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Abstract

Darmon cycles are an higher weight analogue of Stark-Heegner points.
They yield local cohomology classes in the Deligne representation asso-
ciated to a cuspidal form on Γ0 (N) of even weight k0 ≥ 2. They are
conjectured to be the restriction of global cohomology classes in the Bloch-
Kato Selmer group defined over narrow ring class fields attached to a real
quadratic field. We show that suitable linear combinations of them ob-
tained by genus characters satisfy these conjectures. We also prove p-adic
Gross-Zagier type formulas, relating the derivatives of p-adic L-functions
of the weight variable attached to imaginary (resp. real) quadratic fields
to Heegner cycles (resp. Darmon cycles). Finally we express the second
derivative of the Mazur-Kitagawa p-adic L-function of the weight variable
in terms of a global cycle defined over a quadratic extension of Q.

Résumé
Les cycles de Darmon sont un analogue de poids supérieur des points

de Stark-Heegner. Ils produisent des classes locales de cohomologie dans
la représentation de Deligne associée à une forme cuspidale sur Γ0 (N) de
poids pair k0≥ 2 . Ils sont supposés être la restriction des classes globales
de cohomologie dans le groupe de Bloch-Kato Selmer defini sur un corps de
classe d’anneaux au sens restraint attachés à un corps quadratique reél.
On montre que des combinaisons linéaires convenables obtenues par les
caractères quadratiques du genre répondent à ces suppositions. On prouve
aussi des formules p-adiques du type Gross-Zagier, qui relient la derivée
des fonctions L avec variable poids attachées à un corps imaginaire (resp.
réel) quadratique aux cycles d’Heegner (resp. de Darmon). On exprime
la seconde dérivée de la fonction de Mazur-Kitagawa de variable poids
comme un cycle global defini sur une extension quadratique de Q.
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1 Introduction

Let Sk0 (Γ0 (N)) be the space of modular forms on Γ0 (N) of even weight k0 ≥ 2
and suppose that N = pM is a decomposition into prime factors with p a
rational prime not dividing M . Let K/Q be a real quadratic field such that
p is inert and the primes dividing M are split in K. When k0 = 2 the paper
[Da] offers a p-adic construction of local points in the Mordel-Weil Af (Kp),
that are conjectured to be global points and to be subject to a reciprocity law
analogous to the one provided by the theory of complex multiplication. Here f
is a new modular form and Af/Q is the abelian variety attached to it by the
Eichler-Shimura construction. The theory as been extended in [Das], where the
construction has been lifted to the p-new quotient of the Jacobian J0 (N).
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The present paper rather focuses on the higher weight case k0 > 2. In the
paper [Or] it is offered a p-adic integration theory which is a higher weight
counterpart of Darmon’s one. Section 2 presents a lift of this p-adic integration
theory in almost the same way as the theory developed in [Das] offers a lift of the
theory developed in [Da]. Indeed, by means of this p-adic integration theory and
then following the construction of [RoSe, Section 4.2], we are able to construct
a monodromy module D ∈ MFQp (φ,N), the category of filtered Frobenius
modules over Qp, that should be thought of as being a realization in the category
of filtered Frobenius modules of the p-new part of the motive of weight k0

modular forms, as we are going to explain. In [RoSe] a different cohomological
approach, allow us to develop a p-integration theory which covers the compact
case of a more general Shimura curve: the p-adic integration theory developed
in [RoSe], when specialized to a modular curve, is shown to be equivalent to
the one presented here, and the monodromy modules to be isomorphic (see
[RoSe, Section 6]). The existence of this ”modular symbol theoretic” p-adic
integration theory is essentially encoded in Proposition 2.8, which borrows from
the techniques in [RoSe]; but it turns out that it can not be deduced from the
results of [RoSe], and one has a priori two independent theories.

Let us a fix a complete field extension Fp/Qp. Suppose that there exists a
prime q ‖ N different from p. We can consider a factorization N = pN+N−,
where N− is an odd number of primes. By the Jacquet-Langlands correspon-
dence, the Eichler Shimura relations and the Brauer-Nesbitt principle (see for
example [IS, Lemma 5.9]) the Deligne representation V[f ] attached to the mod-
ular form f can be realized inside the p-adic étale cohomology of the Shimura
curve X = XN+,pN− attached to the indefinite quaternion algebra B of discrim-
inant pN− and an Eichler order of level N+ in B. Set n := k0− 2 and n = n/2.
More generally, in [IS, Lemma 5.9], it is explained how to construct a Chow mo-
tive Mn over Q whose p-adic realization V (m+ 1) := Hp

(
Mn,Q,Qp (m+ 1)

)
affords representations for all modular forms on Γ0 (N) that are new at the
primes dividing pN−. One has a p-adic étale Abel-Jacobi map:

clm+1
0,Fp

: CHm+1
(
Mn,Fp

)
→ Ext1GFp (Qp, V (m+ 1)) ,

where CHm+1 is the Chow group of codimension m + 1 cycles, Mn,Fp de-
notes the base change to Fp and we write again V to denote the restriction
of the global representation V to the local group GFp . Let D := Dst (V )
(resp. D[f ] := Dst

(
V[f ]

)
) be the associated associated filtered Frobenius module.

D[f ] := Dst
(
V[f ]

)
is indeed a Kf ⊗Qp-monodromy module (see [IS, Section 7]).

The above ext group is explicitly computed in [IS, (49)]:

IS : Ext1GFp (Qp, V (m+ 1)) = Ext1MF (F,D (m+ 1)) =
DFp/Fm+1 = Mk (X,Fp)

∨ = Mk (Γ′, Fp)
∨ .

Here (−)∨ denotes the Fp-dual space, Mk (X,Fp) is the space of weight k-
modular forms on X, while Mk (Γ′, Fp) denotes the space of weight k modular
forms on the Mumford curve Γ′\Hp, defined over Fp, and the last equality holds

3



assuming Fp ⊃ Qp2 . Γ′ is the arithmetic group defined in subsection 5.3.2: it is
associated to the Eichler order of level N+ in B and it is a subgroup of the norm
one elements in the definite quaternion algebra ramified at the primes ∞N−.
Indeed the last one of the above identifications comes from the identification
Xan = Γ′\Hp over Qp2 provided by the Cerednik-Drinfeld Theorem. In this
way the p-adic étale Abel-Jacobi can be interpreted as

log ΦAJ : CHm+1
(
Mn,Fp

)
→Mk (Γ′, Fp)

∨ .

We can consider the projection onto the f -isotypic component, thus getting a
p-adic Abel-Jacobi map with values in e[f ]Mk (Γ′, Fp)

∨. Here e[f ] is the idem-
potent in the Hecke algebra corresponding to the modular form f .

Let R be the Eichler Z [1/p]-order consisting of matrices in M2 (Z [1/p]) that
are upper triangular modM , set Γ̃ := R× and denote by Γ ⊂ Γ̃ the subgroup of
matrices with determinant 1. Write DFp to denote the filtered Fp-vector space
attached to the base change of D to Fp. Firstly our integration theory is a
morphism

Φ :
(
∆0 ⊗Div0

(
Hurp

)
⊗Pn

)
Γ
→ DFp/F

m+1.

Here ∆0 := Div0 P1 (Q), F 0
p := Fp ∩ Qur

p , Div0
(
Hurp

)
denotes the degree zero

divisor supported on Qur
p −Qp that are fixed by the action of the Galois group

GQurp /F 0
p
, Pn is the space of polynomials of degree ≤ n = k0−2 with coefficients

in Fp and Fm+1 is the m+1-step in the filtration of our monodromy module. In
order to be able to construct the right analogue of the notion of Stark-Heegner
points, following the ideas of [Da], we rather lift the above morphism to

ΦAJ :
(
∆0 ⊗Div

(
Hurp

)
⊗Pn

)
Γ
→ DFp/F

m+1.

