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Introduction

In this monograph, we explore several arithmetical, geometrical and diophan-
tine questions concerning quaternion algebras, abelian varieties and Shimura
varieties and the rich relationships existing between them. Specifically, these
notes are focused on

• Abelian varieties whose ring of endomorphisms is a maximal order in a
totally indefinite quaternion algebra B over a totally real number field
F , and on the

• Shimura varieties XB/Q that naturally occur as their moduli spaces.

As we aim to make apparent, many of the arithmetical and geometri-
cal properties of these abelian varieties are encoded either in the quater-
nion algebra B or in the Shimura variety XB. In turn, the nature of these
Shimura varieties cannot be handled without an understanding of the objects
parametrized by them.

Due to Albert’s classification of involuting division algebras (cf. [Mu70])
and the work of Shimura [Sh63], there is a limited number of rings that can
occur as the endomorphism ring of an abelian variety. Namely, if A is a
simple abelian variety over an algebraically closed field, End(A) is an order
in either a totally real number field, a quaternion algebra over a totally real
number field or a division algebra over a complex multiplication field. We
stress that abelian varieties with distinct endomorphism rings tend to exhibit
very different behaviour in many aspects.

There is a considerable body of work on abelian varieties with complex
multiplication due to Shimura and Taniyama [ShTa61], Mumford [Mu70],
Lang [Lan83] and others. The impact of these contributions on class field
theory and the Birch and Swinnerton-Dyer conjecture is enormous.

There is also abundant literature on abelian varieties with real multipli-
cation due to Humbert [Hu93], Shimura [Sh63], Ribet [Ri80], [Ri94], Lange
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[La88], Wilson [Wi02] and others. These works are highly relevant to the
generalized Shimura-Taniyama-Weil conjectures due to the fact that modu-
lar abelian varieties Af/Q attached to cusp forms f ∈ S2(Γ0(N)) have totally
real multiplication over Q. We refer the reader to [HaHaMo99] and [Ri90]
for more details.

However, few authors have studied quaternionic multiplication (QM) on
abelian varieties. In this case, the arithmetic of their endomorphism ring
is considerably more involved than in the commutative cases, forcing their
Néron-Severi groups to be less accessible. We refer the reader to [No01],
[JoMo94], [HaMu95], [HaHaMo99] and [Oh74] for some recent contributions.

Shimura [Sh63], [Sh67] was the first to consider the coarse moduli spaces
of abelian varieties with quaternion multiplication, which admit a canonical
model XB/Q over the field Q of rational numbers. As complex manifolds, the
varieties XB(C) can be described as compact quotients of certain bounded
symmetric domains by arithmetic groups acting on them. Shimura explored
their arithmetic, showing that the coordinates of the so-called Heegner points
on XB generate class fields whose Galois action on them can be described by
explicit reciprocity laws.

Interest in Shimura varieties has increased in recent years. They have
been crucial in several studies of major questions in number theory. Let us
quote some of them.

With regard to modular conjectures, Shimura curves play a fundamental
role in Ribet’s proof of the Epsilon conjecture which, in turn, implies that
Fermat’s Last Theorem follows from the Shimura-Taniyama-Weil conjecture
(cf. [Ri89], [Ri90] and [Pr95]).

In connection to the Birch and Swinnerton-Dyer conjecture, Vatsal [Va02]
and Cornut [Cor02] have recently proved, independently, several conjectures
of Mazur on higher Heegner points on elliptic curves by means of modu-
lar curves, Gross and Shimura curves and Ratner’s ergodic theory. More-
over, Bertolini and Darmon [BeDa96], [BeDa98], [BeDa99] have exploited
the Čerednik-Drinfeld theory on the bad reduction of Shimura curves to
prove anti-cyclotomic versions of conjectures of Mazur, Tate and Teitelbaum
on p-adic variants of the Birch and Swinnerton-Dyer conjecture.

Concerning the finiteness and squareness conjectures of the Shafarevich-
Tate group of an abelian variety over a number field, Poonen and Stoll
[PoSt99] have recently made a careful study of the Cassels-Tate pairing
and have given explicit criteria for the squareness of the torsion part of the
Shafarevich-Tate group of the Jacobian variety of a curve. On the basis of
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these results, Jordan and Livné [JoLi99] have exhibited Atkin-Lehner quo-
tients of Shimura curves such that the cardinality of the finite part of the
Shafarevich-Tate group of their Jacobian varieties is not a perfect square but
twice a perfect square (cf. also [Bab01]). In a recent work, Stein [St02] pro-
vides explicit examples of abelian varieties A/Q such that ]Sha(A/Q) = p·n2,
n ∈ Z, for every odd prime p < 10000, p 6= 37.

In addition to the many applications of Shimura curves and varieties,
many authors have also been interested in their geometrical and diophantine
properties themselves. Indeed, integral models of Shimura curves and their
special fibres have been considered by Morita [Mo81], Boutot and Carayol
[BoCa91], Buzzard [Bu96], Čerednik [Ce76], Drinfeld [Dr76] and Zink [Zi81]
among many others. Also of great interest are the series of papers by Kudla
and Kudla-Rapoport on height pairings on Shimura curves, intersection num-
bers of special 0-cycles and the values at the centre of their symmetry of the
derivatives of certain Eisenstein series, along the pattern initiated by the
classical papers of Hirzebruch-Zagier and Gross-Zagier. See [Kud97] and
[KudRa02], for instance.

Effective results and computations on Shimura curves have also been
worked out by Kurihara [Ku79], Elkies [El98], Alsina [Al99] and Bayer [Ba02]
among others. These are particularly valuable since the absence of cusps
on these curves make these approaches more difficult than in the classical
modular case.

A notable and very recent result has been obtained by Edixhoven and Ya-
faev in [EdYa02] and its sequels, proving part of the André-Oort Conjecture
on the distribution of special points on Shimura varieties.

In a different direction, Ihara [Ih], Jordan and Livné [JoLi85], [Jo86],
[JoLi86], Ogg [Ogg83], [Ogg84], Milne [Mi79] and Kamienny [Ka90] have
studied the sets of rational points on Shimura curves, their Atkin-Lehner
quotients and their Jacobian varieties over global, local and finite fields. Fi-
nally, we refer the reader to [Gr02] for an approach to Shimura surfaces.
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This report is organized as follows. In Chapter 1, we fix some notation
and review some facts on number fields, quaternion algebras and abelian
varieties that we will need throughout the monograph.

In Chapter 2, we look into several questions on the arithmetic of quater-
nion algebras and orders which arise naturally in our subsequent study of
abelian varieties and Shimura varieties. Firstly, in Section 2.1, we consider
a problem on the existence of suitable integral bases of quaternion alge-
bras which is related to several papers by Chinburg and Friedman in rela-
tion to arithmetic 3-orbifolds (cf. [ChFr86], [ChFr99], [ChFr00]). Secondly,
in Section 2.2, we study the set of conjugation classes of pure quaternions of
given reduced norm in a quaternion algebra B under an action introduced
by O’Connor and Pall [CoPa39] in the 1930s and further studied by Pollack
[Po60] in the 1960s. We express the number of conjugation classes in terms
of class numbers of quadratic extensions embedded in B and groups of units.

In Chapter 3 we study abelian varieties A with quaternionic multiplication
and give an arithmetic criterion for the existence of principal polarizations on
them. In particular, we prove that abelian varieties with quaternionic multi-
plication over a totally real number field F of narrow class number h+(F ) = 1
are always principally polarizable. Moreover, we give an expression for the
number of isomorphism classes of principal polarizations on A in terms of
relative class numbers of orders in CM-fields by means of Eichler’s theory of
optimal embeddings. As a consequence, we exhibit simple abelian varieties
of any even dimension admitting arbitrarily many nonisomorphic principal
polarizations. In turn, we obtain that there exist arbitrarily large sets of
pairwise non isomorphic curves of genus 2 sharing isomorphic unpolarized
Jacobian varieties.

In Chapter 4 we consider the moduli spaces of polarized abelian varieties
with multiplication by a maximal order in a totally indefinite quaternion
algebra B over a totally real number field F . Shimura constructed canonical
models XB/Q of these moduli spaces which are proper schemes over Q of
dimension [F : Q].

We introduce several subgroups V0 ⊆ W0 ⊆ W 1 ⊆ AutQ(XB) of the group
of automorphisms of these Shimura varieties and we study their modular
interpretation by extending some results due to Jordan [Jo81]. We then
consider several maps that occur naturally between the Shimura varieties
XB, Hilbert modular varieties HS and the moduli spaces of polarized abelian
varieties Ag which appear when we forget certain endomorphism structures.
We prove that, up to birational equivalences, these forgetful maps coincide
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with the natural projection by suitable groups of Atkin-Lehner involutions.

We then derive several applications of our main result in this chapter. In
Section 4.6, we study the quaternionic locus in the moduli space Ag of princi-
pally polarized abelian varieties and we describe it as a union of Atkin-Lehner
quotients of Shimura varieties. Subsequently, in Section 4.7, we study the
field of moduli of the quaternionic multiplication on a principally polarized
abelian variety.

In Chapter 5, we explore the diophantine properties of abelian surfaces
A/K with quaternionic multiplication over a number field. In Section 5.1,
based on our results in Chapter 3, we look into the representations of the
absolute Galois group GK in the ring of endomorphisms EndK̄(A) and the
Néron-Severi group NSK̄(A), respectively. This allows us to derive a substan-
tial amount of information on the minimal field of definition of the endomor-
phisms of A⊗ SpecK̄ and the intermediate endomorphism ring EndK(A).

In Section 5.2, we compare the field of moduli and the field of definition
of the quaternionic multiplication on the Jacobian variety of a curve of genus
two. Finally, in Section 5.3, we illustrate our results with several explicit
examples in dimension 2 based on explicit computations due to Hashimoto,
Murabayashi and Tsunogai [HaMu95], [HaTs99].

In Chapter 6 we look into several diophantine questions on Shimura
curves. Our main tool in this part is provided by the theory of Čerednik-
Drinfeld on the special fibres of the integral models of Shimura curves at the
ramified primes. Let XD/Q be the Shimura curve over Q attached to the
indefinite rational quaternion algebra B of discriminant D. In Section 6.1 we
investigate the group of automorphisms of XD and prove that, in many cases,
Aut(XD ⊗ SpecQ̄) = Aut(XD) = W 1 is the positive Atkin-Lehner group. In
Section 6.2.4, we determine the family of bielliptic Shimura curves and we
use it in Section 6.3 to study the set of points on XD rational over quadratic
fields. In this way we answer a question posed by Kamienny [Ka90]. Finally,
we obtain explicit equations of all elliptic quotients of XD of degree 2.

Design of the cover. The design of the cover is due to the illustrator
Maria Vidal. It is inspired from a drawing that may be found in the PhD.
Thesis of Jordan [Jo81] and it makes use of the fundamental domain of the
Shimura curve X6 due to Alsina [Al99].
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Chapter 1

Background

Introduction

In this chapter we establish some notations and review some well known facts
on number fields, quaternion algebras and abelian varieties that we will use
in this monograph.

1.1 Basic facts on number fields

Let Q denote the field of rational numbers and let Q̄ be an algebraic closure
of Q in the field C of complex numbers.

Let F be a number field, that is, a finite field extension of Q. The ring
of integers RF of F is a Dedekind domain: the set of fractional ideals of RF

is a free abelian group generated by the prime ideals of RF .

Let R be an order in F over Z: a subring of RF such that F = R⊗Z Q.

Let Pic(R) denote the group of fractional projective ideals of R modulo
principal ideals and let h(R) = |Pic(R)| denote the class number of R. We
will simply write Pic(F ) instead of Pic(RF ) and h(F ) instead of h(RF ).

The class number of an order R in F is related to the class number h(F )
as follows:

h(R) =
h(F )

(R∗
F : R∗)

|(RF /fR ·RF )∗|
|(R/fR)∗| ,

where we let fR denote the conductor of R.

11



12 Chapter 1. Background

For any place v of F , we will let Fv denote the completion of F at v.
We freely identify the set of non archimedean places of F with the set of
prime ideals of F and the finite set of archimedean places of F with the set
of immersions σ : F ↪→ C up to complex conjugation.

A totally real number field is a number field F all whose archimedean
places σ factor through the field R of real numbers. A number field F is
totally imaginary if none of its archimedean places factor through R. A
complex muliplication (CM) field is a totally imaginary quadratic extension
of a totally real number field.

An element a ∈ F ∗ is called totally positive if σ(a) > 0 for any real
archimedean place of F . We let F ∗

+ denote the subgroup of totally positive
elements of F ∗. For any subset S of F ∗, we let S+ = S ∩ F ∗

+. In particular,
we let R∗

F+ = R∗
F ∩ F ∗

+.

A principal ideal of F is called totally positive if it can be generated by
a totally positive element of F . We let Pic+(F ) stand for the narrow class
group of fractional ideals of F up to totally positive principal ideals.

More generally, for any subset∞ = {σ1, ..., σr} of real archimedean places
on a number field F , we let F ∗

∞ denote the subgroup of elements a ∈ F ∗ such
that σ(a) > 0 for all σ ∈ ∞. We let Pic∞(F ) denote the class group of
fractional ideals of F up to principal ideals which can be generated by an
element a ∈ F ∗

∞. We similarly let h∞(F ) = |Pic∞(F )|.
For any subfield K of F , we let R]

F/K = {a ∈ F : trF/K(aRF ) ⊆ RK} be
the codifferent of RF over RK . The inverse ideal of the codifferent of F over
F is the different ϑF/K = R]−1

F/K .

1.2 Basic facts on quaternion algebras

1.2.1 Quaternion algebras, orders and ideals

Let F be either a number field or the completion of a number field at a local
place. Unless F = R or C, let RF denote the ring of integers of F .

Definition 1.2.1. A quaternion algebra B over F is a central simple algebra
over F of rankF (B) = 4.

Quaternion algebras can be classically described and constructed as fol-
lows. Let L be a quadratic separable algebra over the field F , let σ denote the
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non trivial involution on L over F and let m ∈ F ∗ be any non zero element.
Then, the algebra

B = L + Le

with
e2 = m and eβ = βσe for any β ∈ L,

is a quaternion algebra over F . The classical notation for it is B = (L,m).
As it is shown in [Vi80], any quaternion algebra over F is of this form.

A second and alternative construction of quaternion algebras is the fol-
lowing. Let a, b ∈ F ∗ be non zero elements. Then, the algebra

B =

(
a, b

F

)
= F + Fi + Fj + Fij,

with
i2 = a, j2 = b and ij = −ji,

is again a quaternion algebra over F and again any quaternion algebra admits
such a description. Note that the two constructions are related since B =
(a,b

F
) = (F (i), b).
Let B be a quaternion algebra over F . The algebra B comes equipped

with an anti-involuting conjugation map β 7→ β̄ such that, when restricted
to a quadratic extension F (β), β ∈ B∗ \ F ∗, is the nontrivial automorphism
of F (β)/F . More explicitly, if β = a+bi+cj+dij, then β = a−bi−cj−dij.
Elements β ∈ B are roots of the quadratic polynomial x2 − tr(β)x + n(β),
where

tr(β) = β + β

and
n(β) = ββ

denote the reduced trace and the reduced norm of β ∈ B, respectively.
For any subset S of B, we denote by S0 = {β ∈ S : tr(β) = 0} the

subgroup of pure quaternions of S. We let B∗
+ and B∗

− denote the subgroup
of elements of B∗ of totally positive and totally negative reduced norm, re-
spectively. For any subset S of B∗, we let S+ = B∗

+ ∩ S and S− = B∗
− ∩ S.

More generally, for any subset ∞ = {σ1, ..., σr} of real archimedean places on
F , we let B∗

∞ denote the subgroup of elements β ∈ B∗ such that σ(n(β)) > 0
for all σ ∈ ∞.
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Let v be a place of F and let Fv denote the completion of F respect
to v. If v is a complex archimedean place, necessarily B ⊗ Fv ' M2(C)
since this is the only quaternion algebra over C up to isomorphism. If v is
a finite or a real archimedean place, then there are two isomorphism classes
of quaternion algebras over the local field Fv: the split algebra M2(Fv) and
a division algebra that we will denote by Hv. In the real case Fv = R,
Hv = (−1,−1

R ) is the classical skew-field of Hamilton’s quaternions.
A place v of F ramifies in B if B⊗Fv ' Hv is the nonsplit algebra over Fv.

In particular, a real archimedean place v ramifies in B if B ⊗ Fv = (−1,−1
R ).

It is a classical theorem of Hasse that there is a finite and even number of
places v on F that ramify in B. We will say that B is totally indefinite over
F if no real place ramifies in B.

Let us assume from now on that F is either a number field or the com-
pletion of a number field with respect to a finite place.

Definition 1.2.2. An element β ∈ B is integral if tr(β), n(β) ∈ RF .

Unlike number fields or local fields, the set of integral elements of B is
not a ring anymore.

Definition 1.2.3. An order O ⊂ B over RF is a ring of integral elements in
B which is finitely generated as RF -module and such that O⊗RF

F = B. It
is a maximal order if it is not properly contained in any other order.

Let us agree to say that two orders O and O′ of B are conjugate if O =
γ−1O′γ for some γ ∈ B∗. The conjugation class {γ−1Oγ : γ ∈ B∗} is also
known as the type of O.

Maximal orders in quaternion algebras are in general not unique, often not
even up to conjugation by elements of B∗. The finite number of conjugation
classes of maximal orders in B is called the type number of B and it is denoted
by t(B). In general, we have the following

Definition 1.2.4. Let O be an order in B. For any finite place ℘ of F , let
O℘ = O ⊗RF

RF℘ . The type number t(O) of O is the number of conjugation
classes of orders O′ of B such that O′

℘ ' O℘ for all prime ideals ℘ of F .

It follows from [Vi80] that the type number t(O) of an arbitrary order O
of B is always a finite number.

The following result is known as the Hasse-Schilling-Maass Norms Theo-
rem for quaternion algebras (cf. [HaSc36], [Ei37], [Ei38], [Vi80]).
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Proposition 1.2.5. Let O be a maximal order in B. Let ∞ = Ram∞(B) be
the set of archimedean places of F that ramify in B. Then

n(B∗) = F ∗
∞

and
n(O∗) = R∗

F∞.

Note that the set Ram∞(B) may be empty.

Definition 1.2.6. Let O be an order in B. A left ideal (respectively right
ideal) of O is a finitely generated RF -module I with I ⊗RF

F = B and such
that OI ⊆ I (respectively IO ⊆ I).

There are several ideals related to a left ideal I of a maximal order O.
Firstly, the inverse ideal of a O-left ideal I is defined to be I−1 = {β ∈ B :
IβI ⊆ I}. It is a right O-ideal such that II−1 = O.

The conjugate ideal of I is the right ideal I = {α : α ∈ I}. The product
ideal I ·I = {∑αiαi : αi ∈ I} is a two-sided ideal of O. If n(I) = {n(α) : α ∈
I} ⊂ F denotes the norm ideal of I, we have that I ·I = n(I) ·O (cf. [Sh63J]).
We introduce the following

Definition 1.2.7. Let I be a left ideal of a maximal order O in B. Then,
we define

N (I) = n(I)O = II

to be the two-sided ideal of O generated by the ideal n(I) of F .

The set of classes of left ideals of a maximal order O is

Pic`(O) = {I ⊂ B : OI ⊆ I}/{Oβ : β ∈ B∗}.
By its adelic description and approximation theorems, Pic`(O) is a finite set
(cf. [Vi80]) and the map I 7→ I−1 induces a bijection between Pic`(O) and
the set Picr(O) of classes of right ideals of O. In fact, its cardinality does
not depend on the choice of the maximal order O and it is denoted by h(B).
The following can be found in [Ei55].

Proposition 1.2.8. Let O be a maximal order in B. If there is an archime-
dean place v on F which does not ramify in B, then the class number of B
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coincides with that of the field F : h(B) = h(F ). More precisely, there is a
bijection of sets

n : Pic`(O)
∼→ Pic(F )

induced by the reduced norm of B over F .

The existence of an unramified archimedean place on B is called Eichler’s
condition in the literature (cf. [Vi80]). We refer the reader to [Joh], [Re75]
and [Vi80] for more details on quaternion algebras and orders.

1.2.2 Codifferent and discriminant

As above, let F be either a number field or the completion of a number field
with respect a non archimedean place, let RF denote the ring of integers of
F and let B be a quaternion algebra over F .

Definition 1.2.9. Let O be an order of B and let I be a left ideal of O. Let
K ⊂ F be a subfield of F and let RK ⊂ RF denote its ring of integers. Then,
the codifferent of I over RK is defined by I]

B/K = {β ∈ B : trB/K(Iβ) ⊆ RK}.
It is a right ideal of O over RF .

The following facts are well known, but we include here a proof of them
due to the lack of a suitable reference.

Proposition 1.2.10. Let O be a maximal order of B and let I be a left ideal
of O.

1. I]
B/K = I−1 · O]

B/K .

2. O]
B/K = O]

B/F ·R]
F/K.

3. O]
B/F =

∏
℘ D−1

℘ , where the product runs over the finite set of prime
ideals ℘ of F that ramify in B and D℘ are two-sided integral ideals of
O such that D2

℘ = ℘.

Proof. 1. For any prime ℘ of F , let I℘ = I ⊗ RF℘ . Since it is a local

statement, it suffices to prove that (I℘)]
B℘/K℘

= I−1
℘ ·(O℘)]

B℘/K℘
for any prime

℘, where K℘ denotes the completion of K respect to the prime below ℘. As
it is shown in [Vi80], I℘ must be a principal ideal and hence I℘ = O℘β for
some β ∈ B℘. Then obviously I]

℘ = β−1 · O]
℘.
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2. The proof translates step by step the one given for number fields in
[Se68], Chapter III, Proposition 8.

3. This fact is stated, without proof, in [Sh63J]. By Proposition 1.2.8
and Proposition 1.2.5, for any ramifying prime ideal ℘ there is an integral
O-left ideal D℘ such that n(D℘) = ℘. At all finite prime ideals q 6= ℘,
D℘⊗RFq ' O⊗RFq and D℘⊗RF℘ is the (unique, two-sided) maximal ideal
of O ⊗RF℘ . Since so it is locally, D℘ is a two-sided ideal.

We show now that O]
B/F =

∏
℘ D−1

℘ locally at any finite prime ideal of F .
If ℘ is a ramified prime in B, then B℘ is discrete valuation division algebra
over F℘ (cf. [Vi80]). Let π be an uniformizer of B℘ such that π2 = πF℘ is an
uniformizer of the completion of F at ℘. In this case, necessarily I℘ = O℘πn

for some n ∈ Z (cf. [Vi80]) and I]
℘ = π(−n−1)O℘ = I−1 · O]

℘. If q does not
ramify, Oq ' M2(RFq) and Iq = Oq · β, β ∈ Bq, is a principal ideal. Then
I]
q = β−1 · Oq = I−1

q · O]
q. 2

Definition 1.2.11. Let O be an order of B and let I be a left ideal of O.
Let K ⊂ F be a subfield of F and let RK denote its ring of integers. The
discriminant of I over RK is

discB/K(I) := nB/K(I]
B/K)−1 · nB/K(I).

In particular, the discriminant of B is defined to be

disc(B) = discB/F (O),

for any maximal orderO of B. The following result ensures that the definition
of disc(B) does not depend of the choice of the maximal order O.

Proposition 1.2.12. Let O be a maximal order of B and let I be a left ideal
of O.

1. discB/K(I) = nB/K(I)2 · discB/K(O).

2. discB/K(O) = NF/K(discB/F (O)) · discF/K(RF )2.

3. disc(B) = discB/F (O) = ℘1 · ... · ℘r, where ℘i are the prime ideals of F
which ramify in B.

4. discB/K(I)2 = 〈det(trB/K(αi ·αj))〉RF
= 〈det (trB/K(αi ·αj))〉RF

, where
{αi} run on all K-bases of B that are contained in I.
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Proof. The first three statements are consequence of Proposition 1.2.10.
The first equality of 4. is proved in [Vi80], p. 25. For the last equality, we may
suppose by 2. that F = K and it suffices to show that, for any prime ideal ℘ of
F , 〈det(trB℘/F℘(αi ·αj))〉RF℘

= 〈det(trB℘/F℘(αi ·αj))〉RF℘
, where B℘ = B⊗F℘

and {αi} run on all F℘-bases of B℘ that are contained in I℘ = I ⊗RF℘ . Now
all left ideals of O℘ are principal and, for any α, αij ∈ B℘, we have that
det(tr(ααij)) = n(α)2det(tr(αij)). Hence we may suppose that I℘ = O℘. If

℘ - disc(B), then O℘ ' M2(RF℘) = 〈
(

1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)
〉 and

a simple computation shows the claim.
Analogously, if ℘|disc(B),

O℘ '
{(

a b

πbσ aσ

)
: a, b ∈ RF 2

℘

}
,

where RF 2
℘

denotes the ring of integers of the quadratic unramified extension
F℘2 of F℘, π is a local uniformizer and σ is the nontrivial element in the
Galois group Gal(F 2

℘/F℘). As in the case ℘ - disc(B), the consideration of
an explicit basis for this order allows us to conclude. 2

Definition 1.2.13. An order O of B is an Eichler order if it is the intersec-
tion of two maximal orders. It is an hereditary order if all left ideals I of O
are projective over RF .

The proof of the following facts can be found in [Re75] and [Vi80].

Proposition 1.2.14. 1. Let O be an order of B. Then disc(B)|disc(O)
and O is maximal if and only if disc(B) = disc(O).

2. Let O be an Eichler order of B. Then, there exists an ideal N of F ,
(N , disc(B)) = 1, such that disc(O) = disc(B) · N . The ideal N is
called the level of O.

3. An order O of B is hereditary if and only disc(O) is a square-free ideal
and if and only if O is an Eichler order of square-free level.

1.2.3 Eichler theory on optimal embeddings

Let B be a quaternion algebra over a field F . The following two statements
are equivalent versions of the Skolem-Noether Theorem.
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Theorem 1.2.15. 1. Any automorphism ϕ : B
∼→ B of F -algebras is

inner: there exists γ ∈ B∗ such that ϕ(β) = γ−1βγ for all β ∈ B.

2. Let L be a quadratic separable algebra of F and let i : L ↪→ B and
j : L ↪→ B be two embeddings of L into B. Then there exists γ ∈ B∗

such that i(L) = γ−1j(L)γ.

Let us assume that F is a number field and let O be an order in B. Let
us define the groups O∗ ⊃ O∗

+ ⊇ O1 of units in O, units in O of totally
positive reduced norm and units in O of reduced norm 1 respectively. We
also let NormB∗(O) = {γ ∈ B∗ : γ−1Oγ ⊆ O} be the normalizer of O in
B∗. Notice that the Skolem-Noether Theorem 1.2.15 can also be rephrased
by saying that AutF (B) ' B∗/F ∗ and that the automorphism group of O is
AutRF

(O) ' NormB∗(O)/F ∗.
A positive anti-involution % on B is a map % : B → B such that (β1 +

β2)
% = β%

1 + β%
2 and (β1 · β2)

% = β%
2 · β%

1 for any β1, β2 ∈ B, and such that
tr(β · β%) ∈ F ∗

+ for any β ∈ B∗. By the Skolem-Noether Theorem, if %

is a positive anti-involution, there exists µ ∈ B∗ such that β% = µ−1βµ.
Further, it is easily shown that the positiveness of % implies that tr(µ) = 0
and n(µ) ∈ F ∗

+ (cf. [Mu70], [LaBi92]). The element µ is determined by % up
to multiplication by elements of F ∗ and we will sometimes use the notation
% = %µ.

Definition 1.2.16. Let O be an order in B and let S be an order over RF

in a quadratic algebra L over F .

1. An embedding i : S ↪→ O is optimal if i(S) = i(L) ∩ O.

2. Two optimal embeddings i : S ↪→ O and j : S ↪→ O are Eichler
conjugate over O∗ if there exists γ ∈ O∗ such that i(L) = γ−1j(L)γ.
We will denote it by i ∼e j.

3. We let E(S,O) denote the set of Eichler conjugation classes of optimal
embeddings of S in O and e(S,O) = |E(S,O)|.

As we quote in the theorem below, the set E(S,O) is indeed finite and it
makes sense to consider its cardinality.

Definition 1.2.17. Let L be a quadratic separable extension of F and let S
be an order in L over RF of conductor fS. Let ℘ be a prime ideal of F . The
Eichler symbol of S and ℘ is
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(
S

℘
) =





1 if ℘|fS or ℘ decomposes in L,

−1 if ℘ - fS and ℘ remains inert in L,

0 otherwise.

A proof of next statement can be found e. g. in [Vi80, p. 96-97].

Theorem 1.2.18. Let B be a division quaternion algebra over a number field
F and let ∞ be the set of real archimedean places of F which are ramified in
B. Assume that there is at least one archimedan place of F which does not
belong to ∞. Let O be an Eichler order of square-free level N in B and let
S be an order in a quadratic algebra L over F . Then, the number of Eichler
conjugation classes of optimal embeddings i : S ↪→ O is

e(S,O) =
h(S)

h∞(F )

∏

℘|disc(B)

(1− (
S

℘
))

∏

℘|N
(1 + (

S

℘
)).

Notice that, in particular, Eichler’s Theorem 1.2.18 establishes a criterion
for the embeddability of a quadratic order S into an Eichler order O.

Since it will be of use later in Chapter 3, we consider in Proposition 1.2.19
below a stronger form of a particular case of Eichler’s Theorem. Let B be a
totally indefinite division quaternion algebra over a totally real number field
F . Let O be an Eichler order of level N in B and let S be an order over RF

in a quadratic field extension L/F .

Assume that all prime ideals ℘|disc(O) ramify in L but do not divide the
conductor fS of S. This is a strong restriction on S which we will naturally
encounter in Chapter 3. Let HS be the ring class field of S over L. The Galois
group Gal(HS/L) is isomorphic, via the Artin reciprocity map, to the Picard
group Pic(S) of classes of locally invertible ideals of S. In the particular case
that S is the ring of integers of L, then HS is the Hilbert class field of L. It
follows from our assumption on S that L and HS are linearly disjoint over
F , that is, F = L ∩HS. The norm induces a map NL/F : Pic(S) → Pic(RF )
that, by the reciprocity isomorphism can be interpreted as the restriction
map Gal(HS/L) → Gal(L · HF /L) ' Gal(HF /F ) (cf. [Ne99], Chapter VI,
Section 5). In particular, we have an exact sequence

0 → ∆ → Pic(S)
NL/F→ Pic(RF ) → 0.
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Here, ∆ = Ker (NL/F ) can be viewed as the Galois group of HS over the
fixed field L4 of HS by ∆. The group ∆ = Gal(HS/L4) acts on E(S,O)
by a reciprocity law as follows: let i : S ↪→ O be an optimal embedding and
let τ ∈ Gal(HS/L4). Then let b = [τ,HS/L] be the locally invertible ideal
in S corresponding to τ by the Artin’s reciprocity map. Since the reduced
norm on B induces a bijection of sets n : Pic`(O) ' Pic(F ) and NL/K(b) is
a principal ideal in F , it follows that i(b)O = βO is a principal right ideal
of O and we can choose a generator β ∈ O. Then τ acts on i ∈ E(S,O) as

iτ = β−1iβ.

It can be checked that this action does not depend on the choice of the ideal
b in its class in Pic(S) nor on the choice of the element β ∈ O. Moreover,
a local argument shows that this action is free. Since |∆| = |E(S,O)|, we
obtain

Proposition 1.2.19. The action of ∆ on the set of Eichler conjugacy classes
of optimal embeddings E(S,O) is free and transitive.

The above action acquires a real arithmetic meaning and coincides with
Shimura’s reciprocity law in the particular case that L is a CM-field over F .
In this situation, E(S,O) can also be interpreted as the set of Heegner points
on a Shimura variety X on which the Galois group ∆ is acting (cf. [Sh67],
Section 9.10).

Finally, several manuscripts deal with the computation of the numbers
e(S,O). See [HiPiSh89] and [Br90] for Gorenstein and Bass orders.

1.3 Basic facts on abelian varieties

Let k be a subfield of the field C of complex numbers and let k̄ denote an
algebraic closure of k in C. Let A be an abelian variety of dimension g ≥ 1
defined over k.

For any field extension K/k, let GK = Gal(k̄/K). We let AK = A⊗Speck

SpecK and we let K(A) denote the function field of AK .
Let Div(Ak̄) denote the group of Weil divisors of Ak̄. For any field exten-

sion K/k in k̄, a Weil divisor Θ is rational over K, that is, Θ ∈ Div(AK) =
H0(GK , Div(Ak̄)), if it is stable by the action of the absolute Galois group of
K.
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Let Pic(Ak̄) denote the group of invertible sheaves on Ak̄. There is a
natural exact sequence

0→k̄(A)∗/k̄∗→Div(Ak̄)→Pic(Ak̄)→0

which induces a long exact sequence of Galois cohomology groups and an
isomorphism Div(AK)/K(A)∗ ' Pic(Ak̄) for any K/k, because A(K) 6= ∅
(cf. [PoSt99]).

Let Pic0
k̄(A) denote the subgroup of Pick̄(A) of invertible sheaves on A

which are algebraically equivalent to 0 and let Pic0
K(A) = PicK(A)∩Pic0

k̄(A)
for any field extension K/k.

The Néron-Severi group NS(A) of algebraic equivalence classes of invert-
ible sheaves on A is the group NS(A) = Pic(A)/Pic0(A). We note that
not all elements in NS(Ak̄)

GK = H0(GK , NSk̄(A)) are represented by an in-
vertible sheaf L on A defined over K. This translates into the fact that
NS(AK) ⊆ NS(Ak̄)

GK but these two groups do not need to be equal.
By the Néron Basis Theorem, NS(Ak̄)

GK is a finitely generated and
torsion-free abelian group and we will agree to define the Picard number
of AK to be

ρ(AK) = rankZNS(Ak̄)
GK .

For any closed point P ∈ A(k̄), let tP : Ak̄ → Ak̄ denote the translation-
by-P map. As is well known, an invertible sheaf L ∈ NS(Ak̄)

Gk induces a
morphism

ϕL : A → Â
P 7→ t∗P (L)⊗ L−1

defined over k.
We let K(L) denote the kernel of ϕL. An invertible sheaf L ∈ NS(Ak̄) is

nondegenerate if K(L) is a finite group. Since the image and kernel of the
morphism ϕL attached to a degenerate invertible sheaf L ∈ NS(Ak̄)

Gk is a
proper subabelian variety of Ak, it follows that all non algebraically equiva-
lent to zero invertible sheaves L ∈ NS(Ak̄)

Gk on a simple abelian variety A
over k are nondegenerate.

Definition 1.3.1. The degree of a nondegenerate invertible sheaf L on A is

deg(L) = |K(L)|1/2.
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An invertible sheaf L is principal if and only if K(L) is trivial, that is, if
ϕL : A → Â is an isomorphism.

Let us agree to say that two invertible sheaves L and L′ ∈ NS(Ak̄)
Gk

are isomorphic, denoted by L ' L′, if (A,L) ' (A,L′) as polarized abelian
varieties, that is, there exists an automorphism α ∈ Aut(A) such that L =
α∗(L′).
Definition 1.3.2. We let

Π(A) = {L ∈ NS(Ak̄)
Gk : deg(L) = 1}/'

denote the set of isomorphism classes of principal invertible sheaves on A.

The following theorem follows from a result of Narasimhan and Nori
[NaNo81]. See also [GoGuRo02].

Theorem 1.3.3. The set Π(A) is a finite set.

We shall let π(A) = |Π(A)| denote the cardinality of Π(A).
Let L ∈ NS(Ak̄)

Gk be a nondegenerate invertible sheaf on an abelian
variety A over k. By Mumford’s Vanishing Theorem (cf. [Mu70], §16), there
is a unique integer i(L) such that H i(L)(A,L) 6= 0 and Hj(A,L) = 0 for all
j 6= i(L). The integer i(L) is called the index of L and it only depends on the
class of L in NS(Ak̄). We have 0 ≤ i(L) ≤ g = dim(A). The class of algebraic
equivalence L ∈ NS(Ak̄)

Gk of an invertible sheaf on A is a polarization over
k if i(L) = 0 or, equivalently, if L is ample. By the Riemann-Roch Theorem,
|K(L)| = |Ker ϕL : A → Â| = dimk(H

i(L)(A,L)).
In particular, L is principal if and only if dimk̄(H

i(L)(Ak̄,L)) = 1. In con-
sequence, L ∈ NS(Ak̄)

Gk is a principal polarization if and only if H0(Ak̄,L) =
k̄ · ϑ, for a certain nonzero automorphic form ϑ.

Definition 1.3.4. For any nonnegative integer 0 ≤ i ≤ g, let

Πi(A) = {L ∈ NS(Ak̄)
Gk : i(L) = i, deg(L) = 1}/'

denote the set of isomorphism classes of principal invertible sheaves on A of
index i.

The set Π(A) can be naturally written as the disjoint union Π(A) =
Π0(A) ∪ ... ∪ Πg(A). If we let πi(A) = |Πi(A)|, it then holds that π(A) =
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π0(A)+...+πg(A). Moreover, as is shown in [Mu70], it holds for any invertible
sheaf L on Ak̄ that i(L) + i(L−1) = g. Consequently, the map L 7→ L−1 in-
duces a one-to-one correspondence between Πi(A) and Πg−i(A) and therefore
πi(A) = πg−i(A).

