The conductors ¢, and cy of x and v are coprime to each other and coprime to
pr.

2. x is even and x(p) is different from £1.

3. ¢ is odd and ¢¥(p) = —a,(f).
4. Both L(f,x,s) and L(f,,s) do not vanish at s = 1.

Proof. — Let £ be a prime which does not divide N¢p. According to the main result
of [Roh84] there exists n, € N such that L(f,x,1) # 0 for every primitive Dirichlet
character x of Gal(Q(uen)t/Q) = (Z/¢"Z)*/{£1} with n > n,, where Q(ue)" is
the maximal totally real subfield of the ¢"-th cyclotomic extension of Q. If n > n, is
such that ¢" { p* — 1, this shows that there exists a character y such that

(a) the conductor ¢, = ¢™ of x is coprime to Nyp.

(b) x(=1) = +1 and x(p) # +1.

(¢) L(f,x,s) does not vanish at s = 1.

Let ¢ be a fixed prime which divides N; exactly, whose existence is guaranteed by
Assumption 1.1. For every quadratic character o denote by sign(f ® o) the sign at
s = 1 in the functional equation satisfied by the Hecke L-function L(f,o,s). Choose
any quadratic Dirichlet character 1; satisfying the following properties.

(d) The conductor c(¢1) of ¥ is coprime with £ - Ngp.

(e) ¢1(—1) = +1 and 11 (t) = +1 for every prime ¢ which divides Ny /q.

(f) ¥1(p) = —ap(f) and ¢1(q) = ap(f) - sign(f).
One has (cf. Theorem 3.66 of [Shi71])

sign(f ® 1) = sign(f) - 1 (=Nyp) = —1,

hence the main result of [BFH90] shows that there exists a quadratic Dirichlet char-
acter 1 such that
(g9) the conductor of 1 is coprime to £ - ¢(v2) - Nyp.
(h) ¥2(—1) = —1 and 2(t) = +1 for every prime divisor ¢ of Nyp.
(i) L(f,41 -2, s) does not vanish at s = 1.
According to (a)—(¢) the characters x and ¢ = 1 - 19 satisfy the required properties.
O

Fix two characters x and 1 satisfying the conclusions of the previous lemma, and
set N = Nyc,cy and

E=x"1y7h
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Since x, ¥ and & are non-trivial and ¢ is odd, one can consider the weight one Eisen-
stein series

E(x,¢) =Y ol ¥)(n) - ¢" € My(N, &)
n=1
and
2 =506 ="8Y 4 0.9 ¢" c a(v.0)

n>1
where o(a, 8)(n) = }_,,, a(n/d)- B(d) for every Dirichlet characters o and 3, and 1 is

the trivial character. Following Section 3 of [BD14], for every classical point k € U]'il
define

(fis eora (A>T E(€) x E(x,))) v,
(f]ﬁ?f,lg)Np ’

where E(¢) = E(&)P € My (N,€) and E(x,v) = E(x, )P € My(N,£71) are the
p-depletions of E(£) and E(x,v) (cf. [BSV20, Section 3.1]). The article [BD14]
shows that the function which to k € UJEI associates L, (fi, E(x,v)) extends to an
analytic function

(48) Lp(fi, E(x,¥)) =

Ly(f*. E(x,¥)) € 0.
(The notation is justified by the following lemma, cf. Remark 3.7.) For all k € de
define
—iNy
Cy (k) = .
) = S o) ey - (V) T (V)]
For - = x,% Section 3.1 associates to (f*,-) the Mazur-Kitagawa p-adic L-function
Ly(f',) € 6.
Lemma 3.6. — 1. Let Q(x, ) be the field generated over Q by the values of x and
. Then
Lp(f 5 E(x,1))(2) = (p+1) - Oy (2) - Lp(F*,X)(2) - Ly (£, ¥)(2) € Qx, ¥)"
In particular the p-adic L-function L,(f*, E(x,)) does not vanish at k = 2.
2. (¢f. [BD14]) For every classical point k € UJEI (strictly) greater than 2 one has
(49)  Lp(f*, E(x, ¥))(k) = avyk - Cxp(k) - Lp(£7, x) (k) - Ly (5, 0) (k)

Proof. — 1. Write for simplicity ¢ = E(§) and h = E(x,%), and consider the p-
stabilisations

9al(q) = g(q) —&(p) - 9(d”), 98(q) = g(q) —g(¢”) and ha(q) = h(q) — ¥(p) - h(q").