The left hand side should be regarded as being a substitute of the local Chow
group. Indeed the Darmon cycles are defined as being suitable elements

jΨ ∈
(
∆0 ⊗Div

(
Hurp

)
⊗Pn

)
Γ

attached to the optimal embeddings Ψ : O ↪→ R, where O is an order of K
of conductor prime to NDK , DK being the discriminant of K/Q. One of the
main differences with the weight 2 setting and with the cohomological approach
followed in [RoSe, Section 6] is the lack of uniqueness of the lifting ΦAJ . In
any case one can show that the values ΦAJ (jΨ) are well defined quantities,
i.e. they do not depend on the choice of the p-adic Abel-Jacobi map ΦAJ .
Furthermore the p-adic Abel-Jacobi images ΦAJ (jΨ) agree with the p-adic Abel-
Jacobi images of the Darmon cycles considered in [RoSe, see Section 6].

Suppose that f ∈ Sk0 (Γ0 (N)) is a normalized newform and denote by Kf

the field generated by the Fourier coefficients of f . Attached to the modular
form f there is a Kf⊗Qp-monodromy module D[f ], that appears like a quotient
of D in the category MFQp (φ,N) of filtered Frobenius modules over Qp; we can
consider the p-adic Abel-Jacobi map ΦAJ[f ] obtained by ΦAJ followed by this pro-
jection, taking values in D[f ],Fp/F

m+1. The construction of these monodromy
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modules, that follows [RoSe, Section 4.2], is reviewed in subsection 2.3: they
are built from a space MSc,w∞ , which is obtained from the cuspidal part of the
space of modular symbols with values in the Fp-dual of Pn and depends on the
choice w∞ of a sign at infinity. In section 3 we show how to realize our p-adic
Abel-Jacobi map as taking values in MSc,w∞,∨:

log ΦAJ :
(
∆0 ⊗Div

(
Hurp

)
⊗Pn

)
Γ
→ DFp/F

m+1 '→MSc,w∞,∨.

Our p-adic integration theory can be used to produce local cohomology
classes in Ext1GFp

(
Qp, V[f ]

)
as follows. Thanks to a combination of the work of

Bertolini, Darmon and Iovita with a result of Colmez (see Theorem 4.11) there
is an isomorphism ϕ : D[f ] ' D[f ]. Let F = H/K be the narrow ring class
field attached to the order O and choose a local embedding H ↪→ Fp (assuming
Fp ⊃ Qp2). Then we find an identification of the tangent spaces

ϕ : D[f ],Fp/F
m+1 ' D[f ],Fp/F

m+1 '→ Ext1GFp

(
Qp, V[f ]

)
where the last identification, provided by the Bloch-Kato exponential map, is
indeed an isomorphism in our setting. Let χ : GH/K → C× be a character and
set

jχ :=
∑
σ∈G

H
+
O/K

χ−1 (σ) jσΨ ∈
(
∆0 ⊗Div

(
Hurp

)
⊗Pn

)
Γ
⊗ χ.

Here (−) ⊗ χ denotes a suitable scalar extension. For every global field F set
MWf (F ) := Im

(
e[f ] ◦ clm+1

0,F

)
. LetHχ/K be the extension out by the character

χ. Denote by MW (Hχ)χ the χ-part of MW (Hχ). As in [RoSe, Section 5] one
can formulate rationality conjectures asserting that:

ϕ
(
ΦAJ (jχ)

)
∈ resp (MW (Hχ)χ) .

As it follows from the discussion [RoSe, Section 6], our local cohomology classes
are the same as the ones defined there in the more general setting of a Shimura
curve, when the theory is specialized to a modular curve. One of the main
motivations of this paper is indeed to provide instances where the conjectures
formulated there, or rather some of their consequences, can be proved.

Fix once and for all an identification C ' Cp. Denote by K[f ] the field
generated by the Fourier coefficients of f and all its companion cusp forms.
Assuming Fp ⊃ K[f ] the tangent space D[f ],Fp/F

m+1 = MSc,w∞,∨ (resp.
D[f ],Fp/F

m+1 = e[f ]Mk (Γ, Fp)
∨) splits into σ (f)-components corresponding

to the companion forms σ (f) of f . Write ΦAJf (resp. log ΦAJf ) to denote the
f -component of the above p-adic Abel-Jacobi maps, so that ΦAJ[f ] =

⊕
σ ΦAJσ(f)

(resp. log ΦAJ[f ] =
⊕

σ log ΦAJσ(f)). Attached to the modular form f there is a
modular symbol If ∈MSc,w∞ (resp. a rigid analitic modular form frig) gener-
ating the f -component of MSc,w∞ (resp. Mk (Γ, Fp)).

Let χ : GH/K → C× be a genus character, attached to the pair (χ1, χ2) of
Dirichlet character. Note that the values χi (−M) do not depend on i = 1, 2.
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The identification C ' Cp determines a prime p of Kf above p and we can
decompose V[f ], D[f ], D[f ] and MWf (Hχ)χ according to the decomposition
Kf ⊗ Qp =

⊕
p′|pKf,p′ , where Kf,p′ denotes the p′-adic completion of Kf

at p′. We will write V[f ],p, D[f ],p, D[f ],p and MWf,p (Hχ)χ to denote the p-
component, so that MWf,p (Hχ)χ is naturally a Kf,p-vector space and the f -
component of D[f ],Fp/F

m+1 (resp. D[f ],Fp/F
m+1) appears in D[f ],p,Fp/F

m+1

(resp. D[f ],p,Fp/F
m+1).

One of the main results is the following Theorem, that is implied by the
conjectures formulated in [RoSe, Section 5]:

Theorem 1.1 Suppose N = pM , that there exists a prime q ‖M and that

χi (−M) = (−1)
k0
2 wM

Then:

1. there is yχf ∈MWf (Hχ)χ such that

ϕ
(

ΦAJ[f ] (jχ)
)

= resp
(
yχf

)
;

2. if yχf,p 6= 0 we have
MWf,p (Hχ)χ = Kf,py

χ
f,p.

The proof of the above Theorem follows the strategy developed in [BD2]
and [BD3] in the weight 2 setting. Indeed we also obtain p-adic Gross-Zagier
formulas that are of independent interest and an higher weight analogue of the
main results of [BD2] and [BD3].

LetW := Homcont

(
Z×p ,Gm

)
be the weight space, viewed as a rigid analytic

space over Qp. The integers Z are embedded in W by sending the integer k to
the function t 7→ tk−2; let U ⊂ W be a small enough open affinoid disk centered
at k0. We will define p-adic L-functions

Lp (f/K, χ,−) : U → Cp,
Lp (f/K ′, χ,−) : U → Cp.

of the weight variable attached to the real quadratic field K or an imaginary
quadratic field K ′ such that we can write N = pN+N−, where the primes
dividing N+ are split in K and the primes dividing pN− are inert, squarefree
and in even number.

When K/Q is a real quadratic field satisfying the above assumptions we
obtain the following formula, relating the second derivative of the above p-adic
L-function to the p-adic Abel-Jacobi image of the Darmon cycles.

Theorem 1.2 Let χ : GH+/K → C× be a genus character (here H+ is the
narrow Hilbert ring class field). Then:

d2

dκ2
[Lp (f/K, χ, κ)]κ=k0

=

{
2D

k0−2
2

K log ΦAJf (jχ) (If )2 if χi (−M) = (−1)
k0
2 wM

0 if χi (−M) = (−1)
k0−2

2 wM .
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Let now K ′/Q be an imaginary quadratic field and consider a factorization
N = pN+N− as above. We now focus on a genus character χ of the imaginary
quadratic field K ′. Denote by Hχ/K

′ the extension cut out by the character χ

and by yχ ∈ CHm+1
(
Mn,H′χ

)χ
the corresponding Heegner cycle. There is a

decomposition

MWf (Hχ)χ = MWf

(
Qχ1

)χ1 ⊕MWf

(
Qχ2

)χ2 ,

where Qχi/Q denotes the quadratic extension cut out by the Dirichlet character
χi. Furthermore clm+1

0,f (yχ) belongs precisely to one between MWf

(
Qχ1

)χ1 and
MWf

(
Qχ2

)χ2 .
We obtain the following formula, this time relating the second derivative

of the above p-adic L-function to the p-adic Abel-Jacobi image of an Heegner
cycle.