Let now A(C) be the set of complex-valued points of the abelian variety
AC. There exists a complex vector space V of dimension g and a lattice
Λ ⊂ V of rank 2g over Z such that V/Λ ' A(C).

A Riemann form on Λ is an R-alternating bilinear form E : V × V → R
such that E(Λ× Λ) ⊂ Z and E(

√−1u,
√−1v) = E(u, v) for all u, v ∈ V .

By the Appell-Humbert Theorem (cf. [Mu70], [LaBi92]), the first Chern
class induces an isomorphism of additive groups between the Néron-Severi
group NS(AC) of AC and the group of Riemann forms on Λ. An invert-
ible sheaf L on A is a polarization if and only if the corresponding Rie-
mann form EL attached to L by the Appell-Humbert Theorem satisfies that
E(
√−1u, u) > 0 for all u ∈ V \ {0}.
Let

H : V × V → C
(u, v) 7→ E(

√−1u, v) +
√−1E(u, v)

be the hermitian form attached to a Riemann form E on Λ. If H is the
hermitian form associated to an invertible sheaf L, the index i(L) agrees
with the number of negative eigen-values of H (cf. [Mu70], §16).

Let L be a polarization on AC and EL the corresponding Riemann form.
There exists a suitable basis of Λ such that the matrix expression of EL is




d1

0 ...
dg

−d1

... 0
−dg




for some positive integers d1|d2|...|dg. The sequence (d1, ..., dg) is called the
type of the polarization L. A polarization L ∈ NS(A) is called primitive if
L 6∈ d · NS(A) for any d ∈ Z, d ≥ 2. Its type is then (1, d2, ..., dg) for di|di+1,
i = 2, ..., g−1. The polarization L is principal if and only if d1 = ... = dg = 1.

For any field extension K/k in C, let EndK(A) denote the ring of endo-
morphisms of the abelian variety AK . This is a possibly non commutative
Z-algebra of finite rank.
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Let End0
K(A) = Q⊗EndK(A). It is well known that this is a semisimple

algebra of finite rank over Q. Moreover, End0
K(A) is a simple division algebra

if and only if AK is a simple abelian variety, i. e., A contains no proper
subabelian varieties defined over K. The following theorem follows from
Albert’s classification of anti-involuting division algebras.

Theorem 1.3.5. Let A/k be a simple abelian variety over k of dimension g.
Let B = End0(A), F be the centre of B and F0 be the maximal totally real
subfield of F . Let e = [F : Q], e0 = [F0 : Q] and d2 = [B : F ]. Then one of
the following possibilities must hold:

1. B = F = F0 and e|g.
2. F = F0, B is a totally indefinite quaternion algebra over F and 2e|g.
3. F = F0, B is a totally definite quaternion algebra over F and 2e|g.
4. F is a CM-field over F0, B is a division algebra over F and e0d

2|g.
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Chapter 2

Arithmetic of quaternion
algebras

Introduction

In this chapter, we study two questions on the arithmetic of quaternion
algebras and their orders which arise from our work on abelian varieties with
quaternionic multiplication and the Shimura varieties which occur as their
moduli spaces.

Let B be a quaternion algebra over either a number field or the completion
of a number field with respect to a finite place and let O be an arbitrary order
in B. In Section 2.1, we consider the problem of finding suitable integral
bases of B lying in O. This question is related to several papers by Chinburg
and Friedman in relation to arithmetic 3-orbifolds (cf. [ChFr86], [ChFr99],
[ChFr00]) and also arises naturally in Chapter 4 in the study of forgetful
maps between Shimura varieties and the field of moduli of the quaternionic
multiplication on an abelian variety.

In Section 2.2, we reconsider a quaternionic equation introduced by Pall
and O’Connor in [Pa37] and [CoPa39] and further explored by Pollack in
[Po60]. Motivated by their work, we introduce a conjugation relation in the
set of pure quaternions in O of given reduced norm and we compute the
number of orbits in terms of class numbers of quadratic orders embedded in
O by making use of Eichler’s theory of optimal embeddings. Our results in
this section are crucial to our study of the set of isomorphism classes of line
bundles on abelian varieties with quaternionic multiplication in Chapter 3.

27



28 Chapter 2. Arithmetic of quaternion algebras

The results of this chapter are contained in [Ro2] and [Ro4].

2.1 Integral quaternion bases and distance

ideals

In this section we focus on the following questions on quaternion algebras
and orders which naturally arise from our results in Chapter 4.

Question 2.1.1. Let F be either a number field or the completion of a
number field with respect to a finite place and let B be a quaternion algebra
over F . Let O be an arbitrary order in B.

1. If B ' (a,b
F

) for some a, b ∈ RF , can one find integral elements ι, η ∈ O
such that ι2 = a, η2 = b, ιη = −ηι?

2. If B ' (L,m) for a quadratic separable algebra over F and m ∈ RF ,
can one find χ ∈ O such that χ2 = m, χβ = βχ for any β ∈ L?

We note that the second question may be considered as a refinement of
the first. Indeed, let O be an order in B = (a,b

F
) and fix an arbitrary element

j ∈ O such that i2 = a. Then, while our first question asks whether there
exist arbitrary elements ι, η ∈ O such that ι2 = a, η2 = b and ιη = −ηι, the
second wonders whether such an integral basis exists with ι = i.

If B =
(

a,b
F

)
= F + Fi + Fj + Fij, let O0 = RF [i, j]. Obviously, the

first part of the question is answered positively whenever γ−1Oγ ⊇ O0 for
some γ ∈ B∗. The following proposition asserts that this is actually a nec-
essary condition. Although it is not stated in this form in [ChFr00F], it is
due to Chinburg and Friedman, and follows from the ideas therein. It is a
consequence of Hilbert’s Satz 90.

Proposition 2.1.2. Let B = F + Fi + Fj + Fij =
(

a,b
F

)
with a, b ∈ RF .

Let O0 = RF [i, j].
An order O in B contains a basis ι, η ∈ O, ι2 = a, η2 = b, ιη = −ηι of

B if and only if the type of O0 is contained in the type of O.

Proof. Assume that there exist ι, η ∈ O satisfying the above relations.
By the Skolem-Noether Theorem (cf. [Vi80]), j and η are conjugate (by, say,
α ∈ B∗). Thus, by replacing i by α−1iα and O0 by α−1O0α, we may assume



2.1 Integral quaternion bases and distance ideals 29

that j = η ∈ O. We then need to show the existence of an element γ ∈
F (j) = F (η) such that γ−1ιγ = i.

We have iη = −ηi and thus η = −i−1ηi. In addition, since ιη = −ηι,
ιi−1ηi = ηι. Hence, (ιi−1)η = η(ιi−1) and we deduce that ιi−1 ∈ F (η) is an
element of norm NormF (η)/F (ιi−1) = 1.

By Hilbert’s Satz 90, there exists ω ∈ F (η) such that ιi−1 = ωω−1, that
is, ι = ωω−1i. Stated in this form, we need to find an element γ ∈ F (η) with
γ−1ωω−1iγ = i. Since γi = iγ, we can choose γ = ω. 2

Corollary 2.1.3. Assume that F is the completion of a number field with
respect to a finite place. Let O be an Eichler order of level N in B = (a,b

F
),

a, b ∈ RF . Then, there exist ι, η ∈ O, ι2 = a, η2 = b, ιη = −ηι if and only
if N|4ab.

Proof. By [Vi80], §2, there is only one type of Eichler orders of fixed level
N in B. Remark that, if B is division, necessarily N = 1. Let O0 = RF [i, j].
Since disc(O0) = 4ab, as one can check, a necessary and sufficient condition
on O to contain a conjugate order of O0 is that N|4ab. The corollary follows
from Proposition 2.1.2. 2

In the global case, the approach to question 2.1.1 §1 can be made more
effective under the assumption that B satisfies the Eichler condition. Namely,
a quaternion algebra B over F is said to satisfy the Eichler condition if some
archimedean place v of F does not ramify in B, that is, B ⊗F Fv ' M2(Fv).
Here, we let Fv ' R or C denote the completion of F at v.

The following theorem of Eichler describes the set T (N ) of types of Eich-
ler orders of given level N purely in terms of the arithmetic of F . Let
Pic∞(F ) be the narrow class group of F of fractional ideals up to principal
fractional ideals (a) generated by elements a ∈ F ∗ such that a > 0 at any
real archimedean place v that ramifies in B and let h∞(F ) = |Pic∞(F )|.

Definition 2.1.4. The group Pic
N
∞(F ) is the quotient of Pic∞(F ) by the

subgroup generated by the squares of fractional ideals of F , the prime ideals
℘ that ramify in B and the prime ideals q such that N has odd q-valuation.

The group Pic
N
∞(F ) is a 2-torsion finite abelian group. Therefore, if

h∞(F ) is odd, then Pic
N
∞(F ) is trivial.

The following can be found in [Ei37], [Ei38] and [Vi80], p. 89.

Proposition 2.1.5. The reduced norm n induces a bijection of sets
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T (N )
∼−→ Pic

N
∞(F ).

The bijection is not canonical in the sense that it depends on the choice
of an arbitrary Eichler order O in B. For N = 1, the bijection is explicitly
described as follows. For any two maximal orders O, O′ of B over RF , define
the distance ideal ρ(O,O′) to be the order-ideal of the finite RF -module
O/O ∩ O′ (cf. [Re75], p. 49). Alternatively, ρ(O,O′) can also be defined
locally in terms of the local distances between O ⊗RF

RF℘ and O′ ⊗RF
RF℘

in the Bruhat-Tits tree T℘ for any (nonarchimedean) prime ideal ℘ of F that
does not ramify in B (cf. [ChFr99]). Finally, ρ(O,O′) is also the level of the
Eichler order O∩O′. This notion of distance proves to be suitable to classify
the set of types of maximal orders of B, as the assignation O′ 7→ ρ(O,O′)
induces the bijection claimed in Proposition 2.1.5.

Corollary 2.1.6. Let B =
(

a,b
F

)
, a, b ∈ RF be a quaternion algebra over a

global field F . If B satisfies Eichler’s condition and h∞(F ) is odd then, for
any Eichler order O in B, there is an integral basis ι, η ∈ O, ι2 = a, η2 = b,
ιη = −ηι of B.

As for question 2.1.1 §2, let B = F +Fi+Fj+Fij =
(

a,b
F

)
= (L, b) with a,

b ∈ RF and L = F (
√

a). Choose an arbitrary order O of B. For given η ∈ O,
η2 = a, we ask whether there exists χ ∈ O, χ2 = b, such that ηχ = −ηχ.
By Proposition 2.1.2, a necessary condition is that O0 = RF [i, j] ⊆ O up
to conjugation by elements of B∗ and, without loss of generality, we assume
that this is the case. With these notations, we have

Definition 2.1.7. Let O ⊇ O′ be two arbitrary orders in B. The trans-
portator of O′ into O over B∗ is (O : O′) := {γ ∈ B∗ : γ−1O′γ ⊂ O}.

Note that NormB∗(O) is a subgroup of finite index of (O : O′).

Proposition 2.1.8. Let O ⊇ O0 be an order in B and let η ∈ O, η2 = a.
Then, there exists χ ∈ O such that χ2 = b and ηχ = −χη if and only if
η = γ−1iγ for γ ∈ (O : O0).

Let f = |(O : O0) : NormB∗(O)| be the index of the normalizer group
NormB∗(O) in (O : O0). Consider η1, ... ηh representatives of elements in
O such that η2

i = a up to conjugation by elements in NormB∗(O). Then, it
follows from the above proposition that there exist ηi1 , ..., ηif such that, for
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a given element η ∈ O, there exists χ ∈ O, χ2 = b, ηχ = −χη if and only if η
lies in one of the f NormB∗(O)-conjugation classes generated by ηi1 , ..., ηif .

Again, the number of NormB∗(O)-conjugation classes of elements η ∈ O
such that η2 = a can be explicitly computed in many cases in terms of class
numbers by means of the theory of Eichler of optimal embeddings. We refer
the reader to [Vi80] for details.

2.2 Pollack conjugation

Let F be a number field and let B be a division quaternion algebra over F .
Let O be an order in B.

Definition 2.2.1. Two quaternions µ1, µ2 ∈ B are Pollack conjugate over
O if µ2 = αµ1α for some unit α ∈ O∗. We will denote it by µ1 ∼p µ2.

The motivation for the above definition comes from Pollack’s work [Po60],
in which he studied the obstruction for two pure quaternions µ1 and µ2 ∈ B
with the same reduced norm to be conjugate over B∗ in the above sense, that
is, µ1 = αµ2α with α ∈ B∗. He expressed this obstruction in terms of the
2-torsion subgroup Br2(F ) of the Brauer group Br(F ) of F . Furthermore, he
investigated the solvability of the equation µ2 = αµ1α overO∗ for quaternions
µ1 and µ2 in a maximal order O of B.

As a refinement of his considerations, it is natural to consider the set of
orbits of pure quaternions µ ∈ O of fixed reduced norm n(µ) = d ∈ F ∗ under
the action of the group of units O∗ by Pollack conjugation. We drop the
restriction on O to be maximal in our statements.

Definition 2.2.2. For any integral element d ∈ RF , we let

P(d,O) = {µ ∈ O : tr(µ) = 0, n(µ) = d}.
Let

P (d,O) = P(d,O)/ ∼p

and p(d,O) = |P (d,O)|.
In order to avoid trivialities, we assume for the rest of this section that

−d is not a perfect square in RF . Then, any quaternion µ ∈ P(d,O) induces
an embedding
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iµ : F (
√−d) ↪→ B

a + b
√−d 7→ a + bµ

for which iµ(RF [
√−d]) ⊂ O.

Let S be an order over RF in a quadratic algebra L over F . Recall from
Section 1.2.3 that an embedding i : S ↪→ O is optimal if i(S) = i(L)∩O. For
any µ ∈ P(d,O) there is a uniquely determined order Sµ ⊇ RF [

√−d] such
that iµ is optimal at Sµ.

Moreover, two equivalent quaternions µ1, µ2 ∈ P(d,O), µ1 ∼p µ2, are
optimal at the same order S. Indeed, if α ∈ O∗ is such that µ1 = αµ2α, then
α is forced to have reduced norm n(α) = ±1. Hence α = ±α−1 ∈ O∗ and the
observation follows since α normalizesO. Conversely, any optimal embedding
i : S ↪→ O, S ⊇ RF [

√−d] determines a quaternion µ = i(
√−d) ∈ P(d,O).

Hence, a necessary condition for µ1 ∼p µ2 over O∗ is that µ1 and µ2

induce an optimal embedding at the same quadratic order F (
√−d) ⊃ S ⊇

RF [
√−d].

Definition 2.2.3. For any quadratic order S over RF , we let

P(S,O) = { Optimal embeddings i : S ↪→ O}.
Let

P (S,O) = P(S,O)/ ∼p

and p(S,O) = |P (S,O)|.

In contrast to Pollack conjugation, we recall from Section 1.2.3 that two
optimal embeddings i, j : S ↪→ O lie on the same conjugation class in the
sense of Eichler, written i ∼e j, if there exists α ∈ O∗ such that i = α−1jα.
We also recall that, according to our above definition, we let E(S,O) =
P(S,O)/∼e and e(S,O) = |E(S,O)|.

Proposition 2.2.4. Let S be an order in a quadratic algebra L over F and
let O be an order in a division quaternion algebra B over F . Then, the
number of Pollack conjugation classes of optimal embeddings of S into O is

p(S,O) = |n(O∗)/NL/F (S∗)| · e(S,O)

2
.
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Proof. Let us agree to say that two pure quaternions µ1 and µ2 ∈ O lie
in the same ±Eichler conjugation class if there exists α ∈ O∗ such that µ1 =
±α−1µ2α. We shall denote it by µ1 ∼±e µ2 and E±(S,O) = P(S,O)/∼±e .
The identity map µ 7→ µ descends to a natural surjective map

ρ : P (S,O) → E±(S,O)

and the proposition now follows from the following lemma.

Lemma 2.2.5. Let eS = dimF2(n(O∗)/NL/F (S∗)). Let µ ∈ P(S,O) and let
εµ = 1 if µ ∼e −µ and εµ = 2 otherwise. Then, in the ±Eichler conjugation
class {±α−1µα : α ∈ O∗} of µ, there are exactly εµ2eS−1 Pollack conjugation
classes of pure quaternions.

Proof of Lemma 2.2.5. Suppose first that εµ = 1. Then, the ±Eichler
conjugation class of µ ∈ P(S,O) is {α−1µα : α ∈ O∗}. Let γ ∈ O∗ be such
that −µ = γµγ−1 = γ−1µγ. We claim that, for any given α ∈ O∗, it holds
that µ ∼p α−1µα if and only if n(α) ∈ NL/F (S∗)∪ (−n(γ)NL/F (S∗)). Indeed,

if µ ∼p α−1µα, let β ∈ O∗ with n(β) = ±1 be such that βα−1µαβ = µ.
If n(β) = 1, then αβµ = µαβ and hence αβ ∈ L ∩ O∗ = S∗. Thus
n(αβ) = n(α) ∈ NL/F (S∗). If n(β) = −1, a similar argument shows
that n(α) ∈ −n(γ) · NL/F (S∗). Conversely, let n(α) = v ∈ NL/F (S∗) ∪
(−n(γ)NL/F (S∗)) and let s ∈ S∗ be such that NL/F (s) = v or − vn(γ)−1.
Since µ induces an embedding S ↪→ O, we can regard s as an element in O∗

such that n(s) = v or− vn(γ)−1 and sµ = µs. Hence α−1µα = α−1sµs−1α =
(α−1s)µ(α−1s) or (α−1sγ−1)µ(α−1sγ−1). This proves the claim.

Since B is division, Pollack’s Theorem on Pall’s Conjecture ([Po60], The-
orem 4) applies to show that −n(γ) 6∈ NL/F (S∗). We then conclude that
the distinct Pollack conjugation orbits in {α−1µα : α ∈ O∗} are exactly the
classes

Cu = {α−1µα : n(α) ∈ uN(S∗) ∪ (−n(γ)uN(S∗))}
as u ∈ n(O∗) runs through a set of representatives in n(O∗)/〈−n(γ), N(S∗)〉.
There are 2eS−1 of them.

Assume that εµ = 2, that is, µ 6∼e −µ. Then, the ±Eichler conjugation
class of µ ∈ P(S,O) is {α−1µα : α ∈ O∗} ∪ {−α−1µα : α ∈ O∗}. As in the
previous case, it is shown that µ ∼p α−1µα if and only if n(α) ∈ NL/F (S∗)
and µ ∼p −α−1µα if and only if n(α) ∈ −NL/F (S∗). We obtain that, as
u ∈ n(O∗) runs through a set of representatives in n(O∗)/N(S∗), the 2eS
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distinct Pollack conjugation classes in the ±Eichler conjugation class of the
quaternion µ ∈ P(S,O) are

C ′u = {α−1µα : n(α) ∈ uN(S∗)} ∪ {−α−1µα : n(α) ∈ −uN(S∗)}. 2

Remark 2.2.6. In view of Proposition 2.2.4, the effective computation of the
number of Pollack conjugation classes p(S,O) for arbitrary orders lies on the
computability of the groups NL/F (S∗) and n(O∗) and the number e(S,O).
The study of the former depends on the knowledge of the group of units S∗

and there is abundant literature on the subject. If O is an Eichler order,
the Hasse-Schilling-Maass Theorem in its integral version describes n(O∗) in
terms of the archimedean ramified places of B (cf. [Vi80]). Finally, we refer
the reader to Section 1.2.3 for details on the computation of the number of
Eichler conjugation classes of optimal embeddings.

Corollary 2.2.7. Let O be an order in a division quaternion algebra B over
F and let −d ∈ RF be not a perfect square. Then, the number of Pollack
conjugation classes of pure quaternions µ ∈ O0 of reduced norm n(µ) = d is

p(d,O) =
∑

S⊇RF [
√−d]

|n(O∗)/NL/F (S∗)| · e(S,O)

2
,

where S runs through the finite set of quadratic orders in F (
√−d) which

contain RF [
√−d].



Chapter 3

Abelian varieties with
quaternionic multiplication

Introduction

It is well known that an elliptic curve E over an arbitrary algebraically
closed field always admits a unique principal polarization up to translations.
This is in general no longer shared by higher dimensional abelian varieties.
In fact, it is a delicate question to decide whether a given abelian variety A is
principally polarizable. Even, if this is the case, it is an interesting problem
to investigate the set Π0(A) of isomorphism classes of principal polarizations
on A. By a theorem of Narasimhan and Nori [NaNo81], Π0(A) is a finite set.
We shall denote its cardinality by π0(A).

The aim of this chapter is to study these questions on abelian varieties
with quaternionic multiplication. It will be made apparent that the geometri-
cal properties of these abelian varieties are encoded in the arithmetic of their
ring of endomorphisms. As we will see in Chapter 4, our results shed some
light on the geometry and arithmetic of the Shimura varieties that occur as
moduli spaces of abelian varieties with quaternionic multiplication. Also,
these are the basis of our study of the diophantine properties of abelian va-
rieties with quaternion multiplication over number fields carried in Chapter
5. The results of this chapter are an expanded version of [Ro2].

35
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3.1 Main results

A generic principally polarizable abelian variety admits a single class of prin-
cipal polarizations. Humbert [Hu93] was the first to exhibit simple complex
abelian surfaces with two nonisomorphic principal polarizations on them.
Later, Hayashida and Nishi (cf. [HaNi65] and [Ha68]) computed π0(E1×E2)
for isogenous elliptic curves E1/C and E2/C with complex multiplication. In
positive characteristic, Ibukiyama, Katsura and Oort [IbKaOo86] related the
number of principal polarizations on the power En of a supersingular elliptic
curve to the class number of certain hermitian forms. Lange [La88] trans-
lated this problem into a number-theoretical one involving the arithmetic of
the ring End(A) and produced examples of simple abelian varieties of high
dimension with several principal polarizations. However, he showed that for
an abelian variety with endomorphism algebra End(A) ⊗ Q = F , a totally
real number field, the number π0(A) is uniformly bounded in terms of the
dimension of A: π0(A) ≤ 2dim(A)−1. That is, abelian varieties with real multi-
plication may admit several but not arbitrarily many principal polarizations.

It could be expected that Lange’s or some other bound for π0(A) held for
any simple abelian variety. Hence the

Question 3.1.1. Given g ≥ 1, are there simple abelian varieties of dimension
g with arbitrarily many nonisomorphic principal polarizations?

As was already observed, this is not the case in dimension 1. In g = 2,
only simple abelian surfaces with at most π0(A) = 2 were known. One of our
main results, stated in a particular case, is the following.

Theorem 3.1.2. Let F be a totally real number field of degree [F : Q] = n,
let RF denote its ring of integers and ϑF/Q the different of F over Q. Let A
be a complex abelian variety of dimension 2n whose ring of endomorphisms
End(A) ' O is a maximal order in a totally indefinite quaternion division
algebra B over F .

Assume that the narrow class number h+(F ) of F is 1 and that ϑF/Q and
disc(B) are coprime ideals. Then,

1. A is principally polarizable.

2. The number of isomorphism classes of principal polarizations on A is
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π0(A) =
1

2

∑
S

h(S),

where S runs through the set of orders in the CM-field F (
√−D) that

contain RF [
√−D], D ∈ F ∗

+ is taken to be a totally positive generator
of the reduced discriminant ideal D of B and h(S) denotes its class
number.

In particular, if A is an abelian surface,

π0(A) =





h(−4D) + h(−D)

2
if D ≡ 3 mod 4,

h(−4D)

2
otherwise.

We prove Theorem 3.1.2 in the more general form of Proposition 3.6.5 and
our main Theorem 3.7.2. In order to accomplish it, we present an approach
to the problem which stems from Shimura’s classical work [Sh63] on analytic
families of abelian varieties with prescribed endomorphism ring.

Our approach is essentially different to Lange’s in [La88] or Ibukiyama-
Katsura-Oort’s in [IbKaOo86]. Indeed, whereas in [La88] and [IbKaOo86] the
(noncanonical) interpretation of line bundles as symmetric endomorphisms
is exploited, we translate the questions we are concerned with to Eichler’s
language of optimal embeddings. In particular, this leads us to solve a prob-
lem that has its roots in the work of O’Connor, Pall and Pollack (see [Po60])
and that has its own interest: see Section 2.2 for details.

In regard to the question above, the second main result of this chapter is
the following.

Theorem 3.1.3. Let g be a positive integer. Then

1. If g is even, there exist simple abelian varieties A of dimension g such
that π0(A) is arbitrarily large.

2. If g is odd and square-free, π0(A) ≤ 2g−1 for any simple abelian variety
A of dimension g over C.

The boundless growth of π0(A) when g is even stems from our main
Theorem 3.7.2 combined with analytical results on the asymptotic behaviour
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and explicit bounds for relative class numbers of CM-fields due to Horie-
Horie [HoHo90] and Louboutin [Lo00], [Lo02]. The second part of Theorem
3.1.3 follows from the ideas of Lange in [La88]. The details of the proof are
completed in Section 3.9.

The following corollary follows from Theorem 3.1.3 and the fact that any
simple principally polarized abelian surface is the Jacobian of a smooth curve
of genus 2 which, by Torelli’s Theorem, is unique up to isomorphism.

Corollary 3.1.4. There are arbitrarily large sets C1, ..., CN of pair-wise
nonisomorphic genus 2 curves with isomorphic simple unpolarized Jacobian
varieties J(C1) ' J(C2) ' ... ' J(CN).

In view of Theorem 3.1.3, it is natural to wonder whether there exist
arbitrarily large sets of pairwise nonisomorphic curves of given even genus g ≥
4 with isomorphic unpolarized Jacobian varieties. In this direction, Ciliberto
and van der Geer [CivdGe92] proved the existence of two nonisomorphic
curves of genus 4 whit isomorphic Jacobian varieties. Explicit examples
of curves with isomorphic (nonsimple) Jacobians have been constructed by
Howe [Ho00], while examples of pairs of distinct modular curves of genus
2 defined over Q with isomorphic unpolarized absolutely simple Jacobian
varieties have been obtained in [GoGuRo02].

Finally, let us note that the statement of Theorem 3.1.3 does not cover
odd non square-free dimensions.

Conjecture 3.1.5. Let g be a non square free positive integer. Then there
exist simple abelian varieties of dimension g such that π0(A) is arbitrarily
large.

The conjecture is motivated by the fact that, when g is non square-free,
there exist abelian varieties whose ring of endomorphisms is an order in
a noncommutative division algebra over a CM-field and there is a strong
similitude between the arithmetic of the Néron-Severi groups of these abelian
varieties and those in the quaternion case.

3.2 Abelian varieties with quaternionic mul-

tiplication

The main object of study of this chapter and the rest of the monograph will
be the following class of abelian varieties.
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Definition 3.2.1. Let k be a field and let k̄ be an algebraic closure of k. An
abelian variety A/k over k is an abelian variety with quaternionic multipli-
cation (QM) if the following conditions are fulfilled:

(i) Endk̄(A) ' O is a maximal order in a totally indefinite quaternion
algebra B over a totally real number field F .

(ii) dim(A) = 2[F : Q].

Remark 3.2.2. In this chapter we focus our attention on abelian varieties
with quaternionic multiplication over the field C of complex numbers. How-
ever, we make the above definition in greater generality since in the subse-
quent chapters we will consider abelian varieties with quaternionic multipli-
cation over number fields.

Remark 3.2.3. We warn the reader that there are several and non coincident
notions of quaternionic multiplication in the literature.

According to our definition, there do not exist abelian varieties with
quaternionic multiplication over finite fields nor over the algebraic closure of
a finite field. Indeed, this follows from the theory of Honda-Tate (cf. [Ta66],
[Ta68]).

In particular, if we let A/K be an abelian variety with quaternionic mul-
tiplication over a number field K and we let ℘ be a prime ideal of K of good
reduction of A, let k be the residue field of K at ℘ and let Ã = A⊗ Spec k.
Then it holds that EndK̄(A) ' O is a maximal quaternion order, whereas

Endk̄(Ã) ! O. Indeed, Ã fails to be simple and it isogenous to the product
of two abelian varieties of dimension dim(A)/2.

Let thus F be a totally real number field of degree [F : Q] = n and let RF

be its ring of integers. Let B denote a totally indefinite division quaternion
algebra over F and let D = disc(B) =

∏2r
i=1 ℘i, where ℘i are finite prime

ideals of F and r ≥ 1, be its reduced discriminant ideal.
We may fix an isomorphism of F -algebras

(ησ) : B ⊗Q R '
⊕

σ

M2(Rσ),

where σ runs in Gal(F/Q) and Rσ denotes R as a F -vector space via the
immersion σ : F ↪→ R. For any β ∈ B, we will often abbreviate βσ =
ησ(β) ∈ M2(R).
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Let A/C be an abelian variety with quaternionic multiplication by O. As
a complex manifold, A(C) ' V/Λ for V a complex vector space of dimension
g and Λ ⊂ V a co-compact lattice that may be identified with the first group
of integral singular homology H1(A,Z). The lattice Λ is naturally a left O-
module and Λ ⊗ Q is a left B-module of the same rank over Q as B. Since
every left B-module is free (cf. [We67], §9), there is an element v0 ∈ V such
that Λ⊗Q = B · v0 and therefore Λ = I · v0 for some left O-ideal I ⊂ B.

Note that I is determined by A up to principal ideals and we can choose
(and fix) a representative of I in its class in Pic`(O) such that n(I) ⊂ F
is coprime with the discriminant D. This is indeed possible because B is
totally indefinite: it is a consequence of Proposition 1.2.5, Proposition 1.2.8
and the natural epimorphism of ray class groups PicD(F )→Pic(F ) of ideals
of F (cf. [Ne99], §6).

Let ρa : B ↪→ End(V ) ' M2n(C) and ρr : O ↪→ End(Λ) ' M4n(Z)
denote the analytic and rational representations of B and O on V and Λ,
respectively. It is well known that ρr ∼ ρa

⊕
ρ̄a.

Lemma 3.2.4. There exists a basis of the complex vector space V such that

(i) ρa(β) = diag(ησi
(β)) ∈ ⊕n

i=1M2(R) ⊂ M2n(R) for any β ∈ B, and

(ii) The coordinates of v0 are (τ1, 1, ..., τn, 1) for certain τi ∈ C, Im(τi) > 0.

Proof. The existence of an appropiate basis {e1, ..., e2n} of V such that
the analytic representation ρa of B in V is of the form (i) is shown in [LaBi92],
§9, 1.1. Note that the same holds if we replace the above basis for the basis
{S · e1, ..., S · e2n}, for any invertible matrix S ∈ ⊕n

i=1M2(R) ⊂ M2n(R).
The lemma now follows from the fact that S can be chosen such that the
coordinates of v0 in the basis {S · e1, ..., S · e2n} are of the form (ii). Indeed,
this follows from linear algebra and the fact that I · v0 ⊂ V is a lattice of
maximal rank. 2

We note that the choice of the element v0 fixes an isomorphism of real
vector spaces B ⊗ R ' V .

Reciprocally, for any choice of a left O-ideal I in B and a vector v0 ∈ V ,
v0 = (τ1, 1, ..., τn, 1) with Im(τi) > 0, we may consider the complex torus
V/Λ with Λ = I · v0 and B acting on V via the fixed diagonal analytic
representation ρa. The torus V/Λ admits a polarization and can be embedded
in a projective space (cf. [Sh63] and [LaBi92]). In consequence, it is the set
of complex points of an abelian variety A such that End(A) ⊇ O.
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Moreover, it holds that for the choice of v0 in a dense subset of V , we
exactly have End(A) = O. Besides, for v0 in a subset of measure zero of V ,
A fails to be simple and it is isogenous to the product of two abelian varieties
of dimension n with complex multiplication (cf. [Sh63], [LaBi92]).

3.3 The Néron-Severi group

We fix the following notation for this section. We let A/C denote an abelian
variety with quaternionic multiplication by a maximal order O in B. In
addition, we let I be a left ideal of O in B such that H1(A,Z) ' I as a left
O-module and (n(I),D) = 1.

Let NS(A) = Pic(A)/Pic0(A) be the Néron-Severi group of invertible
sheaves on A up to algebraic equivalence. We recall from Section 1.3 that
two invertible sheaves L1, L2 ∈ NS(A) are isomorphic, denoted by L1 ' L2,
if there is an automorphism α ∈ Aut(A) such that L2 = α∗(L1). Let us
also recall from Section 1.2 that for an arbitrary O-left ideal I, we write
I] = {β ∈ B : trB/Q(Iβ) ⊆ Z} and N (I) = n(I)O = II.

The following theorem stems from Shimura’s work [Sh63] and describes
NS(A) intrinsically in terms of the arithmetic of B. The theorem establishes
when two line bundles on A are isomorphic and translates this into a certain
conjugation relation in B. We keep the notations as above.

Theorem 3.3.1. There is a natural isomorphism of groups

c1 : NS(A)
∼→ N (I)]

0

L 7→ µ = c1(L)

between the Néron-Severi group of A and the group of pure quaternions of
the codifferent of the two-sided ideal N (I).

Moreover, for any two invertible sheaves L1, L2 ∈ NS(A), we have that
L1 ' L2 if and only if there exists α ∈ O∗ such that c1(L2) = αc1(L1)α.

Proof. By the Appell-Humbert Theorem (cf. [Mu70], [LaBi92]), the first
Chern class allows us to interpret an invertible sheaf L ∈ NS(A) as a Riemann
form: an R-alternate bilinear form EL : V ×V → R such that EL(Λ×Λ) ⊂ Z
and EL(

√−1u,
√−1v) = E(u, v) for all u, v ∈ V .

Fix an invertible sheaf L on A and let EL be the corresponding Riemann
form. The linear map B → Q, β 7→ EL(βv0, v0) is a trace form on B and
hence, by the nondegeneracy of trB/Q, there is a unique element µ ∈ B
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such that EL(βv0, v0) = trB/Q(µβ) for any β ∈ B. Since EL is alternate,
EL(av0, av0) = trF/Q(a2trB/F (µ)) = 0 for any a ∈ F . It follows again from
the nondegeneracy of trF/Q and the fact that the squares F ∗2 span F as a
Q-vector space that trB/F (µ) = 0. Thus µ2 + δ = 0 for some δ ∈ F .

The invertible sheaf L induces an anti-involution % on B called the Rosati
involution. It is characterized by the rule EL(u, βv) = EL(β%u, v) for any
β ∈ B and u, v ∈ V . It follows that β% = µ−1βµ and we conclude that the
Riemann form EL attached to the invertible sheaf L on A is EL = Eµ : V ×
V → R, (u, v) 7→ trB⊗QR/R(µβ%γ) = trB⊗QR/R(βµγ) = trB⊗QR/R(µγβ), where
µ ∈ B is determined as above and γ, β are elements in B ⊗Q R ' M2(R)n

such that u = γv0 and v = βv0. Since EL(Λ × Λ) ⊂ Z and tr(µ) = 0, we
deduce that µ ∈ N (I)]

0.
Conversely, one checks that any element µ ∈ N (I)]

0 defines a Riemann
form Eµ which is in turn the first Chern class of an invertible sheaf L on A.
Indeed, since µ ∈ N (I)], Eµ is integral over the lattice Λ = I · v0 and Eµ

is alternate because tr(µ) = 0. Moreover, let ι = diag(ι1, ..., ιn) ∈ GL2n(R),
ιi ∈ GL2(R), ι2i + 1 = 0, be a matrix such that ι · v0 =

√−1v0. Then
Eµ(

√−1u,
√−1v) = Eµ(γ

√−1v0, β
√−1v0) = tr(µγιιβ) = Eµ(u, v) for all u,

v ∈ V . This concludes the proof of the first part of the theorem.
As for the second, we note that the first Chern class of the pull-back α∗L

of a line bundle L on A by an automorphism α ∈ Aut(A) = O∗ is represented
by the Riemann form α∗EL : V × V → R, (u, v) 7→ EL(αu, αv). Hence, if
L2 = α∗(L1), then tr(µ2γβ) = tr(µ1αγβα) = tr(αµ1αγβ) for all γ, β ∈ B
and this is satisfied if and only if µ2 = αµ1α, by the nondegeneracy of the
trace form. Reciprocally, one checks that if µ2 = αµ1α for some α ∈ O∗,
then Eµ2 = α∗Eµ1 and therefore L2 = α∗L1. 2

Remark 3.3.2. As we claimed in Section 3.1, the isomorphism between
NS(A) and N (I)]

0 is canonical in the sense that it does not depend on the
choice of a possibly nonexisting principal polarization on A. However, we
note that it does depend on the choice of an isomorphism between the quater-
nionic order O and the ring of endomorphisms End(A) of A.

According to Definition 2.2.1, the last statement of Theorem 3.3.1 can
be rephrased by saying that two invertible sheaves L1, L2 ∈ NS(A) are
isomorphic if and only if c1(L1) ∼p c1(L2).

We now address the question whether the abelian variety A admits a
principal bundle. We provide an explicit criterion in terms of the arithmetic
of the order O and the left ideal I. Crucial in the proof of the main result
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in this direction is the theory of Eichler on optimal embeddings (cf. Section
1.2.3).