Then f (resp., ga, 98, ha) is an eigenvector for the Up-operator with eigenvalue
ay = ap(2) = £1 (resp., 1, £(p), x(p)), hence Lemma 3.5 and the same computations
as in the proof of [DR14, Lemma 4.10] show that

2- (f,95- ha)Np =1 =x(P)/ap(2)) - (f 9o ha)Np'
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As &(p) # 1 by Lemma 3.5, one can write ¢ = (9o — &£(p) - 93)/(1 — &(p)), which
together with the previous equation and a direct computation gives the identity
L X(p)) ' (fs9" ha)n,

ap(2) (fs Fp

The L-series of the forms f and h, admit Euler product expansions, hence the Rankin
method (see the argument leading to Equation (18) of [BD14|, or [Shi76, Theorem
2 and Lemma 1]) gives

(51) (f:9 ha)np = —i8(E)Nyp - L(f @ ha, 1),

where g(-) is the Gauf sum of the character -. (Note that (-,-)y, equals 872 times
the Petersson product defined in Equation 9 of [BD14].) Since the characters x and
1) have opposite parity, one has

(52) QOO(f7X) ' QOO(.ﬂw) = (fu f)pr = [Fl(Nf) : Fl(N)]_l : (f?f)NP'

Moreover a direct comparison of Euler factors (cf. [Shi76, Lemma 1]|) and Lemma
3.5 give

59 2o = (1- 20 o ny = (1+1) sy 2s0.)

(50) Lo(f* B 0))(2) = 2 (

As 9(6) = a(x) - 8(61) - X Hew )i (ey) (since (eyscy) = 1), the statement is a
direct consequence of Equations (39)-(40), Equations (50)—(53) and Lemma 3.5.

2. This is proved in Proposition 3.3 of [BD14]. Since the setting of loc. cit. is
slightly different from ours, for the convenience of the reader we briefly review the
argument. Equations (35) and (41) and Proposition 3.2 of [BD14], together with
Proposition 4.6 of [DR14], show that for every classical point k£ > 2 one has
E(fi ) (Fi, 0" P7TE(E) - E(x,¥)) 5

B ARG (i fi)w ’

Lp(f* E(x, ) (k)

where

F/21 My(N, ) — M2, (N, €)
is the (k/2 — 1)-th iterate of the Shimura—Maaf derivative operator. Here & (f}) and
E1(f}) are as in Equation [BSV20, (135)], and

k/2-1 k/2—1c k/2—1 2
et = (1- LX) ((PTN (2
ap(k) ap(k) ap (k)
(Recall that 1 = ¢! is a quadratic character, cf. Lemma 3.5, and that &(f}) is

non-zero for k > 2.) The Rankin method (see Equations (18) and (19) of [BD14])
yields

(1,827 B(€) - Blw)y = gy g LUz b/2) - LU, /2)

As in the proof of Part 1 the statement follows easily from the definitions and the
previous three equations. O
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Since the analytic functions L, (f*, E(x,v)), L, (f*, x) and L,(f*, ) do not vanish
at k = 2 by Lemma 3.6(1), and since C, (k) is clearly an invertible element of
O, Lemma 3.6(2) implies that the values /Gy, x, defined for k € U N Z,, are
interpolated by an analytic function @1, (k) which does not vanish at k = 2. In
addition, the explicit formula for the value of L,(f*, E(x,v)) at k = 2 displayed in
Lemma 3.6(1) gives

AGL, (2) =p+1
This concludes the proof of Lemma 3.4, and with it the proofs of Lemma 3.3 and
Theorem 3.1.

Remark 3.7. — 1. The previous lemma (or better its proof) shows that
L,(f*,E(x,%)) can be though of as a p-adic Rankin-Selberg convolution, which
interpolates the critical values L(f ® E(x,),k/2) of the convolution of f} with
E(x,%). One can also think of L,(f*, E(x,v)) = %,(f*, E(£), E(x, 1)) as a square-
root triple-product p-adic L-function (cf. Equations (48) and [BSV 20, (55)]), whose
square interpolates the complex central values L(f} @ E(£) ® E(x,v), k/2).

2. Note that the Euler factor & (ff) =1 — ;;k(i;; vanishes at k = 2, as a manifes-

tation of the presence of an exceptional zero for L,(f*,s) and L,(f*, g}, h}) in the
sense of [MTT86] (cf. Remark 3.2(2)).
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