Theorem 1.3 Let χ : GH/K → C× be a genus character (here H is the Hilbert
ring class field). If clm+1

0,f (yχ) ∈MWf

(
Qχi

)χi we have

d2

dκ2
[Lp (f/K, χ, κ)]κ=k0

=
{

2 log ΦAJf (yχ)
(
frig

)2 if χi (p) = app
− k0−2

2 = −wp
0 if χi (p) = −app−

k0−2
2 = wp.

Hence the second derivative of Lp (f/K, χ, κ) at k0 encodes information
about the restriction at p of clm+1

0,f (yχ): when χi (p) = −wp it is zero pre-
cisely when (the f -component of) the restriction of clm+1

0,f (yχ) at p is zero.
Information on the exact position of clm+1

0,f (yχ), i.e. which one is the character
χi in the above statement, are given in Lemma 5.28.

We will also consider the restriction of the Mazur-Kitagawa p-adic L-function
Lp (f, ω, κ, s) to the critical line Lp (f, ω, κ, κ/2).

Theorem 1.4 Suppose that there exists q ‖M and let ω be a quadratic Dirichlet
character such that

ω (−N) = (−1)
k0−2

2 wN and ω (p) = app
− k0−2

2 = −wp.

Then:

1. the p-adic L-function Lp (f/K, ω, κ, κ/2) vanishes to order

ordκ=k0 Lp (f, ω, κ, κ/2) ≥ 2;

2. there exists yω ∈ CHm+1 (Mn,Qω )ω and t ∈ K×f such that

d2

dκ2
[Lp (f/K, ω, κ, κ/2)]κ=k0

= t · log ΦAJf (yω)
(
frig

)2
;

3. If clm+1
0,f

(
yωp
)
6= 0 then MWf,p (Qω)ω = Kf,pcl

m+1
0,f

(
yωp
)
.
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Again Qω is the extension cut out by the character ω, while (−)ω denotes the
ω-component. Hence again the second derivative of the Mazur-Kitagawa p-adic
L-function Lp (f, ω, κ, κ/2) at k0 encodes information on (the f -component of)
the restriction at p of clm+1

0,f (yω), whose p-component generates MWf,p (Qω)ω

when non-zero. In particular

d2

dκ2
[Lp (f/K, ω, κ, κ/2)]κ=k0

6= 0 ⇒ MWf,p (Qω)ω = Kf,pcl
m+1
0,f

(
yωp
)

.
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2 p-adic integration theory, L-invariants and the
monodromy module of weight k0 modular forms

Let Sk be the space of modular forms of even weight k > 2, endowed with the
GL+

2 (Q)-action
f | γ := det γk−1 (cz + d)−k f (γz) .

For every integer N denote as usual by Sk (Γ0 (N)) := S
Γ0(N)
k the Γ0 (N)-

invariants, i.e. the space of weight k modular forms on Γ0 (N). Let TN be
the Hecke Q-algebra generated by the operators Tl for l - N and Ul for l | N
acting on Sk (Γ0 (N)). Then dimQ TN = dimC Sk (Γ0 (N)) (see [Sh, Theorem
3.51]). The number field generated by the Fourier coefficients of a normalized
modular form f is denoted by Kf . The spaces Sk (Γ0 (N)) are endowed with
the Petersson inner product 〈−,−〉k.

Let Pk−2 be the space of polynomials of degree ≤ k − 2, endowed with the
following right GL2-action:

P (X) M := (cX + d)k−2
P

(
aX + b

cX + d

)
for P ∈ Pk−2 (Kp) , (1)

where M =
(
a b
c d

)
∈ GL2.

Usually we do not specify any field in the notation and we write Pk−2 =
Pk−2 (F ) when such a choice has been made. The dual space Vk−2 (F ) :=
HomF (Pk−2 (F ) , F ) is then endowed with a natural GL2-left action by the
rule

(MΛ) (P ) := Λ (PM) .

The same notation Vk−2 will be in force to mean that the choice of a field has
been made. Indeed, whenever V and W are vector spaces over some field F ,
we set V∨ := HomF (V, F ) and V ⊗W without reference to the field.
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We recall that Pk−2 and Vk−2 carry a non-degenerate GL2-invariant bilinear
form (see for example [BDIS, Sec. 1.2] or [IS, (33)]):

〈−,−〉Pk−2
: Pk−2 ⊗Pk−2 → F ,

〈−,−〉Vk−2
: Vk−2 ⊗Vk−2 → F .

Let ∆ := Div P1 (Q) and ∆0 := Div0 P1 (Q) be respectively the space of
divisors and degree zero divisors supported at the cusps with coefficients in
some field F , endowed with their natural action by fractional transformation
by GL2 (Q). For any space V endowed with an action by G ⊂ GL2 (Q) (a
congruence group of SL2 (Z) in the applications) set BS (V) := Hom (∆,V) and
MS (V) := Hom

(
∆0,V

)
, equipped with the natural induced actions. There is

a canonical exact sequence

0→ V→ BS (V)→MS (V)→ 0. (2)

We also write BSG (V) := BS (V)G and MSG (V) :=MS (V)G to denote the
G-invariants. Finally when V = Vk−2 = Vk−2 (F ) we will occasionally write
MSk =MSk (F ) (and MSkG =MSkG (F ) for the invariants).

Recall the Bruhat-Tits tree T at p, whose vertices V = V (T ) are the ho-
mothety classes of Zp-lattices in Q2

p. Let L∗ := Z2
p be the standard Zp-lattice

in Q2
p and set L∞ := Zp ⊕ pZp. Write E = E (T ) to denote the set of ordered

edges and choose the following orientation E = E+ t E−: write V+ (resp. V−)
to denote the set of those vertices v such that d (v, v∗) is even (resp. odd),
where v∗ := [L∗]; define E+ (resp. E−) to be the set of those edges e such that
s (e) ∈ V+ (resp. s (e) ∈ V−).

We denote by C0 (E ,V) (resp. C (V,V)) the space of maps c : E →V such
that c (e) = −c (e) (resp. C (V,V) the set of all maps c : V → V). The set
of harmonic cocycles Char (E ,V) is defined by the following exact sequence (see
[Gr, Lemma 24] for the right exactness):

0 → Char (E ,V) → C0 (E ,V)
ϕs→ C (V,V) → 0

ϕs (c) (v) :=
∑

s(e)=v
c (e) . (3)

It will be also useful to consider the following exact sequence:

0 → V → C (V,V) ∂∗→ C0 (E ,V) → 0
(∂∗c) (e) := c (s (e))− c (t (e)) .

(4)

Let Fp/Qp be any complete local field. Ak−2

(
P1 (Qp)

)
:= Ak−2

(
P1 (Qp) , Fp

)
denotes the space of Fp-valued locally analytic functions on Qp with a pole of or-
der at most k−2 at∞. The same formula (1) endows it with a GL2 (Qp)-module
structure. This space sits in the following exact sequence

0→ Pk−2 → Ak−2

(
P1 (Qp)

)
→ Ak−2

(
P1 (Qp)

)
/Pk−2 → 0.
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Define the spaces D0
k−2

(
P1 (Qp)

)
, Dk−2

(
P1 (Qp)

)
and Vk−2 by taking the

(continuous) Fp-dual exact sequence:

0→ D0
k−2

(
P1 (Qp)

)
→ Dk−2

(
P1 (Qp)

)
→ Vk−2 → 0.

It will also be convenient to consider the subspace

D0,b
k−2

(
P1 (Qp)

)
⊂ Dk−2

(
P1 (Qp)

)
of bounded distributions, as defined for example in [RoSe].

We recall that there is a standard basis for the topology on P1 (Qp) obtained
from the open compact subsets Ue ⊂ P1 (Qp) corresponding to the ends of T
originating from e.