Proposition 3.3.3. Let L be an invertible sheaf on A and let c1(L) = Eµ be
its first Chern class for some element µ ∈ B, µ2 + δ = 0, δ ∈ F . Then

deg(L) = NF/Q(ϑ2
F/Q · n(I)2 · D · δ).

Proof. The degree deg(L) = deg(ϕL)1/2 can be computed in terms of the
Riemann form as follows:

deg(ϕL) = det(Eµ(xi, xj)) = det(trB/Q(µβiβj)),

where xi = βiv0 runs through a Z-basis of the lattice Λ. Now, it holds that
det(trB/Q(µβiβj)) = nB/Q(µ)2 det(trB/Q(βi · βj)) = nB/Q(µ)2discB/Q(I)2 =
(NF/Q(δ · n(I)2 · ϑ2

F/Q · D))2 by Proposition 1.2.12. 2

For the sake of simplicity and unless otherwise stated, we assume for the
rest of the chapter the following

Assumption 3.3.4. The ideals ϑF/Q and D are coprime.

The general case can be dealt by means of the remark below.

Theorem 3.3.5. The abelian variety A admits a principal invertible sheaf
if and only if the ideals D and ϑF/Q · n(I) of F are principal.

Proof. Let L be a principal invertible sheaf on A and let Eµ = c1(L)

be the associated Riemann form for some µ ∈ N (I)]
0, µ2 + δ = 0. Since L

is principal, the induced Rosati involution % on End(A)⊗Q = B must also
restrict to End(A) = O and we already observed that β% = µ−1βµ. There-
fore µ belongs to the normalizer group NormB∗(O) of O in B. The quotient
NormB∗(O)/O∗F ∗ ' W is a finite abelian 2-torsion group and representa-
tives w of W in O can be chosen so that the reduced norms n(w) ∈ RF are
only divisible by the prime ideals ℘|D (cf. [Vi80], p. 39, 99, [Br90]). Hence,
we may express µ = u · t · w−1 for some u ∈ O∗, t ∈ F ∗ and w ∈ W .

Recall that (n(I),D) = 1 and (ϑF/Q,D) = 1. Since, from Proposition
3.3.3, n(I)2 · ϑ2

F/Q · D = (δ−1) = (t−2 · n(w)), we conclude that n(I) · ϑF/Q =

(t−1) and D = (n(w)) are principal ideals.
Conversely, suppose now that n(I) ·ϑF/Q = (t) and D = (D) are principal

ideals, generated by some elements t, D ∈ F ∗. Let RL be the ring of integers
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in L = F (
√−D). From Theorem 1.2.18, since any prime ideal ℘|D ramifies

in L, Eichler’s theory of optimal embeddings guarantees the existence of
an embedding ι : RL ↪→ O of RL into the quaternion order O. Let w =
ι(
√−D) ∈ O and let µ = (t ·w)−1. As one checks locally, µ ∈ NormB∗(O) ∩

N (I)]
0 and, by Theorem 3.3.1 and Proposition 3.3.3, µ is the first Chern class

of a principal invertible sheaf on A. 2

Let us recall that an abelian variety A is self-dual if there is an isomor-
phism ϕ : A

∼→ Â. Acoording to Section 1.3, if L is a principal invertible
sheaf on A, then ϕL : A→Â is an isomorphism. Conversely, it does not need
to hold that any isomorphism between A and Â is of this form. We obtain
from the above the following

Corollary 3.3.6. If D and ϑF/Q·n(I) are principal ideals, then A is self-dual.

Remark 3.3.7. The case when ϑF/Q and D are non necessarily coprime is
reformulated as follows: A admits a principal invertible sheaf if and only if
there is an integral ideal a = ℘e1

1 · ... · ℘e2r
2r |ϑF/Q in F such that both D · a2

and n(I) ·ϑF/Q ·a−1 are principal ideals. In this case, A is also self-dual. The
proof is mutatis mutandi the one given above.

Let us recall from Section 1.3 the finite set Π(A) of isomorphism classes
of principal invertible sheaves on A. Let

P(O) = {µ ∈ O : tr(µ) = 0, n(µ)RF = D.}
and let

P (O) = P(O)/ ∼p,

where, as in Section 2.2, we let ∼p denote Pollack conjugation over O∗. We
note that P(O) is nonempty if and only if D is a principal ideal of RF .

The above proof, together with Theorem 3.3.1, yield the following corol-
lary, which shall serve us in the next section to compute the number of
isomorphism classes of principal line bundles on A.

Corollary 3.3.8. Let A be an abelian variety with quaternion multiplication
by a maximal order O. If D = (D) and ϑF/Q ·n(I) = (t) are principal ideals,
the assignation

L 7→ (t · c1(L))−1
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induces a bijection of sets between Π(A) and P (O).

3.4 Principal invertible sheaves and Eichler

optimal embeddings

The aim of this section is to compute the cardinality π(A) = |Π(A)| of the set
of isomorphism classes of principal invertible sheaves on an abelian variety A
with quaternionic multiplication by a maximal order O in a totally indefinite
quaternion algebra B over a totally real number field F .

Theorem 3.4.1 below exhibits a close relation between π(A) and the class
number of F and of certain orders in quadratic extensions L/F that embed
in B.

Theorem 3.4.1. Let A/C be a principally polarizable abelian variety with
quaternionic multiplication by a maximal order O in B over F . Let D =
disc(B) = (D) for some D ∈ F ∗ and assume that (D, ϑF/Q) = 1. Then the
number of isomorphism classes of principal invertible sheaves on A is

π(A) =
1

2h(F )

∑
u

∑
Sµ

2eSµh(Sµ),

where Sµ runs through the finite set of orders in the number field F (
√−uD)

such that RF [
√−uD] ⊆ Sµ and u ∈ R∗

F /R∗2
F runs through a set of represen-

tatives of units in RF up to squares. Here, 2eSµ = |R∗
F /NF (

√−uD)/F (S∗µ)|.
The proof of Theorem 3.4.1 will be completed during the rest of this

section. Let us make before several remarks for the sake of its practical
application.

Remark 3.4.2. First of all, by Dirichlet’s Unit Theorem, R∗
F /R∗2

F ' (Z/2Z)n

and thus eS ≤ n. The case F = Q is trivial since Z∗/Z∗2 = {±1}. In the
case of real quadratic fields F , explicit fundamental units u ∈ R∗

F such that
R∗

F /R∗2
F = {±1,±u} are classically well known (cf. [Ne99]). For higher degree

totally real number fields there is abundant literature on systems of units.
See for instance [La88] for an account.

Remark 3.4.3. Let 2RF = qe1
1 · ... ·qem

m be the decomposition of 2 into prime
ideals in F . For any u ∈ R∗

F , the conductor f of RF [
√−uD] over RF in L is
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f =
∏

q|2
q6|D

qaq , 0 ≤ aq ≤ eq.

For a prime ideal q|2, q - D, let π be a local uniformizer of the completion
of F at q and k = Ff

2 be the residue field. Let e = eq ≥ 1. Since −uD ∈ R∗
Fq

,
we have that

−uD = x0 + xkπ
k + xk+1π

k+1 + ...,

for some 1 ≤ k ≤ ∞ and xi running in a system of representatives of F2f

in RFq such that x0, xk 6= 0. Here, we agree to set k = ∞ in case that
−uD = x0.

It then holds that

min ([
k

2
], e) ≤ aq ≤ e.

More precisely, we have

aq =

{
[k
2
] if k ≤ e + 1,

e if [k
2
] ≥ e.

If [k
2
] < e < k − 1, then the determination of aq depends on the choice of

the system of representatives of F2f in RFq and it deserves a closer inspection.

This applies in many cases for deciding whether RF [
√−uD] is the ring of

integers of F (
√−uD), i.e., f = 1.

In order to show the above formula, we note that the discriminant of
RF [

√−uD] over RF is −4uD. Since u ∈ R∗
F and D has square-free de-

composition, f|2. Further, by [Se68], I, 6, RF [
√−uD] is also maximal at

the places ℘i|D. Let thus q|2, q - D. The ring of integers of Fq(
√−uD) is

RFq [α] for some α = vπr + wπs
√−uD with v, w ∈ R∗

Fq
and r, s ∈ Z. Then

Tr (α) = 2vπr = v′πr+e, v′ ∈ R∗
Fq

, and N(α) = v2π2r − Dw2π2s. Since α
must be integral, we obtain that r = s = −aq with 0 ≤ aq ≤ e. Computing
the local expression of v2π2r −Dw2π2r, the rest of our claim follows.

In addition, let us note that the set of orders S in L = F (
√−uD) that con-

tain RF [
√−uD] can be described as follows. Any order S ⊇ RF [

√−uD] has
conductor fS|f and for every ideal f′|f there is a unique order S ⊇ RF [

√−uD]
of conductor f′. Further, fS|fT if and only if S ⊇ T .
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In order to prove Theorem 3.4.1, we begin by an equivalent formulation
of it. As it was pointed out in Corollary 3.3.8, the first Chern class induces
a bijection of sets between Π(A) and the set of Pollack conjugation classes
P (O). As in Section 2.2, for any u ∈ R∗

F , we write P(−uD,O) = {µ ∈
O : µ2 + uD = 0}. Observe that P(O) is the disjoint union of the sets
P(−ukD,O) as uk run through units in any set of representatives of R∗

F /R∗2
F .

As in Section 2.2, for any quadratic order S over RF , let P(S,O) denote
the set of optimal embeddings of S in O and P (S,O) = P(S,O)/∼p . We
obtain a natural identification of sets

P (O) = tk tS P (S,O),

where S runs through the set of quadratic orders S ⊇ RF [
√−ukD] for any

unit uk in a set of representatives of R∗
F /R∗2

F . Hence, in order to prove Theo-
rem 3.4.1, it is enough to show that, for any quadratic order S ⊇ RF [

√−uD],
u ∈ R∗

F , it holds that

p(S,O) := |P (S,O)| = 2eS−1h(S)

h(F )
.

Since this question is interesting on its own, we have studied it separately
in Chapter 2, where we have proved the above statement in greater generality.
We are now in position to complete the

Proof of Theorem 3.4.1. Firstly, under the assumptions of Theorem
3.4.1, Proposition 1.2.5 asserts that n(O∗) = R∗

F . Secondly, we have that

e(S,O) =
h(S)

h(F )

for any S ⊇ RF [
√−uD], u ∈ R∗

F . This follows from Eichler’s Theorem 1.2.18
together with Remark 3.4.3. The combination of these facts together with
the preceding discussion and Proposition 2.2.4 yield the theorem. 2

3.5 The index of a nondegenerate invertible

sheaf

Let A/C be an abelian variety with quaternionic multiplication by a maximal
order O in B. We have that A(C) ' V/Λ for a complex vector space V and
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a lattice Λ. As in Lemma 3.2.4, we fix for the rest of the section a basis of
V such that

(i) The analytic representation of any endomorphism β ∈ O is

ρa(β) = diag σ:F ↪→R(β
σ), βσ ∈ M2(R)

and

(ii) Λ = I · v0, where I is a left ideal of O such that (D, n(I)) = 1 and
v0 = (τ1, 1, ..., τn, 1) ∈ V with Im (τi) > 0.

We now compute the index of an invertible sheaf L on an abelian variety
A with quaternionic multiplication in terms of the quaternion µ = c1(L).

Lemma 3.5.1. Let µ ∈ B0 be a pure quaternion and let n(µ) = δ ∈ F ∗.
Then, for any immersion σ : F ↪→ R, there exists

νσ = νσ(µ) ∈ GL2(R)

such that νσµ
σν−1

σ = ωσ, where

ωσ =






 0

√
σ(δ)

−
√

σ(δ)
0


 if σ(δ) > 0,



√

σ(−δ) 0

0 −
√

σ(−δ)


 otherwise.

Moreover, although νσ is not uniquely determined by µ, sign(det(νσ)) is.

Proof. Since µ ∈ B ↪→ B ⊗Q R ' M2(R) ⊕ ... ⊕ M2(R) satisfies that
µ2 + δ = 0, the lemma follows from linear algebra. 2

Motivated by the following theorem, we have

Definition 3.5.2. (i) The signature of a nonzero pure quaternion µ ∈ B0

such that µ2 + δ = 0 for δ ∈ F ∗ is

sgn (µ) = (sgn (det (νσ))) ∈ {±1}n.

(ii) We say that a pure quaternion µ ∈ B∗ is ample if sgn(µ) = (1, ..., 1).
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(iii) For any real immersion σ : F ↪→ R, we define the local archimedean
index iσ(µ) of µ by

iσ(µ) =





0 if σ(δ) > 0 and det(νσ) > 0,

1 if σ(δ) < 0,

2 if σ(δ) > 0 and det(νσ) < 0.

Theorem 3.5.3. Let A/C be an abelian variety with quaternionic multipli-
cation by a maximal order O.

Let L ∈ NS(A) be an invertible sheaf on A and let µ = c1(L). Then, the
index of L is

i(L) =
∑

σ:F ↪→R
iσ(µ).

Proof. The index of i(L) coincides with the number of negative eigen-
values of the hermitian form Hµ associated to the invertible sheaf L. If we
regard M2(R)× n... ×M2(R) embedded diagonally in M2n(R), there is an iso-
morphism of real vector spaces between B ⊗Q R and M2(R)× n... ×M2(R)
explicitly given by the map β 7→ β · v0. The complex structure that M2(R)n

inherits from that of V is such that {0} × ... ×M2(R) × ... × {0} are com-
plex vector subspaces of M2(R)n and we may choose a C-basis of V of
the form {diag (β1, 0, ..., 0) · v0, diag (γ1, 0, ..., 0) · v0, ..., diag (0, ..., 0, βn) · v0,
diag (0, ..., γn) · v0} for βi, γi ∈ M2(R).

Let ι = diag(ισ) ∈ GL2n(R) be such that ι · v0 =
√−1v0. For any

β = diag σ(βσ), we have that γ = diag σ(γσ) ∈ M2n(R) and

Hµ(βv0, γv0) =
∑

σ

tr (µσβσισγσ) +
√−1

∑
σ

tr (µσβσγσ).

Thus, if we let Hσ ∈ GL2(C) denote the restriction of Hµ to Vσ = M2(R) ·(
τσ, 1

)t
, the matrix of Hµ respect to the chosen basis has diagonal form

Hµ = diag (Hσ).
In order to prove Theorem 3.5.3, it suffices to show that the hermitian

form Hσ has iσ(µ) negative eigenvalues. Take β ∈ M2(R) and let v = β ·(
τσ, 1

)t ∈ Vσ. Then, Hσ(v, v) = tr(µσβσισβσ) = tr(ωσβ
′
σι
′
σβ

′
σ), where β′σ =

νσβσν
−1
σ and ι′σ = νσισν

−1
σ . Denote wσ =

(
w1, w2

)t
= νσβσ ·

(
τσ, 1

)t ∈ C2

and ‖wσ‖2 = w1w1 + w2w2.
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Some computation yields that

Hσ(v, v) =
∑

σ

Cσ

√
|σ(δ)|

det(νσ)Im(τσ)
,

where Cσ = ‖w‖2 if σ(δ) > 0 and Cσ = 2Re(w1w2) if σ(δ) < 0. From this,
the result follows. 2

Remark 3.5.4. From the above formula, the well known relation i(L) +
i(L−1) = dim A ([Mu70], Chapter III, Section 16, p. 150) is reobtained.

3.6 Principal polarizations and self-duality

We devote this section to consider the following

Question 3.6.1. Let A be an abelian variety and assume that it is self-dual,
that is, A ' Â. Then, is A principally polarizable?

Let us note that in the generic case in which A is an abelian variety
whose ring of endomorphisms is End(A) = Z, it holds that A is principally
polarizable if and only if it is self-dual.

As in the previous sections, we let O denote a maximal order in a to-
tally indefinite quaternion algebra B over a totally real field F and let
D = disc(B). Let I be an O-left ideal such that (n(I),D) = 1.

Let O∗
+ be the subgroup of units in O of totally positive reduced norm.

By Proposition 1.2.5, we have n(O∗) = R∗
F and we let Σ = Σ(R∗

F ) ⊆
{±1}n be the F2-subspace of signatures of units in R∗

F . As F2-vector spaces,

Σ ' R∗
F /R∗

F+ and, by Dirichlet’s Unit Theorem, |Σ| =
2nh(F )

h+(F )
. Note that

h+(F ) = h(F ) if and only if Σ(R∗
F ) = {±1}n. By Proposition 1.2.5, the

group Σ fits in the exact sequence

1 → O∗
+ → O∗ sgn·n→ Σ → 1

Proposition 3.6.2. There exist principally polarizable abelian varieties A/C
with quaternionic multiplication by O and H1(A,Z) ' I if and only if D and
n(I) ·ϑF/Q are principal ideals and D = (D) is generated by a totally positive
element D ∈ F ∗

+.
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Proof. Assume first that there exists a principally polarizable abelian
variety A/C with quaternionic multiplication by O and H1(A,Z) ' I. Then,
by Theorem 3.3.5, D and n(I) ·ϑF/Q are principal ideals. Let D ∈ F ∗ be any
generator of (D). Let L be a principal polarization on A and let µ = c1(L).
By Corollary 3.3.8, n(µ) = uD ∈ F ∗/F ∗2 for some u ∈ R∗

F . Since i(L) = 0,
it follows from Theorem 3.5.3 that uD ∈ F ∗

+.

Conversely, we assume that D = (D) and n(I) · ϑF/Q = (t) for some
D ∈ F ∗

+ and t ∈ F ∗. Since, from Theorem 3.3.5, A admits a principal line
bundle, it follows from Corollary 3.3.8 that the set P(O) is nonempty. Let

µ ∈ P(O) and let S = diag σ:F ↪→R(
(

sgn (µσ) 0
0 1

)
).

Let us fix an immersion B ↪→ B ⊗Q R ' M2(R)× n... ×M2(R) ↪→
M2n(R), β 7→ diag σ:F ↪→R(βσ), by embedding diagonally M2(R)× n... ×M2(R)
in M2n(R). Upon conjugating the embedding B ↪→ M2n(R) by S, we can
assume that sgn(µ) = (1, ..., 1). Let V be a complex vector space of dimen-
sion 2n and let B act on V through the above embedding. Let H denote
Poincaré’s upper half plane. For any choice of (τ1, ..., τn) in a dense subset of
H× ...H, the complex torus V/Λ, Λ = I · v0, v0 = (τ1, 1, ..., τn, 1), is the set of
complex points of an abelian variety A/C with quaternionic multiplication
by O such that H1(A,Z) ' I as left O-modules. Since conditions (i) and
(ii) of Lemma 3.2.4 hold for A, we deduce from Theorem 3.5.3 that A is
principally polarizable. 2

Remark 3.6.3. As a consequence of the above proposition, we obtain that
there exist self-dual but non principally polarizable abelian varieties. Indeed,
let F = Q(

√
3) and let O be a maximal order in the quaternion algebra B

of discriminant D = 2
√

3. Let I = O. Since D and n(I) · ϑF/Q are principal
ideals but the former can be generated by no totally real elements, it follows
from Corollary 3.3.6 and Proposition 3.6.2 that any abelian variety with
quaternionic multiplication by O and such that H1(A,Z) ' O is self-dual
but non principally polarizable. These abelian varieties indeed exist, as we
have shown at the end of Section 3.2.

Let now A/C be an abelian variety with quaternionic multiplication by O.
We choose I to be a O-left ideal such that H1(A,Z) ' I as O-left modules
and (n(I),D) = 1. We fix a complex vector space V and a vector v0 ∈ V
such that A(C) = V/Λ with Λ = I · v0 under the same conditions of Lemma
3.2.4.
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In regard to the Question 3.6.1, note that, from Corollary 3.3.6, a suffi-
cient condition for A to be self-dual is that D and n(I) · ϑF/Q are principal
ideals. By Corollary 3.3.8 and Theorem 3.5.3, a necessary condition for A
to be principally polarizable is that D be generated by a totally positive ele-
ment D in F . However, in general these conditions are not sufficient for the
existence of a principal polarization on A.

Definition 3.6.4. We denote by Ω ⊆ {±1}n the set of signatures

Ω = {(sgn (det νσ(µ))}µ∈P(O).

The set Ω can be identified with a subset of the set of connected com-
ponents of Rn \ ∪n

i=1{xi = 0}. With the notations as above, we obtain the
following corollary of Theorems 3.3.5 and 3.5.3.

Proposition 3.6.5. A complex abelian variety A/C with quaternionic mul-
tiplication by O and H1(A,Z) ' I admits a principal polarization if and only
if D and n(I) · ϑF/Q are principal ideals, D = (D) is generated by a totally
positive element D ∈ F ∗

+ and (1, ..., 1) ∈ Ω.

Signature questions on number fields are delicate. In order to have a
better understanding of Proposition 3.6.5, we describe Ω as the union (as sets)
of linear varieties in the affine space AnF2

= {±1}n as follows. Let {uk} be a
set of representatives of units in R∗

F /R∗2
F and, for any order S ⊇ RF [

√−ukD]
in L = F (

√−ukD), choose µS ∈ P(S,O). We considered in Section 2.2 the
Galois group ∆ = Ker(N : Pic(S) → Pic(F )). Naturally associated to it
there is a sub-space of signatures Σ(∆) in the quotient space AnF2

/Σ(R∗
F ) as

follows: if b is an ideal of S such that NL/F (b) = (b) for some b ∈ F ∗, the
signature of b does not depend on the class of b in Pic(S) and only depends
on the choice of the generator b up to signatures in Σ(R∗

F ). By an abuse of
notation, we still denote by Σ(∆) the sub-space of AnF2

generated by Σ(R∗
F )

and the signatures of the norms of ideals in ∆. Then, from Proposition 1.2.19
we obtain that

Ω =
⋃

k,S

Σ(∆) · sgn(µS).

This allows us to compute Ω in many explicit examples and to show that, in
many cases, the set Ω coincides with the whole space of signatures {±1}n.
The following corollary, which remains valid even if we remove the assumption
(ϑF/Q,D) = 1, illustrates this fact.
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Corollary 3.6.6. Assume that

(i) D = (D) for some D ∈ F ∗
+ and that n(I) · ϑF/Q = (t) for some t ∈ F ∗.

(ii) h+(F ) = h(F ).

Then, any abelian variety A/C with quaternionic multiplication by O and
H1(A,Z) ' I is principally polarizable.

In particular, if h+(F ) = 1, then the above two conditions on O and I
are always accomplished.

Proof. Since Σ(R∗
F ) = {±1}n, we have that Ω = {±1}n. The result

follows from Proposition 3.6.5. 2

As we shall see in Chapter 4, this is highly relevant in the study of cer-
tain Shimura varieties. As was already known to the specialists in dimension
2, we obtain that any abelian surface with quaternionic multiplication by a
maximal order in an indefinite quaternion algebra B/Q admits a principal
polarization. It can actually be shown that any abelian surface with multi-
plication by an hereditary quaternion order admits a principal polarization
(cf. [Ro2]). This extends our result to a wider class of quaternion orders.

3.7 The number of isomorphism classes of prin-

cipal polarizations

Let A be a complex abelian variety with quaternion multiplication by a
maximal order O. Let V be a complex vector space of dimension 2n and let
B ↪→ ⊕n

i=1M2(R) ⊂ M2n(R) act on V diagonally in 2× 2 boxes as in Lemma
3.2.4 in Section 3.2. Let v0 = (τ1, 1, ..., τn, 1) ∈ V , Im (τi) > 0, be such that
A(C) = V/Λ for Λ = I · v0. As they were introduced in Section 1.3, for
any integer 0 ≤ i ≤ g, the set Πi(A) denotes the set of isomorphism classes
of principal invertible sheaves L ∈ NS(A) of index i(L) = i. The set Π(A)
naturally splits as the disjoint union Π(A) = tΠi(A). Moreover, we recall
that due to the relation i(L) + i(L−1) = g, the map L 7→ L−1 induces a one-
to-one correspondence between Πi(A) and Πg−i(A) and therefore πi(A) =
πg−i(A).

Formulas for πi(A), 0 ≤ i ≤ g, analogous to that of Theorem 3.4.1 can
be derived. Due to its significance, we will only concentrate on the number
π0(A) of classes of principal polarizations. The Galois action on the sets
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E(S,O) of Eichler classes of optimal embeddings and its behaviour respect
to the index of the associated invertible sheaves will play an important role.

Assume then that Π0(A) 6= ∅. For simplicity, recall that we also assume
that (ϑF/Q,D) = 1. By Proposition 3.6.5, we may choose D ∈ F ∗

+ and t ∈ F ∗

such that D = (D) and n(I) ·ϑF/Q = (t). With these notations, we introduce
the following

Definition 3.7.1. Let u ∈ R∗
F+ be a totally positive unit. An order S ⊇

RF [
√−uD] is ample respect to A if there exists an optimal embedding i :

S ↪→ O such that µ = i(
√−uD) is ample. We define Su to be the set of

ample orders S ⊇ RF [
√−uD] in F (

√−uD).

The existence of a principal polarization L on A implies that there is
at least some Su nonempty. With these notations, we obtain the following
expression for π0(A) in terms of the narrow class number of F and the class
numbers of certain CM-fields that embed in B.

Theorem 3.7.2. The number of isomorphism classes of principal polariza-
tions on A is

π0(A) =
1

2h+(F )

∑

u∈RF+
/R∗2F

∑
S∈Su

2e+
S h(S),

where 2e+
S = |R∗

F+/N(S∗)|.
Proof. By the existing duality between Π0(A) and Πg(A), it is equivalent

to show that π0(A) + πg(A) =
∑

u

∑
S∈Su

2e+
S h(S)/h+(F ).

Let us introduce the set P0,g(O) = {µ ∈ O : n(µ) ∈ R∗
F+ · D, sgn(µ) =

±(1, ..., 1)}. By Theorems 3.3.1 and 3.5.3, the set P0,g(O) = P0,g(O)±/∼p

is in one-to-one correspondence with Π0(A) ∪ Πg(A) and we have a natural
decomposition P0,g(O) = tP0,g(S,O) as S runs through ample orders in Su

and u ∈ R∗
F+/R∗2

F .
Fix u ∈ R∗

F+ and S in Su. In order to compute the cardinality of
P0,g(S,O), we relate it to the set E0,g(S,O) = P0,g(S,O)/∼e of O∗

±-Eichler
conjugacy classes of optimal embeddings iµ : S ↪→ O. Here, we agree to say
that two quaternions µ1 and µ2 ∈ P0,g(S,O) are Eichler conjugate by O∗

± if
there is a unit α ∈ O∗

± of either totally positive or totally negative reduced
norm such that µ2 = α−1µ1α. Note that, by Theorem 3.5.3, the action of
O∗
±-conjugation on the invertible sheaf L associated to an element in P(S,O)
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either preserves the index i(L) or switches it to g − i(L). This makes sense
of the quotient E0,g(S,O).

We have the following exact diagram:

0 → ∆+ → Pic(S)
NL/F→ Pic+(F ) → 0

↓ ‖ ↓
0 → ∆ → Pic(S)

NL/F→ Pic(F ) → 0.

Indeed, there is a natural map Pic(S)
NL/F→ Pic+(F ), since the norm of an

element a + b
√−uD ∈ L for a, b ∈ F is a2 + ub2D ∈ F ∗

+. The surjectivity
of the map Pic(S) → Pic+(F ) is argued as in Section 2.2 by replacing the
Hilbert class field HF of F by the big Hilbert class field H+

F , whose Galois
group over F is Gal(H+

F /F ) = Pic+(F ). By Proposition 1.2.19, ∆ acts freely
and transitively on E(S,O). Therefore, by Theorem 3.5.3, there is also a
free action of ∆+ on E0,g(S,O). Up to sign, the O∗

±-Eichler conjugation class
of an element µ ∈ P(S,O) has a well defined signature ±sgn(µ). Note also
that two inequivalent O∗

±-Eichler classes that fall in the same O∗-conjugation
class never have the same signature, even not up to sign. Taken together,
this shows that ∆+ also acts transitively on E0,g(S,O). This means that

|E0,g(S,O)| = h(S)

h+(F )
.

Arguing as in Section 3.4, Theorem 3.7.2 follows. 2

3.8 Examples in low dimensions

3.8.1 Dimension 2

The simplest examples to be considered are abelian surfaces with quater-
nionic multiplication. Let B be an indefinite division quaternion algebra
over Q of discriminant D = p1 · ... · p2r, for pi prime numbers and r ≥ 1.
Let O ⊂ B be a maximal order in B. Since h(Q) = 1, Pic`(O) is trivial
by Proposition 1.2.8. Thus, all left O-ideals are principal. Moreover, the
maximal order O is unique up to conjugation.

By Corollary 3.6.6, any abelian surface A with End(A) = O admits a
principal polarization. In fact, A admits principal line bundles of each index



56 Chapter 3. Abelian varieties with quaternionic multiplication

0, 1 and 2. In order to compute πi(A) for i = 0, 1 and 2 we may use Theorems
3.4.1 and 3.7.2.

Let d ∈ Z\Z2. As is well known, the quadratic orders inQ(
√

d) containing

Z[
√

d] are Z[
√

d] and Z[1+
√

d
2

] if d ≡ 1( mod 4) or Z[
√

d] if d 6≡ 1( mod 4).

Furthermore, for S = Z[
√

d] or Z[1+
√

d
2

],

eS =

{
0 if d > 0 and there are units of negative norm in S,

1 otherwise.

and e+
S = 0 in any case. We conclude that

π0(A) = π2(A) =

{
h(−4D)+h(−D)

2
if D ≡ 3 ( mod 4),

h(−4D)
2

otherwise

and

π1(A) =

{
ε4Dh(4D) + εDh(D) if D ≡ 1 ( mod 4),

ε4Dh(4D) otherwise,

where εD, ε4D = 1 or 1
2

is computed from the above formula for eS.
As a simple example, the number of isomorphism classes of principal

polarizations on an abelian surface A with QM by a maximal order in a
quaternion algebra of discriminant D = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 is π0(A) =
1040. This also implies the existence of 1040 pair-wise nonisomorphic smooth
algebraic curves {C1, ..., C1040} of genus 2 such that their respective Jacobian
varieties are isomorphic as abelian surfaces: J(C1) ' · · · ' J(C1040).

Using a programming package like PARI (cf. [PA89]) and our results, we
obtain the following table for the numbers of isomorphism classes of principal
invertible sheaves of index 0, 1 and 2 respectively on an abelian surface with
QM by a maximal order in a quaternion algebra of discriminant D. Recall
that π(A) = π0(A) + π1(A) + π2(A) and that π0(A) = π2(A).
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Table 3.8.1: Principal invertible sheaves on abelian surfaces with QM
Disc (B) π0(A) π1(A) π2(A) Disc (B) π0(A) π1(A) π2(A)

6 1 1 1 111 8 2 8
10 1 1 1 115 4 2 4
14 2 1 2 118 3 1 3
15 2 2 2 119 10 2 10
21 2 2 2 122 5 1 5
22 1 1 1 123 4 2 4
26 3 1 3 129 6 2 6
33 2 2 2 133 2 2 2
34 2 2 2 134 7 1 7
35 4 2 4 141 4 4 4
38 3 1 3 142 2 3 2
39 4 2 4 143 10 2 10
46 2 1 2 145 4 4 4
51 4 2 4 146 8 2 8
55 4 2 4 155 8 2 8
57 2 2 2 158 4 1 4
58 1 1 1 159 10 2 10
62 4 1 4 161 8 2 8
65 4 2 4 166 5 1 5
69 4 2 4 177 2 2 2
74 5 1 5 178 4 2 4
77 4 2 4 183 8 2 8
82 2 2 2 185 8 2 8
85 2 2 2 187 4 2 4
86 5 1 5 194 10 2 10
87 6 2 6 201 6 2 6
91 4 2 4 202 3 1 3
93 2 2 2 203 8 2 8
94 4 1 4 205 4 4 4
95 8 2 8 206 10 1 10
106 3 1 3 209 10 2 10
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3.8.2 Dimension 4

Let F be the real quadratic field Q(
√

2). Its ring of integers is Z[
√

2] and
all its ideals are principal and can be generated by totally positive elements.
That is, the narrow class number of F is h+(F ) = 1. The group of units is
Z[
√

2]∗ = {±(1+
√

2)n}n∈Z. Representatives for R∗
F /R∗2

F are {±1,±(1+
√

2)}.
Let B be the quaternion algebra over F that ramifies exactly at the two

prime ideals (3±√2) above 7. By the second remark to Theorem 3.4.1, the

orders S± = Z[
√

2,
√
±7(1 +

√
2)] are the maximal rings of integers in their

respective quotient fields. With the help of the programming package PARI
we have that the class number is h = 2 and |Z[

√
2]∗/N(S∗±)| = 4 in both

cases.
A similar inspection yields that the conductor of the Z[

√
2,
√

7] in its
quotient fields is the dyadic ideal f = (

√
2). This means that the maximal ring

of integers properly contains this order but also that there are no intermediate
orders between them.

The ring of integers of Q(
√

2,
√

7) is S̃ = Z[
√

2, 3+
√

7√
2

] and its class num-

ber is h(S̃) = 1. Generators of the unit group, up to torsion, are 1 +
√

2,
3+
√

7√
2

and 2
√

2 +
√

7. Computing their norm over Q(
√

2) we obtain that

|Z[
√

2]∗/N(S̃∗)| = 4.
We can compute the class number of S = Z[

√
2,
√

7] in terms of that
of the field Q(

√
2,
√

7) by the formula given in Section 1.1. We have that
h(S) = 1 and |Z[

√
2]∗/N(S∗)| = 4.

Finally, the ring of integers of Q(
√

2,
√−7) is S̃ = Z[

√
2, 1−2

√
2−√−7
2

] and

the conductor of S = Z[
√

2,
√−7] is f = 2. Hence there is exactly one

order Ŝ that sits between S and S̃. We have that S̃∗ = {±(1 +
√

2)n}n∈Z,
h(S) = h(Ŝ) = h(S̃) = 2 and eS = eŜ = eeS = 2.

By applying Theorems 3.4.1, 3.5.3 and 3.7.2, we conclude that for any
abelian variety A of dimension 4 such that End(A) is a maximal order in the
quaternion algebra B/Q(

√
2) of discriminant 7, the number of isomorphism

classes of principal line bundles of index 0, 1, 2, 3 and 4 respectively are:
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π0(A) π1(A) π2(A) π3(A) π4(A)

6 4 4 4 6

3.9 Asymptotic behaviour of π0(A)

In this section, we combine Theorem 3.7.2 with analytical tools to estimate
the asymptotic behaviour of log(π0(A)). This will yield a stronger version of
part 1 of Theorem 3.1.3 in the introduction.

For any number field L, we let DL and RegL stand for the absolute value
of the discriminant and the regulator, respectively. For any two sequences
of real numbers {an}n≥1 and {bn}n≥1, we write {an} ∼ {bn} if and only if

limn→∞
an

bn

= 1.

Theorem 3.9.1. Let F be a totally real number field of degree n. Let A range
over a sequence of principally polarizable abelian varieties of dimension 2n
with End(A) a maximal order in a quaternion algebra B/F of discriminant
D ∈ F ∗

+ with |NF/Q(D)| → ∞. Then

log π0(A) ∼ log
√
|NF/Q(D)| ·DF .

The proof of Theorem 3.9.1 adapts an argument of Horie-Horie ([HoHo90])
on estimates of relative class numbers of CM-fields. We first show that there
indeed exist families of abelian varieties satisfying the properties quoted in
the theorem.

By Čebotarev’s Density Theorem, we can find infinitely many pairwise
different totally positive principal prime ideals {℘i}i≥1 in F . We can also
choose them such that (℘i, ϑF/Q) = 1. We then obtain principal ideals (Dj) =
℘1 · ℘2 · ... · ℘2j−1 · ℘2j with Dj ∈ F ∗

+ and (Dj, ϑF/Q) = 1.

According to [Vi80], p. 74, there exists a totally indefinite quaternion
algebra Bj over F of discriminant Dj for any j ≥ 1. Then, Proposition 3.6.2
asserts that there exists an abelian variety Aj of dimension 2n such that
End(Aj) is a maximal order in Bj and Π0(Aj) 6= ∅.

Proof of Theorem 3.9.1. Let A be a principally polarizable abelian variety
with quaternion multiplication by a maximal order in a totally indefinite
division quaternion algebra B over F of discriminant D ∈ F ∗

+.
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For any totally positive unit uk ∈ R∗
F+, let Lk = F (

√−ukD). For any

order S ⊇ RF [
√−ukDj] in the CM-field Lk, it holds that h(S) = cSh(Lk)

for some positive constant cS ∈ Z which is uniformly bounded by 2n.
The class number h(F ) turns out to divide h(Lk) and the relative class

number of Lk is defined to be h−(Lk) = h(Lk)/h(F ) (cf. [Lo00]). Since
h+(F ) = 2mh(F ) for m = n−dimF2(Σ(R∗

F )), Theorem 3.7.2 can be rephrased

as π0(A) =
∑

2(e+
S−1−m)cSh−(Lk).

In order to apply the Brauer-Siegel Theorem, the key point is to relate the
several absolute discriminants DLk

and regulators RegLk
as uk vary among

totally positive units in F .
Firstly, we have the relations DLk

= |NF/Q(DLk/F )·D2
F | = 2pk |NF/Q(D)|D2

F

for some 0 ≤ pk ≤ 2n. Secondly, by [Wa82], p. 41, it holds that RegLk
=

2cRegF with c = n− 1 or n− 2.
Let ε be a sufficiently small positive number. By the Brauer-Siegel The-

orem, it holds that D
(1−ε)/2
Lk

≤ h(Lk)RegLk
≤ D

(1+ε)/2
Lk

for DLk
À 1. Thus

D
(1−ε)/2
F

h(F )RegF

(DLk
/DF )(1−ε)/2 ≤ h−(Lk) ≤ D

(1+ε)/2
F

h(F )RegF

(DLk
/DF )(1+ε)/2.

Fixing an arbitrary CM-field L appearing in the expression for π0(A), this
boils down to

C− · D
(1−ε)/2
F

h(F )RegF

(DL/DF )(1−ε)/2 ≤ π0(A) ≤ C+ · D
(1+ε)/2
F

h(F )RegF

(DL/DF )(1+ε)/2

for some positive constants C− and C+. Taking logarithms, these inequalities
yield Theorem 3.9.1. 2

Remark 3.9.2. The argument above is not effective since it relies on the
classical Brauer-Siegel Theorem on class numbers. However, recent work
of Louboutin ([Lo00], [Lo02]) on lower and upper bounds for relative class
numbers of CM-fields, based upon estimates of residues at s = 1 of Dedekind
zeta functions, could be used to obtain explicit lower and upper bounds for
π0(A).

Finally, we conclude this section with the proof of the second main result
of this chapter quoted in Section 3.1.

Proof of Theorem 3.1.3. Part 1 is an immediate consequence of Theorem
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3.9.1. Let us explain how part 2 follows. Assume that A is a simple complex
abelian variety of odd and square-free dimension g. Then, by Theorem 1.3.5,
End(A) ' S is an order in either a totally real number field F or a CM-field
L over a totally real number field F . In any case, [F : Q] ≤ g.

In the former case, by Theorem 3.1 of Lange in [La88], π0(A) = |S∗+/S∗2| ≤
2g−1. In the latter, let S0 ⊂ F be the subring of S fixed by complex
conjugation. If L is a principal polarization on A, the Rosati involution
precisely induces complex conjugation on End(A) ' S and we have that
π0(A) = |S∗0+/NormL/F (S∗)| ≤ |S∗0+/S∗20 | ≤ 2g−1, by applying Theorem 1.5
of [La88]. 2
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Chapter 4

Shimura varieties and forgetful
maps

Introduction

Let F be a totally real number field of degree [F : Q] = n and let B
be a totally indefinite quaternion algebra over F . In this chapter we will
be concerned with certain Shimura varieties XB attached to an arithmetic
datum arising from B and several maps that occur naturally between them.

As complex manifolds, these varieties can be described throughout quo-
tients of certain bounded symmetric domains by arithmetic groups acting on
them and, by the theory of Baily-Borel (cf. [BaBo66]), they become quasi-
projective complex algebraic varieties. Shimura discovered a moduli inter-
pretation of these varieties which allowed him to construct canonical models
XB/Q over the field Q of rational numbers. Shimura also explored their
arithmetic, showing that the coordinates of so-called Heegner points on XB

generate certain class fields and that the Galois action on them can be de-
scribed by explicit reciprocity laws (cf. [Sh63] and [Sh67]).

The nature of the Shimura varieties XB differs notably depending on the
existence or absence of zero divisors in B. When B is the split algebra M2(F ),
the varieties XB are classically called Hilbert modular varieties. These are
not complete and suitable compactifications of them can be constructed,
though at the cost of producing new singularities. The literature on them is
abundant, especially on the low dimensional cases. In dimension 1, these are
called modular curves and have become crucial in many aspects of number

63
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theory. In dimension 2, a reference to Hilbert modular surfaces is van der
Geer’s book [vdGe87].

On the other hand, when B is nonsplit, that is, it is a division algebra,
then the emerging Shimura varieties XB/Q are already projective. This fact
makes the study of their arithmetic highly difficult since, in the Hilbert mod-
ular case, much of it is encoded in the added cusps. In remarkable contrast
to Hilbert modular varieties, Shimura proved that, when B 6' M2(F ), XB

do not have real points and therefore do not have rational points over any
number field that admits a real embedding. In the last years, there has
been increasing interest on Shimura curves arising from rational indefinite
quaternion algebras, since they play a crucial role in modularity questions
(cf. [HaHaMo99] or [Ri90], for instance).

From the modular point of view, there are natural maps

π : XB → Ag,(d1,...,dg)

from XB into the moduli space of polarized abelian varieties that involve
forgetting some additional structures. Further, for any totally real field L
containing F and embedded in B, these maps factorize through a morphism
πL : XB → HL into a Hilbert modular variety (cf. Section 4.1).

It is the purpose of this chapter to describe in detail the nature of these
morphisms and their image in the several moduli spaces of abelian varieties.
As we will see, π and πL are finite maps onto their image and the mere
computation of their degree turns out to be unexpectedly subtle. It is based
on arithmetic questions on B that were recently studied by Chinburg and
Friedman in a series of papers in connection with arithmetic hyperbolic 3-
orbifolds (cf. [ChFr86], [ChFr00]).

In Section 4.1, we review the construction due to Shimura of the varieties
we will be dealing with and the above mentioned maps. In Section 4.3,
we introduce several Atkin-Lehner groups of automorphisms acting on them
and describe their modular interpretation. Particularly, in Section 4.3.2 we
introduce what we call the stable and twisting Atkin-Lehner groups.

We state the main result of the chapter as Theorem 4.4.4 in Section 4.4
and we devote Section 4.5 to present its proof.

In closing this introduction, we point out two different applications of
the results presented in this chapter. The first one is pursued in Section 4.6
and concerns the geometry of the quaternionic locus QO of abelian varieties
admitting multiplication by a maximal order O in the moduli space Ag of
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principally polarized abelian varieties of even dimension g. By means of
Theorem 4.4.4 and Eichler’s theory on optimal embeddings, the number of
irreducible components of QO can be related to certain class numbers and
conditions can be given for its irreducibility. We also refer the reader to [Ro5]
for an exposition of these results.

Secondly, Theorem 4.4.4 can also be used to explore the arithmetic of
abelian varieties with quaternionic multiplication. Indeed, in Section 4.7,
we investigate the field of moduli kB of the quaternion multiplication on a
principally polarized abelian variety (A,L)/Q̄. This is a fundamental arith-
metic invariant of the Q̄-isomorphism class of (A,L) which is in intimate
relationship with the possible fields of definition of (A,L).

The main results developed in this chapter can be found in [Ro3] and
[Ro4].

4.1 Shimura varieties

Let F be a totally real number field of degree n and let B be a totally
indefinite quaternion algebra over F . Let D = disc(B) = p1 · ... · p2r.

Fix a datum (O, I, %) consisting of a maximal order O in B, a left O-ideal
I, or rather its class in Pic`(O), and a positive anti-involution % = %µ : B→B,
β 7→ β% = µ−1βµ, with µ ∈ O, µ2 + δ = 0, n(µ) = δ ∈ F ∗

+. We will refer to
(O, I, %) as a quaternionic datum attached to B.

Attached to the datum (O, I, %) there is the following moduli problem
over Q: classifying isomorphism classes of triplets (A, ι,L) given by

• An abelian variety A of dimension g = 2n.

• A ring homomorphism ι : O ↪→ End (A) such that H1(A,Z), regarded
as a left O-module, is isomorphic to the left ideal I.

• A primitive polarization L on A such that the Rosati involution ◦ :
End0(A) → End0(A) with respect to L on End0(A) = End(A) ⊗Z Q
coincides with % when restricted to ι(O):

◦|ι(O) = % · ι.

A triplet (A, ι,L) will be referred to as a polarized abelian variety with
multiplication by O. Two triplets (A1, ι1,L1), (A2, ι2,L2) are isomorphic if
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there exists an isomorphism α ∈ Hom(A1, A2) such that αι1(β) = ι2(β)α for
any β ∈ O and α∗(L2) = L1 ∈ NS(A1). Remark also that, since a priori
there is no canonical structure of RF -algebra on End(A), the immersion
ι : O ↪→ End(A) is just a homomorphism of rings.

As it was proved by Shimura, the corresponding moduli functor is coarsely
represented by an irreducible and reduced quasi-projective scheme XB/Q =
X(O,I,%)/Q over Q and of dimension n = [F : Q]. Moreover, if B is division
(that is, if r > 0), the Shimura variety XB is complete (cf. [Sh63], [Sh67]).

Complex analytically, the manifold XB(C) can be described as the quo-
tient of a symmetric space by the action of a discontinuous group as follows.
Since B is totally indefinite, we may fix an embedding B ↪→ B ⊗Q R ∼→
M2(R)⊕ ...⊕M2(R) and regard the group

ΓB = O1 = {γ ∈ O∗ : n(γ) = 1}
as a discrete subgroup of SL2(R)n. An element γ = (γ1, ..., γn) ∈ ΓB acts
on the cartesian product Hn of n copies of Poincaré’s upper half plane H =
{x + yi : x, y ∈ R, y > 0} by Moebius transformations:

γ · (τ1, ..., τn)t = (
a1τ1 + b1

c1τ1 + d1

, ...,
anτn + bn

cnτn + dn

)t

where γi =

(
ai bi

ci di

)
∈ SL2(R). Then

ΓB\Hn ' XB(C).

4.2 Forgetful maps into Ag and the Hilbert

modular varieties HS and HF

It is the purpose of this section to describe several natural maps that occur
between the Shimura varieties XB, the moduli spaces of polarized abelian
varieties and several Hilbert modular varieties HS and HF .

The following notion will be convenient for us in order to introduce these
Hilbert modular varieties.

Definition 4.2.1. An Eichler pair (S, ϕ) for O is a pair consisting of an
order S over RF in a quadratic extension L of F and an optimal embedding
ϕ : S ↪→ O of orders over RF .
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An Eichler pair is said to be totally real if L is.

We recall from Section 1.2.3 than an embedding ϕ : S ↪→ O is optimal if
ϕ(S) = ϕ(L)∩O. Note that not all orders S in quadratic extensions L of F
can be optimally embedded in O. Namely, there exists an embedding ϕ of
the ring of integers RL of L into O if and only if any prime ideal p of F that
ramifies in B either remains inert or ramifies in L. Here, the fact that B
is division and splits at least at one archimedean place makes the condition
for the embeddability of RL in O particularly neat. Otherwise, it depends
heavily on the conjugation class of O.

Given an order S over RF in a totally real quadratic extension L of F and
a sequence of positive integers (1, d2, ..., dg), di−1|di for 2 ≤ i ≤ g = 2n, we
may consider the Hilbert modular variety HS = HS,(1,d2,...,dg) that classifies
isomorphism classes of triplets (A, i,L) given by

• An abelian variety A of dimension [L : Q] = 2n.

• A ring homomorphism i : S ↪→ End(A).

• A primitive polarization L of type (1, d2, ..., dg) on A.

The scheme HS is 2n-dimensional, noncomplete and defined over Q. Ac-
tually, this is a particular case of the Shimura varieties introduced above:
HS is the union of several irreducible components, all them isomorphic
to Shimura varieties X(M2(S),I,%) for several M2(S)-left ideals I and anti-
involutions %.

In addition to these, we will also be interested in the (reduced) scheme
HF /Q that coarsely represents the functor attached to the moduli prob-
lem of classifying (1, d2, ..., dg)-polarized abelian varieties A of dimension 2n
together with an homomorphism RF ↪→ End(A). The variety HF has di-
mension 3n and HF (C) is the quotient of n copies of the 2-Siegel half space
H2 by a suitable discontinuous group (cf. [Sh63], [LaBi92]).

However, the Hilbert modular variety HF does not correspond to any of
the Shimura varieties XB introduced above for any quaternion algebra B,
not even M2(F ).

Notice that, when F = Q, HF = A2,(1,d) is Igusa’s three-fold of level
d ≥ 1, the moduli space of (1, d)-polarized abelian surfaces.

Let now (A, ι,L) be a (primitively) polarized abelian variety with mul-
tiplication by O with respect to the datum (O, I, %). Note that the type
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(1, d2, ..., dg) of L was not specified when we posed the moduli problem at-
tached to the Shimura variety X(O,I,%). However, since X(O,I,%) is connected,
the type of L only depends on the datum (O, I, %) and not on the particular
triplet (A, ι,L). Thus (1, d2, ..., dg) will often be referred to as the type of
(O, I, %).

Let Ag,(1,d2,...,dg)/Q be the moduli space of polarized abelian varieties of

type (1, d2, ..., dg). It is a reduced scheme over Q of dimension g(g+1)
2

. The
observation above allows us to define a natural morphism

π : X(O,I,%) −→ Ag,(1,d2,...,dg)

(A, ι,L) 7→ (A,L)

from the Shimura variety toAg,(1,d2,...,dg) that consists of forgetting the quater-
nion endomorphism structure. This morphism is representable, proper and
defined over the field Q of rational numbers. Moreover, as we now explain,
the morphism π : XB → Ag,(1,d2,...,dg) factorizes in a natural way through suit-
able Hilbert modular varieties HS,(1,d2,...,dg) and the Hilbert modular variety
HF .

Indeed, let (S, ϕ) be any totally real Eichler pair. Imitating the construc-
tion of π we obtain a morphism

π(S,ϕ) : X(O,I,%) −→ HS

(A, ι,L) 7→ (A, ι · ϕ,L)

where ι · ϕ : S ↪→ O ↪→ End(A).

Note that, although the construction of the scheme HS does not depend
on the embeddability of the order S in O nor on the choice of a possibly
existing embedding ϕ : S ↪→ O, the morphism π(S,ϕ) : X(O,I,%) → HS does
indeed depend on it.

Finally, we also have a morphism

πF : X(O,I,%) −→ HF

from XB into the Hilbert modular variety HF . The map πF : X(O,I,%) −→
HF is constructed as above: by restricting the endomorphism structure of a
triplet (A, ι,L) to ι|RF

: RF ↪→ End(A). The whole picture can be summa-
rized with the following commutative diagram of morphisms:
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HS1
π(S1,ϕ1)

↗ :. ↘
π : XB

π(S2,ϕ2)−→ HS2 −→ HF → Ag,(1,d2,...,dg)
↘

π(Sn,ϕn)
:. ↗

HSn

dimension n 2n 3n n(2n + 1)

Note that, while there is a canonical forgetful map from XB to HF , we
obtain distinct maps from XB to HS as ϕ : S ↪→ O varies among all possible
Eichler embeddings.

4.3 The Atkin-Lehner group of a Shimura va-

riety

As before, let F be a totally real number field of degree n. Let B be a
totally indefinite quaternion algebra over F of discriminant D = p1 · ... · p2r

and let O be a maximal order in B. We recall from Section 1.2 the groups
O∗ ⊃ O∗

+ ⊇ O1 of units in O, units in O of totally positive reduced norm
and units in O of reduced norm 1, respectively. The two latter are related
by the exact sequence

1 → O1 → O∗
+

n→ R∗
F+ → 1.

We also recall that we let B∗
+ the subgroup of elements of B∗ of totally

positive reduced norm and we let NormB∗(O) and NormB∗+(O) denote the
normalizer group of O in B∗ and B∗

+, respectively.

Definition 4.3.1. The positive Atkin-Lehner group W 1 of O is

W 1 = NormB∗+(O)/(F ∗ · O1).

In addition to the above, although less relevant for our purposes, we also
introduce the groups
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W = NormB∗(O)/(F ∗ · O∗)

and
W+ = NormB∗+(O)/(F ∗ · O∗

+).

Let us recall that, by the Skolem-Noether Theorem 1.2.15, the group of
automorphisms of O is precisely the group NormB∗(O)/F ∗. The group W is
identified with the group of principal two-sided ideals of O by the assignation
ω ∈ W 7→ O · ω and it is a finite abelian 2-group. More precisely, by results
of Eichler (cf. [Ei37], [Ei38] and [Vi80], Theorem 5.7), the reduced norm
n : B∗ → F ∗ induces an isomorphism

W ' Z/2Z× 2r... ×Z/2Z.

Moreover, it also follows from loc. cit. that any element [ω] ∈ W can be
represented by an element ω ∈ O whose reduced norm n(ω) is supported at
the prime ideals p|D.

The group W+ may and will be regarded as the subgroup W+ = {[ω] ∈
W : n(ω) ∈ F ∗

+} of W and both coincide whenever Pic+(F ) ' Pic(F ). From
the above, we obtain the exact sequence

1 → R∗
F+/R∗2

F
α→ W 1→W+→1,

where the map α : R∗
F+/R∗2

F →W 1 maps a totally positive unit u ∈ R∗
F+ to

any αu ∈ O∗
+ with n(αu) = u, whose existence is guaranteed by Proposition

1.2.5. In this way, we obtain that W 1 is isomorphic to the direct product

W 1 ' R∗
F+/R∗2

F ×W+ ' (Z/2Z)s

for s ≤ (n− 1) + 2r. The bound for s follows from Dirichlet’s Unit Theorem
and the inclusion W+ ⊆ W . The precise value of s can be determined in
terms of the behaviour of signatures of elements of R∗

F .

4.3.1 Modular interpretation of the positive Atkin-Leh-
ner group

In his Ph.D thesis, Jordan described the modular interpretation of the action
of the positive Atkin-Lehner group W 1 on Shimura curves (cf. [Jo81]). As we
now explain, this interpretation can be extended to the higher dimensional
cases. We keep the same notations of above.
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Definition 4.3.2. Let A/C be an abelian variety with quaternionic multi-
plication by O. Let L ∈ NS(A) ⊗ Q be a fractional invertible sheaf and let
ω ∈ End(A) = O be a non zero endomorphism of A.

We define Lω ∈ NS(A)⊗Q to be the fractional invertible sheaf on A such
that

c1(Lω) = ω−1c1(L)ω.

In other words, if we regard the first Chern class c1(L) of L as an alternate
bilinear form E on V = Lie(A(C)), then c1(Lω) : V × V −→ R, (u, v) 7→
E( ω

n(ω)
(u), ω(v)). Hence, c1(Lω) = 1

n(ω)
c1(ω

∗(L)).
From Theorem 3.3.1, it is checked that this does correspond to the first

Chern class of a fractional line bundle on A. Moreover, if L ∈ NS(A) and ω ∈
O ∩ NormB∗(O), then it also follows from Theorem 3.3.1 that Lω ∈ NS(A).
Finally, if L ∈ NS(A) is a polarization and ω ∈ O ∩ NormB∗+(O), we obtain
from Theorem 3.5.3 that Lω ∈ NS(A) is also a polarization.

Let I be a left O-ideal and let % be a positive involution on B. The
action of B∗

+ ⊂ GL+
2 (R)n on Hn by Moebius transformations descends to a

free action of W 1 on the set O1\Hn of complex points of the Shimura variety
XB = X(O,I,%),

The following is due to Jordan for the case of abelian surfaces. The proof
is along the same lines the one given in [Jo81] and we consequently omit it.

Proposition 4.3.3. Let X(O,I,%)/Q be a Shimura variety and let P = [(A, ι,L)]
denote the isomorphism class of a polarized abelian variety with multiplica-
tion by O viewed as a closed point on it.

Then, an element ω ∈ W 1 acts on P by

ω(P ) = [(A, ιω,Lω)]

where
ιω : O ↪→ End(A)

β 7→ ω−1ι(β)ω.

Therefore, according to Proposition 4.3.3, an Atkin-Lehner involution ω ∈
W 1 acts on a triplet [(A, ι,L)] by leaving stable the isomorphism class of the
underlying abelian variety A but conjugating the endomorphism structure
ι : O ↪→ End(A) and switching the polarization L. It readily follows the
compatibilty of L with ι that the polarization Lω is compatible with ιω.
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From this interpretation and by standard moduli considerations, it fol-
lows that W 1 ⊆ Aut(XB) acts on XB as a subgroup of algebraic involuting
automorphisms over Q.

Remark 4.3.4. If α ∈ O∗
+, n(α) = u ∈ R∗

F+, then α can be simultaneously
viewed as an automorphism α ∈ Aut(A) ' O∗ of A and as a representative
of an Atkin-Lehner involution [α] ∈ W 1. For any polarized abelian variety
with quaternionic multiplication [(A, ι,L)], this automorphism induces an
isomorphism of triplets α[(A, ι,L)] = [(A, ια,Lα)] = [(A, ι,Lα)] where Lα

is a polarization on A such that, although L 6' Lα, both induce the same
Rosati involution on End(A)⊗Q.

In the literature (cf. [Sh63], [Mi79]), L and Lα are called weakly isomor-
phic. It is checked that O∗

+/O1 acts freely and transitively on the set of
isomorphism classes of a given weak polarization class on A.

Remark 4.3.5. There is a natural moduli theory for polarized abelian vari-
eties with quaternionic multiplication up to weak isomorphism which is also
considered in [Sh63]. Both theories coincide in dimension 2 (because it cor-
responds to F = Q), but for higher dimensions the latter is coarser and less
suitable for our purposes.

Remark 4.3.6. We wonder in what circumstances W 1 is the full group of
automorphisms of XB. The impression is that, generically, it does hold that
Aut(XB) = W 1, but of course the term generic should be made precise in
any case. The split case of an order O in B = M2(Q) was classically studied
by Ogg, who found that the modular curve X0(37) is an interesting exception
to the prediction that, whenever the genus of a modular curve is at least 2,
W = W 1 = Aut(XO). For Shimura curves attached to a maximal order
in a rational division quaternion algebra B/Q, this question is investigated
in Section 6.1 of Chapter 6. For higher dimensional Shimura varieties, it
seems to hold that whenever O∗ does not contain torsion units (besides ±1),
W 1 = Aut(XO,I,%) (cf. Theorem 6.1.2).

4.3.2 The twisting and stable Atkin-Lehner subgroups

Let B be a totally indefinite quaternion algebra over a totally real field F . Let
us assume that the reduced discriminant is a totally positive principal ideal
of F and let D ∈ F ∗

+ be such that disc(B) = (D). This is an assumption that
we will naturally encounter in several situations and which is always satisfied
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whenever the narrow class number h+(F ) = 1 of F is trivial. In particular,
this is always satisfied by indefinite rational quaternion algebras B/Q.

The following definition is motivated by Theorems 3.3.1 and 3.5.3.

Definition 4.3.7. A polarized maximal order of B is a pair (O, µ) where
O ⊂ B is a maximal order and µ ∈ O is a pure quaternion of totally positive
reduced norm n(µ) ∈ F ∗

+.
If (n(µ)) = (D), we say that (O, µ) is a principally polarized order of B.

Definition 4.3.8. Let (O, µ) be a polarized maximal order in B. A twist
of (O, µ) is an element χ ∈ O ∩ NormB∗(O) such that χ2 + n(χ) = 0 and
µχ = −χµ.

In particular, if (O, µ) is a principally polarized maximal order for some
µ ∈ O with µ2 +uD = 0 and u ∈ R∗

F+, a twist of (O, µ) is a pure quaternion
χ ∈ O ∩ NormB∗(O) such that

B = F + Fµ + Fχ + Fµχ = (
−uD,−n(χ)

F
).

We say that a principally polarized maximal order (O, µ) in B is twisting
if it admits some twist χ in O. We will say that a maximal order O is twisting
if there exists µ ∈ O such that (O, µ) is a twisting principally polarized order.
Finally, we will say that B is twisting if there exists a twisting maximal order
O in B. Note that B is twisting if and only if B ' (−uD,m

F
) for some u ∈ R∗

F+

and m ∈ F ∗ such that m|D.

Definition 4.3.9. Let (O, µ) be a polarized maximal order of B. A twisting
involution ω ∈ W 1 is an Atkin-Lehner involution such that [ω] = [χ] ∈ W is
represented in B∗ by a twist χ of (O, µ).

We let V0(O, µ) denote the subgroup of W 1 of twisting involutions of
(O, µ).

For any subring S ⊂ O, we say that χ is a twist of (O, µ) in S if χ ∈ S.
We say that a twisting involution [ω] is in S ⊆ O if it can be represented by
a twist χ ∈ S. We will let V0(O, µ, S) denote the subgroup of W 1 generated
by the twisting involutions of (O, µ) in S, or simply V0(S) if the polarized
order (O, µ) is well understood. We will also simply write V0 for the set of
twists of (O, µ) in S = O.

Let us remark that, since B is totally indefinite, no χ ∈ B∗
+ can be a twist

of a polarized order (O, µ) because a necessary condition for B ' (−n(µ),−n(χ)
F

)
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is that n(χ) be totally negative. In fact, twisting involutions ω ∈ W 1 are
always represented by twists χ ∈ B∗ of totally negative reduced norm.

For a polarized order (O, µ), let Rµ = F (µ) ∩ O and let Ω = Ω(Rµ) =
{ξ ∈ Rµ : ξf = 1, f ≥ 1} denote the finite group of roots of unity in the
CM-order Rµ.

Definition 4.3.10. The stable group of a polarized order (O, µ) is the sub-
group

W0 = U0 · V0

of W 1 generated by

U0 = U0(O, µ) = NormF (µ)∗(O)/(F ∗ · Ω(Rµ)),

and the group V0 of twisting involutions of (O, µ).

4.4 Main theorem

As remarked in the introduction, the type of the primitive polarizations of the
abelian varieties parametrized by the Shimura variety X(O,I,%) is determined
by the datum (O, I, %). The following has been proved in Chapter 3 and
makes this observation explicit.

Proposition 4.4.1. The polarizations of the abelian varieties with quater-
nionic multiplication (A, ι,L) parametrized by X(O,I,%) are principal if and
only if:

(i) Disc(B) = (D) is a principal ideal of F generated by a totally positive
element D ∈ F ∗

+.

(ii) nB/F (I) and ϑ−1
F/Q lie in the same ideal class in Pic(F ).

(iii) The positive anti-involution on B is % = %µ : B → B, β 7→ µ−1βµ for
some µ ∈ O such that µ2 + uD = 0, u ∈ R∗

F+.

For the rest of this chapter, we will focus on moduli spaces of princi-
pally polarized abelian varieties and therefore we place ourselves under the
conditions on (O, I, %µ) of Proposition 4.4.1. We thus assume in particular
that disc(B) is a totally positive principal ideal and that we can choose a
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generator D ∈ F ∗
+ of it such that µ ∈ O satisfies µ2 + D = 0. In this case we

say that (O, I, %µ) is of principal type.

Our main Theorem 4.4.4 below describes how the modular maps intro-
duced in Section 4.2 factorize through the quotient of XB by certain sub-
groups of Atkin-Lehner involutions that were introduced in Section 4.3.2.

Let

X̃B = X̃(O,I,%) = π(X(O,I,%)) ↪→ Ag

denote the image in the moduli space Ag = Ag,(1,...,1) of principally polar-
ized abelian varieties by π of the Shimura variety X(O,I,%). Similarly, define

X̃B/F ⊂ HF and X̃B/(S,ϕ) ⊂ HS respectively to be the algebraic subvarieties
πF (X(O,I,%)) and π(S,ϕ)(X(O,I,%)) of the Hilbert modular varieties HF and HS.

Remark 4.4.2. Classical objects in the literature are Humbert varieties,
which are introduced as quotients of Hilbert modular varieties (cf. [vdGe87]).
We note that Humbert varieties can be considered as a degenerate case of
the above defined varieties X̃B, since they correspond to the split algebra
B = M2(F ).

Definition 4.4.3. A closed point [(A, ι,L)] on XB and its image on X̃B/(S,ϕ),

X̃B/F or X̃B is called a Heegner point if End(A)⊗Q ' M2(M) for a CM-field
M over F . Equivalently, if End(A) ! O.

It follows from the work of Shimura in [Sh67] that the set of Heegner
points on these varieties is discrete and dense.

Let us say that a morphism π : X→Y of schemes of non necessarily the
same dimension is quasifinite if the fibres of π are finite (cf. [Har77], p. 91).

With the same notations as above, we have

Theorem 4.4.4. Let (O, I, %µ) be a quaternionic datum of principal type
and let XB = X(O,I,%µ) be the Shimura variety attached to it. For any totally
real Eichler pair (S, ϕ), let

HS
πS,ϕ

↗ ↘
π : XB

πF−→ HF → Ag.

be the diagram of forgetful morphisms introduced above. Then
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1. The morphism πF : XB → HF is a quasifinite morphism that factorizes
over Q into the natural projection XB → XB/W0 from XB onto its
quotient by the stable group W0 ⊆ Aut(XB) and a birational morphism

bF : XB/W0 99K X̃B/F onto the image of XB in HF .

The domain of definition of b−1
F is X̃B/F \ TF , where TF is a finite set

of Heegner points.

2. The morphism π(S,ϕ) : XB → HS is a quasifinite morphism that fac-
torizes over Q into the projection XB → X/V0(ϕ(S)) of XB onto its
quotient by the finite 2-group V0(ϕ(S)) ⊆ W0 and a birational mor-

phism b(S,ϕ) : XB/V0(ϕ(S)) 99K X̃B/(S,ϕ) into the image of XB in HS

by π(S,ϕ).

As before, b−1
(S,ϕ) is defined on the whole X̃B/(S,ϕ) but at a finite set T(S,ϕ)

of Heegner points.

We call the sets TF and T(S,ϕ) the singular Heegner loci of X̃B/F and

X̃B/(S,ϕ) respectively, as they are indeed the sets of singular points (of quo-
tient type) of these varieties.

We present the proof of the theorem in the next section; let us now make
the statement more explicit and precise.

Recall that for a polarized order (O, µ), we let Rµ = F (µ) ∩ O be the
order in the CM-field F (µ) ' F (

√−D) that optimally embeds in O. Note
that, since µ ∈ O, Rµ ⊇ RF [

√−D]. We also let Ω = Ω(Rµ) = {ξ ∈ Rµ :
ξf = 1, f ≥ 1} and Ωodd = {ξ ∈ Rµ : ξf = 1, f odd }. Their cardinalities will
respectively be denoted by ω and ωodd. Note that U0 is indeed a subgroup of
W 1 because Ω = F (µ) ∩ O1.

Theorem 4.4.5. 1. Let (O, µ) be a non twisting principally polarized max-
imal order. Then,

(i) For any totally real Eichler pair (S, ϕ), the morphism π(S,ϕ) :
XB → HS is a birational equivalence and

(ii) deg(πF : XB → HF ) = 2ωodd.

2. Let (O, µ) be a twisting principally polarized maximal order. Then,

(i) For any totally real Eichler pair (S, ϕ) such that ϕ(S) contains no
twists of (O, µ), the morphism π(S,ϕ) is a birational equivalence.
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(ii) For any twist χ ∈ O of (O, µ) and any totally real Eichler pair
(S, ϕ) such that ϕ(S) ⊇ RF [χ], the morphism πRF [χ] : XB →
HRF [χ] is 2 : 1.

(a) deg(πF : XB → HF ) = 22ωodd.

In particular, note that the forgetful map πQ : XB −→ A2 from a Shimura
curve into Igusa’s moduli space of principally polarized abelian surfaces is
either of degree 2 or of degree 4 and that a necessary condition for the latter
is that

B ' (
−disc(B),m

Q
)

for some m > 0, m|disc(B).
It turns out, for instance, that for any choice of a quaternionic datum

(O, I, %) of principal type of discriminant D = 6 or 10, the corresponding
forgetful map of the Shimura curve X(O,I,%) into A2 has degree 4.

In order to prove Theorem 4.4.5, we introduce the following lemma.

Lemma 4.4.6. Let (O, µ) be a principally polarized maximal order. Then
U0 ' Cωodd

2 .

Proof. Let us identify F (µ) and F (
√−D) through any fixed isomor-

phism. As U0 naturally embeds in F (
√−D)∗/(F ∗ ·Ω), we first show that the

maximal 2-torsion subgroup H of F (
√−D)∗/(F ∗ ·Ω) is isomorphic to Cωodd

2 .
If ω ∈ F (

√−D)∗ generates a subgroup of F (
√−D)∗/(F ∗ · Ω) of order 2,

then ω2 = λξ for some λ ∈ F ∗ and some root of unity ξ ∈ Ω. In particular,
note that if ω ∈ F (

√−D)∗, then ω2 ∈ F ∗ if and only if ω ∈ F ∗ ∪ F ∗√−D.
Let us write H = H/〈√−D〉.

We then have that, if ξ ∈ Ω, there exists at most a single subgroup
〈ω〉 ⊆ H such that ω ∈ F (

√−D)∗, ω2 ∈ F ∗ξ. Indeed, if ω1, ω2 ∈ F (
√−D),

ω2
i = λiξ for some λi ∈ F ∗ then ω1 · ω−1

2
2 ∈ F ∗ and hence ω1 · ω−1

2 ∈
F ∗ ∪ F ∗√−D. This shows that [ω1] = [ω2] ∈ H.

Observe further that, if ξf ∈ Ω is a root of unity of odd order f ≥ 3, then

ω = ξ
f+1
2

f ∈ F (
√−D)∗ generates a 2-torsion subgroup of F (

√−D)∗/(F ∗ · Ω)
such that ω2 = ξf .

It thus suffices to show that H = H/〈√−D, {ξ
f+1
2

f }
f≥3 odd〉 is trivial. Let

ω ∈ F (
√−D)∗, ω2 = λξ, ξ a root of unity of primitive order f ≥ 1. If f is 2

or odd we already know that the class [ω] ∈ H is trivial. Further, it cannot
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exist any ξ ∈ F (
√−D) of order f = 2N , N ≥ 2, because otherwise ξ2N−1

would be a square root of −1 and we would have that F (
√−D) = F (

√−1).
This is a contradiction since DRF = ℘1 · ... · ℘2r, r > 0.

Finally, it is also impossible that there should exist ω ∈ F (
√−D), ω2 =

λξ, ξf = 1, f = 2Nf0 with N ≥ 1 and f0 ≥ 3 odd. Indeed, since in this

case ξ′ = ξ2N ∈ F (
√−D) is a primitive root of unity of order f0, ω′ = ξ

f0+1
2

satisfies ω′2 = ξ′. Then we would have ω′ · ω−12
= (ξ2N−1

)ξ and this would
mean that [ω′

ω
] = [ω] ∈ H, which is again a contradiction. This shows that

H is trivial and therefore H = 〈√−D, {ξ
f+1
2

f }ξf∈Ωodd
〉. In order to conclude

the lemma, we only need to observe that both µ and ξ
f+1
2

f ∈ F (µ) normalize
the maximal order O for any odd f , because their respective reduced norms
divide the discriminant D. 2

Proof of Theorem 4.4.5: Let us firstly assume that (O, µ) is a non
twisting polarized order. It is then clear from the definitions that the groups
of twisting involutions V0(S) are trivial for any subring S of O. In addition,
by the above lemma, W0 = U0 ' Cωodd

2 . By Theorem 4.4.4, this yields the
first part of Theorem 4.4.5. The second follows from the following lemma,
which shows that, when (O, µ) is twisting, the situation is more subtle and
less homogenous.

Lemma 4.4.7. Let (O, µ) be a twisting principally polarized maximal order
in a totally indefinite quaternion algebra B over F of discriminant disc(B) =
(D), D ∈ F ∗

+. Then U0 ⊂ V0 is a subgroup of V0 and V0/U0 ' U0. In
particular, W0 = V0 ' C2ωodd

2 .

Proof. Let ω ∈ U0 be represented by an element ω ∈ NormF (µ)∗(O) ∩O
and let ν ∈ V0 be a twisting involution. We know that the class of ν in
NormB∗(O)/(F ∗ · O∗) is represented by a twist χ ∈ NormB∗(O) ∩ O that
satisfies χ2 + n(χ) = 0 and µχ = −χµ. Then we claim that ων ∈ V0 is again
a twisting involution of (O, µ). Indeed, first ωχ ∈ NormB∗(O) ∩ O, because
both ω and χ do. Second, since ω ∈ F (µ), µ(ωχ) = µωχ = ωµχ = −ωχµ =
−(ωχ)µ and finally, we have tr(µ(ωχ)) = µωχ + ωχµ = µωχ − ωχµ =
−tr(ωχ)µ ∈ F and thus tr(ωχ) = 0.

This produces a natural action of U0 on the set of twisting involutions
of (O, µ) which is free simply because B is a division algebra. In order to
show that it is transitive, let χ1, χ2 be two twists. Then ω = χ1χ

−1
2 ∈ F (µ)

because µω = µχ1χ
−1
2 = −χ1µχ−1

2 = χ1χ
−1
2 µ = ωµ and F (µ) is its own

commutator subalgebra of B; further ω ∈ NormB∗(O) because its reduced
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norm is supported at the ramifying prime ideals ℘|disc(B). Let us remark
that, in the same way, χ1χ2 ∈ NormF (µ)∗(O).

We are now in a position to prove the lemma. Let ν ∈ V0 be a fixed
twisting involution. Then U0 ⊂ V0: for any ω ∈ U0 we have already shown
that ων is again a twisting involution and hence (ων)ν = ω ∈ V0 because
V0 is a 2-torsion abelian group. In addition, the above discussion shows that
any element of V0 either belongs to U0 or is a twisting involution and that
there is a noncanonical isomorphism V0/U0 ' U0. 2

This concludes the proof of Theorem 4.4.5. Observe that the above lemma
can be rephrased by asserting that, in the twisting case, U0 acts freely and
transitively on the set of twisting involutions of W 1 with respect to (O, µ).