Note that with the only possible exception of Sk, the above spaces are en-
dowed with an action by the full group GL2 (Q). Hence the matrix W∞ =(
−1 0
0 1

)
acts on these spaces; furthermore, since it normalizes the groups of

the form Γ0 (N), the cohomology groups Hi (Γ0 (N) ,−) are endowed with a nat-
ural W∞-action. Suppose that V is a characteristic 6= 2 vector space endowed
with a W∞-action (the characteristic will be 0 in our applications): we denote
by Vw∞ the direct summand of V = V+ ⊕V− on which W∞ = w∞ ∈ {±1}.

We recall that there is a GL+
2 (Q)-equivariant map

Ĩ− : Sk ⊗R C→MSk (C) (5)

Ĩf {x− y} (P ) := 2πi
∫ y

x

f (z)P (z, 1) dz ∈ C.

The composition of this morphism with the boundary map δ arising from the ex-
act sequence (2) by taking the Γ0 (N)-invariants identifies Sk (Γ0 (N))⊗R C with
the image ofH1

c (Γ0 (N) ,Vk−2 (C)) inH1 (Γ0 (N) ,Vk−2 (C)), usually called the
parabolic cohomology subgroup H1

par (Γ0 (N) ,Vk−2 (C)). The identification

δ ◦ Ĩ− : Sk (Γ0 (N))⊗R C '→ H1
par (Γ0 (N) ,Vk−2 (C)) (6)

is called the Eichler-Shimura isomorphism. Since Vk−2 is an irreducible Γ0 (N)-
module (in light of the assumption k > 2, see for example [Hi, 6.1 Lemma 2]),
the following sequence is exact by definition of the parabolic cohomology, and
Hecke equivariant:

0→ BSkΓ0(N) (C)→MSkΓ0(N) (C)→ H1
par (Γ0 (N) ,Vk−2 (C))→ 0. (7)

More generally we define H1
par (G,V) := δ (MSG (V)).

We recall the following Theorem of Shimura.
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Proposition 2.1 There exist complex periods Ω±f ∈ C such that

I±f :=
(

Ω±f
)−1

Ĩ±f ∈MS
k,±
Γ0(M) (Kf )

The periods Ω±f can be chosen such that

Ω+
f Ω−f = 〈f, f〉k .

Once we make the choice of a sign w∞ ∈ {±1} we set

Ωf := Ωw∞f and If := Iw∞f .

As in the introduction we let k0 > 2 be a fixed even weight and set for
shortness n := k0 − 2, m := n/2 = (k0 − 2) /2.

2.1 Decomposition into Eisenstein and cuspidal parts

Whenever M is a TN -module we say that it admits an Eisenstein/cuspidal
decomposition if there exists a Hecke operator Tl for some l - N such that:

(a) we can write M = Me ⊕M c;

(b) the operator tl := Tl − lk−1 − 1 is zero on Me and is invertible on M c.

The following Lemmas are easily established.

Lemma 2.2 Whenever M = Me ⊕M c admits an Eisenstein/cuspidal decom-
position, M∗ ⊂M with ∗ = e, c is a TN -submodule and furthermore the decom-
position is unique.

Let M1 (resp. M2) be a TN -module (resp. TM -module). If f : M1 →M2 is
a Hecke equivariant morphism (i.e. a morphism such that Tlf = fTl for every
l - MN) and there exists Tl with l - MN such that the properties (a) and (b)
are satisfied by M1 and M2,

f = fe ⊕ f c : Me
1 ⊕M c

1 →Me
2 ⊕M c

2

with f∗ : M∗1 →M∗2 for ∗ = e, c.

In particular

ker (f) = ker (fe)⊕ ker (f c) and coker (f) = coker (fe)⊕ coker (f c)

admit an Eisenstein/cuspidal decomposition.

Lemma 2.3 Suppose that we are given an exact sequence

0→ E →M → C → 0

of Hecke modules such that tl = 0 on E and is invertible on C. Then there
exists a unique Hecke equivariant section C ↪→ M , M = Me ⊕M c admits an
Eisenstein/cuspidal decomposition, Me = E and M c = C.

11



We are now going to describe the Eisenstein/cuspidal decompositions of some
spaces that will be of interest to us. Recall the groups Γ0 (M), Γ0 (pM) and Γ
from the Introduction.

Eisenstein/cuspidal decomposition of MSΓ0(M) (Vn),MSΓ0(pM) (Vn),
and MSΓ (Char (E ,Vn))

The exact sequence (7) endows MSΓ0(M) (Vn) and MSΓ0(pM) (Vn) with
Eisenstein/cuspidal decompositions in light of Lemma 2.3: indeed in [Or, Section
7.2] a careful study of the action of the Hecke operators on BSΓ0(M) (Vn) shows
the existence of l such that tl = 0 on BSΓ0(M) (Vn) and BSΓ0(pM) (Vn); on
the other hand by the Ramanujan-Petersson conjecture proved by Deligne this
Hecke operator is invertible on H1

par (Γ0 (N) ,Vn).
Taking the Γ-invariants from the exact sequence (3) with V = MSn (and

using Shapiro’s Lemma) gives the following commutative diagram:

0 → Char (E ,MS (Vn))Γ → C0 (E ,MS (Vn))Γ → C (V,MS (Vn))Γ

‖ ‖ ‖
0 → MSharΓ0(pM) (Vn) → MSΓ0(pM) (Vn) → MSΓ0(M) (Vn)2 ,

(8)
where MSharΓ0(pM) (Vn) is by definition the image of Char (E ,MS (Vn))Γ under
Shapiro’s isomorphism. The lower right arrow can be described explicitly in
terms of corestriction as in [Gr, Section 3.2]. Thanks to Lemma 2.2 we can endow
MSΓ (Char (E ,Vn)) = Char (E ,MS (Vn))Γ with a natural Eisenstein/cupidal
decomposition.

Remark 2.4 Let T := Tp−newpM be the p-new quotient of the Hecke algebra
TpM . It follows from Lemma 2.2 and the Eichler-Shimura isomorphism (6)
that MSΓ (Char (E ,Vn (F )))c is a free rank two module over TF := T⊗Q F .

Eisenstein/cuspidal decomposition of MSΓ (Vn), H1 (Γ,MS (Vn))
and H1

(
Γ,∆0 ⊗Pn

)
= H1 (Γ,MS (Vn))∨

Sequence (4) (together with Shapiro’s Lemma) produces the long exact se-
quence

0 → MSΓ (Vn)→MSΓ0(M) (Vn)2 →MSΓ0(pM) (Vn) (9)
δ→ H1 (Γ,MS (Vn))→ 0,

where the zero on the right is a consequence of H1 (Γ0 (M) ,MS (Vn)) = 0
(see [Or, Section 7.1]). Thanks to Lemma 2.2 we can endow MSΓ (Vn) and
H1 (Γ,MS (Vn)) with an Eisensten/cuspidal decomposition. It follows that
H1

(
Γ,∆0 ⊗Pn

)
= H1 (Γ,MS (Vn))∨ is naturally endowed with a cuspidal

decomposition too.

Eisenstein/cuspidal decomposition of H1 (Γ, Hom (Pn,V))

12



The groups H1 (G,Vn) with G = Γ0 (N) ,Γ0 (pN) have an Eisenstein/cuspi-
dal decomposition. The long exact sequence obtained from (4) and Shapiro’s
Lemma gives H1 (Γ,Vn) an Eisenstein/cuspidal decomposition too. Let V be
a finite dimensional vector space endowed with the trivial Γ-action. By the
universal coefficient Theorem

H1 (Γ, Hom (Pn,V)) = H1 (Γ,Vn)⊗V,

and the Eisenstein/cuspidal decomposition on H1 (Γ,Vn) induces an Eisen-
stein/cuspidal decomposition on H1 (Γ, Hom (Pn,V)).

Lemma 2.5 We have H1 (Γ, Hom (Pn,V))c = Hpar (Γ, Hom (Pn,V)) = 0.

Proof. The claim is reduced V = K, and we may apply [RoSe, Lemma 3.10].

Taking the cuspidal parts from the exact sequence (9) and the applying
Lemma 2.2 we get the exact sequence:

0 → MSΓ (Vn)c →MSΓ0(M) (Vn)2,c →MSΓ0(pM) (Vn)c (10)
δc→ H1 (Γ,MS (Vn))c → 0.