In view of Theorem 4.4.5, the behaviour of the forgetful maps introduced
above differs considerably depending on whether (O, µ) is a twisting polarized
order or not. For a maximal order O in a totally indefinite quaternion algebra
B of principal reduced discriminant D ∈ F ∗

+, it is then obvious to ask the
following questions.

(i) Is there any µ ∈ O, µ2 + D = 0, such that (O, µ) is twisting?

(ii) If (O, µ) is twisting, which is its twisting group V0?

Both questions are particular instances of the ones that we consider in
Section 2.1.

4.5 Proof of Theorem 4.4.4

Let (O, I, %) be a quaternion datum attached to a totally indefinite quater-
nion algebra B over a totally real number field F of degree [F : Q] = n. We
assume that it is of principal type (cf. Proposition 4.4.1 and below). This
means in particular that disc(B) can be generated by an element D ∈ F ∗

+

such that % = %µ for some µ ∈ O with µ2 + D = 0.
Let XB = X(O,I,%) be the Shimura variety attached to (O, I, %). Let us

first show that πF : XB → HF is a quasifinite map that factorizes into the
natural projection

XB → XB/W0

from XB onto its quotient by the stable group W0 = U0 · V0 ⊆ AutQ(XB)
attached to (O, µ).
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To this end, we firstly make the following

Claim 4.5.1. There is a free and transitive action of the stable group W0

on the geometric fibres of the morphism πF : XB → HF at the set of non
Heegner points of X̃B/F .

Proof of the claim. Let (A, jF ,L) be a complex principally polarized
abelian variety together with a homomorphism of Z-algebras jF : RF ↪→
End(A). Without making any further mention of it, we will regard End(A)
as an RF -algebra through the given immersion jF .

The isomorphism class [(A, jF ,L)] may be interpreted as a closed point
in HF . If it is nonempty, the elements in XB of the fibre of πF at this point
can then be interpreted as those isomorphism classes of triplets (A, ι,L)
where (A,L) is a principally polarized abelian variety of dimension 2n and
ι : O ↪→ End(A) is a homomorphism of RF -algebras such that the Rosati
involution that L induces on O, via ι, coincides with %µ.

Choose a triplet (A, ι,L) and assume that ι : O ' End(A) is actually an
isomorphism, that is, P = [(A, ι,L)] is a non Heegner point of XB. Through
the first Chern class, Theorem 3.3.1 identifies NS(A) with a lattice in B0

and it allows us to regard polarizations on A as pure quaternions of B. In
particular, since ◦|ι(O) = %µ · ι, we have that c1(L) = µ up to multiplication
by elements in F ∗.

Recall now that W0 = U0 ·V0 for certain subgroups U0 and V0 ⊆ W 1 that
were defined in Section 4.3.

Let ω ∈ U0. Let L = F (µ) ' F (
√−D) be the CM-field generated by

µ ∈ B over F and let S ⊇ RF [µ] be the order in L at which µ is optimal.
Then ω is represented by an element that we still denote ω ∈ S and we wish
to show that the closed points [(A, ι,L)] and ω[(A, ι,L)] in XB lie on the
same fibre of πF .

From Proposition 4.3.3, the isomorphism class of ω[(A, ι,L)] is repre-
sented by the triplet (A, ιω,Lω) where ιω = ω−1ιω : O ↪→ End(A) and
c1(Lω) = ω−1c1(L)ω. Since c1(L) = µ ∈ B∗/F ∗ and ω belong to the same
quadratic algebra L embedded in B, they commute and it holds that

c1(Lω) = ω−1c1(L)ω = c1(L).

We then conclude that (A,L) and (A,Lω) are isomorphic polarized va-
rieties. Moreover, ι and ιω coincide when restricted to the centre RF of O
and we obtain that (A, ι|RF

,L) ' (A, ιω|RF
,Lω). Therefore, we obtain that
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the group U0 acts on the geometric fibres of the morphism πF : XB → HF

at non Heegner points.
Let now ω ∈ V0 be an element represented by ω ∈ O+ with n(ω) = m ∈

F ∗
+ and such that

B = F + Fµ + Fχ + Fµχ

for some χ ∈ O, χ2 = m , µχ = −χµ. Let [(A, ι,L)] ∈ XB be a closed point
over [(A, jF ,L)] ∈ HF . We have that ω[(A, ι,L)] = [(A, ιω,Lω)] and we must
show that (A, ι|RF

,L) ' (A, ιω|RF
,Lω). Again, since ι|RF

= ιω|RF
, we only

need to see that L and Lω are isomorphic polarizations on A.
To do so, we first note that α = ω−1 · χ is a unit in O of reduced norm

n(α) = −1. This is due to the fact that the principal ideal mRF is supported
at the prime ideals ℘|D, as can be checked locally.

Let us identify α with the automorphism ι(α) of A. We now show
that α∗(Lω) = L ∈ NS(A). Indeed, since c1(L) and χ anti-commute, we
have by Theorem 3.3.1 that c1(α

∗(Lω)) = αω−1c1(L)ωα = 1
m

χc1(L)χ =
−χ−1c1(L)χ = χ−1χc1(L) = c1(L). Since W0 = U0 · V0, this proves part of
our claim.

Let us now show that the action of W0 on the fibres of πF at non Heegner
points is free and transitive. By the Skolem-Noether Theorem, if a closed
point [(A, ι,L)] ∈ XB(C) lies over [(A, jF ,L)], any element on the fibre of
πF at this point must be represented by a triplet (A, ω−1ιω,Lω) for some
ω ∈ NormB∗(O). Moreover, since Lω is a polarization on A, it follows from
Theorem 3.5.3 that ω ∈ B∗

+.
Since (A, ι,L) ' (A, ιω,Lω) for any ω ∈ F ∗ · O1, we deduce that there

exists a subgroup of W 1 = NormB∗+(O)/(F ∗ · O1) that acts freely and tran-
sitively on the fibre of πF at any non Heegner point. It follows from the
discussion above that this subgroup must contain W0.

Let us now see that it cannot be larger than W0. Assume that ω ∈
W 1 is such that L ' Lω. Then there exists α ∈ O∗ ι' Aut(A) such that
αω−1µωα = µ. Taking reduced norms, this already implies that n(α)2 = 1.

If n(α) = 1, then α = α−1 and the above yields that µωα = ωαµ. This
means that ωα ∈ F (µ) ∩ O = S and therefore ω ∈ U0. If n(α) = −1, then
µωα = −ωαµ. Write χ = ωα. We then have that tr(µχ) = µχ + χµ =
µχ − χµ = −tr(χ)µ ∈ F . Thus, since tr(χ) ∈ F , we deduce that actually
tr(χ) = 0. Since n(χ) = n(ω)n(α) = −n(ω), we obtain that χ2 = n(ω). This
says that ω ∈ V0. 2
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Since the action of W0 ⊆ AutQ(XB) is algebraic, it extends to an action

on the fibres of πF at the points in the closure X̃B/F of the dense subset of

non Heegner points of X̃B/F . Similarly, the action must be free and transitive

on the fibres at points in an algebraic subset UF of X̃B/F .
We obtain as a consequence that πF : XB → HF factorizes through

the natural projection of XB onto the quotient XB/W0 and a morphism
bF : XB/W0 → HF that is one-to-one outside the Heegner locus of XB/W0.
Since Heegner points are isolated and bF is algebraic, bF must be a birational
equivalence between XB/W0 and its image in HF whose inverse is defined
everywhere but at a finite set TF of Heegner points.

Moreover, since W0 ⊆ AutQ(XB), the projection XB → XB/W0 is defined
over Q. Since πF is also a morphism over Q which is the composition of the
above projection and the birational equivalence bF , it follows that bF is also
defined over Q. This finishes the proof of the first part of Theorem 4.4.4.

Now let (S, ϕ) be an Eichler pair for O and identify S with its image ϕ(S)
in O. As we saw, it induces a natural morphism πS,ϕ : XB → HS from XB

into the Hilbert modular variety HS in such a way that we have

πF : XB

π(S,ϕ)→ HS → HF .

As the situation is very similar to the one studied above, we will limit
ourselves to showing that the subgroup V0(S) of the stable group W0 acts
freely and transitively on the fibre of π(S,ϕ) at any non Heegner point of

π(S,ϕ)(XB) = X̃B/(L,ϕ) in HS.
Let [(A, ι,L)] thus be a closed point on XB represented by a principally

polarized abelian variety with quaternionic multiplication. From the above
discussion, it is clear that any other point at the same geometric fibre of
π(S,ϕ) as [(A, ι,L)] is represented by (A, ιω,Lω) for some ω ∈ W0.

If (A, ι · ϕ,L) ' (A, ιω · ϕ,Lω) is an isomorphism given by α ∈ O∗, then,
as we already saw, n(α) = ±1. Write χ = ωα.

If n(α) = 1, then χ ∈ S ⊂ F (µ). At the same time, we must have that,
for any β ∈ S ⊂ O, χβ = βχ. This means that χ commutes element-wise
with L and F (µ). Since the two quadratic extensions are distinct because
the first is totally real while the second purely imaginary, χ ∈ R∗

F and thus
ω is trivial in W0.

If n(α) = −1, then α∗(Lω) = L implies that

B = F + Fµ + Fχ + Fµχ
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while α−1ιω|Sα = ι|S says that χ ∈ S. Thus ω ∈ V0(S). The converse also
holds and the theorem follows as before. 2

4.6 The quaternionic locus in the moduli space

of principally polarized abelian varieties

Let g = 2n for some positive integer n and let Ag/Q be the moduli space
of principally polarized abelian varieties of dimension g. As in the preced-
ing sections, we let [(A,L)] denote the isomorphism class of a principally
polarized abelian variety (A,L) regarded as a closed point in Ag.

Let F be a totally real number field of degree [F : Q] = n. Let O be a
maximal order in a totally indefinite division quaternion algebra B over F .
As in Chapter 3, assume that ϑF/Q and disc(B) are coprime ideals.

It is our aim to use the results of the preceding chapters to investigate
the nature of the following object.

Definition 4.6.1. The quaternionic locus

QO ⊂ Ag(C)

is the locus of complex principally polarized abelian varieties [(A,L)] with
End(A) ⊇ O.

We naturally wonder about the geometry of QO. Let us remark that the
algebraicity of QO is not granted from the definition. A reformulation of
Proposition 3.6.2 in Chapter 3 yields

Proposition 4.6.2. The quaternionic locus QO is non empty if and only if
disc(B) is a totally positive principal ideal of F .

Proof. By Propositions 1.2.5 and 1.2.8, there exists a unique O-left ideal
Iϑ such that n(Iϑ) = ϑ−1. From Proposition 3.6.2, there exist principally
polarized abelian varieties A with quaternionic multiplication by O if and
only if H1(A,Z) ' Iϑ as left O-modules and disc(B) is trivial in Pic+(F ).

In consequence, and for the sake of simplicity, we assume that h+(F ) = 1.
This automatically implies that the quaternionic locus QO is non empty. We
fix a totally positive generator D ∈ F ∗

+ of disc(B). Note that QO is the
disjoint union of the set of principally polarized abelian varieties [(A,L)]
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with quaternionic multiplication by O and the set of Heegner points. The
former are distinguished by the fact that End(A) ' O while the latter satisfy
that End(A) ! O.

Let Iϑ be the O-left ideal as in the above proof and let µ ∈ O0 be a
pure quaternions such that n(µ) = uD for some unit u ∈ R∗

F+. We also note

that the set X̃µ(C) of complex points of the Shimura variety X̃(O,Iϑ,%µ)/Q
attached in Section 4.4 to the datum (O, Iϑ, %µ) sits inside QO.

Proposition 4.6.3. Let µ, µ′ ∈ O0 be two pure quaternions such that n(µ) =

uD and n(µ′) = u′D for some units u, u′ ∈ R∗
F+. If X̃µ(C) and X̃µ′(C) are

different subvarieties of Ag(C), then X̃µ(C)∩X̃µ′(C) is a finite set of Heegner
points.

Proof. Assume that the isomorphism class [A,L] of a principally po-

larized abelian variety falls at the intersection of X̃µ and X̃µ′ in Ag. Write
[A,L] = π([A, ι,L]) = π([A′, ι′,L′]) as the image by π of points in Xµ and
Xµ′ , respectively. Since [(A,L)] = [(A′,L′)] ∈ QO, we can identify the pair
(A,L) = (A′,L′) through a fixed isomorphism of polarized abelian varieties.

Let us assume that [A,L] = [A′,L′] was not a Heegner point. Then
ι : O ' End(A) would be an isomorphism of rings such that c1(L) = µ. We
then would have by Theorem 3.3.1 and Corollary 3.3.8 that c1(L) = c1(L′) =

µ = µ′ up to multiplication by elements in F ∗. Since X̃µ = X̃uµ for all units
u ∈ R∗

F , this would contradict the statement. Since the set of Heegner points
in Ag(C) is discrete, we conclude that Xµ and Xµ′ meet at a finite set of
Heegner points. 2

Proposition 4.6.4. 1. The locus QO is the set of complex points QO(C)
of a reduced complete subscheme QO of Ag defined over Q.

2. Let ρ(O) be the number of absolutely irreducible components of QO.
Then there exist quaternions µk ∈ O0 with µ2

k +ukD = 0 for uk ∈ R∗
F+,

1 ≤ k ≤ ρ(O), such that

QO =
⋃

X̃µk
.

is the decomposition of QO into irreducible components.

Proof. Let [(A,L)] ∈ QO be the isomorphism class of a complex prin-
cipally polarized abelian variety such that End(A) ' O. As in the proof of
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Proposition 4.6.2, we have that H1(A,Z) ' Iϑ. By Proposition 3.6.2, the
Rosati involution with respect to L on O must be of the form % = %µ for

some µ ∈ O with µ2 + uD = 0, u ∈ R∗
F+. Thus [(A,L)] ∈ X̃µ(C), namely

the set of complex points on a reduced, irreducible, complete and possibly
singular scheme over Q (cf. [Sh63], [Sh67]). Since the set of Heegner points

[(A,L)] ∈ X̃µ(C) is a set of isolated points lying on the Zariski closure of
their complement, we conclude that QO is the union of the Shimura varieties
X̃µ(C) as µ varies among pure quaternions satisfying the above properties.

Let us now show that QO is actually covered by finitely many Shimura
varieties X̃µk

(C). Let A/C be an arbitrary abelian variety with quaternionic
multiplication by O such that H1(A,Z) ' Iϑ and fix an isomorphism ι :
O ' End(A). Let (O, µ) be any principally polarized pair. Since h+(F ) = 1,
there exists a unit u ∈ R∗

F such that uµ is an ample quaternion in the sense
of [Ro2], §5. Let L ∈ NS(A) be the line bundle on A such that c1(L)−1 = uµ.
From Corollary 3.3.8, Theorem 3.5.3 and Corollary 3.6.6, it follows that L is
a principal polarization on A such that the isomorphism class of the triplet
(A, ι,L) corresponds to a closed point in Xµ(C) and hence [A,L] ∈ X̃µ.
Since, by Proposition 4.6.3, the intersection points of two different Shimura
varieties X̃µ(C) and X̃µ′(C) in Ag(C) are Heegner points, this shows that
for every irreducible component of QO there exists at least one principal
polarization L on A such that [A,L] lies on it. Consequently, the number
π0(A) of isomorphism classes of principal polarizations on A is an upper
bound for the number ρ(O) of irreducible components of QO. Since, by
Theorem 3.7.2, the number π0(A) is a finite number, this yields the proof of
the proposition. 2

In view of Proposition 4.6.4, it is natural to pose the following

Question 4.6.5. What is the number ρ(O) of irreducible components of
QO? When is QO irreducible?

Let us relate Question 4.6.5 to the following problem. In Chapter 3,
Theorem 3.7.2, we computed the number π0(A) of principal polarizations on
an abelian variety A with quaternion multiplication by O as a finite sum
of relative class numbers of suitable orders in the CM-fields F (

√−uD) for
u ∈ R∗

F+/R∗2
F . This has the following modular interpretation:

Let L1, ..., Lπ0(A) be representatives of the π0(A) distinct principal po-
larizations on A. Then the pairwise nonisomorphic principally polarized
abelian varieties [(A,L1)], ..., [(A,Lπ0(A))] correspond to all closed points in
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QO whose underlying abelian variety is isomorphic to A. We then naturally
ask the following

Question 4.6.6. Let A be an abelian variety with quaternionic multiplica-
tion by O. How are the distinct principal polarizations [(A,Lj)] distributed

among the irreducible components X̃µk
of QO?

It turns out that the two questions above are very related. The linking
ingredient is provided by the definition below, which establishes a slightly
coarser equivalence relationship on polarizations than the one considered in
Chapter 3. Indeed, in Chapter 3 we agreed to saying that two polarizations
L, L′ on an abelian variety A with quaternionic multiplication by O are
isomorphic if there is an automorphism α ∈ Aut(A) such that α∗(L) = L′.
Later, we remarked in Section 4.3.1 of Chapter 4 that Shimura also considered
weak isomorphisms of polarizations. Namely, in our language, L and L′ are
weakly isomorphic if c1(L) ' mc1(L′) ∈ NS(A) for some m ∈ F ∗

+. We shall
denote it L 'w L′.

Definition 4.6.7. Let A be an abelian variety with quaternionic multipli-
cation by O. Two principal polarizations L and L′ on A are Atkin-Lehner
isogenous, denoted by L ∼ L′, if there is an isogeny ω ∈ O ∩ NormB∗+(O) of
A such that

ω∗(L) 'w L′.

We note that the above definition bears a closed relationship with the
modular interpretation of the positive Atkin-Lehner group W 1 given in Propo-
sition 4.3.3.

Definition 4.6.8. Let A be an abelian variety with quaternionic multipli-
cation by O. We let Π̂0(A) be the set of principal polarizations on A up to
Atkin-Lehner isogeny and we let π̂0(A) = ]Π̂0(A) denote its cardinality.

Theorem 4.6.9 (Distribution of principal polarizations). Let A be an
abelian variety with quaternionic multiplication by O and let L1, ..., Lπ0(A)

be representatives of the π0(A) distinct principal polarizations on A.
Then, two closed points [A,Li] and [A,Lj] lie on the same irreducible

component of QO if and only if the polarizations Li and Lj are Atkin-Lehner
isogenous.



4.6 The quaternionic locus 87

Proof. We know from Proposition 4.6.4 that any irreducible component
of QO is X̃µ = X̃(O,Iϑ,%µ) for some µ ∈ O, µ2 + uD = 0, u ∈ R∗

F+. We single
out and fix one of them.

Let L be a principal polarization on A such that [(A,L)] lies on X̃µ and

let L′ be a second principal polarization on A. We claim that [A,L′] ∈ X̃µ if
and only if there exists ω ∈ NormB∗+(O) such that L′ and ω∗(L) are weakly
isomorphic.

Assume first that L′ 'w ω∗(L) for some ω ∈ O ∩ NormB∗+(O). This
amounts to say that ωc1(L)ω = mc1(L′) for some m ∈ F ∗. Since both
ω∗(L) and L′ are polarizations, we deduce from Theorem 3.5.3 that m ∈ F ∗

+.
Moreover, since L and L′ are principal, we obtain from Proposition 3.3.3 that
m = un(ω) for some u ∈ R∗

F+.
Note that (A, ιω,L′) is a principally polarized abelian variety with quater-

nionic multiplication such that the Rosati involution that L′ induces on ιω(O)
is %µ. Indeed, this follows because ιω(β)◦L′ = ι((ω−1βω))◦L′ = ι((ω−1µω)−1

ω−1βω(ω−1µω)) = ιω(µ−1βµ). This shows that, if L′ and ω∗(L) are weakly

isomorphic for some ω ∈ NormB∗+(O), then [A,L′] ∈ X̃µ.

Conversely, let us assume that [A,L′] ∈ X̃µ. Let ι′ : O ↪→ End(A) be such
that [A, ι′,L′] ∈ X(O,Iϑ,%µ). By the Skolem-Noether Theorem, it holds that
ι′ = ω−1ιω for some ω ∈ NormB∗(O); we can assume that ω ∈ O by suitably
scaling it. Since it holds that ιω(β)◦L′ = ιω(µ−1βµ) for any β ∈ O, we have
that c1(L′) = uω−1c1(L)ω for some u ∈ R∗

F such that un(ω) ∈ F ∗
+. Since

n(O∗) = R∗
F , we can find α ∈ O∗ with reduced norm n(α) = u−1 and thus

ωα ∈ B∗
+. The automorphism α ∈ O∗ = Aut(A) induces an isomorphism

between the polarizations Lωα and L′, since c1(α
∗(L′)) = α(uω−1c1(L)ω)α =

c1(Lωα). Since, according to our Definition 4.3.2, Lωα is weakly equivalent
to L, this concludes our claim above and also proves the theorem. 2

Corollary 4.6.10. The number of irreducible components of QO is

ρ(O) = π̂0(A),

independently of the choice of A.

For any irreducible component X̃µk
of QO, let Π

(k)
0 (A) ⊂ Π0(A) denote

the set of isomorphism classes of the isogeny class of principal polarizations
lying on X̃µk

.
As another immediate consequence of Theorem 4.6.9, we obtain the fol-

lowing corollary, which establishes an internal structure on the set Π0(A).
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Roughly, it asserts that Π0(A) =
⋃ρ(O)

k=1 Π
(k)
0 (A) is the union of several isogeny

classes that are equipped with a free and transitive action of a 2-torsion finite
abelian group.

Corollary 4.6.11. Let A be an abelian variety with quaternionic multiplica-
tion by O. Let X̃µk

be an irreducible component of QO and let W
(k)
0 ⊆ W 1

be the stable subgroup attached to the polarized order (O, µk).

Then there is a free and transitive action of W 1/W
(k)
0 on Π

(k)
0 (A).

In the case of a non twisting maximal order O, we have that the stable
group W0(O, µ) attached to a principally polarized pair (O, µ) is U0(O, µ).
The following corollary follows from Lemma 4.4.6 in Section 4.7.

Corollary 4.6.12. Let O be a non twisting maximal order in B and assume
that, for any u ∈ R∗

F+, all primitive roots of unity of odd order in the CM-field
F (
√−uD) are contained in the order RF [

√−uD].
Let A be an abelian variety with quaternionic multiplication by O. Then

the distinct isomorphism classes of principally polarized abelian varieties
[(A,L1)], ..., [(A,Lπ0(A))] are equidistributed among the ρ(O) irreducible
components of QO.

In particular, it then holds that

π0(A) =
|W 1|
|W0| · ρ(O).

4.6.1 Shimura curves embedded in Igusa’s threefold

The whole picture becomes particularly neat when we consider the case of
abelian surfaces and Shimura curves. Let B be an indefinite quaternion
algebra over Q of discriminant D = p1 · ... · p2r and let O be a maximal order
in B. Since h(Q) = 1, there is a single choice of O up to conjugation by
B∗. Moreover, all left ideals of O are principal and isomorphic to O as left
O-modules.

Let A be a complex abelian surface with quaternionic multiplication by
O. By Theorem 3.1.2, A is principally polarizable and the number of iso-
morphism classes of principal polarizations on A is

π0(A) =
h̃(−D)

2
,
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where, for any nonzero squarefree integer d, we write

h̃(d) =

{
h(4d) + h(d) if d ≡ 1 mod 4,

h(4d) otherwise.

For any integral element µ ∈ O such that µ2 + D = 0, let now Xµ =
X(O,O,%µ) be the Shimura curve that coarsely represents the functor which
classifies principally polarized abelian surfaces (A, ι,L) with quaternionic
multiplication by O such that the Rosati involution with respect to L on
O is %µ. This is an algebraic curve over Q whose isomorphism class does
not actually depend on the quaternion µ, but only on the discriminant D
(cf. [Sh67]). Hence, it is usual to simply denote this isomorphism class as
XD.

Let W 1 = W = {ωm : m|D} ' (Z/2Z)2r be the Atkin-Lehner group at-
tached toO in Section 4.3. From Section 4.3.1, we know that W ⊆ AutQ(XD)
is a subgroup of the group of automorphisms of the Shimura curve XD.

Let now A2 be the moduli space of principally polarized abelian surfaces.
By the work of Igusa (cf. [Ig60]), it is an affine scheme over Q which contains
the moduli space M2 of curves of genus 2 as a Zariski open and dense subset,
immersed in A2 via the Torelli embedding.

Sitting in A2 there is the quaternionic locus QO of isomorphism classes of
principally polarized abelian surfaces [(A,L)] such that End(A) ⊇ O. Since
all maximal orders O in B are pairwise conjugate, the quaternionic locus QO
does not actually depend on the choice of O and we may simply denote it by
QO = QD.

There are forgetful finite morphisms π : Xµ → QD ⊂ A2 which map the

Shimura curve Xµ onto an irreducible component X̃µ of QD. Although the
isomorphism class of Xµ/Q does not depend on the choice of µ, the image

X̃µ ⊂ QD does depend on this choice.
Let us now compare the non twisting and twisting case, respectively. We

firstly assume that

B 6' (
−D, m

Q
)

for all positive divisors m|D of D. Then all principally polarized pairs (O, µ)
in B are non twisting and the stable subgroup attached to (O, µ) is

W0 = U0 = 〈ωD〉 ⊂ W,
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independently of the choice of µ. By Theorem 4.4.4, we have that any irre-
ducible component X̃µ of QD is birationally equivalent to the Atkin-Lehner
quotient XD/〈ωD〉 and thus the quaternionic locus QD in A2 is the union of

pairwise birationally equivalent Shimura curves X̃µ1 , ...,X̃µρ(B)
, meeting at a

finite set of Heegner points.
Moreover, for any abelian surface A with quaternionic multiplication by

O, it follows from Theorem 4.6.9 that the closed points {[(A,Lj)]}π0(A)
j=1 are

equidistributed among the ρ(O) irreducible components of QD. In addition,
Corollary 4.6.12 ensures that |W/W0| = 22r−1|π0(A), as genus theory for
binary quadratic forms already ensures. This two facts yield that the number
of irreducible components of the quaternionic locus in the non twisting case
is

ρ(O) =
h̃(−D)

22r
.

On the other hand, let us assume that

B ' (
−D,m

Q
)

for some m|D. Note that this may hold for several positive divisors of D.
In this case, there can be several different birational classes of irreducible
components on QD. Indeed, the assumption means that there exist pure
quaternions µ ∈ O, µ2 + D = 0, such that (O, µ) is a twisting polarized
order. Then

W0(O, µ) = 〈ωm, ωD〉
and X̃µ is birationally equivalent to XD/〈ωm, ωD〉. We may refer to X̃µ as a
twisting irreducible component of QD.

In addition to these, there may exist non twisting polarized orders (O, µ)

such that the corresponding irreducible components X̃µ of QD are bira-
tionally equivalent to XD/〈ωD〉. We may refer to these as the non twisting
irreducible components of QD.

We then have the following lower and upper bounds for the number of
irreducible components of QD:

h̃(−D)

22r
< ρ(O) ≤ h̃(−D)

22r−1
.

Summing up, we obtain the following
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Theorem 4.6.13. Let B be an indefinite division quaternion algebra over Q
of discriminant D = p1 · ... · p2r. Then, the quaternionic locus QD in A2 is
irreducible if and only if

h̃(−D) =

{
22r−1 if B ' (−D,m

Q ) for some m|D,

22r otherwise.

Proof. If B is not a twisting quaternion algebra, we already know

from the above that the number of irreducible components of QD is
h̃(−D)

22r
.

Hence, in this case, the quaternionic locus of discriminant D in A2 is ir-
reducible if and only if h̃(−D) = 22r. If on the other hand B is twisting,
it follows from the above inequalities that QD is irreducible if and only if
h̃(−D) = 22r−1. 2

In view of Theorem 4.6.13, there arises a closed relationship between the
irreductibility of the quaternionic locus in Igusa’s threefold and the genus
theory of integral binary quadratic forms and the classical numeri idonei
studied by Euler, Schinzel and others. We refer the reader to [Ar95] and
[Sch59] for the latter.

4.6.2 Hashimoto-Murabayashi’s families

As the simplest examples to be considered, let B6 and B10 be the rational
quaternion algebras of discriminant D = 2 ·3 = 6 and 2 ·5 = 10, respectively.
Hashimoto and Murabayashi [HaMu95] exhibited two families of principally
polarized abelian surfaces with quaternionic multiplication by a maximal
order in these quaternion algebras. Namely, let

C
(6)
(s,t) : Y 2 = X(X4 + PX3 + QX2 + RX + 1)

be the family of curves with

P = 2s + 2t, Q =
(1 + 2t2)(11− 28t2 + 8t4)

3(1− t2)(1− 4t2)
, R = 2s− 2t

over the base curve

g(6)(t, s) = 4s2t2 − s2 + t2 + 2 = 0.
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And let

C
(10)
(s,t) : Y 2 = X(P 2X4 + P 2(1 + R)X3 + PQX2 + P (1−R)X + 1)

be the family of curves with

P =
4(2t + 1)(t2 − t− 1)

(t− 1)2
, Q =

(t2 + 1)(t4 + 8t3 − 10t2 − 8t + 1)

t(t− 1)2(t + 1)2

and

R =
(t− 1)s

t(t + 1)(2t + 1)

over the base curve

g(10)(t, s) = s2 − t(t− 2)(2t + 1) = 0.

Let J
(6)
(s,t) = Jac(C

(6)
(s,t)) and J

(10)
(s,t) = Jac(C

(10)
(s,t)) be the Jacobian surfaces

of the fibres of the families of curves above respectively. It was proved in
[HaMu95] that their ring of endomorphisms contain a maximal order in B6

and B10, respectively.
Both B6 = (−6,2

Q ) and B10 = (−10,2
Q ) are twisting quaternion algebras.

Moreover, it turns out from our formula for π0(A) above that any abelian
surface A with quaternionic multiplication by a maximal order in either B6

or B10 admits a single isomorphism class of principal polarizations. This
implies that ρ(B6) = π̂0(A) = π0(A) = 1 and ρ(B10) = π̂0(A) = π0(A) = 1,
respectively.

Moreover, the Shimura curves X6/Q and X10/Q have genus 0, although
they are not isomorphic to P1Q because there are no rational points on them.
However, it is easily seen that X6/W0 = X6/W ' P1Q and X10/W0 =
X10/W ' P1Q, respectively.

As it is observed in [HaMu95], the base curves g(6) and g(10) are curves of
genus 1 and not of genus 0 as it should be expected. This is explained by the
fact that there are obvious isomorphisms between the fibres of the families
C(6) and C(10), respectively.

Ibukiyama, Katsura and Oort [IbKaOo86] proved that the supersingular
locus in A2/Fp is irreducible if and only if p ≤ 11. As a corollary to their
work, Hashimoto and Murabayashi obtained that the reduction mod 3 and 5
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of the family of Jacobian surfaces with quaternionic multiplication by B6 and
B10 respectively yield the single irreducible component of the supersingular
locus in A2/F3 and A2/F5 respectively. The following statement may be
considered as a lift to characteristic 0 of these results.

Theorem 4.6.14. 1. The quaternionic locus Q6 in A2/Q is absolutely ir-
reducible and birationally equivalent to P1Q over Q. The generic element

of Q6 over Q̄ is given by Hashimoto-Murabayashi’s family C(6).

2. The quaternionic locus Q10 in A2/Q is absolutely irreducible and bira-
tionally equivalent to P1Q over Q. The generic element of Q10 over Q̄
is given by Hashimoto-Murabayashi’s family C(10).

Proof. This follows from Theorem 4.6.13 and the discussion above. 2

In particular, we obtain from Theorem 4.6.14 that every principally po-
larized abelian surface (A,L) over Q̄ with quaternionic multiplication by a
maximal order of discriminant 6 or 10 is isomorphic over Q̄ to the Jacobian
variety of one of the curves C

(6)
(s,t) or C

(10)
(s,t), except for finitely many degenerate

cases.

4.7 The field of moduli of the quaternionic

multiplication on an abelian variety

The aim of this section is to provide an application of the main results in
this chapter to the arithmetic of abelian varieties with quaternionic multipli-
cation, as it was done in [Ro4].

Let Q̄ be a fixed algebraic closure of the field Q of rational numbers and
let (A,L)/Q̄ be a polarized abelian variety. The field of moduli of (A,L)/Q̄
is the minimal number field kA,L ⊂ Q̄ such that (A,L) is isomorphic (over
Q̄) to all its Galois conjugates (Aσ,Lσ), σ ∈ Gal(Q̄/kA,L).

The field of moduli kA,L is an essential arithmetic invariant of the Q̄-
isomorphism class of (A,L). It is contained in all possible fields of definition
of (A,L) and, unless (A,L) admits a rational model over kA,L itself, there is
not a unique minimal field of definition for (A,L). In this regard, we have
the following theorem of Shimura [Sh72].

Theorem 4.7.1. A generic polarized abelian variety of odd dimension admits
a model over its field of moduli. For a generic polarized abelian variety of
even dimension, the field of moduli is not a field of definition.
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We will place ourselves in the even dimensional-case since we shall be
interested in abelian varieties with quaternionic multiplication.

Definition 4.7.2. Let (A,L)/Q̄ be a polarized abelian variety and let S ⊆
EndQ̄(A) be a subring of EndQ̄(A). The field of moduli of S is the minimal
number field kS ⊇ kA,L such that, for any σ ∈ Gal(Q̄/kS), there is an iso-
morphism ϕσ/Q̄ : A→Aσ, ϕ∗σ(Lσ) = L, of polarized abelian varieties that
induces commutative diagrams

A −→ Aσ

β ↓ ↓ βσ

A −→ Aσ

for any β ∈ S.

We remark that, as a consequence of the very basic definitions, the field of
moduli of the multiplication-by-n endomorphisms on A is exactly kZ = kA,L.
But in the case that End(A) ! Z, little is known on the chain of Galois
extensions kEnd(A) ⊇ kS ⊇ kA,L.

Our main Theorem 4.7.4 in this direction concerns the case of abelian
varieties with quaternionic multiplication. It is a consequence of the re-
sults obtained in Section 4.4 on modular embeddings of Shimura varieties
in Hilbert modular varieties and the moduli spaces of principally polarized
abelian varieties.

Let (A,L)/Q̄ be a principally polarized abelian variety with quaternionic
multiplication by a maximal order in a totally indefinite division quaternion
algebra B over a totally real number field F of degree [F : Q] = n. In Chapter
3, it was shown that the first Chern class c1 induces a monomorphism of the
Néron-Severi group NS(A) of A into the additive group B0 of quaternions of
B of null reduced trace

c1 : NS(A) ↪→ B0.

Moreover, it was proved that there exists a left O-ideal Iϑ in B such that
H1(A,Z) ' Iϑ and n(Iϑ) = ϑ−1

F/Q and that the discriminant ideal disc(B) of
B is necessarily principal and totally positive. Moreover, it can be generated
by an element D ∈ F ∗

+ such that, as it was shown in Corollary 3.3.8, the
quaternion µ = c1(L)−1 ∈ B0 satisfies that µ2 + D = 0.
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Therefore, naturally attached to (A,L) there is the principally polarized
order (O, µ). In turn, as it was shown in Section 4.1, attached to (O, µ) there
is a Shimura variety X(O,Iϑ,µ)/Q which solves the coarse moduli problem
of classifying triplets principally polarized abelian varieties (A, ι,L) with a
monomorphism of rings ι : O ↪→ End(A) satisfying a certain compatibility
between L and µ (cf. Section 4.1 for details).

The motivation for recalling this Shimura variety at this point is the
following standard modular interpretation of the field of moduli kO.

Proposition 4.7.3. The field of moduli kO of the quaternionic multiplication
on the principally polarized abelian variety (A,L) is

kO = Q(P ),

the extension over Q generated by the coordinates of the point P = [A, ι,L]
on Shimura’s canonical model X(O,Iϑ,µ)/Q that represents the Q̄-isomorphism
class of the triplet.

A similar construction holds for the totally real subalgebras of B. Indeed,
let L/F be a totally real quadratic extension of F and ϕ : L ↪→ B an
immersion of L in B. Then S = ϕ−1(ϕ(L) ∩ O) is an order of L over RF

which is optimally embedded in O. By identifying S with a subring of the
ring of endomorphisms of A, we again have that

kS = Q(P|S)

is the extension over Q generated by the coordinates of the point P|S =
[A, ι|S,L] on the Hilbert variety HS/Q that solves the coarse moduli problem
of classifying abelian varieties of dimension 2n with multiplication by S.

Along the same lines, the field of moduli kRF
of the central endomor-

phisms of A is the extension Q(P|RF
) of Q generated by the coordinates of

the point P|RF
= [A, ι|RF

,L] on the Hilbert variety HF /Q which solves the
coarse moduli problem of classifying abelian varieties of dimension 2n with
multiplication by RF .

Note that there are infinitely many choices of totally real quadratic orders
S in O over RF .

The tool for studying the Galois extensions kO/kS/kRF
is provided by the

forgetful modular maps
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πF : X(O,Iϑ,µ)

πS,ϕ−→ HS −→ HF

P 7→ P|S 7→ P|RF
.

It was shown in Theorem 4.4.4 that πF and πS,ϕ are quasifinite maps over
Q. Let us identify S with its image ϕ(S) in O. Let V0(S) denote the Atkin-
Lehner subgroup of twisting involutions in S and let W0 denote the Atkin-
Lehner stable subgroup introduced in Section 4.3.2. Both are 2-torsion finite
abelian subgroups of the positive Atkin-Lehner group W 1. Furthermore, it
was proved that, up to a birational equivalence over Q which is biregular
away of a finite set of Heegner points, these maps are the natural projections

X(O,Iϑ,µ)→X(O,Iϑ,µ)/V0(S)→X(O,Iϑ,µ)/W0.

In consequence, the Galois group G = Gal(kO/kRF
) of the extension

of fields of moduli kO/kRF
is naturally embedded in W0: any σ ∈ G acts

on a principally polarized abelian variety with quaternionic multiplication
(A, ι,L) by leaving the Q̄-isomorphism class of πF (A, ι,L) = (A, ι|RF

: RF ↪→
EndQ̄(A),L) invariant. Similarly, Gal(kO/kS) embeds in V0(S) for any totally
real order S embedded in O.

As a corollary of Theorem 4.4.5, the above discussion yields the main
result of this section.

Theorem 4.7.4. Let (A,L)/Q̄ be a principally polarized abelian variety of
dimension 2n such that End(A) ' O is a maximal order in a totally indefinite
division quaternion algebra B over a totally real number field F of degree
[F : Q] = n.

(i) If (O, µ) is non twisting, then kO = kS for any totally real quadratic
order S ⊂ O over RF and

Gal(kO/kRF
) ⊆ Cωodd

2 .

(ii) If (O, µ) is twisting, let {χ1, ..., χs0} be representatives of the finite set
of twists of (O, µ) up to multiplicative elements in F ∗. Then, for any
real quadratic order S ⊂ O, S 6⊂ F (χi), 1 ≤ i ≤ s0,

kO = kS.



4.7 The field of moduli of the quaternionic multiplication 97

On the other hand, kO/kSi
is (at most) a quadratic extension for any

totally real order S ⊂ F [χi].

Moreover, kO = kS1 · ... · kSs0
and

Gal(kO/kRF
) ⊆ C2ωodd

2 .

Proof. The non twisting claim (i) follows from Theorem 4.4.5 and the
discussion previous to it. Let us assume that (O, µ) is a twisting pair. If
S 6⊂ F (χi) for any twist χi, i = 1, ..., s0, of (O, µ), V0(S) is trivial and
hence, by Theorem 4.4.5, Gal(kO/kS) is also trivial. If, on the other hand,
S = RF [χi] (or any other order in F (χi) ∩O), then V0(S) ' C2 is generated
by the twisting involution associated to χi. Again, we deduce that in this
case kO/kS is at most a quadratic extension.

With regard to the last statement, note that U0 ⊇ 〈[µ]〉 is at least of order
2. It then follows from Lemma 4.4.6 that there exist two noncommuting
twists χ, χ′ ∈ O. Then RF [χ, χ′] is a suborder of O and, since they both
generate B over Q, the fields of moduli kO and kRF [χ,χ′] coincide. This shows
that kO ⊆ kS1 · ... · kSs0

. The converse inclusion is obvious.
Finally, we deduce from Theorem 4.4.5 and Lemma 4.4.7 that kO/kRF

is
a (2, ..., 2)-extension of degree at most 22ωodd . 2

Theorem 4.7.4 combine with the following theorem of Shimura [Sh75] to
determine in many cases the Galois groups Gal(kO/kRF

) and Gal(kO/kS)
completely.

Theorem 4.7.5. The field of moduli kO of totally indefinite quaternionic
multiplication on an abelian variety is totally imaginary.

Corollary 4.7.6. Let (O, µ) be a non twisting principally polarized maximal
order and assume that F (

√−D) is a CM-field with no purely imaginary roots
of unity. Then, for any real quadratic order S over RF , kO/kRF

= kS/kRF

is at most a quadratic extension.
If, in addition, kRF

admits a real embedding, then kO is indeed a quadratic
extension of kRF

.

Remark 4.7.7. In the twisting case, the field of moduli of quaternion mul-
tiplication is already generated by the field of moduli of any maximal real
commutative multiplication but for finitely many exceptional cases. This
homogeneity does not occur in the non twisting case.
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In view of Theorem 4.7.4, the shape of the fields of moduli of the endomor-
phisms of the polarized abelian variety (A,L) differs considerably depending
on whether it gives rise to a twisting polarized order (O, µ) or not. For more
details on this question, we refer the reader to the discussion at the end of
Section 4.4 and Section 2.1



Chapter 5

Arithmetic of abelian surfaces
with quaternionic
multiplication

Introduction

In this chapter we provide an insight to the arithmetic of abelian surfaces with
quaternionic multiplication over number fields. Whereas a lot of research
has been carried out in the last century on abelian varieties with complex or
totally real multiplication, it is remarkable that there is very little knowledge
on the arithmetic of abelian varieties with QM. Consequently, we will be
concerned with some of the fundamental questions that firstly arise in this
regard.

In Section 5.1, we review some general results due to Silverberg and Ribet
and we investigate the Galois theoretical properties of the minimal field of
definition KB of the quaternionic multiplication on an abelian surface A/K
over a number field K. In Theorem 5.1.3 of Section 5.1.1, we firstly prove
a very general result that holds for arbitrary abelian varieties whose ring of
endomorphisms is an order in an arbitrary quaternion algebra over a field
F . Subsequently, in Theorems 5.1.8 and 5.1.10 of Section 5.1.2, we prove a
more precise statement for abelian surfaces. In order to accomplish that, we
study Galois representations on the ring of endomorphisms EndQ̄(A) and on
the Néron-Severi group NS(AQ̄) of these abelian varieties.

In Section 5.2, we combine our results with those of Mestre and Jordan

99
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to make the relationship between the field of moduli and field of definition
of the quaternionic multiplication explicit for the case of Jacobian surfaces.

Finally, we consider in Section 5.3 several concrete examples of curves
C/K of genus two over a number field such that their Jacobian varieties
J(C)/K have quaternionic multiplication over K̄ due to Hashimoto, Mura-
bayashi and Tsunogai and we explore their diophantine properties.

The results presented in this chapter are partly contained in [Ro4], [DiRo1]
and [DiRo2].

5.1 The field of definition of the quaternionic

multiplication on an abelian surface

Fix Q̄ ⊂ C an algebraic closure of the field Q of rational numbers and let
K ⊂ Q̄ be a number field. The following result is due to Ribet [Ri75].

Proposition 5.1.1. Let A/K be an abelian variety over K and let S ⊆
EndQ̄(A) be a subring of endomorphisms of A. Then there is a unique mini-
mal extension KS/K such that S ⊆ EndKS

(A).

The extension KS/K is normal and unramified at the prime ideals of K
of semistable reduction of A.

We remark that the minimal field of definition of a subring S of endo-
morphisms of A only depends on the algebra L = S ⊗ Q ⊆ EndQ̄(A) ⊗ Q
and not on the particular choice of the integral order sitting in L∩EndQ̄(A).
Hence, we will often denote it simply by KL = KS.

Let now F be a totally real number field and let RF denote its ring of
integers. Let O be a maximal order over RF in a totally indefinite quaternion
algebra B over F . Let A/K be an abelian variety of dimension 2[F : Q] and
assume that there is an isomorphism ι : O ∼→ EndQ̄(A).

According to Definition 3.2.1, we say that A/K is an abelian variety with
quaternionic multiplication by O, although attention must be paid to the
fact that the quaternion multiplication need not be defined over the field K
itself.

In regard to Proposition 5.1.1, we remark that A/K has potential good
reduction and therefore no places of K of bad reduction of A are semistable.
This is a consequence of Grothendieck’s Potential Good Reduction Theorem.
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For any algebra L ⊆ B over Q and in accordance to the above, we let
KL/K denote the minimal field of definition of the ring of endomorphisms
S = L ∩ EndQ̄(A) on A over K. Note that we have KQ = K.

With particular interest on abelian surfaces, it is the aim of this section
to study

1. The field extension KB/K given by the minimal field of definition KB

of the quaternionic multiplication on A over K.

2. The filtration of intermediate endomorphism algebras F ⊆ EndK̃(A)⊗
Q ⊆ B for any subfield KF ⊆ K̃ ⊆ KB.

The first question has been studied in a more general context by several
authors. In [Si92], Silverberg also gave an explicit upper bound for the degree
[KB : K] in terms of certain combinatorial numbers. In the particular case
of abelian surfaces with quaternionic multiplication, [Si92], Proposition 4.3,
predicts that [KB : K] ≤ 48. As our results will show, these bounds are
not sharp: see Theorem 5.1.3 for arbitrary orders O and Theorem 5.1.8 for
maximal orders.

The study of the Galois extension KB/K can be divided into that of the
extensions KF /K and KB/KF . The former have been studied by several
authors in the totally real case. See [Ri80] and [Ri94]) for details. Here there
are some known general facts.

Proposition 5.1.2. Let A/K be an abelian variety over a number field K
and assume that the algebra of endomorphisms EndQ̄(A) ⊗ Q of A over Q̄
contains a totally real number field F of arbitrary degree [F : Q] = n. Then
there is a monomorphism of groups Gal(KF /K) ↪→ Aut(F/Q) and, in par-
ticular, [KF : K] ≤ n.

Therefore, we will focus ourselves on the extension KB/KF given by the
field of definition of the quaternionic multiplication on an abelian variety A
over KF .

We devote next two subsections to carefully state and prove our results.
This is accomplished by studying the absolute Galois action on the ring of
endomorphisms and on the Néron-Severi group of an abelian variety, respec-
tively.
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5.1.1 The action of Gal(Q̄/K) on the endomorphism
ring.

In this section we use Chinburg-Friedman’s recent classification of the finite
subgroups of maximal arithmetic Kleinian groups in [ChFr00F] to describe
the field of definition of the quaternionic multiplication on an abelian variety.
We will be able to present a result that holds true for abelian varieties whose
ring of endomorphisms is an arbitrary order O in an arbitrary quaternion
algebra B over an arbitrary field F .

Let A/K be an abelian variety over a number field K and assume that
EndQ̄(A) ' O is an order in a quaternion algebra B over a field F . By
Theorem 1.3.5, we know that F is either a totally real field or a CM-field.
Moreover, if F is totally real, B is either totally definite or totally indefinite
over F and 2[F : Q]| dim(A).

Let KF be the minimal field of definition of the central endomorphisms
on A. The absolute Galois group GKF

= Gal(Q̄/KF ) acts in a natural
way on the full ring of endomorphisms EndQ̄(A) = O and induces a Galois
representation

γ : GKF
−→ Aut(O).

By Skolem-Noether’s Theorem 1.2.15, for any τ ∈ GKF
there exists an au-

tomorphism [γτ ] : B→B of B such that βτ = γ−1
τ βγτ for any β ∈ EndQ̄(A) =

O. We obtain an exact sequence of groups

1→GKB
→GKF

→NormB∗(O)/F ∗

and thus a monomorphism Gal(KB/KF ) ↪→ NormB∗(O)/F ∗.
The next theorem easily follows from the work of Chinburg anf Friedman

[ChFr00F].

Theorem 5.1.3. Let A/K be an abelian variety such that EndQ̄(A) ' O is
a non necessarily maximal order in an arbitrary quaternion algebra B over a
field F . Let KB (respectively KF ) be the minimal extension of K over which
all (respectively central) endomorphisms of A are defined.

Then KB/KF is a Galois extension with Gal(KB/KF ) isomorphic to ei-
ther a cyclic group, a dihedral group, the alternating groups A4, A5 or the
symmetric group S4.
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1. If Gal(KB/KF ) ' Cn or Dn is either cyclic of order n or a dihedral
group of order 2n, then there exists a n-th primitive root of unity ζn ∈
B∗.

2. If Gal(KB/KF ) ' A4 or S4, then B ' (−1,−1
F

) is the totally definite
Hamilton’s quaternion algebra.

3. If Gal(KB/KF ) ' A5, then B ' (−1,−1
F

) and
√

5 ∈ F .

Proof. As it was already observed, Gal(KB/KF ) is a finite subgroup
of NormB∗(O)/F ∗ ⊂ B∗/F ∗. Chinburg and Friedman [ChFr00F] proved
that the only possible finite subgroups of B∗/F ∗ are the cyclic groups Cn,
the dihedral groups Dn and S4, A4 and A5. By [ChFr00F], Lemma 2.8, a
necessary condition for B∗/F ∗ to contain either S4 or A4 is that B = (−1,−1

F
).

Also, if B∗/F ∗ contains a finite subgroup isomorphic to the alternating group
A5, then B = (−1,−1

F
) and F ⊇ Q(

√
5).

Moreover, Lemma 2.1 in [ChFr00F] shows that B∗/F ∗ contains a cyclic
group of order n > 2 if and only if there exists ζn ∈ B∗ satisfying ζn

n = 1,

ζ
n/d
n 6= 1 for any proper divisor d of n. In this case, any subgroup Cn ⊆ B∗/F ∗

is conjugate to 〈[1 + ζn]〉. Moreover, Chinburg and Friedman prove that
B∗/F ∗ contains a dihedral subgroup Dn, n ≥ 2, if and only if it contains
a cyclic group Cn (cf. [ChFr00F], Lemma 2.3). If n = 2, any subgroup of
B∗/Q∗ isomorphic to D2 = C2 × C2 is of the form 〈[x], [y]〉 ⊂ B∗/F ∗ with
x, y ∈ B∗, x2 = d, y2 = m, xy = −yx for some d,m ∈ F ∗. This yields the
proof of the theorem. 2

Corollary 5.1.4. Let A/K be an abelian surface with quaternionic multi-
plication by a non necessarily maximal order O in a quaternion algebra B.
Then Gal(KB/K) ' Cn or Dn with n = 1, 2, 3, 4 or 6.

Proof. Since B is an indefinite quaternion algebra over Q, we have that
F = Q and KQ = K. By the theorem above, Gal(KB/K) ' Cn or Dn for
some n ≥ 1 such that there exists a n-th primitive root of unity ζn ∈ B∗.
However, any ζn ∈ B∗ generates either a trivial or a quadratic field extension
Q(ζn)/Q and this is only possible for n = 1, 2, 3, 4 and 6. 2
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5.1.2 The action of Gal(Q̄/K) on the Néron-Severi group
of abelian surfaces

In this subsection we prove a more accurate result on the field of definition
of the quaternionic multiplication on an abelian surface. Moreover, we show
that there are very restrictive conditions for a quadratic field Q(

√
d) to be

realized as the algebra of endomorphims End0
K(A) of an abelian surface A/K

over a number field with quaternionic multiplication over Q̄.
Let O be a maximal order in an indefinite division quaternion algebra

B over Q. Assume that A is an abelian surface defined over a number field
K together with an isomorphism of rings ι : O ∼→ EndQ̄(A). In Chapter
3, the absolute Néron-Severi group NS(AC) ' NS(AQ̄) was largely studied:
it was seen that the first Chern class allows us to regard NS(AC) as a sub-
lattice of the 3-dimensional vector space B0 of pure quaternions of B in a way
that fundamental properties of invertible sheaves L on A can be interpreted
in terms of the arithmetic of B. This is the case of the degree deg(L),
the behaviour under pull-backs by endomorphisms, the index i(L) and the
ampleness of an invertible sheaf. We summarize these results in the following
statement; see Theorem 3.3.1, Proposition 3.3.3 and Theorem 3.5.3 for more
details.

Theorem 5.1.5. Let A/Q̄ be an abelian surface with EndQ̄(A)
ι' O a max-

imal order in a quaternion algebra of discriminant D. Then A is principally
polarizable and there is an isomorphism of additive groups

c1 : NS(AQ̄) → O]
0

L 7→ c1(L)

such that

1. deg(L) = D · n(c1(L)).

2. For any endomorphism α ∈ O = EndQ̄(A), c1(α
∗(L)) = αc1(L)α.

3. An invertible sheaf L ∈ NS(AQ̄) is a polarization if and only if n(c1(L)) >
0 and det(νL) > 0 where νL ∈ GL2(R) is any matrix such that ν−1

L ·
c1(L) · νL ∈ Q∗

(
0 1
−1 0

)
.

We recall from Section 1.2 that O] = {β ∈ B : tr(Oβ) ⊆ Z} denotes the
codifferent ideal of O in B. By O]

0 we mean the subgroup O] ∩ B0 of pure
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quaternions of O]. For our purposes in this section, we only need to know
that it is a lattice in B0 and in particular the Picard number ρ(AQ̄) = 3.

Since AK is always attached with a nonnecessarily principal polarization,
we have that 1 ≤ ρ(AK) ≤ 3. Both three cases are possible and each possi-
bility has a direct translation in terms of the algebra of endomorphisms:

• ρ(AK) = 1 if and only if End0
K(A) is Q or an imaginary quadratic field,

• ρ(AK) = 2 if and only if End0
K(A) is a real quadratic field and

• ρ(AK) = 3 if and only if End0
K(A) = EndL(A) = B.

The proof of these facts follows from [Mu70] and [LaBi92].

We now consider the action of the Galois group GK = Gal(Q̄/K) on
NS(AQ̄) given by L(Θ)τ = L(Θτ ) for any invertible sheaf L on A represented
by a Weil divisor Θ and τ ∈ GK . From Theorem 5.1.5, any automorphism
of NS(AQ̄) can be regarded as a linear automorphism of B0. Moreover, since
the Galois action conserves the degree of invertible sheaves and the first
Chern class is a monomorphism of quadratic modules c1 : (NS(AQ̄), deg) ↪→
(B0, D · n), we obtain a Galois representation

η : GK −→ Aut(NS(AQ̄), deg) ⊂ Aut(B0, D · n)
τ 7→ ητ

We have that

1. For any α ∈ O = EndL(A), (α∗(L)τ ) = (ατ )∗(Lτ ).

2. The index i(L) only depends on the GK-orbit of L, that is, i(Lτ ) = i(L),
for any τ ∈ GK . In particular Lτ is a polarization if and only if L is.

The following relates the Galois actions on EndQ̄(A) and on the Néron-
Severi group NS(AQ̄) by means of a reciprocity law.

Theorem 5.1.6. Let A/K be an abelian surface with quaternionic multi-
plication by a maximal order O of discriminant D in a quaternion algebra
B.

Let
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γ : GK → Aut(EndQ̄(A))
τ 7→

[γτ ] : O → O
β 7→ γτ

−1βγτ

be the action of Gal(Q̄/K) on the ring of endomorphisms of A. Define ετ =
sign(n(γτ )) ∈ {±1}. Then

c1(Lτ ) = ετ · γτ
−1c1(L)γτ

for any invertible sheaf L ∈ NS(AQ̄) and any τ ∈ GK.

Proof. Fix τ ∈ GK . We firstly claim that ητ : B0→ B0 is given by
µ 7→ ε̃γ̃−1µγ̃ for some ε̃ = ±1, γ̃ ∈ B∗. Indeed, any linear endomorphism of
B0 extends uniquely to an endomorphism of B and End(B) ' B ⊗ B with
γ̃1 ⊗ γ̃2 : B→B, β 7→ γ̃1βγ̃2. We must have in addition that tr(γ̃1µγ̃2) =
tr(γ̃2γ̃1µ) = 0 for any µ ∈ B0. This automatically implies that γ̃2γ̃1 ∈ Q.

Since the action of GK on NS(AQ̄) conserves the degree of invertible
sheaves , we deduce from Theorem 5.1.5 that

n(ητ (µ)) = n(γ̃1µγ̃2) = n(γ̃1)n(µ)n(γ̃2) = n(µ)

for all µ ∈ B0. Hence n(γ̃2) = n(γ̃1)
−1 and thus γ̃ := γ̃2 = ε̃γ̃−1

1 for some
ε̃ = ±1. This proves the claim.

We now show that γ̃ = γτ ∈ B∗/Q∗ and ε̃ = ετ . We know that
(α∗(L)τ ) = (ατ )∗(Lτ ) for any α ∈ O. Taking Theorem 5.1.5 into account,
this implies that ητ (αµα) = [γτ ](α)ητ (µ)[γτ ](α) and thus ε̃γ̃−1(αµα)γ̃ =
ε̃(γτ

−1αγτ )γ̃
−1µγ̃(γτ

−1αγτ ) for any α ∈ B, µ ∈ B0. Choosing α = µ
and bearing in mind that γτ

−1 = γτn(γτ )
−1, this says that γ̃−1µγ̃ = γτ

−1

µ−1γτ γ̃
−1µγ̃ γτ

−1µγτ and thus µ(ωµω−1) = (ωµω−1)µ, where we write ω =
γτ γ̃

−1. The centralizer of Q(µ) in B is Q(µ) itself and therefore (ωµω−1) ∈
Q(µ). But tr(µ) = tr(ωµω−1) = 0, n(µ) = n(ωµω−1) and this implies that
µ = ±ωµω−1. Since this must hold for any µ ∈ B0, it follows that ω ∈ Q∗
and thus γ̃ = γτ ∈ B∗/Q∗ as we wished.

We then already have that ητ : B0→B0 is given by µ 7→ ε̃γτ
−1µγτ for

some ε̃ = ±1. If µ = c1(L) for a polarization L on A, this means that
c1(Lτ ) = ε̃γτ

−1µγτ . Since Lτ is still an ample invertible sheaf we have,
according to Theorem 5.1.5, §3, that ε̃ = sign(n(γτ )). 2
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In Section 4.3.2, we introduced the twists and principal twists of a po-
larized order in a quaternion algebra. In the case of a rational indefinite
quaternion algebra, let us recall and refine our definitions as follows.

Definition 5.1.7. Let O be a maximal order in an indefinite quaternion
algebra B over Q and let D = disc(B). We say that O admits a twist of
degree δ ≥ 1 and norm m ∈ Z, m|D, if

B = Q+Qi +Qj +Qij = (
−Dδ,m

Q
)

with i, j ∈ O, i2 = −Dδ, j2 = m and ij = −ji.

For any positive integer δ ≥ 1, let Nδ = {m1, ...,mt}, 0 < mi|D, denote
the (possibly empty) set of norms of the twists of degree δ on O. It is easy
to show that the set N1 of norms of principal twists is either N1 = ∅ or
N1 = {m,D/m} for some m|D. In other cases, Nδ can be larger. Indeed, if
δ = D for instance, then ND is either empty or equal to the set of sums of
two squares m = m2

1 + m2
2 that divide D. We finally note that a quaternion

order O can very well admit twists of several different degrees.
In practice, the computation of a finite number of Hilbert symbols suffices

to decide whether a given indefinite order is twisting of certain degree δ. Let
us just quote that a necessary and sufficient condition for B to contain a
maximal order O admitting a twist of degree δ and norm m is that m > 0,
m|D = disc(O) = disc(B) and that for any odd prime p|D: m 6∈ F∗2p if p - m
(D/m 6∈ F∗2p if p|m respectively).

Examples of quaternion algebras with principally twisting maximal or-
ders are B = (−6,2

Q ) and B = (−10,2
Q ) of discriminant D = 6 and D = 10,

respectively.
We can now prove the following result.

Theorem 5.1.8. Let A/K be an abelian surface defined over a number field
K such that EndQ̄ ' O is a maximal order O in a quaternion algebra B
of discriminant D and let KB/K be the minimal extension of K such that
EndKB

(A) ' O. Fix a polarization L0 on AK and let δ = deg(L0) be its
degree.

A (a) If δ is not equal to D neither to 3D up to squares, then Gal(KB/K) '
{1}, C2 or D2 = C2 × C2.



108 Chapter 5. Arithmetic of abelian surfaces with QM

(b) If δ = Dk2 for some k ∈ Z, then Gal(KB/K) ' Cn or Dn with
n = 1, 2 or 4.

(c) If δ = Dk2

3
for some k ∈ Z, then Gal(KB/K) ' Cn or Dn for

n = 1, 2, 3 or 6.

B In any of the cases above, if O does not admit any twist of degree δ,
then Gal(KB/K) is necessarily cyclic.

C (a) If Gal(KB/K) ' C2, then End0
K(A) ' Q(

√−Dδ) or Q(
√

mi) for
mi ∈ Nδ a norm of a twist of degree δ on O.

(b) If Gal(KB/K) = C3 or C6, then End0
K(A) ' Q(

√−3).

(c) If Gal(KB/K) = C4, then End0
K(A) ' Q(

√−1).

(d) If Gal(KB/K) = Dn, then EndK(A) ' Q.

Proof. Recall that, according to Theorem 5.1.3, Gal(KB/K) ' Cn or Dn

with n = 2, 3, 4 or 6. Let L0 be a polarization on AK and let µ = c1(L0) ∈ O0.
It satisfies that µ2 + Dδ = 0 by Theorem 5.1.5, §1. Since L0 ∈ NS(AQ̄)GK ,
it is invariant under the action of Gal(KB/K). Fix τ ∈ Gal(KB/K) and let
γτ ∈ B∗ the quaternion associated to τ in Section 5.1.1. Suitably scaling
it, we can (and we do) choose a representative in NormB∗(O)/Q∗ such that
γτ ∈ O and n(γτ ) is a square-free integer. Then, since γτ must normalize O,
we know that n(γτ )|D.

Since L0 in NS(AQ̄) is GK-invariant, it follows from Theorem 5.1.6 that
µ = c1(L0) = c1(Lτ

0) = ετγτ
−1µγτ .

If ετ = −1, then the above expression implies that µγτ = −γτµ. Since
tr(µγτ ) = µγτ − γτµ = −tr(γτ )µ ∈ Q∗, we deduce that tr(γτ ) = 0. This
means that γτ

2 = m for some m|D and B = Q+Qµ+Qγτ +Qµγτ = (−Dδ,m
Q ).

The indefiniteness of B forces m to be positive. We obtain that in this case
〈[γτ ]〉 ' C2.

On the other hand, if ετ = 1, then γτ ∈ Q(µ) ' Q(
√−Dδ) = Q(

√−Dδ),
where we let Dδ denote the square-free part of Dδ. In this case, and bearing
in mind that γτ must generate a finite subgroup of B∗/Q∗, we deduce that
either

• γτ = ±
√

Dδ/Dδ · µ and hence Dδ|D and 〈[γτ ]〉 ' C2,

• γτ = 1 + ζn for some nth-primitive root of unity ζn ∈ B∗, n = 3 or 6,
and hence Dδ = 3 and 〈[γτ ]〉 ' Cn or
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• γτ = 1 + ζ4 for some 4th-primitive root of unity ζ4 ∈ B∗ and hence
Dδ = 1 and 〈[γτ ]〉 ' C4.

We conclude that a necessary condition for Gal(KB/K) to contain a cyclic
subgroup of order n ≥ 3 is Dδ = 1 or 3 which amounts to saying that
deg(L0) = δ is D or 3D up to squares respectively. Also, if deg(L0) = Dk2,
then necessarily Gal(KB/K) ' Cn or Dn with n = 1, 2 or 4 and an analogous
statement holds if deg(L0) = 3D up to squares. Further, if B 6' (−Dδ,m

Q ) for
any 0 < m|D, then it follows from the discussion above that ετ = 1 for any
τ ∈ Gal(KB/K) and, as a consequence, Gal(KB/K) ⊂ Q(µ)∗/Q∗. Since the
only finite subgroups of Q(µ)∗/Q∗ are cyclic, the proof of parts A and B is
completed.

As for part C, assume first that Gal(KB/K) = 〈[γτ ]〉 ' C2. Then γτ ∈ B∗

satisfies γτ
2 = −n(γτ ) ∈ Q∗ and we already saw that the only possibilities

are, up to squares, n(γτ ) = Dδ or m ∈ Nδ. In any of these cases, End0
K(A) =

{β ∈ EndKB
(A) : βτ = β} = {β ∈ EndKB

(A) : βγτ = γτβ} = Q(γτ ) and this
implies our first assertion of part C. Similarly, if Gal(KB/K) = 〈1+ζn〉 ' Cn

with n = 3, 4 or 6 then End0
K(A) = Q(1 + ζn) ' Q(

√−1) or Q(
√−3)

depending on the cases. Finally, if Gal(KB/K) = 〈γτ , γτ ′〉 ' Dn with 〈γτ 〉 '
Cn and 〈γτ ′〉 ' C2, then End0

K(A) = {β ∈ Q(γτ ) : βτ ′ = β} = Q. Here, the
last equality holds because it is not possible that γτ and γτ ′ commute. 2

The following lemma may be useful in many situations in order to apply
Theorem 5.1.8. It easily follows from Theorem 5.1.5.

Lemma 5.1.9. Let A/Q̄ be an abelian surface with End(A) a maximal or-
der in a quaternion algebra of discriminant D. If there exist prime numbers
p, q|D such that p splits in Q(

√−1) and q splits in Q(
√−3), then no polar-

izations on A have degree Dk2 or 3Dk2 for any k ∈ Z.

When particularized to the Jacobian variety of a curve, Theorem 5.1.8
asserts the following.

Theorem 5.1.10. Let C/K be a curve of genus 2 defined over a number
field K and let J(C) be its Jacobian variety. Assume that EndQ̄(J(C)) = O
is a maximal order in a division quaternion algebra B of discriminant D.

Let KB/K be the minimal extension of K over which all endomorphisms
of J(C) are defined. Then

1. KB/K is an abelian extension with G = Gal(KB/K) ' (1), C2 or
D2 = C2 × C2, where C2 denotes the cyclic group of order two.
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2. If B 6' (
−D, m

Q
) for any m|D, then KB/K is at most a quadratic

extension of K. In this case, EndK(A) ' Q(
√−D).

3. If B = (
−D, m

Q
) for some m|D, then EndK(A) is isomorphic to either

O, an order in Q(
√−D), Q(

√
m) or Q(

√
D/m), or Z. In each case,

we respectively have Gal(KB/K) ' (1), C2 and D2.

5.2 Fields of moduli and fields of definition

of Jacobian varieties of genus two curves

Let C/Q̄ be a smooth irreducible curve of genus 2 and let (J(C), ΘC) denote
its principally polarized Jacobian variety. Assume that EndQ̄(J(C)) = O
is a maximal order in an indefinite quaternion algebra B over Q of reduced
discriminant D = p1 · ... · p2r. Recall that O is unique up to conjugation or,
equivalently by the Skolem-Noether Theorem, up to isomorphism.

Attached to (J(C), ΘC) is the polarized order (O, µ), where µ = c1(ΘC) ∈
O is a pure quaternion of reduced norm D. As we have seen, a necessary
condition for (O, µ) to be twisting is that B ' (−D,m

Q ) for some m|D. The
isomorphism occurs if and only if for any p|D, the integer m (respectively
D/m) is not a square mod p if p - m (if p|m, respectively).

In the rational case, the Atkin-Lehner and the positive Atkin-Lehner
groups coincide and W = W 1 = {ωd : d|D} ' C2r

2 is generated by elements
ωd ∈ O, n(ωd) = d|D. Moreover, U0 = 〈ωD〉 ' C2.

If (O, µ) is a non twisting polarized order, then the field of moduli of
quaternionic multiplication kO is at most a quadratic extension over the field
of moduli kC of the curve C by Theorem 4.7.4.

On the other hand, if (O, µ) is twisting and B = (−D,m
Q ) for m|D, then

V0 = {1, ωm, ωD/m, ωD} ' C2
2 , where we can choose representatives ωm, ωD/m

in O such that µωm = −ωmµ and µωD/m = −ωD/mµ. Note that, up to
multiplication by non zero rational numbers, ωm and ωD/m are the only
twists of (O, µ). We obtain by Theorem 4.7.4 that

• kO/kC is at most a quartic abelian extension.

• kO = kS for any real quadratic order S 6⊂ Q(ωm) ' Q(
√

m) or
Q(ωD/m) ' Q(

√
D/m).
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• kZ[ωm] and kZ[ωD/m] are at most quadratic extensions of kC and these
are such that kO = kZ[ωm] · kZ[ωD/m].

Mestre [Me90] studied the relation between the field of moduli kC =
k(J(C),ΘC) of a curve of genus 2 and its possible fields of definition, under the
hypothesis that the hyperelliptic involution is the only automorphism on the
curve. Mestre constructed an obstruction in Br2(kC) for C to be defined over
its field of moduli. On identifying this obstruction with a quaternion algebra
HC over kC , he showed that C admits a model over a number field K such
that kC ⊆ K if and only if HC ⊗K ' M2(K).

If Aut(C) ! C2, Cardona and Quer [CaQu02] have recently proved that
C always admits a model over its field of moduli kC .

Assume now, as before, that EndQ̄(J(C)) ' O is a maximal order in an
indefinite division quaternion algebra B over Q. Let K be a field of definition
of C; note that, since EndQ̄(J(C)) ⊗ Q = B is division, Aut(C) ' C2 and
therefore kC may not be a field of definition of the curve. Having made the
choice of a model C/K, there is a minimal (Galois) field extension L/K of K
such that EndL(J(C)) ' O. This gives rise to a diagram of Galois extensions

KB

kO

kC

K

@
@@

�

@
@@ �

The nature of the Galois extensions KB/K was studied in Section 5.1,
while the relation between the field of moduli kO and the possible fields of
definition KB of the quaternionic multiplication was investigated by Jordan
in [Jo86]. The combination of all these facts yields the following statement.

Proposition 5.2.1. Let C/K be a smooth curve of genus 2 over a number
field K and assume that EndQ̄(J(C)) is a maximal quaternion order O. Let
KB/K the minimal extension of K over which all endomorphisms of J(C)
are defined.

Then Gal(KB/K) ' Gal(kO/kC) ' {1}, C2 or D2 = C2 × C2.

Proof. Assume first that kC = K is a field of definition of the curve.
Then kO = KB is a field of definition of all endomorphisms of J(C): if it
was not, there would be infinitely many pairwise different extensions Lα/K
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such that EndLα(J(C)) = O. This would contradict Silverberg’s result that
states that such extensions are unique (cf. [Si92]).

If, on the contrary, Mestre’s obstruction HC is non trivial in Br2(kC),
then C admits a model over any quadratic extension K/kC that splits HC

but not over kC itself. We then have that any field of definition KB of all
endomorphisms of J(C) must be a quadratic extension of kC that strictly
contains it. Indeed, by [Jo81], we know that [KB : kC ] ≤ 2. Suppose that
KB = kC . Then, KB would contain all fields of definition H of C and this is
not possible.

In either case, the possibilities for Gal(KB/K) are {1}, C2 and D2, by
Theorem 4.7.4. 2

Remark 5.2.2. The above argument actually yields more than this: it either
holds that kC  K  kO  KB is a chain of quadratic extensions or KB =
kO ·K. Moreover, the first of these possibilities only arises when [KB : K] = 4
and for the finitely many subextensions K/kC of kO such that HC ⊗kC

K is
trivial.

Example 5.2.3. Let C be the smooth projective curve of hyperelliptic model

Y 2 =
1

48
X(9075X4+3025(3+2

√−3)X3−6875X2+220(−3+2
√−3)X+48).

Let A = J(C)/K be the Jacobian variety of C over K = Q(
√−3). By

[HaMu95], A is an abelian surface with quaternionic multiplication by a
maximal order in the quaternion algebra of discriminant 6. See also Section
4.6.2. As it is explicitly shown in [HaMu95], there is an isomorphism between
C and the conjugate curve Cτ over Q. Hence, the field of moduli kC = Q is
the field of rational numbers.

In addition, it was shown in [DiRo1] that KB = Q(
√−3,

√−11) is the
minimal field of definition of the quaternionic multiplication on A. By our last
proposition and remark, we must have that KB = K · kO with [kO : kC ] = 2.
In addition, by Shimura’s Theorem 4.7.5, kO must be an imaginary quadratic
extension of Q. This shows that kO = Q(

√−11) and the picture of fields of
moduli and definition of A is completed:
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Q(
√−3,

√−11)

Q(
√−11)

Q

Q(
√−3)
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5.3 Explicit examples of Jacobian varieties of

genus two curves

Let K ⊂ Q̄ be a number field in an algebraic closure Q̄ of the field Q of
rational numbers and let C/K be an irreducible smooth algebraic curve of
genus 2 over K. Assume that EndQ̄(J(C)) = O is a maximal order in an
indefinite division quaternion algebra B of discriminant D. As it was shown
in Theorem 5.1.10, the minimal field of definition KB of all endomorphisms
of J(C) is either a trivial, a quadratic or a biquadratic extension of K.
Moreover, we have that

• (Trivial case) If KB = K, then EndK(J(C)) = O,

• (Quadratic case) If [KB : K] = 2, then EndK(J(C)) ⊗ Q = Q(
√−D),

Q(
√

m) or Q(
√

D/m), for some positive proper divisor m|D,

• (Biquadratic case) If [KB : K] = 4, then EndK(J(C)) = Z.

In this section, we show that Theorem 5.1.10 is sharp by exhibiting sev-
eral explicit examples which attain all the possibilities allowed by the theo-
rem. We obtain them by considering several particular fibres of Hashimoto-
Murabayashi’s and Hashimoto-Tsunogai’s families of curves of genus two
whose Jacobian varieties are abelian surfaces with quaternionic multiplica-
tion (cf. Section 4.6.1, [HaMu95] and [HaTs99]).