Lemma 2.6 The boundary map δc restricts to give an isomorphism:

δc :MSp−newΓ0(pM) (Vn)c '→ H1 (Γ,MS (Vn))c .

Proof. The proof is analogous to [RoSe, Lemma 2.9]

2.2 p-adic integration theory

Until the end of this section we fix a complete field extension Fp/Qp and we will
work over this field. Consider the natural map

R : D0
n

(
P1 (Qp)

)
→ Char (E ,Vn)

R (µ)e (P ) := µ
(
PχUe

)
It induces a map

R :MS
(
D0
n

(
P1 (Qp)

))
→MS (Char (E ,Vn)) = Char (E ,MS (Vn)) .

Write Γe∗\Γ =
⊔

e∈E
Γe∗γe where γee = e∗ and Γe∗ = Γ0 (pM) is the stabilizer

in Γ of the edge e∗. Whenever V is a Γe∗ -module endowed with a (possibly
infinite) norm |−|, define the following norm on C0 (E ,V):

‖c‖ := sup
e∈E+

|γec (e)| ∈ R ∪∞.

The above definition does not depend on the choice of the coset representatives.
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Lemma 2.7 Taking the invariants, the Shapiro isomorphism

C0 (E ,V)Γ ' VΓe∗

c 7→ c (e∗)

respects the norms ‖−‖ and |−|.

Proof. The Γ-module identification C0 (E ,V) = C (E+,V) respects the norms
defined on the right hand side by the same formula. C (E+,V) is identified with
the induced module IndΓ

Γe∗
V. Mapping v to cv (e) := γ−1

e e gives an explicit
inverse to the Shapiro isomorphism. The claim easily follows from the definition
of the norms.

Proposition 2.8 Taking Γ-invariants yields an isomorphism

MSΓ

(
D0,b
n

(
P1 (Qp)

)) '→MSΓ (Char (E ,Vn)) = Char (E ,MS (Vn))Γ .

Proof. Let |−| be a (finite) Γe∗ -invariant norm on Vn, that must exists since Vn

is finite dimensional and Γe∗ ⊂ GL2 (L∗) is contained in a compact subgroup of
GL2 (Qp). Endow C0 (E ,Vn) with the same norm ‖−‖ considered in the Lemma
2.7. Let Cb0 (E ,Vn) (resp. Cbhar (E ,Vn)) be the subspace of those elements of
C0 (E ,Vn) (resp. Char (E ,Vn)) having finite norm.

Consider the Γ-modules

Hom
(
∆0, C∗ (E ,Vn)

)
= C∗

(
E , Hom

(
∆0,Vn

))
with ∗ = 0, har,

Define on Hom
(
∆0,Vn

)
a norm by the formula:

|m|′ := sup
x,y∈P1(Q)

|m (x− y)| .

Note that the above formula defines a Γe∗ -invariant norm onHom (D,Vn), since
the norm on Vn was Γe∗ -invariant. Furthermore, taking the Γe∗ -invariants we
see that the above norm is finite on HomΓe∗

(
∆0,Vn

)
. Indeed for every γ ∈ Γe∗ ,

thanks to the Γe∗ -invariance of the norm on Vn, we have∣∣m (γ−1x− γ−1y
)∣∣ =

∣∣γm (γ−1x− γ−1y
)∣∣ = |(γm) (x− y)| ;

hence, whenever m ∈ HomΓe∗

(
∆0,Vn

)
, the sup can be taken over all a set

of representatives for the set of Γe∗ -equivalence classes of P1 (Q). Thanks to
Lemma 2.7 we also know that, setting

‖m‖′ := sup
e∈E+

|γem (e)|′ ,

defines a finite norm on C0
(
E , Hom

(
∆0,Vn

))Γ, and hence also on the subset

HomΓ

(
∆0, Char (E ,Vn)

)
⊂ HomΓ

(
∆0, C0 (E ,Vn)

)
.
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Making explicit the definition of the above norms we see that

‖m‖′ : = sup
e∈E+

|γem (e)|′ = sup
e∈E+

x,y∈P1(Qp)

|(γem (e)) (x− y)| =

= sup
e∈E+

x,y∈P1(Qp)

∣∣γem (e)
(
γ−1
e x− γ−1

e y
)∣∣ =

= sup
e∈E+

x,y∈P1(Qp)

|γem (e) (x− y)|

must be finite on Char (E ,MS (Vn))Γ. In particular, for every x, y ∈ P1 (Q)
(and every element of HomΓ

(
∆0, Char (E ,Vn)

)
) we find

‖m (x− y)‖ = sup
e∈E+

|γem (e) (x− y)| ≤ ‖m‖′ <∞.

In other words for every x, y ∈ P1 (Qp) we have m (x− y) ∈ Cbhar (E ,Vn), so that
the natural inclusion of HomΓ

(
∆0, Cbhar (E ,Vn)

)
in HomΓ

(
∆0, Char (E ,Vn)

)
is

really an identity

HomΓ

(
∆0, Cbhar (E ,Vn)

)
= HomΓ

(
∆0, Char (E ,Vn)

)
. (11)

By the Theorem of Amice-Velu-Teitelbaum (see [DT] for the apropriate for-
mulation) the morphism R restricts to give an isomorphism D0,b

n

(
P1 (Qp)

)
'

Cbhar (E ,V) and the claim follows from (11).

Recall our fixed working field Fp and let F 0
p := Fp ∩ Qur

p be the maximal
absolutely unramified subfield of Fp. Write Div0

(
Hurp

)
(resp. Div

(
Hurp

)
) to

denote the degree zero divisors (resp. the divisors) supported on Qur
p −Qp that

are fixed by the action of the Galois group GQurp /F 0
p
.

Definition 2.9 Define pairings(
∆0 ⊗Div0

(
Hurp

)
⊗Pn

)
⊗MS

(
D0
n

(
P1 (Qp)

))
→ Fp

(r − s)⊗ (τ2 − τ1)⊗ P ⊗ µ 7→
∫ τ2

τ1
Pωlog

µ {r → s}(
∆0 ⊗Div0 (Hp)⊗Pn

)
⊗MS

(
D0
n

(
P1 (Qp)

))
→ Fp

(r − s)⊗ (τ2 − τ1)⊗ P ⊗ µ 7→
∫ τ2

τ1
Pωord

µ {r → s}

where ∫ s
r

∫ τ2

τ1
Pωlog

µ :=
∫

P1(Qp)

logp

(
t− τ2

t− τ1

)
P (t) dµ {r → s} (t)

and ∫ s
r

∫ τ2

τ1
Pωord

µ :=
∑

e:red(τ1)→red(τ2)

∫
U(e)

P (t) dµ {r → s} (t) .
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Since the pairings are Γ-invariant they give pairings

Ψlog,Ψord :
(
∆0 ⊗Div0

(
Hurp

)
⊗Pn

)
Γ
⊗MSΓ

(
D0
n

(
P1 (Qp)

))
→ Fp.

Hence there are two morphisms

Ψlog,Ψord :
(
∆0 ⊗Div0

(
Hurp

)
⊗Pn

)
Γ
→MSΓ

(
D0
n

(
P1 (Qp)

))∨
.

From now on we will identify, via Proposition 2.8,

MS :=MSΓ

(
D0,b
n

(
P1 (Qp)

))
=MSΓ (Char (E ,Vn)) .

Consider the exact sequence

0→ ∆0 ⊗Div0
(
Hurp

)
⊗Pn → ∆0 ⊗Div

(
Hurp

)
⊗Pn → ∆0 ⊗Pn → 0,

yielding the boundary map

H1

(
Γ,∆0 ⊗Pn

) ∂→
(
∆0 ⊗Div0

(
Hurp

)
⊗Pn

)
Γ

Recall that we have introduced Eisenstein/cuspidal decompositions on both
H1

(
Γ,∆0 ⊗Pn

)
and MS. Let pc be the projection onto the cuspidal part of

MS∨.