As a by-product, we also show that all computations performed in [HaTs99]
supporting an analogue of the Sato-Tate conjecture for these abelian surfaces
are unconditionally correct (cf. [HaTs99] for details).
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Being these examples part of a joint work with L. Dieulefait, we omit the
details of the proofs. Instead, we refer the reader to [DiRo2].

Example 5.3.1. [Biquadratic case]

I. Let C1/Q(
√

2) be a smooth projective model of the curve

Y 2 = (X2 +5)((−1/6+
√

2)X4 +20X3−490/6X2 +100X +25(−1/6−
√

2)).

Then, the Jacobian variety J1 = J(C1)/Q(
√

2) of C1 has multiplication
by a maximal order O in the quaternion algebra B6 of discriminant 6 over
the quartic extension KB = Q(

√−2,
√−1,

√−5) of Q(
√

2). Moreover,

• EndQ(
√

2,
√−5)(J1)⊗Q = Q(

√
2),

• EndQ(
√

2,
√

5)(J1)⊗Q = Q(
√

3),

• EndQ(
√

2,
√−1)(J1)⊗Q = Q(

√−6) and

• EndQ(
√

2)(J1) = Z.

II. Let C2/Q be a smooth projective model of the curve

Y 2 = (X2 + 7/2)(83/30X4 + 14X3 − 1519/30X2 + 49X − 1813/120)

and let J2 = J(C2)/Q be its Jacobian variety. Then,

• EndL(J2) = O is a maximal order in B6 for L = Q(
√−6,

√−14),

• EndQ(
√−14)(J2)⊗Q = Q(

√
2),

• EndQ(
√

21)(J2)⊗Q = Q(
√

3),

• EndQ(
√−6)(J2)⊗Q = Q(

√−6) and

• EndQ(J2) = Z.

Note that B6 = (−6,2
Q ) = (−6,3

Q ) is a twisting quaternion algebra. Hence,
the above two examples are in perfect concordance with Theorem 5.1.10.
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Example 5.3.2. [Quadratic case]
Let C3 be the smooth algebraic curve of genus 2 of hyperelliptic model

Y 2 =
1

48
X(9075X4+3025(3+2

√−3)X3−6875X2+220(−3+2
√−3)X+48).

Let J3/K be the Jacobian variety of C3 over K = Q(
√−3). By [HaMu95],

the ring of endomorphisms of J3 over Q̄ is a maximal order in the quater-
nion algebra of discriminant D = 10 over Q. As is shown in [DiRo2],
L = Q(

√−3,
√−11) is the minimal field of definition of the quaternion en-

domorphisms of J3 and

EndK(J3)⊗Z Q = Q(
√

5).

Finally, let us conclude with a pair of examples of abelian surfaces A/K
with quaternionic multiplication over a quadratic imaginary field K such
that all quaternion endomorphisms of A are defined over K itself. Obvious
examples can be obtained by suitably extending the base field of the Jacobian
varieties of the curves in the above examples. Indeed, J3/Q(

√−3,
√−11) is

an example of this phenomenon.
Below, we present two non trivial examples of abelian surfaces A/K with

EndK(A) a maximal quaternion order that cannot be obtained by base ex-
tension from a subfield of K.

Example 5.3.3. [Trivial case]
Let C4/K4, C5/K5 be the fibres of the Hashimoto-Tsunogai’s family

S6(t, s) at the values t4 = 2 and t5 = 2/3 over K4 = Q(
√−379) and K5 =

Q(
√−19), respectively. See Section 4.6.2 for details. Then, EndK(J(Ci)) '

O is a maximal order in B6.
The computation of the absolute Igusa invariants of these curves show

that there does not exist any curve C/Q such that C ' C3 nor C ' C4 over
Q. See [CaQu02] for details.

Remark 5.3.4. The above two examples are defined over completely imag-
inary fields L = K. This is not a coincidence since, by a result of Shimura
(cf. [Sh75]), there are not curves C/K of genus 2 over a number field K
admitting a real archimedean place such that EndK(J(C)) is a quaternion
order.



116 Chapter 5. Arithmetic of abelian surfaces with QM

To close this section devoted to present some examples, we wish to illus-
trate several modularity questions. We recall that an abelian variety A/Q
of GL2-type over the field Q of rational numbers is an abelian variety whose
algebra of endomorphisms EndQ(A) ⊗ Q = F is a number field F of degree
[F : Q] = dim(A). The generalized Shimura-Taniyama-Weil conjecture pre-
dicts that any abelian variety of GL2-type over Q is modular: it is isogenous
over Q to a factor of the Jacobian variety J1(N) of the modular curve X1(N)
for some positive integer N . As is well known, as a consequence of the work of
Wiles, Taylor, Diamond, Conrad, Breuil and others, any elliptic curve E/Q
is modular (cf. [Wi95]). In dimension two, Ellenberg [Ell] has shown that any
abelian surface A/Q of GL2-type over Q with sufficiently good reduction at
3 and 5 is modular.

We note that any elliptic curve E/K gives rise to an abelian surface with
multiplication by the split quaternion order M2(Z) by considering the power
A = E2. In the literature, abelian surfaces with quaternionic multiplication
are often called fake elliptic curves. The motivation for this terminology is
the strong analogy between the arithmetic of elliptic curves and fake ellip-
tic curves. We refer the reader to [Bu96], [Jo81], [Jo86], [JoLi85], [DiRo1],
[DiRo2], [Oh74], [Se68] for these analogies, but also for some interesting dif-
ferences. In this regard and in view of Wiles et al.’s Theorem, it is natural
to wonder:

Question 5.3.5. Is any abelian surface A/Q with quaternionic multiplica-
tion modular?

A necessary condition for A/Q to be modular is that A/Q be of GL2-type.
Moreover, according to Shimura-Taniyama-Weil’s conjecture, this is also a
sufficient condition. Then, the above question translates to ask whether any
abelian surface A/Q with quaternionic multiplication is of GL2-type over Q.
It has recently been suggested that this could be the case. However, our
previous examples show that there exist fake elliptic curve over Q that fail
to be modular. Indeed, we obtain the following

Corollary 5.3.6. The Jacobian variety J2/Q is a nonmodular abelian sur-
face with quaternionic multiplication.



Chapter 6

Diophantine properties of
Shimura curves

Introduction

In this chapter, we explore the diophantine properties of Shimura curves.

Let B be an indefinite rational quaternion algebra and choose a maximal
order O of B. Let D = p1 · ... · p2r, pi prime numbers, be the discriminant
of B. We can view Γ = {γ ∈ O : n(γ) = 1} as an arithmetic subgroup
of SL2(R) through an identification Ψ : B ⊗ R ' M2(R) and consider the
Riemann surface Γ\H, where H denotes the upper-half plane of Poincaré.
As it was pointed out in Chapter 4, Shimura showed in [Sh67] that this is
the set of complex points of an algebraic curve XB = XD/Q over Q which
parametrizes abelian surfaces with quaternionic multiplication by O.

The classical modular case arises when we consider the split quaternion
algebra B = M2(Q) of discriminant D = 1. In this case, X1 = A1Q is the
j-line that classifies elliptic curves or, by squaring, abelian surfaces with mul-
tiplication by M2(Z). Throughout, we limit ourselves to non split quaternion
algebras, that is, D 6= 1. In this case, Γ has no parabolic elements and Γ\H
is already compact so there are no cusps and the automorphic forms on XD

do not admit Fourier expansions. In this regard, see [Mor95] and [Ba02].

As it was introduced in Chapter 4, the elements of the Atkin-Lehner group
W 1 = W = {ωm : m|D} ' C2r

2 , where C2 is the cyclic group of order two,
act as rational involutions on the Shimura curve XD and there is a natural
inclusion W ⊆ AutQ(XD). It is the aim of Section 6.1 to examine the full

117
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group of automorphisms Aut(XD ⊗ C) of these curves. We firstly study the
fields of definition of the automorphisms ω ∈ Aut(XD ⊗C) and describe the
possible group structures of Aut(XD ⊗ C). In many cases, we prove that
Aut(XD ⊗ C) = W .

Let us recall that Ogg [Ogg77] studied the group of automorphisms of
the modular curves X0(N) for square-free level N . There, the action of
Aut(X0(N)) on the set of cusps played a fundamental role. When D > 1,
the difficulty lies precisely in the absence of cusps on XD.

Next, in Section 6.2, the family of Shimura curves XD that admit bielliptic
involutions is determined. The hyperelliptic problem was already settled
by Michon and Ogg independently in [Mic81], [Ogg74] and [Ogg83]. Also,
the family of bielliptic modular curves X0(N) was given in [Bar99]. Since
Aut(X0(N)) is largely understood (cf. [Ogg77] and [KeMo88]), the main point
in [Bar99] was to count the number of fixed points of the non Atkin-Lehner
involutions that appear when 4|N or 9|N . In our case this difficulty does not
arise, but on the other hand the automorphism groups of the Shimura curves
XD are less known.

In Section 6.3, we derive some arithmetical consequences from the above
results concerning the set of rational points on XD over quadratic fields.
Recall that by a fundamental theorem of Shimura, there are no real points
on Shimura curves and therefore quadratic imaginary fields are the simplest
fields over which these curves may have rational points. Our main theorem
in this section completely solves a question posed and studied by Kamienny
in [Ka90]:

Question 6.0.7. Which Shimura curves XD of genus g ≥ 2 admit infinitely
many quadratic points?

This question is motivated by Faltings’ Theorem on Mordell’s conjecture.
In Theorem 6.3.3 and Table 6.3.3, we give a complete and explicit answer to
question 6.0.7 by listing the finitely many discriminants D such that

]{P ∈ XD(Q̄) : [Q(P ) : Q] ≤ 2} = +∞.

Our method is based upon ideas of Abramovich, Harris and Silverman
(see [AbHa91] and [HaSi91]). We also note that our Theorem 6.3.3 can
be used to derive interesting consequences on several questions concerning
modular abelian surfaces with extra-twist.
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Finally, in Section 6.4, we use the theory of Čerednik-Drinfeld to compute
equations of elliptic Atkin-Lehner quotients of Shimura curves. Table 6.4 in
Section 6.4 gives a Weierstrass equation of all elliptic curves of the form
XD/〈w〉 where w ∈ Aut(XD) is any Q-bielliptic involution on the curve.
Some examples were already given in [Rob89].

The main tools used in this chapter come from the reduction of Shimura
curves at both good and bad places. Drinfeld constructed a projective model
MD over Z of the Shimura curve XD which extends the moduli interpretation
given by Shimura to abelian schemes over arbitrary bases (cf. [Dr76], [Bu96]
and [BoCa91]). Morita [Mo81] showed that MD has good reduction at all
primes p - D and Shimura determined in [Sh67] the zeta function of the spe-
cial fibre of MD at p. Moreover, the Čerednik-Drinfeld theory (cf. [BoCa91],
[Ce76], [Dr76] and [JoLi85]) provides a good account of the behaviour of the
reduction of MD (mod p) when p|D.

Our results in this chapter were presented in [Ro02].

6.1 The group of automorphisms of Shimura

curves

Throughout, XD will denote the canonical model over Q of the Shimura
curve of discriminant D = p1 · ... · p2r 6= 1. It is a proper smooth scheme over
Q of dimension 1. Let AutQ(XD) be the group of Q-automorphisms of XD

that sits inside the full group of geometric automorphisms AutC(XD ⊗C) of
the complex algebraic curve XD ⊗ C.

Proposition 6.1.1. If g(XD) ≥ 2, then

1. All automorphisms of XD⊗C are defined over Q. That is: AutC(XD⊗
C) = AutQ(XD).

2. AutQ(XD) ' Cs
2, s ≥ 2r.

Proof. Ribet [Ri75] proved that all the endomorphisms of an abelian va-
riety A/K with semistable reduction over a number field K are defined over
an unramified extension of K. The Jacobian variety JD/Q of XD has good
reduction at primes p - D and, from [JoLi86], we know that the identity’s
connected component of the reduction mod p, p|D, of the Néron model of
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JD is a torus. Hence, JD has semistable reduction over Q and all its endo-
morphisms are rational because Q has no nontrivial unramified extensions.

Since, by Hurwitz Theorem, AutC(XD ⊗ C) is a finite group, all au-
tomorphisms of XD ⊗ C are defined over Q̄. Moreover, the natural map
AutQ̄(XD ⊗ Q̄) → AutQ̄(JD ⊗ Q̄) is injective and Gal(Q̄/Q)-equivariant and
therefore we conclude from above that all automorphisms of XD ⊗ C are
rational.

For the second part, let X0(D)/Q be the modular curve of level D and
consider the new part J0(D)new/Q of its Jacobian variety J0(D). It is well
known (cf. [Ri75]) that End0

Q(J0(D)new) ' T⊗Q ' ∏t
i=1 Ki, where T denotes

the Hecke algebra of level D and Ki are totally real number fields. Ribet’s
Isogeny Theorem (cf. [Ri80]) states the existence of an isogeny

ϕ : JD −→ J0(D)new

between JD and J0(D)new. This isogeny is Hecke invariant (but signinter-
changing for the Atkin-Lehner action) and defined over Q. Hence, the ring
of endomorphisms EndQ(JD) is an order in

∏t
i=1 Ki. An automorphism of

the curve XD induces an automorphism of finite order on JD. Moreover, the
group of integral units in

∏t
i=1 Ki is isomorphic to Ct

2. Thus AutQ(XD) ' Cs
2

with 2r ≤ s ≤ t, the first inequality holding just because W ⊆ AutQ(XD).
2

We conclude that any automorphism of XD acts as a rational involution
on it. In view of the above proposition, we will simply denote the group
AutC(XD ⊗ C) = AutQ(XD) by Aut(XD). Naturally we ask whether the
Atkin-Lehner group is the full group of automorphisms of the curve, provided
that g(XD) ≥ 2. This is the case for modular curves X0(N) of square free
level N , N 6= 37 (cf. [Ogg77] and [KeMo88]).

Recall that an elliptic point on the curve XD is a branched point of the
natural projection

H → Γ\H ' XD(C).

The stabilizers of those elliptic points in Γ/{±1} are of order 2 or 3.
2-elliptic points (respectively 3-elliptic points) correspond to Γ-conjugacy
classes of embeddings of the quadratic order Z[i], i2 = −1 (respectively Z[ρ],
ρ3 = 1) in the quaternion order O. Their cardinality is given by
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e2 =
∏

`|D
(1−

(−4

`

)
),

e3 =
∏

`|D
(1−

(−3

`

)
),

where ( ··) denotes the Kronecker symbol.

Theorem 6.1.2. Let XD be the Shimura curve of discriminant D. If it has
no elliptic points, then Aut(XD) = W .

Proof. If there are no elliptic points on XD(C), then the natural projection
H → Γ\H ' XD(C) is the universal cover of the Riemann surface XD(C)
so Aut(XD) ' NormPGL+

2 (R)(Γ)/Γ. Here the superindex + denotes matrices

with positive determinant. It is known that W ' NormB×(Γ)/Q×Γ ' C2r
2

(cf. [Mic81] and [Ogg83]). We observe now that the Q-vector space spanned
by Γ is 〈Γ〉Q = B. Indeed, since the reduced norm n is indefinite on the
space of pure quaternions B0, we can find linearly independent elements ω1,
ω2, ω3 ∈ B0 such that Z[ωi] ⊂ B is a real quadratic order in B. Then, by
solving the corresponding Pell equations, we find units γi ∈ Z[ωi]∩Γ, γi 6= ±1
such that {1, γ1, γ2, γ3} is a Q-basis of B.

Hence, any α ∈ NormGL+
2 (R)(Γ) will actually normalize B∗. By the

Skolem-Noether Theorem, α induces an inner automorphism of B so that
α ∈ R∗NormB∗(Γ). This shows that Aut(XD) = W . 2

Remark 6.1.3. In proving the above theorem, we have also shown that
the Atkin-Lehner group W of an arbitrary Shimura curve XD is exactly
the subgroup of automorphisms that lift to a Möbius transformation on H
through the natural uniformization H → Γ\H ' XD(C).

The proof remains valid for Eichler orders of square-free level N and
therefore it generalizes an analogous result of Lehner and Newman for dis-
criminant D = 1 (cf. [LeNe64]).

The next theorem is similar in spirit to Theorem 6.1.2 and requires a
previous lemma due to Ogg [Ogg77].

Lemma 6.1.4. Let K be a field and µ(K) its group of roots of unity. Let
p = max(1, charK) the characteristic exponent of K. Let C be an irreducible
curve defined over K and P ∈ C(K) a regular point on it. Let G be a finite
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group of K-automorphisms acting on C and fixing the point P . Then there
is a homomorphism f : G → µ(K) whose kernel is a p-group.

Theorem 6.1.5. Let D = 2p, 3p; p a prime number. If g(XD) ≥ 2, then
Aut(XD) = W ' C2 × C2.

Proof. Suppose first that D = 2p with p ≡ 3 (mod 4). In this case, the
fixed points on XD of the Atkin-Lehner involution ω2 are Heegner points (see
e.g. [Al99] for a general account). Their coordinates on Shimura’s canonical
model XD generate certain class fields. More precisely, if the genus g(XD)
is even, then ω2 exactly fixes two points P , P ′ with complex multiplication
by the quadratic order Z[i] and hence (cf. [ShTa61]) P , P ′ ∈ XD(Q(i)). If
g(XD) is odd, then, besides P and P ′, ω2 fixes two more points Q, Q′ ∈
XD(Q(

√−2)) which have complex multiplication by Z[
√−2]. As we have

seen, Aut(XD) is an abelian group so it acts on the set of fixed points of
ω2 on XD. Since all automorphisms are rational, they must keep the field
of rationality of these points so that Aut(XD) actually acts on {P, P ′}. It
follows from the previous lemma that the order of the stabilizer of P or P ′

in Aut(XD) is at most 2. Hence, #Aut(XD) ≤ 4 and Aut(XD) = W .
Suppose now that D = 2p, p ≡ 1 (mod 4) or D = 3p, p ≡ 1 (mod 3). By

the theory of Čerednik-Drinfeld, the special fibre MD ⊗ Fp of the reduction
mod p of the integral model MD of our Shimura curve consists of two rational
irreducible components Z, Z ′ defined over Fp2 . The complete local rings of
the intersection points of Z and Z ′ over the maximal unramified extension
Zunr

p of Zp are isomorphic to Zunr
p [x, y]/(xy− p`) for some length ` ≥ 1. The

reduction mod p of the Atkin-Lehner involution ωp switches Z and Z ′, fixing
the double points of intersection. Among these double points, there is exactly
one, say Q̃, which has length 2, as it follows from [Ku79]. Thus Aut(XD)

acting on MD ⊗Fp must fix Q̃. Recalling now that Aut(XD) ' Cs
2 , we again

apply Ogg’s Lemma 6.1.4 to the curve Z/Fp2 (p 6= 2) and the point Q̃ to
obtain that #Aut(XD) ≤ 4. Therefore Aut(XD) = W .

In the remaining case, namely when D = 3p, p ≡ −1 (mod 3), we observe
the curious phenomenon that ` = 109 is a prime of good reduction for the
Shimura curve XD that yields

#MD ⊗ F109(F109) 6≡ 0 ( mod 4)

except for the two exceptional cases D = 3 · 89 and D = 3 · 137. In any
case, we check that #M3·89 ⊗ F67(F67) = 94 and #M3·137 ⊗ F103(F103) = 98.
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This is carried out by using the explicit formula for the number of rational
points over finite fields of the reduction of Shimura curves at good places
given by Jordan and Livné in [JoLi85]. From this we proceed as above: since
all automorphisms of XD are defined over Q, their reduction mod ` must
preserve the F`-rational points on MD⊗F` and we apply Ogg’s Lemma 6.1.4
to the regular curve MD ⊗ F` to conclude that Aut(XD) = W . 2

Remark 6.1.6. The first argument can be adapted for more general dis-
criminants in an obvious way. For instance, if D = pδ where p is a prime
integer, p ≡ 3 (mod 8), and (−p

`
) = −1 for any `|δ, then we again obtain that

Aut(XD) = W because the Hilbert class field of Q(
√−p) is strictly contained

in the ring class field of conductor 2 and, by genus theory, h(−p) is odd.

Example 6.1.7. Shimura curve quotient X+
291 = X291/W has genus 2 and

therefore it is hyperelliptic. However, the hyperelliptic involution on X+
291

is exceptional: it does not lift to a Möbius transformation on H through
π : H → X+

291(C) = Γ ·W\H, while all automorphisms of X291 are of Atkin-
Lehner type by Theorem 6.1.5. This is caused by the fact that π is not the
universal cover of X+

291.

6.2 Bielliptic Shimura curves

Recall that an algebraic curve C of genus g ≥ 2 is bielliptic if it admits
a degree 2 map ϕ : C → E onto a curve E of genus 1. We will ignore fields
of rationality until the next section. Alternatively, C is bielliptic if and only
if there is an involutive automorphism acting on it with 2g − 2 fixed points.
We present now some facts about bielliptic curves C such that, like Shimura
curves, Aut(C) ' Cs

2 .

Lemma 6.2.1. Let C/K, char K 6= 2, be a bielliptic curve of genus g with
Aut(C) ' Cs

2 for some s ≥ 1. For any w ∈ Aut(C), let n(w) denote the
number of fixed points of w on C. Let v be a bielliptic involution on C and
for any w ∈ Aut(C), w 6= 1 or v, denote w′ = v · w.

1. If g is even, then n(w) = 2 and n(w′) = 6, or viceversa. If g is odd,
then {n(w), n(w′)} = {0, 0}, {0, 8} or {4, 4} as non ordered pairs.

2. If g is even, then s ≤ 3. If g is odd, then s ≤ 4.
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3. If g ≥ 6, then the bielliptic involution v is unique.

Proof. It follows from Hurwitz’s Theorem applied to the projection of
the curve C onto its quotient by suitable groups generated by involutions
acting on it. 2

Remark 6.2.2. Observe that if D is odd, then g(XD) is always odd, as we
check from Eichler’s formula for the genus (see e.g. [Ogg83]).

Obviously, the main source for possible bielliptic involutions on the curves
XD is the Atkin-Lehner group. From Eichler’s formula for n(w), w ∈ W
(see [Ogg83]), it is a routine exercise to check whether XD has bielliptic
involutions of Atkin-Lehner type. An alternative way to compute n(w) is
to read backwards the last column of Table 5 in [Ant75]. This is because
Ribet’s isogeny ϕ : JD → J0(D)new switches the sign of the Atkin-Lehner
action. But, first, we should focus on possible extra involutions and also
bound the bielliptic discriminants D. Following Ogg’s method in [Ogg74],
we give such an upper bound in the next

Proposition 6.2.3. If D > 547, XD is not bielliptic.

Proof. Suppose that the curve XD is bielliptic: there is a degree 2 map
ϕ : XD → E onto a curve E of genus 1. By Proposition 6.1.1, both ϕ and
E are defined over Q although E may not be an elliptic curve over Q since
it may fail to have rational points. See Section 6.3 for examples. Choose
a prime of good reduction ` - D of XD, let K` be the quadratic unramified
extension ofQ` and let R` denote its ring of integers. As follows from [JoLi85],
XD(K`) 6= ∅ and hence E is an elliptic curve over K`. Moreover, due to
Ribet’s Isogeny Theorem, E also has good reduction over `. By the universal
property of the Néron model of E over R`, ϕ extends to the minimal smooth
model MD ⊗ R` of XD and we can reduce the bielliptic structure mod `
to obtain a 2 : 1 map ϕ̃ : MD ⊗ F`2 → Ẽ. From Weil’s estimate, N`2 =
#MD ⊗F`2(F`2) ≤ 2 ·#Ẽ(F`2) ≤ 2(` + 1)2. Besides, we obtain from [JoLi85]

that (`−1)
12

∏
p|D (p− 1) ≤ N`2 so N`2 grows as D tends to infinity. Applying

these inequalities for ` = 2, 3, 5, 7, 11, we conclude that, if 2 · 3 · 5 · 7 · 11 - D,
then D ≤ 546. But, if 2 · 3 · 5 · 7 · 11|D, then s ≥ 5 and therefore, by Lemma
6.2.1, XD cannot be bielliptic. 2

We are now able to prove
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Theorem 6.2.4. There are exactly thirty-two values of D for which XD is
bielliptic. In each case, the bielliptic involutions are of Atkin-Lehner type.
These values, together with the genus g = g(XD) and the bielliptic involutions
are given in Table 6.2.4 below.
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Table 6.2.4: Bielliptic Shimura curves
D g ωm D g ωm D g ωm

26 2 ω2,ω13 82 3 ω82 210 5 ω30,ω42,
35 3 ω7 85 5 ω17 ω70,ω105,
38 2 ω2,ω19 94 3 ω2 ω210

39 3 ω13 106 4 ω53,ω106 215 15 ω215

51 3 ω3 115 6 ω23 314 14 ω314

55 3 ω5 118 4 ω59,ω118 330 5 ω3,ω22

57 3 ω57 122 6 ω122 ω33,ω165,
58 2 ω2,ω58 129 7 ω129 ω330

62 3 ω2 143 12 ω143 390 9 ω390

65 5 ω65 166 6 ω166 462 9 ω154

69 3 ω3 178 7 ω89 510 9 ω510

77 5 ω11,ω77 202 8 ω101 546 13 ω546

Proof. Since we need only consider discriminants D ≤ 546, we can first
use any programming package to build up the list of Atkin-Lehner bielliptic
involutions on Shimura curves XD. These computations yield Table 6.2.4
above. In order to ensure that no extra bielliptic involutions arise, we ob-
serve that the above results, and particularly Theorem 6.1.5, imply that any
bielliptic involution on XD, for most of the discriminants D ≤ 546, must
be of Atkin-Lehner type. There are exactly three cases, namely D = 55,
D = 85 and D = 145, for which none of the previous results and their
obvious generalizations seem to apply.

Ad hoc arguments can be worked out for them. Firstly, the Jacobian va-
rieties of the curves X55 and X85 have just one Q-isogeny class of sub-abelian
varieties of dimension 1, so there can be at most one bielliptic involution on
these curves. But ω5 (respectively ω17) is already a bielliptic involution on
X55 (respectively X85).

More interesting is the curve X145 of genus 9. It is not bielliptic by any
Atkin-Lehner involution although J145 ∼Q E × S × A3 × A′

3, where each
factor has dimension 1, 2, 3 and 3 respectively. We check that n(ω5) =
n(ω29) = 0 and n(ω145) = 8, so if there was a bielliptic involution v on X145

then n(w′
145) = 0, by Lemma 5.1. It follows from Lefschetz’s fixed point

formula (see [LaBi92]) that the rational traces of these three involutions on
the Jacobian J145 would be tr(ω5) = tr(ω29) = tr(w′

145) = 2. Moreover,
involutions on J145 must be of the form {±1E}×{±1S}×{±1A3}×{±1A′3},
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up to conjugation by ϕ, thus tr = 2 can only be attained by two different
involutions. Therefore v cannot exist and X145 is not bielliptic.

It can be showed that actually Aut(X145) = W : from the decomposition
of J145 we know that W ' C2

2 ⊆ Aut(X145) ⊆ C4
2 . Since X145 is neither

hyperelliptic (cf. [Ogg83]) nor bielliptic (as we have just seen), it follows that
the involutions {−1E} × {−1S} × {−1A3} × {−1A′3} and {+1E} × {−1S} ×
{−1A3} × {−1A′3} cannot be induced from Aut(X145). Thus it is a subgroup
of index at least 4 in C4

2 and Aut(X145) = W . 2

6.3 Infinitely many quadratic points on Shi-

mura curves

Shimura [Sh75] proved that XD(R) = ∅ and in particular there are no
Q-rational points on Shimura curves XD. Jordan and Livné [JoLi85] gave
explicit criteria for deciding whether the curves XD do have rational points
over the p-adic fields Qp for any finite prime p.

Less is known about rational points over global fields. Jordan [Jo86]
proved that for a fixed quadratic imaginary field K, with class number
hK 6= 1, there are only finitely many discriminants D for which K splits
the quaternion algebra B of discriminant D and XD(K) 6= ∅. In this section
we solve a question that is to an extent reciprocal: which Shimura curves
XD, g(XD) ≥ 2, have infinitely many quadratic points over Q?

That is,

#XD(Q, 2) = #{P ∈ XD(Q̄) : [Q(P ) : Q] ≤ 2} = +∞.

We will say that an algebraic curve C/K of genus g ≥ 2 is hyperelliptic over
K (respectively bielliptic over K) if there is an involution v ∈ AutK(C) such
that the quotient curve C/〈v〉 is K-isomorphic to P1

K (respectively an elliptic
curve E/K). Notice that in both cases C/〈v〉(K) 6= ∅ while it perfectly well
happen that C(K) = ∅.

The following theorem of Abramovich and Harris [AbHa91] shows that the
question above is closely related to the diophantine problem of determining
the family of hyperelliptic and bielliptic Shimura curves over Q.

Theorem 6.3.1. Let C be an algebraic curve of genus greater than or equal
to 2, defined over a number field K. Then C(K, 2) = #∞ if and only if C is
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either hyperelliptic over K or bielliptic over K mapping to an elliptic curve
E of rankK(E) ≥ 1.

Ogg [Ogg83], [Ogg84] gave the list of hyperelliptic Shimura curves over
Q. In what follows, we will determine which bielliptic Shimura curves from
Table 6.2.4 are bielliptic over Q.

We first observe that the map XD → XD/〈w〉 is always defined over Q
since we showed in Proposition 6.1.1 that AutC(XD ⊗ C) = AutQ(XD). In
order to check whether XD/〈w〉(Q) 6= ∅ for each pair (D,w) in Table 6.2.4,
we can disregard those in which XD/〈w〉 fails to have rational points over
some completion Qv of Q. This is done by using the precise results in that
direction given by Jordan and Livné in [JoLi85] and Ogg in [Ogg83] and
[Ogg84]; the conclusions are compiled in the following table. Let us say that
a field L is deficient for an algebraic curve C defined over a subfield K ⊂ L
if C(L) = ∅.
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Table 6.3: Deficient completions L of Q for XD/〈ωm〉
D ωm L D ωm L D ωm L

35 ω7 Q5 115 ω23 Q5 330 ω3 R,Q2

39 ω13 R,Q3 178 ω89 R,Q2 Q5,Q11

51 ω3 Q17 210 ω30 R,Q3 330 ω22 R,Q2,Q3

55 ω5 R,Q11 210 ω42 R,Q2,Q3 Q5,Q11

62 ω2 R,Q31 Q5,Q7 330 ω33 R,Q2

69 ω3 R,Q23 210 ω70 R,Q2 Q3,Q5

77 ω11 R,Q7 Q3,Q5 330 ω165 Q2,Q3

85 ω17 Q5 210 ω105 R,Q2 Q5,Q11

94 ω2 R,Q47 Q7 462 ω154 R,Q11

On the genus 1 Atkin-Lehner quotients XD/〈ωm〉 that do have rational
points over all completions of Q, we can try to construct a Q-rational point
by means of the theory of complex multiplication. That is, a Heegner point
P ∈ XD(K) with CM by a quadratic imaginary order R, R ⊗ Q = K,
h(R) = 1, will project onto a Q-rational point on XD/〈ωm〉 if and only if
ωm(P ) = P , where P is the complex conjugate of P on XD(K). From [Jo81],
3.1.4, we deduce that ωm(P ) = P if m is the product of the primes p|D that
are inert in K.

Performing the necessary computations, it follows that among those pairs
(D, w) that XD/〈w〉(Qv) 6= ∅ for every completion Qv of Q, it is always
possible to produce aQ-rational point on XD/〈w〉 by the above means, except
for two interesting cases: (X26, ω2) and (X58, ω2).

Since g(X26) = g(X58) = 2, we may apply a result of Kuhn (cf. [Kuhn88])
to deduce that there are also rational points on the quotients X26/〈ω2〉 and
X58/〈ω2〉. Therefore, the Hasse-Minkowsky principle is never violated for the
Atkin-Lehner quotients from Table 6.2.4 and those pairs XD/〈ωm〉 that do
not appear in Table 6.3 are bielliptic curves over Q. There are only eighteen
values of D for which XD admits a bielliptic involution over Q.

It still remains to compute the Mordell-Weil rank of the elliptic curves
XD/〈w〉 over Q. Using Cremona’s tables [Cre92], switching the sign of the
Atkin-Lehner action as explained above, we can determine the Q-isogeny
class of these elliptic curves.

This is enough to compute their Mordell-Weil rank but we can use a
beautiful idea of Roberts (cf. [Rob89]) to compute the Q-isomorphism class
and hence a Weierstrass equation for them as follows: Cremona’s tables
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give the Kodaira symbols of the reduction of elliptic curves E at the primes
p|cond(E). This is done by using Tate’s algorithm which makes use of a
Weierstrass equation of the curve. This is not available in our case, but we
can instead use Čerednik-Drinfeld theory to compute the Kodaira symbols
for the reduction mod p, p|D, of XD/〈w〉 and contrast them with Cremona’s
tables. This procedure uniquely determines the Q-isomorphism class of the
curves.

Example 6.3.2. Curve X210 has genus 5 and is bielliptic by the Atkin-
Lehner involution ω210. From Eichler’s Theorem 1.2.18, the quadratic order
Z[
√−43] embeds in the quaternion algebra B of discriminant 210. Such

an embedding produces a point P ∈ X210(Q(
√−43)). From the above, it

follows that ω210(P ) = P . Therefore, X210/〈ω210〉(Q) 6= ∅ and we obtain that
(X210, ω210) is a bielliptic pair over Q. A glance at Cremona’s Table 3, p. 249-
250, shows that the elliptic curve X210/〈ω210〉 falls in theQ-isogeny class 210D
because it is the only one that corresponds to a newform f ∈ H0(Ω1, J210)
such that ω∗210(f) = f (recall that the sign for the Atkin-Lehner action is
opposite to the classical modular case!). Therefore, from Cremona’s Table 4,
rankQ(X210/〈ω210〉) = 1.

In order to determine a Weierstrass equation for X210/〈ω210〉 we may
compute the Kodaira symbols of its reduction mod p, p|210. It suffices to
study the reduction at p = 3. The Čerednik-Drinfeld theory asserts that
M210 ⊗ F3 is reduced and its irreducible components are all rational and
defined over F9. Moreover, M210 ⊗ Z3 is a (minimal) regular model over Z3.
This is because over the quadratic unramified integral extension R3 of Z3,
M210⊗R3 is a Mumford curve uniformized by a (torsion-free) Schottky group,
as one checks from Čerednik-Drinfeld’s explicit description of this group and
the congruences 5 ≡ −1 (mod 3) and 7 ≡ −1 (mod 4).

In a way, Čerednik-Drinfeld’s description of the reduction of Shimura
curves at p|D is not so different from Deligne-Rappoport’s for the modular
curves X0(N) at p ‖ N because Mpδ ⊗ Fp is again the union of two copies of
the Shimura curve -also called Gross curve- Mδ ⊗ Fp, defined in terms of a
definite quaternion algebra.

Let h(δ, ν) denote the class number of an (arbitrary) Eichler order of
level ν in the quaternion algebra of discriminant δ. The dual graph G of
M210 ⊗ F3 has as vertices the irreducible components of M210 ⊗ F3. There
are 2h(210

3
, 1) = 2h(70, 1) = 4 of them. Two vertices v, ṽ in G are joined

by as many edges as there are intersection points between the corresponding
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components Z, Z̃ in M210 ⊗ F3. In our case, there are h(210
3

, 3) = 8 edges in
G, that is, 8 double points in M210 ⊗ F3.

We may label the 4 vertices v1, v′1, v2, v′2 so that ω3(vi) = v′i, where ω3

still denotes the involution ω3 now acting on G. There are no edges joining v1

and v2, and the same holds for v′1 and v′2. The total number of edges joining
v1 with v′1 and v2 with v′2 is 4, as Kurihara (cf. [Ku79]) deduced from trace
formulae of Brandt matrices. Since there must also be p+1 = 4 edges at the
star of any vertex, it turns out that the dual graph G must be

Dual graph of M210 ⊗ F3

q q

q q

v′2 v1

v2 v′1

Since 3|210, ω210({v1, v2}) = {v′1, v′2} and therefore G/〈ω210〉 is a graph
with two vertices joined by two edges, which corresponds to the Kodaira sym-
bol I2. The only elliptic curve in the Q-isogeny class 210D whose reduction
type at p = 3 is I2 is 210D2. Hence, a Weierstrass equation for X210/〈ω210〉
is y2 + xy = x3 + x2 − 23x + 33.

Performing similar computations, we obtain the list of bielliptic Shimura
curves (XD, w) over Q such that the genus 1 Atkin-Lehner quotient XD/〈w〉
is an elliptic curve with infinitely many rational points. With this procedure,
we also give a Weierstrass equation for the elliptic curves XD/〈w〉. Together
with the hyperelliptic Shimura curves over Q given by Ogg, we obtain the
family of Shimura curves of genus g(XD) ≥ 2 with infinitely many quadratic
points. Summing up, we obtain the following

Theorem 6.3.3. There are only finitely many D for which XD has infinitely
many quadratic points over Q. These curves, together with their rational or
elliptic quotients, are listed below.
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Table 6.3.3: Shimura curves XD, g(XD) ≥ 2, with #XD(Q, 2) = +∞
D ωm g(XD/〈ωm〉) D ωm g(XD/〈ωm〉) D ωm g(XD/〈ωm〉)
26 ω26 0 77 ω77 1 143 ω143 1
35 ω35 0 82 ω82 1 146 ω146 0
38 ω38 0 86 ω86 0 159 ω159 0
39 ω39 0 87 ω87 0 166 ω166 1
51 ω51 0 94 ω94 0 194 ω194 0
55 ω55 0 95 ω95 0 206 ω206 0
57 ω57 1 106 ω106 1 210 ω210 1
58 ω29 0 111 ω111 0 215 ω215 1

ω58 1 118 ω118 1 314 ω314 1
62 ω62 0 119 ω119 0 330 ω330 1
65 ω65 1 122 ω122 1 390 ω390 1
69 ω69 0 129 ω129 1 510 ω510 1
74 ω74 0 134 ω134 0 546 ω546 1

6.4 Equations of elliptic quotients of Shimura

curves

By using the method explained in the preceding section, we obtain the fol-
lowing complete list of Weierstrass equations of quotients XD/〈ω〉 of degree
2 of a Shimura curve XD which are elliptic curves over Q. The instances
corresponding to the discriminants D ≤ 60 were already given in [Rob89]. In
the second column, we quote the isomorphism class of the elliptic curve in
Cremona’s notation. Note that in the table below there are missing some of
the Atkin-Lehner quotients XD/〈ωm〉/Q of genus 1 compiled in Table 6.2.4.
These are exactly those genus 1 quotients which fail to have rational points
(see Table 6.3). Let us also remark that there are several examples of elliptic
quotients XD/〈ωm〉 of Mordell-Weil rank 0 over Q. This explains why they
do not appear in Table 6.3.3.
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Table 6.4: Equations of all elliptic quotients of Shimura curves of degree 2
XD/〈ωm〉 Cremona symbol Weierstrass equation

X26/〈ω2〉 26B2 y2 + xy + y = x3 − x2 − 213x− 1257
X26/〈ω13〉 26A1 y2 + xy + y = x3 − 5x− 8
X38/〈ω2〉 38B2 y2 + xy + y = x3 + x2 − 70x− 279
X38/〈ω19〉 38A3 y2 + xy + y = x3 − 16x + 22
X57/〈ω57〉 57A1 y2 + y = x3 − x2 − 2x + 2
X58/〈ω2〉 58B2 y2 + xy + y = x3 + x2 − 455x− 3951
X58/〈ω58〉 58A1 y2 + xy = x3 − x2 − x + 1
X65/〈ω65〉 65A1 y2 + xy = x3 − x
X77/〈ω77〉 77A1 y2 + y = x3 + 2x
X82/〈ω82〉 82A1 y2 + xy + y = x3 − 2x
X106/〈ω53〉 106D1 y2 + xy = x3 + x2 − 27x− 67
X106/〈ω106〉 106B1 y2 + xy = x3 + x2 − 7x + 5
X118/〈ω59〉 118D1 y2 + xy = x3 + x2 + 56x− 192
X118/〈ω118〉 118A1 y2 + xy = x3 + x2 + x + 1
X122/〈ω122〉 122A1 y2 + xy + y = x3 + 2x
X129/〈ω129〉 129A1 y2 + y = x3 − x2 − 19x + 39
X143/〈ω143〉 143A1 y2 + y = x3 − x2 − x− 2
X166/〈ω166〉 166A1 y2 + xy = x3 + x2 − 6x + 4
X202/〈ω101〉 202A1 y2 + xy = x3 − x2 + 4x− 176
X210/〈ω210〉 210D2 y2 + xy = x3 + x2 − 23x + 33
X215/〈ω215〉 215A1 y2 + y = x3 − 8x− 12
X314/〈ω314〉 314A1 y2 + xy = x3 − x2 + 13x− 11
X330/〈ω330〉 330E2 y2 + xy = x3 + x2 − 102x + 324
X390/〈ω390〉 390A2 y2 + xy = x3 + x2 − 33x− 63
X510/〈ω510〉 510D2 y2 + xy + y = x3 + x2 − 421x− 3157
X546/〈ω546〉 546C2 y2 + xy + y = x3 − 137x + 380
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Chapter 7

Resum en català

Introducció

En aquest treball estudiem diferents qüestions sobre la geometria i l’aritmètica
de les àlgebres de quaternions, les varietats abelianes i les varietats de Shimura,
amb l’objectiu d’investigar les estretes relacions existents entres elles.

Més concretament, l’estudi se centra en varietats abelianes A tals que el
seu anell d’endomorfismes End(A) és un ordre maximal en una àlgebra de
quaternions B totalment indefinida sobre un cos de nombres F totalment
real i en les varietats de Shimura XB/Q que sorgeixen de manera natural
com als seus espais de moduli. Tal i com pretenem mostrar, moltes de les
propietats aritmètiques i geomètriques d’aquestes varietats abelianes estan
codificades o bé en l’àlgebra de quaternions B o bé en les varietats de Shimura
XB. Alhora, no és possible portar a terme un estudi d’aquestes varietats de
Shimura sense un bon coneixement dels objectes que parametritzen.

Del treball de Shimura [Sh63] i la classificació d’àlgebres de divisió in-
volutives deguda a Albert (cf. [Mu70]), se’n segueix que hi ha un ventall
limitat d’anells que es realitzen com l’anell d’endomorfismes d’una varietat
abeliana. En efecte, si A és una varietat abeliana simple sobre un cos alge-
braicament tancat, aleshores End(A) és un ordre en un cos totalment real,
una àlgebra de quaternions sobre un cos totalment real o una àlgebra de
divisió sobre un cos de multiplicació complexa. Molts dels aspectes de la
geometria i l’aritmètica de les varietats abelianes es poden interpretar en els
seus anells d’endomorfismes. De fet, és remarcable que, en molts sentits, va-
rietats abelianes amb anells d’endomorfismes diferents tenen comportaments

135
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diferents.
Hi ha un nombre considerable de treballs sobre varietats abelianes amb

multiplicació complexa. Sense cap ànim de donar-ne un llistat exhaustiu,
algunes de les aportacions més rellevants es deuen a Shimura i Taniyama
[ShTa61], Lang [La88] o Mumford [Mu70]. L’impacte d’aquests treballs en
branques cabdals de la teoria de nombres, com ara la teoria de cossos de
classes o la conjectura de Birch i Swinnerton-Dyer, ha estat enorme.

També hi ha literatura abundant sobre varietats abelianes amb multi-
plicació totalment real. Destaquem els treballs de Humbert [Hu93], Ribet
[Ri80], [Ri94], Lange [La88] i Wilson [Wi02]. En aquest cas, el desenvolu-
pament d’aquesta teoria ha estat tradicionalment motivat per la seva relació
evident amb les conjectures generalitzades de Shimura-Taniyama-Weil. En
efecte, les varietats abelianes modulars Af/Q associades a una forma modu-
lar cuspidal f ∈ S2(Γ0(N)) de pes 2 i caràcter trivial tenen multiplicació real
sobre Q. El lector pot consultar [HaHaMo99] i [Ri90] per a més detalls.

En canvi, l’estudi de les varietats abelianes amb multiplicació quaterniòni-
ca ha estat portat a terme per menys autors. En aquest cas, l’aritmètica de
les àlgebres d’endomorfismes d’aquestes varietats abelianes és més complexa
que en el cas commutatiu i aquest fet té com a conseqüència que el grup
de Néron-Severi de les varietats abelianes amb multiplicació quaterniònica
és més inaccessible. Sigui com sigui, adrecem el lector a [No01], [JoMo94],
[HaMu95], [HaHaMo99], [Oh74], [DiRo1] i [DiRo2] per a algunes contribu-
cions recents.

Shimura [Sh63], [Sh67] va considerar els espais grollers de mòduli de varie-
tats abelianes amb multiplicació quaterniònica i va provar que admeten un
model canònic XB/Q sobre el cos Q dels nombres racionals. Com a varietats
anaĺıtiques, les varietats XB(C) es poden descriure per mitjà de quocients
compactes de certs dominis simètrics i afitats per grups aritmètics que actuen
en ells. Shimura va explorar les propietats diofantines de les varietats XB i
va demostrar que les coordenades dels anomenats punts de Heegner sobre XB

generen cossos de classes tals que l’acció galoisiana sobre ells pot ser descrita
mitjançant lleis de reciprocitat expĺıcites.

En els darrers anys, hi ha hagut un interès creixent en l’estudi de les
varietats de Shimura que ha estat cruicial en molts aspectes de la teoria dels
nombres.

En efecte, pel que fa a les conjectures modulars en el seu sentit mes ampli,
les corbes de Shimura juguen un paper fonamental en la demostració de Ribet
de la conjectura Epsilon que, a la vegada, implica que el darrer teorema



7 Introducció 137

de Fermat és una conseqüència de la conjectura de Shimura-Taniyama-Weil
(cf. [Ri89], [Ri90] i [Pr95]).

En relació a les conjectures de Birch i Swinnerton-Dyer, Vatsal [Va02] i
Cornut [Cor02] han provat recentment i de manera independent unes conjec-
tures de Mazur sobre el comportament dels punts de Heegner sobre cossos
anticiclotòmics en corbes el·ĺıptiques, tot fent ús de corbes modulars, corbes
de Shimura, corbes de Gross i les teories ergòdiques de Ratner. D’altra
banda, Bertolini i Darmon [BeDa96], [BeDa98], [BeDa99] han explotat la
teoria de Čerednik-Drinfeld sobre les fibres singulars dels models enters de
Morita de les corbes de Shimura per provar versions anti-ciclotòmiques de
les conjectures de Mazur, Tate i Teitelbaum sobre variants p-àdiques de la
conjectura de Birch i Swinnerton-Dyer.

Pel que fa a les conjectures de finitud i de quadratura del grup de Shafare-
vich-Tate d’una varietat abeliana sobre un cos de nombres, Poonen i Stoll
[PoSt99] recentment han fet un estudi de l’aparellament de Cassels-Tate en
aquest context i han donat criteris expĺıcits per a la quadratura de la part de
torsió del grup de Shafarevich-Tate de les varietats Jacobianes de les corbes
algebraiques. Al seu torn, i basant-se en aquests resultats, Jordan i Livné
[JoLi99] han mostrat quocients Atkin-Lehner de corbes de Shimura tals que el
nombre d’elements de la part finita del grup de Shafarevich-Tate de les seves
varietats Jacobianes no és un quadrat perfecte sinó el doble d’un quadrat
perfecte.

En un treball recent, Stein [St02] ha proporcionat exemples expĺıcits de
varietats abelianes A/Q tals que ]Sha(A/Q) = p · n2, n ∈ Z, per tot nombre
primer senar p < 10000, p 6= 37.

A banda de les seves moltes aplicacions, molts autors han investigat les
propietats geomètriques i diofantines de les corbes de Shimura, que són inter-
essants per elles mateixes. D’aquesta manera, els models enters d’aquestes
corbes i les seves fibres especials han estat considerats per Morita [Mo81],
Boutot i Carayol [BoCa91], Buzzard [Bu96], Čerednik [Ce76], Drinfeld [Dr76]
i Zink [Zi81], entre molts d’altres. De gran interès també és la sèrie d’articles
de Kudla i Kudla-Rapoport sobre els aparellaments d’altura en les corbes de
Shimurs, nombres d’intersecció de 0-cicles especials i els valors de les funcions
derivades de certes sèries d’Einsestein al centre del seu puntt de simetria, en
la ĺınea dels treballs clàssics de Gross-Zagier i Hirzebruch-Zagier. Vegeu
[Kud97] i [KudRa02], per exemple.

Resultats de caire efectiu i computacional sobre les corbes de Shimura
han estat portats a terme per Kurihara [Ku79], Elkies [El98], Alsina [Al99]
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i Bayer [Ba02], entre d’altres. Aquests treballs tenen una vàlua particular,
degut a l’absència de punts cuspidals en aquestes corbes, que fa el tractament
d’aquestes qüestions més dif́ıcil que en el cas modular clàssic.

Un altre resultat remarcable i molt recent és la demostració d’Edixhoven i
Yafaev [EdYa02] de la conjectura d’André-Oort sobre la distribució de punts
especials en les varietats de Shimura.

En una altra direcció, Ihara [Ih], Jordan-Livné [JoLi85], [Jo86], [JoLi86],
Ogg [Ogg83], [Ogg84], Milne [Mi79] i Kamienny [Ka90] han estudiat, sota
diferents punts de vista, els conjunts de punts racionals de les corbes de Shi-
mura, els seus quocients Atkin-Lehner i les seves varietats Jacobianes sobre
cossos globals, locals i finits. Finalment, adrecem el lector a [Gr02] per a una
introducció espećıfica a les superf́ıcies de Shimura.

7.1 Resultats

Introducció

L’objectiu d’aquest apartat és exposar els resultats fonamentals d’aquesta
tesi sobre varietats abelianes amb multiplicació quaterniònica de dimensió
arbitrària i les varietats de Shimura que sorgeixen com als seus espais de
mòduli.

7.1.1 Varietats abelianes amb multiplicació quaterniò-
nica

En aquesta secció exposem els resultats continguts en el caṕıtol 3 d’aquesta
memòria.

És ben conegut que les corbes el·ĺıptiques sobre un cos algebraicament
tancat qualsevol admeten exactament una polarització principal llevat de
translacions. En general, les varietats abelianes de dimensió superior no
comparteixen aquesta propietat. Si A és una varietat abeliana, no és una
qüestió trivial decidir si A és principalment polarizable i, en aquest cas, és
un problema interessant descriure el conjunt Π0(A) de classes d’isomorfisme
de polaritzacions principals de A. El teorema de Narasimhan-Nori [NaNo81]
assegura que Π0(A) és un conjunt finit i nosaltres denotem per π0(A) el seu
cardinal.
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Una varietat abeliana principalment polaritzable genèrica admet una única
classe de polaritzacions principals. Humbert [Hu93] va exhibir superf́ıcies
abelianes complexes i simples amb dues polaritzacions principals no isomor-
fes. Més tard, Hayashida i Nishi (cf. [HaNi65] i [Ha68]) van calcular el nom-
bre π0(E1 × E2) per parelles de corbes el·ĺıptiques isògenes E1/C i E2/C
amb multiplicació complexa. En caracteŕıstica positiva, Ibukiyama, Katsura
i Oort [IbKaOo86] van relacionar el nombre de polaritzacions principals en la
potència En d’una corba el·ĺıptica supersingular amb el nombre de classes de
certes formes hermitianes. Lange [La88] va traduir aquest problema al llen-
guatge de la teoria de nombres en termes de l’aritmètica de l’anell End(A) i
va produir exemples de varietats abelianes simples de dimensió superior amb
diverses polaritzacions principals. Al mateix temps, però, va mostrar que
per a les varietats abelianes amb àlgebra d’endomorfismes End(A)⊗Q = F
commutativa i totalment real, el nombre π0(A) és uniformement afitat en
termes de la dimensió de A: π0(A) ≤ 2dim(A)−1. En altres paraules: les vari-
etats abelianes amb multiplicació real poden admetre diverses polaritzacions
principals però no un nombre arbitràriament gran.

Es podria considerar natural que la fita de Lange, o alguna altra fita per
a π0(A), fos vàlida per a qualsevol varietat abeliana simple. És doncs natural
plantejat la següent

Qüestió. Sigui g ≥ 1 un enter positiu. Existeixen varietats abelianes simples
de dimensió g amb un nombre arbitràriament gran de polaritzacions princi-
pals no isomorfes?

Tal i com ja hem observat, en dimensió 1 la resposta a aquesta qüestió
és negativa. Quan g = 2, tans sols es coneixien superf́ıcies abelianes simples
amb π0(A) ≤ 2, degut al treball de Humbert. Un dels nostres resultats
principals, enunciat en un cas particular, és el següent.

Teorema. Sigui F un cos de nombres totalment real de grau [F : Q] = n,
sigui RF el seu anell d’enters i sigui ϑF/Q la diferent de F sobre Q. Sigui
A una varietat abeliana complexa de dimensió 2n i tal que el seu anell
d’endomorfismes End(A) ' O és un ordre maximal en una àlgebra de di-
visió de quaternions totalment indefinida B sobre F .

Suposem que el nombre restringit de classes h+(F ) de F és 1 i que ϑF/Q i
disc(B) són ideals coprimers de F . Aleshores,
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1. A és principalment polaritzable.

2. El nombre de classes d’isomorfisme de polaritzacions principals de A
és

π0(A) =
1

2

∑
S

h(S),

on S recorre el conjunt finit d’ordres en el cos de multiplicació complexa
F (
√−D) que contenen RF [

√−D], D ∈ F ∗
+ és un generador totalment

positiu del discriminant redüıt D de B, i h(S) denota el nombre de
classes de S.

En particular, si A és una superf́ıcie abeliana,

π0(A) =





h(−4D) + h(−D)

2
if D ≡ 3 mod 4,

h(−4D)

2
altrament.

Per tal d’acometre la demostració del teorema anterior, presentem una
aproximació al problema que té els seus oŕıgens en el treball clàssic de
Shimura [Sh63] sobre famı́lies anaĺıtiques de varietats abelianes amb anell
d’endomorfismes prescrit.

La nostra proposta és essencialment diferent de la presa per Lange en
[La88] o Ibukiyama-Katsura-Oort’s en [IbKaOo86]. En efecte, mentre que
a [La88] i [IbKaOo86] s’explota la interpretació dels fibrats de ĺınea com
a endomorfismes simètrics, nosaltres tradüım les qüestions que ens ocupen
al llenguatge d’immersions optimals d’ordres quadràtics d’Eichler. Això ens
porta a resoldre un problema que té les seves arrels en el treball de O’Connor,
Pall i Pollack (cf. [Po60]).

En relació a la qüestió anterior, el nostre segon resultat principal del
caṕıtol 3 és el següent.

Teorema. Sigui g un enter positiu. Aleshores,

1. Si g és parell, existeixen varietats abelianes simples A de dimensió g
tals que π0(A) és arbitràriament gran.

2. Si g és senar i lliure de quadrats, es té que π0(A) ≤ 2g−1, per tota
varietat abeliana simple A de dimensió g sobre C.



7.1 Resultats 141

El creixement indefinit de π0(A) quan g és parell se segueix del teorema
enunciat anteriorment, en la seva versió precisa enunciada com a Teorema
3.7.2 al caṕıtol 3 combinat amb resultats anaĺıtics sobre el comportament
assimptòtic dels nombres de classes relatius de cossos CM deguts a Horie-
Horie [HoHo90] i Louboutin [Lo00], [Lo02]. La segona part del teorema se
segueix de les idees de Lange a [La88].

Del teorema anterior i del fet que tota superf́ıcie abeliana simple i prin-
cipalment polaritzada és la varietat Jacobiana d’una corba llisa de gènere 2
que, pel teorema de Torelli, és única llevat d’isomorfisme.

Corol·lari. Existeixen conjunts {C1, ..., CN} amb un nombre arbitrària-
ment gran de corbes de gènere 2 no isomorfes que posseeixen varietats Jaco-
bianes simples i isomorfes J(C1) ' J(C2) ' ... ' J(CN).

Notem que l’enunciat del darrer teorema no té en consideració les va-
rietats abelianes de dimensió senar i no lliure de quadrats. La conjectura
següent està motivada pel fet que, quan g no és lliure de quadrats, existeixen
varietats abelianes tals que el seu anell d’endomorfismes és un ordre en una
àlgebra de divisió no commutativa sobre un cos de multiplicació complexa
i hi ha una estreta similitud entre l’aritmètica dels grups de Néron-Severi
d’aquestes varietats abelianes i de les varietats abelianes amb multiplicació
quaterniònica.

Conjectura. Sigui g un enter positiu no lliure de quadrats. Aleshores,
existeixen varietats abelianes simples de dimensió g tals que π0(A) és ar-
bitràriament gran.

7.1.2 Varietats de Shimura i morfismes d’oblit

Sigui F un cos de nombres totalment real de grau [F : Q] = n i sigui B una
àlgebra de divisió de quaternions totalment indefinida sobre F . En el caṕıtol
4 d’aquesta memòria estudiem certes varietats de Shimura XB associades a
l’àlgebra B i certs morfismes d’oblit que ocorren entre elles.

Per simplicitat en l’exposició, suposarem al llarg de la secció que h+(F ) =
1. Sigui D ∈ F ∗

+ un generador totalment positiu de disc(B).

Definició. Un ordre maximal principalment polaritzat de B és un parell
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(O, µ) tal que O ⊂ B és un ordre maximal i µ ∈ O és un quaternió pur tal
que µ2 + uD = 0 per alguna unitat u ∈ R∗

F+.

Associat a un ordre maximal principalment polaritzat (O, µ), podem consi-
derar el problema següent de mòduli sobreQ: classificar les classes d’isomorfis-
me de tripletes (A, ι,L) donades per

• Una varietat abeliana A de dimensió g = 2n.

• Un homomorfisme d’anells ι : O ↪→ End(A).

• Una polarització principal L en A tal que

ι(β)◦ = ι(µ−1β̄µ)

per tot β ∈ O, on ◦ : End(A)→End(A) denota la involució de Rosati
respecte L.

Shimura [Sh63], [Sh67] va demostrar que el corresponent functor de mod-
uli es pot representar grollerament per un esquema Xµ/Q redüıt, irreductible
i quasi-projectiu sobre Q de dimensió n = [F : Q]. A més a més, degut al fet
que B és una àlgebra de divisió, la varietat de Shimura Xµ és completa.

Sigui H = {z ∈ C : Im(z) > 0} l’hiperplà superior de Poincaré. Com a
varietat anaĺıtica, Xµ(C) es pot descriure, independentment de la tria de µ,
com el quocient

O1\Hn ' Xµ(C)

de l’espai simètric Hn per l’acció del grup O1, entès com a subgrup discontinu
de SL2(R)n.

A més de les varietats de Shimura que tot just hem introdüıt, sigui HF /Q
l’esquema modular de Hilbert que representa de forma grollera el functor
associat al problema de mòduli de classificar varietats abelianes principal-
ment polaritzades (A,L) de dimensió g provëıdes d’un morfisme d’anells
RF ↪→ End(A). La varietat modular de Hilbert HF té dimensió 3n i el con-
junt de punts complexos HF (C) és el quocient de Hn

2 , on H2 denota l’espai
de Siegel de dimensió 3, per un cert grup discontinu (cf. [Sh63], [LaBi92]).

Observem que quan F = Q, aleshores HF = A2 és la 3-varietat d’Igusa,
l’espai de mòduli de les superf́ıcies abelianes principament polaritzades.

Existeixen uns morfismes naturals
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π : Xµ
πF−→ HF −→ Ag

(A, ι,L) 7→ (A, ι|RF
,L) 7→ (A,L)

de la varietat de Shimura Xµ en la varietat modular de Hilbert HF i l’espai
de mòduli Ag que consisteixen en oblidar de manera gradual l’estructura
d’endomorfismes quaterniònics. Aquests morfismes són representables, propis
i estan definits sobre el cos Q dels nombres racionals.

Definició. El grup d’Atkin-Lehner W d’un ordre maximal O de B és

W = NormB∗+(O)/(F ∗ · O1).

Es satisfà que

W ' Z/2Z× 2r... ×Z/2Z,

on 2r ≥ 2 és el nombre de ideals primers de F que ramifiquen en B.

Definició. Sigui (O, µ) un ordre maximal principalment polaritzat en B. Un
torçament de (O, µ) és un element χ ∈ O∩NormB∗(O) tal que χ2 +n(χ) = 0
i µχ = −χµ.

En altres paraules, un torçament de (O, µ) és un quaternió pur χ ∈ O ∩
NormB∗(O) tal que

B = F + Fµ + Fχ + Fµχ = (
−uD,−n(χ)

F
).

Diem que un ordre maximal principalment polaritzat (O, µ) en B és torçat
si admet un torçament χ en O. Diem que un ordre maximal O és torçat si
existeix µ ∈ O tal que (O, µ) és torçat. Finalment, diem que B és torçada
si existeix un ordre maximal torçat en B. Observem que B és torçada si, i
només si, B ' (−uD,m

F
) per alguna unitat u ∈ R∗

F+ i m ∈ F ∗ tal que m|D.

Definició. Una involució torçada ω ∈ W de (O, µ) és una involució d’Atkin-
Lehner tal que [ω] = [χ] ∈ W es pot representar en B∗ per un torçament χ
de (O, µ).
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Per tot ordre maximal principalment polaritzat (O, µ), sigui Rµ = F (µ)∩
O i sigui Ω = Ω(Rµ) = {ξ ∈ Rµ : ξf = 1, f ≥ 1} el grup finit d’arrels de la
unitat en l’ordre de multiplicació complexa Rµ sobre RF .

Definició. El grup estable de (O, µ) és el subgrup

W0 = U0 · V0

de W generat per

U0 = U0(O, µ) = NormF (µ)∗(O)/(F ∗ · Ω(Rµ)),

i el grup V0 generat per les involucions torçades de (O, µ).

Disposem dels següents monomorfismes naturals de grups V0 ⊆ W0 ⊆ W ⊆
AutQ(Xµ) ⊆ AutQ̄(Xµ ⊗ Q̄).

Teorema. Sigui (O, µ) un ordre maximal principalment polaritzat en B
i sigui Xµ la varietat de Shimura associada a (O, µ). Aleshores existeix un
diagrama commutatiu de morfismes de fibres finites

Xµ
πF−→ HF

↘
bF↗

Xµ/W0,

on Xµ → Xµ/W0 és la projecció natural i bF : Xµ/W0 → πF (Xµ) és una
equivalència birracional entre Xµ/W0 i la imatge de Xµ en HF .

El domini de definició de b−1
F és πF (Xµ) \ TF , on TF és un conjunt finit

de punts de Heegner.

Concloem aquesta exposició dels resultats de la tesi en dimensió arbitrària
tot indicant dues aplicacions diferents dels resultats que hem presentat.

La primera aplicació ha estat desenvolupada a la secció 4.6 i es refereix a
la geometria del lloc quaterniònic QO de les varietats abelianes que admeten
multiplicació per un ordre maximal O en l’espai de mòduli Ag de varietats
abelianes principalment polaritzades de dimensió parell g.

Mitjançant el teorema anterior i la teoria d’Eichler en immersions opti-
mals, el nombre de components irreductibles de QO es poden relacionar amb
certs nombres de classes i es pot estudiar la seva irreductibilitat.
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En segon lloc, el teorema anterior també es pot utilitzar per a explo-
rar l’aritmètica de les varietats abelianes amb multiplicació quaterniònica.
Efectivament, a la secció 4.7 combinem el teorema anterior amb la seva in-
terpretació modular per tal d’obtenir resultats sobre el cos de mòduli dels
endomorfismes en aquestes varietats abelianes.

7.2 Conclusions

Introducció

En aquest apartat exposem els resultats, de caire més acurat, que hem
obtingut en els caṕıtols 5 i 6 en l’estudi de les varietats abelianes amb mul-
tiplicació quaternionica de dimensió g = 2 i les varietats de Shimura de
dimensió n = 1. Aquests resultats són fruit de la combinació de la teoria
desenvolupada en els caṕıtols anteriors i d’eines noves.

7.2.1 Superf́ıcies abelianes amb multiplicació quaterniò-
nica

Fixem una clausura algebraica Q̄ ⊂ C del cos Q dels nombres racionals i
sigui K ⊂ Q̄ un cos de nombres.

Proposició. (Silverberg) Sigui A/K una varietat abeliana sobre K i sigui
S ⊆ EndQ̄(A) un subanell d’endomorfismes de A. Aleshores hi ha una única
extensió minimal KS/K tal que S ⊆ EndKS

(A).

L’extensió KS/K és normal i no ramificada en els ideals primers de K
de bona reducció de A.

Teorema. Sigui A/K una superf́ıcie abeliana amb multiplicació quaterniònica
per un ordre O en una àlgebra de quaternions B. Aleshores, Gal(KB/K) és
isomorf a un grup ćıclic Cn o un grup dihedral Dn amb n = 1, 2, 3, 4 o 6.

Teorema. Sigui C/K una corba de gènere 2 i definida sobre K. Sigui J(C)
la varietat Jacobiana de C i suposem que EndQ̄(J(C)) = O és un ordre
maximal en una àlgebra de divisió de quaternions B sobre Q de discriminant
D.
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Sigui KB/K l’extensió minimal de K sobre la qual tots els endomorfismes
de J(C) estan definits. Aleshores

1. KB/K és una extensió abeliana amb G = Gal(KB/K) ' (1), C2 o
D2 = C2 × C2.

2. Si B 6' (
−D, m

Q
) per a qualsevol m|D, aleshores KB/K és una extensió

trivial o quadràtica de K. En aquest darrer cas, EndK(A) ' Q(
√−D).

3. Si B = (
−D,m

Q
) per algun enter positiu m|D, aleshores EndK(A) és

isomorf o bé a O, a un ordre de Q(
√−D), Q(

√
m) o Q(

√
D/m), o Z.

En cada cas, tenim respectivement que Gal(KB/K) ' (1), C2 i D2.

A continuació presentem alguns exemples que il·lustren els nostres resul-
tats.

Exemple I. Sigui CI/Q el model projectiu i llis de la corba

Y 2 = (X2 + 7/2)(83/30X4 + 14X3 − 1519/30X2 + 49X − 1813/120)

i sigui JI = J(CI)/Q la seva varietat Jacobiana. Aleshores,

• EndL(JI) = O és un ordre maximal de l’àlgebra de quaternions B6 de
discriminant 6 i L = Q(

√−6,
√−14),

• EndQ(
√−14)(JI)⊗Q = Q(

√
2),

• EndQ(
√

21)(JI)⊗Q = Q(
√

3),

• EndQ(
√−6)(JI)⊗Q = Q(

√−6) i

• EndQ(JI) = Z.

Si tenim en compte que B6 = (−6,2
Q ) = (−6,3

Q ) és una àlgebra de quaternions
torçada, l’exemple anterior està d’acord amb el teorema anterior.

Exemple II. Sigui CII el model projectiu i llis de la corba
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Y 2 =
1

48
X(9075X4+3025(3+2

√−3)X3−6875X2+220(−3+2
√−3)X+48).

Sigui JII/K la varietat Jacobiana de CII sobre K = Q(
√−3).

• EndL(JII) = O és un ordre maximal de l’àlgebra de quaternions B10

de discriminant D = 10 i L = Q(
√−3,

√−11) és el cos minimal de
definició dels endomorfismes quaterniònics de JII i

• EndK(J3)⊗Z Q = Q(
√

5).

Exemple III. Sigui CIII/K la fibra de la famı́lia S6(t, s) de Hashimoto-
Tsunogai [HaTs99] en el paràmetre t = 2 sobre K = Q(

√−379). Aleshores
End(JIII) = O és un ordre maximal de l’àlgebra de quaternions B6 de dis-
criminant D = 6 i tots els endomorfismes quaterniònics de JIII estan definits
sobre el mateix cos K.

7.2.2 Propietats diofantines de les corbes de Shimura

Sigui B una àlgebra de divisió de quaternions indefinida sobre Q i sigui
O un ordre maximal de B. Sigui D = p1 · ... · p2r el discriminant de B.
Podem veure el grup Γ = {γ ∈ O : n(γ) = 1} com un subgrup aritmètic
de SL2(R) mitjançant una identificació Ψ : B ⊗ R ' M2(R) i considerar la
superf́ıcie de Riemann Γ\H. Shimura [Sh67] va demostrar que aquest és el
conjunt de punts complexos d’una corba algebraica XD = XD/Q sobre Q
que parametritza superf́ıcies abelianes amb multiplicació quaterniònica per
O.

En el caṕıtol 6 d’aquesta memòria hem estudiat l’estructura del grup
d’automorfismes de les corbes de Shimura. L’eina principal per a obtenir els
nostres resultats ha estat la teoria de Čerednik-Drinfeld.

Teorema. Sigui XD la corba de Shimura de discriminant D. Si g(XD) ≥ 2,
aleshores

(i) Tots els automorfismes de XD ⊗ C estan definits sobre Q.
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(ii) AutQ(XD) ' Cs
2 per algun enter s ≥ 2r.

(iii) Si XD no té punts el·ĺıptics, Aut(XD) ' C2r
2 .

(iv) Si D = 2p o 3p amb p un nombre primer, Aut(XD) ' C2 × C2.

Com a conseqüència d’aquest teorema, en el caṕıtol 6 determinem quines
corbes de Shimura són biel·ĺıptiques, és a dir, admeten un morfisme de grau
2 en una corba de gènere 1.

Teorema. Existeixen exactament trenta-dos valors de D tals que la corba XD

és biel·ĺıptica. En cada cas, les involucions biel·ĺıptiques són de tipus Atkin-
Lehner. Aquests valors, juntament amb el gènere g = g(XD) i el llistat de
les involucions biel·ĺıptiques de XD, es proporcionen en la taula següent.
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Corbes de Shimura biel·ĺıptiques
D g ωm D g ωm D g ωm

26 2 ω2,ω13 82 3 ω82 210 5 ω30,ω42,
35 3 ω7 85 5 ω17 ω70,ω105,
38 2 ω2,ω19 94 3 ω2 ω210

39 3 ω13 106 4 ω53,ω106 215 15 ω215

51 3 ω3 115 6 ω23 314 14 ω314

55 3 ω5 118 4 ω59,ω118 330 5 ω3,ω22

57 3 ω57 122 6 ω122 ω33,ω165,
58 2 ω2,ω58 129 7 ω129 ω330

62 3 ω2 143 12 ω143 390 9 ω390

65 5 ω65 166 6 ω166 462 9 ω154

69 3 ω3 178 7 ω89 510 9 ω510

77 5 ω11,ω77 202 8 ω101 546 13 ω546

Com a conseqüència dels resultats anteriors, ens trobem en disposició de
respondre una qüestió de Kamienny amb tota completitud:

Qüestió. (Kamienny) Quines corbes de Shimura admeten infinits punts
quadràtics sobre Q?

Aquesta és la pregunta diofantina més natural i senzilla que hom es pot
plantejar a la llum del teorema de Shimura [Sh75], que assegura que el conjunt
XD(R) de punts reals de les corbes de Shimura és buit.

Tan sols existeixen un nombre finit de valors de D tals que la corba de
Shimura XD admet infinits punts quadràtics sobre Q. El llistat d’aquestes
corbes, juntament amb els seus quocients racionals o el·ĺıptics es proporcionat
en la taula següent.



150 Chapter 7. Resum en català

Corbes de Shimura XD de gènere ≥ 2 amb infinits punts quadràtics
D ωm g(XD/〈ωm〉) D ωm g(XD/〈ωm〉) D ωm g(XD/〈ωm〉)
26 ω29 0 77 ω77 1 143 ω143 1
35 ω35 0 82 ω82 1 146 ω146 0
38 ω38 0 86 ω86 0 159 ω159 0
39 ω39 0 87 ω87 0 166 ω166 1
51 ω51 0 94 ω94 0 194 ω194 0
55 ω55 0 95 ω95 0 206 ω206 0
57 ω57 1 106 ω106 1 210 ω210 1
58 ω29 0 111 ω111 0 215 ω215 1

ω58 1 118 ω118 1 314 ω314 1
62 ω62 0 119 ω119 0 330 ω330 1
65 ω65 1 122 ω122 1 390 ω390 1
69 ω69 0 129 ω129 1 510 ω510 1
74 ω74 0 134 ω134 0 546 ω546 1
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Progr. Math. 94, Birkhäuser Boston, Boston, MA, (1991), 313-334.

[Mi79] J. S. Milne, Points on Shimura varieties mod p, Proc. Symp. Pure
Math. 33 (1979), 165-184.

[Mic81] J. F. Michon, Courbes de Shimura hyperelliptiques, Bull. Soc. Math.
France 109 (1981), 217-225.



BIBLIOGRAPHY 157

[Mo81] Y. Morita, Reduction mod ℘ of Shimura curves, Hokkaido Math. J.
10 (1981), 209-238.

[Mor95] A. Mori, Power series expansions of modular forms at CM points,
Rend. Sem. Mat. Univ. Pol. Torino 53 (1995), 361-374.

[Mu70] D. Mumford, Abelian varieties, Tata Institute of Fundamental Re-
search, Bombay, Oxford University Press (1970).

[NaNo81] M. S. Narasimhan, M. V. Nori, Polarizations on an abelian variety,
Proc. Indian Acad. Sci. Math. Sci. 90 (1981), 125-128.

[Ne99] J. Neukirch, Algebraic Number Theory, Grundl. math. Wiss. 322,
Springer, 1999.

[No01] R. Noot, On Mumford’s families of abelian varieties, J. Pure Appl.
Algebra 157 (2001), 87-106.

[Oh74] M. Ohta, On `-adic representations of Galois groups obtained from
certain two dimensional abelian varieties, J. Fac. Sci. Univ. Tokyo 21
(1974), 299-308.

[Ogg74] A.P. Ogg, Hyperelliptic modular curves, Bull. Soc. math. France
102 (1974), 449-462.
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[Zi81] T. Zink, Über die schlechte Reduktion einiger Shimuramannig-
faltigkeiten, Compositio Math. 45 (1981), 15-107.