Theorem 2.10 The morphism

pc ◦Ψord
∂ := pc ◦Ψord ◦ ∂ : H1

(
Γ,∆0 ⊗Pn

)
→MSc,∨

is surjective and induces an isomorphism

H1

(
Γ,∆0 ⊗Pn

)c '→MSc,∨.

Proof. The proof is just a copy of [RoSe, Theorem 3.11] with the obvious
modifications and Lemma 2.6 in place of [RoSe, Lemma 2.9].

Definition 2.11 The morphisms

Φlog,Φord :
(
∆0 ⊗Div0

(
Hurp

)
⊗Pn

)
Γ
→MSc,∨

are by definition Φ∗ := pc ◦Ψ∗ with ∗ = log, ord.

The above Theorem allows us to define the Orton L-invariant.

Corollary 2.12 There exists a unique L ∈ EndTQp

(
MSc,∨

)
such that

Φlog ◦ ∂ = L ◦ Φord ◦ ∂ : H1

(
Γ,∆0 ⊗Pn

)
→MSc,∨.

Proof. The Corollary can be deduced from Theorem 2.10 exactly as [RoSe,
Corollary 3.13] is deduced from [RoSe, Theorem 3.11].
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2.3 The monodromy module of weight k0 modular forms

Choose a sign w∞ and set

D = Dw∞ := MSc,∨,w∞ ⊕MSc,∨,w∞ .

Note that D is a free rank two module over TFp by Remark 2.4.
Define

Φ := −Φlog ⊕ Φord :
(
∆0 ⊗Div0

(
Hurp

)
⊗Pn

)
Γ
→ D.

According to Corollary 2.12 and Theorem 2.10

Fm+1 :=
{

(−Lx, x) : x ∈MSc,∨,w∞
}

= Im (Φ ◦ ∂) (12)

is a free rank one TFp -submodule.
Let σ be the absolute Frobenius automorphism of F 0

p . Write D
(
F 0
p

)
:=

MSc,∨,w∞
(
F 0
p

)2.Then we can consider the σ-linear automorphism σD := 1⊗ σ
on D

(
F 0
p

)
= D (Qp)⊗Qp F

0
p .

We define a structure of filtered Frobenius module over Fp on D as follows.

(a) The filtration is

D = F 0 ) F 1 = ... = F k−1 ) F k = 0,
Fm+1 =

{
(−Lx, x) : x ∈MSc,∨,w∞

}
, for m := (k − 2) /2.

(b) The Frobenius operator ϕ is defined on D
(
F 0
p

)
by the equation ϕ =

Up ⊗ σD ⊕ pUp ⊗ σD, i.e.

ϕ (x, y) := (UpσD (x) , pUpσD (y)) .

(c) The monodromy operator N is defined on D
(
F 0
p

)
by the rule

N (x, y) = (y, 0) .

It is easily checked that the above conditions define indeed a filtered Frobe-
nius module structure on D, defined over Qp if we have taken Fp = Qp. The
filtered Frobenius module D over Fp is indeed obtained from the one over Qp

by base change from MFQp (φ,N) to MFFp (φ,N). Since the Hecke algebra
T is commutative, every element of this ring commutes with ϕ and N . Fur-
thermore Fm+1 ⊂ D is a (rank one) TFp -submodule. Indeed D is a rank two
TQp -monodromy module over Fp.

Let f ∈ Sk (Γ0 (pM)) be a normalized p-new weight k eigenform. Denote
by Iw∞f ∈ MSkΓ0(M) (Kf ) the modular symbol attached to the choice of the
sign w∞ that was chosen to define D, appropriately normalized by means of
Proposition 2.1. Let K[f ] be the composition of the fields Kfσ , where fσ is the
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modular form obtained from f by applying the automorphism σ ∈ GQ to the
Fourier coefficients of f . Up to extending Fp we can fix an embedding K[f ] ⊂ Fp.

Let
MSc,w∞f := FpI

w∞
f ↪→MSc,w∞

be the f -eigencomponent of MSc,w∞ , on which the Hecke algebra acts through

T→ Kf ⊂ Fp. (13)

Write
MSc,w∞[f ] :=

⊕
σ MSc,w∞fσ

Note that the above sum can be indexed by the [Kf : Q] embeddings of Kf in
Q. The inclusion MSc,w∞[f ] ⊂MSc,w∞ gives rise to a morphism

e[f ] : D � D[f ],

where we define:
D[f ] := MSc,∨,w∞[f ] ⊕MSc,∨,w∞[f ] .

We also note that D[f ] =
⊕

σ Dfσ , where Df is similarly defined.
Hence we can consider

Φ[f ] :
(
∆0 ⊗Div0

(
Hurp

)
⊗Pn

)
Γ

Φ→ D
e[f]
� D[f ].

Since MSc,w∞[f ] ⊂MSc,w∞ is an Hecke submodule, setting Fm+1
[f ] := e[f ]

(
Fm+1

)
it is easily checked that D[f ] gets a structure of filtered Fp-vector space with
multiplication by Kf ⊗Qp. The same remark applies to Df , the Hecke algebra
acting though (13). In this way

D[f ] =
⊕

σ Dfσ (14)

is a decomposition of filtered Fp-vector spaces endowed with multiplication by
the Hecke algebra.

We write L[f ] ∈ EndTQp

(
MSc,w∞[f ]

)
(resp. Lf ∈ EndTQp

(
MSc,w∞f

)
) to de-

note the L-invariant corresponding to the modular form f (of course depending
a priori on the choice of w∞), i.e. the image of L acting on MSc,w∞[f ] (resp.
MSc,w∞f ). It is also characterized by exploiting a property similar to the one
of Corollary 2.12 (see [RoSe, Section 4.3] for details). We have L[f ] ∈ Kf ⊗Qp

and Lf ∈ Fp is the image of it under (13). Then we have

Fm+1
[f ] =

{(
−L[f ]x, x

)
: x ∈MSc,∨,w∞[f ]

}
⊂ D[f ],

Fm+1
f =

{
(−Lfx, x) : x ∈MSc,∨,w∞f

}
⊂ Df .

Remark 2.13 D[f ] has indeed a natural Qp-structure compatible that can be
used to define on D[f ] the structure of a Kf ⊗Qp-monodromy module over Qp,
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i.e. we could have taken Fp = Qp. In this way e[f ] becomes an epimorphism in
MFFp (φ,N)

On the other hand Df is only defined when Kf ⊂ Fp. Assuming K[f ] ⊂ Fp,
the decomposition (14) of filtered Fp-vector spaces endowed with multiplication
by the Hecke algebra produces a decomposition

D[f ]/F
m+1
[f ] =

⊕
σ Dfσ/F

m+1
fσ (15)

of the tangent space of D[f ] ∈ MFFp (φ,N). The Hecke algebra acts through
(13) on the f -component.

We can also consider

Φ[f ] :
(
∆0 ⊗Div0

(
Hurp

)
⊗Pn

)
Γ

Φ→ D/Fm+1
e[f]
� D[f ]/F

m+1.

The same construction holds for the inclusion MSc,w∞f ⊂MSc,w∞ and produces
the analogous morphisms Φf . We will write ef to denote the projection onto
the f -component.

2.4 The p-adic Abel-Jacobi maps in the Darmon setting

Consider the exact sequence

... → Hi

(
∆0 ⊗Div0

(
Hurp

)
⊗Pn

)
→ Hi

(
∆0 ⊗Div

(
Hurp

)
⊗Pn

)
→ Hi

(
∆0 ⊗Pn

)
→ ....

obtained from the short exact sequence

0→ ∆0 ⊗Div0
(
Hurp

)
⊗Pn → ∆0 ⊗Div

(
Hurp

)
⊗Pn → ∆0 ⊗Pn → 0.

Let V be any Fp-vector space, regarded like a trivial Γ-module. The appli-
cation of Hom (−,V) produces the following exact sequence:

Hom
((

∆0 ⊗Pn

)
Γ
,V
)
→ Hom

((
∆0 ⊗Div

(
Hurp

)
⊗Pn

)
Γ
,V
)
→ (16)

Hom
((

∆0 ⊗Div0
(
Hurp

)
⊗Pn

)
Γ
,V
)
→ Hom

(
H1

(
Γ,∆0 ⊗Pn

)
,V
)

It will be convenient to give the following:

Definition 2.14 A V-valued definite integration theory is an element

Φ ∈ Hom
((

∆0 ⊗Div0
(
Hurp

)
⊗Pn

)
Γ
,V
)

.

A V-valued semidefinite integration theory lifting Φ is an element

ΦAJ ∈ Hom
((

∆0 ⊗Div0
(
Hurp

)
⊗Pn

)
Γ
,V
)
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such that the image via the middle arrow of (16) is Φ. One can also define the
notion of V-valued positive oriented definite integration theory and the notion of
V-valued positive oriented semidefinite integration theory by means of the exact
sequence

0→ ∆0 ⊗Div0
(
Hur+p

)
⊗Pn → ∆0 ⊗Div

(
Hur+p

)
⊗Pn → ∆0 ⊗Pn → 0, (17)

where Hur+p denotes the subset of those τ ∈ Hurp such that red (τ) ∈ V+.

In particular we can consider the D/Fm+1-valued integration theory ob-
tained by Φ followed by the projection onto the quotient D/Fm+1, that we will
denote again by the same symbol by abuse of notation:

Φ :
(
∆0 ⊗Div0

(
Hurp

)
⊗Pn

)
Γ
→ D/Fm+1.

Definition 2.15 A p-adic Abel-Jacobi map (in the Darmon setting) is any
D/Fm+1-valued semidefinite integration theory lifting the above integration the-
ory Φ (eventually positive oriented).

Proposition 2.16 There exists a D/Fm+1-valued semidefinite integration the-
ory ΦAJ lifting the D/Fm+1-valued integration theory Φ. In particular the re-
striction of ΦAJ to

(
∆0 ⊗Div

(
Hur+p

)
⊗Pn

)
Γ

provides a D/Fm+1-valued pos-
itive oriented semidefinite integration theory lifting the restriction of Φ to the
group

(
∆0 ⊗Div0

(
Hur+p

)
⊗Pn

)
Γ

.

Proof. The claim follows from (16) specialized to V = D/Fm+1, in light of
(12).

Remark 2.17 One of the main differences with the weight 2 setting, as well
as with the cohomological approach followed in [RoSe], is in the lack of the
uniqueness of a semidefinite integration theory. In fact note that two different
liftings differs by an element of

Hom
((

∆0 ⊗Pn

)
Γ
,V
)

,

as it follows from the exactness of (16). In any case we will be able to define the
p-adic Abel-Jacobi image of the Darmon cycles jΨ ∈

(
∆0 ⊗Div

(
Hurp

)
⊗Pn

)
Γ

by showing that ΦAJ (jΨ) does not depend on the choice of the p-adic Abel-Jacobi
map ΦAJ (see the subsequent Proposition 2.22).

2.5 Darmon cycles

Let K/Q be a real quadratic field of discriminant DK and recall our factorization
N = pM . We make the following assumption:

Axiom 2.18 (Darmon hypothesis) The prime p is inert in K while the primes
dividing M are split.
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Choose embeddings:

σ : K → R and σp : K → Kp

that we will use to regard K like a subfield of both R and the quadratic unram-
ified extension Qp2/Qp. In particular the inequalities < make sense between
elements of K and we can consider Hp (K) := Hp ∩ K. We may also view√
DK ∈ Kp via σp.

We denote by Emb = Emb (K,M2 (Q)) the set of all the Q-algebra embed-
dings of K into M2 (Q). Whenever O is a Z [1/p]-order of conductor c prime
to DKN we also denote by Emb (O,R) the set of Z [1/p]-embeddings of O
into our fixed Eichler Z [1/p]-order R. Define the Z [1/p]-order associated to
Ψ ∈ Emb as being OΨ := Ψ−1 (R), so that for every fixed Z [1/p]-order O as
above Emb (O,R) ⊂ Emb is the subset of those Ψ ∈ Emb such that OΨ = O.
Attached to the embedding Ψ ∈ Emb there are the following data:

• the two fixed points τΨ, τΨ ∈ Hp for the action of Ψ (K×) on Hp (K),
ordered in such a way that the action of K× on the tangent space at τΨ

is through the character z 7→ z/z;

• the unique fixed vertex vΨ ∈ V for the action of Ψ (K×) on V, which is
nothing but the reduction red (τΨ) = red (τΨ);

• the unique polynomial up to sign PΨ in P2 which is fixed by the action
of Ψ (K×) on P2 ⊗ det−1 and satisfies 〈PΨ, PΨ〉P2

= −DK/4 (the pairing
being defined like in [BDIS]), which we fix by the choice

PΨ := Tr
(

Ψ
(√

DK/2
)
·
(
X −X2

1 −X

))
∈ P2.

The other one is obtained replacing
√
DK/2 with −

√
DK/2;

• the stabilizer ΓΨ of Ψ in Γ, which is nothing but

ΓΨ = Ψ
(
K×

)
∩ Γ = Ψ

(
O×1
)

,

where O×1 stands for the subgroup of O× of norm 1 and O = OΨ is the
associated order;

• the generator γΨ ∈ ΓΨ/{±1} ' Z which is the image γΨ := Ψ (u) of the
unique generator of u ∈ O×1 such that σ (u) > 1.

For each τ ∈ Hp (K) := Hp∩K (use σp to view K as a subfield of Kp), we say
that τ has positive orientation at p if red (τ) ∈ V+. We write H+

p (K) to denote
the set of positive oriented elements in Hp (K). We say that Ψ ∈ Emb+ ⊂
Emb has positive orientation whenever vΨ ∈ V+, i.e. τΨ, τΨ ∈ H+

p (K). It
is possible to introduce the notion of negative oriented embeddings and then
we have Emb = Emb+ t Emb−. We also denote by Emb+ (O,R) the subset of
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positive oriented embeddings of conductor c. The group Γ naturally acts on
Emb by conjugation, preserving all the subsets we introduced.

We note that the association

Ψ 7→ (τΨ, PΨ, γΨ)

satisfies the following property under the conjugation action by γ ∈ Γ:(
τγΨγ−1 , PγΨγ−1 , γγΨγ−1

)
=
(
γτΨ, γPΨ := PΨγ

−1, γγΨγ
−1
)

. (18)

Once we fix x ∈ P1 (Q) we can consider

j : Emb(O,R) → ∆0 ⊗Div (Hp)⊗Pn

jΨ := γΨx− x⊗ τΨ ⊗D
− k0−2

4
K PmΨ .

Lemma 2.19 The image [jΨ] of jΨ in
(
∆0 ⊗Div

(
Hurp

)
⊗Pn

)
Γ

does not de-
pend on the choice of y ∈ Γx that was made to define it. Furthermore it does
not depend on the choice of a representative of the class [Ψ] of Ψ in Emb, so
that the above association gives a well defined map

j : Γ\Emb(O,R)→
(
∆0 ⊗Div

(
Hurp

)
⊗Pn

)
Γ

.

Proof. The proof is easy.

For later purposes it is useful to remark the following property of the data
attached to Ψ ∈ Emb.

Remark 2.20 We have

(τΨ, PΨ, γΨ) =
(
τΨ,−PΨ, γ

−1
Ψ

)
.

Indeed the equality (τΨ, PΨ) = (τΨ,−PΨ) is clear. To see that γΨ = γ−1
Ψ simply

note that, since the norm of u is one, u−1 = u. Thus

γΨ := Ψ (u) = Ψ (u) = Ψ
(
u−1

)
=: γ−1

Ψ .

Definition 2.21 The Darmon cycle attached to the embedding Ψ is the element
[jΨ] ∈

(
∆0 ⊗Div

(
Hurp

)
⊗Pn

)
Γ

, also denoted by jΨ by abuse of notation.

The following proposition allows us to define the p-adic Abel-Jacobi image
of the Darmon cycles.

Proposition 2.22 For every Φ ∈ Hom
((

∆0 ⊗Div
(
Hurp

)
⊗Pn

)
Γ
,V
)

let ΦAJi
with i = 1, 2 be two V-valued indefinite integration theories lifting the integration
theory Φ. Then we have

ΦAJ1 ([γΨx− x⊗ τ ⊗ P ]) = ΦAJ2 ([γΨx− x⊗ τ ⊗ P ]) ,
for any τ ∈ Hp and any P ∈ KpP

m
Ψ .

In particular
ΦAJ1 ([jΨ]) = ΦAJ2 ([jΨ]) .

The same result holds for positive oriented V-valued integration theories.
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Proof. By Remark 2.17 ΦAJ1 − ΦAJ2 belongs to Hom
((

∆0 ⊗Pn

)
Γ
,V
)
. More

explicitly this simply means that we may write
(
ΦAJ1 − ΦAJ2

)
= ∆ ◦ π for

some ∆ ∈ Hom
((

∆0 ⊗Pn

)
Γ
,V
)
, where π is the quotient map with source(

∆0 ⊗Div
(
Hurp

)
⊗Pn

)
Γ

and target
(
∆0 ⊗Pn

)
Γ
. In other words, for every

x, y ∈ P1 (Q), τ ∈ Hp and every P ∈ Hom (Pn,V):

ΦAJ1 (x− y ⊗ τ ⊗ P )− ΦAJ2 (x− y ⊗ τ ⊗ P ) = ∆ (x− y ⊗ P ) .

We will show that every element ∆ ∈ Hom
((

∆0 ⊗Pn

)
Γ
,V
)

satisfies

∆ (γΨx− x⊗ P ) = 0 for P ∈ KpP
m
Ψ ,

from which the claim will follow, in light of the above equality.
Consider the function

cx : γ → ∆ (γx− x⊗−) ∈ Hom (Pn,V) .

It is a crossed homomorphism from Γ to Hom (Pn,V) because V is endowed
with the trivial Γ-action. Let cx be the class of cx in H1 (Γ, Hom (Pn,V)).

Consider the exact sequence (2)

0→ Hom (Pn,V)→ BS (Hom (Pn,V))→MS (Hom (Pn,V))→ 0.

We claim that cx = −δ∆, where we regard ∆ as an element of

Hom
((

∆0 ⊗Pn

)
Γ
,V
)

= HomΓ

((
∆0 ⊗Pn

)
,V
)

=MSΓ (Hom (Pn,V)) ,

and δ is the boundary map arising from the above exact sequence. Once we
will have established this fact the claim will follow from Lemma 2.5, since then
we will know that cx = −δ∆ = 0. But this means that there exists Λ ∈
Hom (Pn,V) such that ∂Λ = c, i.e. for every γ ∈ Γ and every P ∈ Pn

∆ (γx− x⊗ P ) = cx (γ) (P ) = Λ
(
γ−1P

)
− Λ (P ) .

But (18) implies that KpP
m
Ψ ⊂ PΓΨ

n ; evaluating at γΨx−x⊗P with P ∈ KpP
m
Ψ

gives ∆ (γΨx− x⊗ P ) = 0.
Hence it remains to prove the equality cx = −δ∆. By definition δ∆ is

obtained choosing ∆̃ ∈ BS (Hom (Pn,V)) such that ∆̃ (x− y) = ∆ (x− y) for
every degree zero divisor x− y and then noticing that

γ 7→ γ∆̃− ∆̃ =
(
γ∆̃
)

(y)− ∆̃ (y) =

= ∆̃
(
γ−1y

) (
γ−1−

)
− ∆̃ (y) (−) ∈ Hom (Pn,V)

is a constant function, independent of the choice of the divisor y at which to
evaluate it. Taking y = γx for any given γ we find that the above cocycle is

γ 7→ ∆̃ (x)
(
γ−1−

)
− ∆̃ (γx) (−) ∈ Hom (Pn,V)
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On the other hand, up to the identification

Hom
(
∆0 ⊗Pn,V

)
=MS (Hom (Pn,V)) ,

cx (γ) (P ) = ∆ (γx− x) (P ) = ∆̃ (γx) (P )− ∆̃ (x) (P ) .

Hence the sum cx + δ∆ to be considered is

∆̃ (γx) (P )−∆̃ (x) (P )+∆̃ (x)
(
γ−1P

)
−∆̃ (γx) (P ) = ∆̃ (x)

(
γ−1P

)
−∆̃ (x) (P )

and we have to show that this is a coboundary.
But now a coboundary in H1 (Γ, Hom (Pn,V)) is of the form γ 7→ γΛ − Λ

with Λ ∈ Hom (Pn,V), i.e. (∂Λ) (γ) (P ) = Λ
(
γ−1P

)
− Λ (P ). We can now

take Λ = ∆̃ (x) (−) ∈ Hom (Pn,V), so that(
∂
(

∆̃ (x) (−)
))

(γ) (P ) = ∆̃ (x)
(
γ−1P

)
− ∆̃ (x) (P ) .

The same proof applies for positive oriented V-valued integration theories,
exploiting the long exact sequence obtained from (17) in place of (16).

Now we are in the position to define the p-adic Abel-Jacobi image of the
Darmon cycles.

Definition 2.23 The p-adic Abel-Jacobi image of the Darmon cycle attached
to the embedding Ψ is the element

ΦAJ (jΨ) = ΦAJ ([jΨ]) ∈ D/Fm+1,

where ΦAJ is any p-adic Abel-Jacobi map.

As in [Da] the set Γ\Emb+ (O,R) is naturally endowed with an action by the
(narrow) Picard group Pic+ (O) attached to the order O. The class field theory
identifies canonically Pic+ (O) with the Galois group over K of the narrow ring
class field H+

O .
rec : Pic+ (O) '→ GH+

O/K
.

In this way GH+
O/K

acts on Γ\Emb+ (O,R).

Remark 2.24 As in [Da, after Lemma 5.7] it is possible to introduce the notion
of oriented embeddings Emb+d(O,R) by fixing a homomorphism

d : O → Z/MZ.

Then Γ preserves Emb+d(O,R), so that it makes sense to consider the quotient
Γ\Emb+d(O,R) and this set becomes a torsor under the action of Pic+ (O).
Furthermore, the Atkin-Lehner involution Wle at the primes dividing le ‖ M
transitively permutes the possible orientations, while the Atkin-Lehner involution
Wp reverses the orientation at p.

Let χ : GH+
O/K

→ C× be a character. It will be convenient to introduce the
following linear combination

jχ :=
∑
σ∈G

H
+
O/K

χ−1 (σ) jσΨ ∈
(
∆0 ⊗Div

(
Hurp

)
⊗Pn

)χ
Γ

. (19)
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3 Review of the p-adic Abel-Jacobi map in the
Darmon setting

Consider the following commutative diagram:(
∆0 ⊗Div0

(
Hurp

)
⊗Pn

)
Γ

Φ→ D/Fm+1

‖ ↓ f(
∆0 ⊗Div0

(
Hurp

)
⊗Pn

)
Γ

log Φ→ MSc,∨,w∞
(20)

where:

• f (x, y) = −x−Ly, which is easily checked to be well defined, i.e. f
(
Fm+1

)
=

0, and is an isomorphism;

• log Φ := Φlog − LΦord.

Note also that, by Corollary 2.12,

log Φ ◦ ∂ =
(
Φlog − LΦord

)
◦ ∂ = 0,

a fact that can also be deduced by the commutativity of the diagram and the
equality Φ ◦ ∂ = 0. Since f is an isomorphism we can identify Φ and log Φ. It
is clear that the above discussion applies to D[f ] or Df when f is a modular
form. Hence we will write log Φf = ef ◦ log Φ.

We will use the following notation for the branches of p-adic logarithm. We
let log0 be the branch of the p-adic logarithm such that log0 (p) = 0 and for
every λ ∈ Fp we let

logλ := log0−λ ordp : F×p → Fp

be the branch of the p-adic logarithm such that logλ (p) = −λ.
Note that the definition of the monodromy module D, as well as Φ, depends

in a crucial way on the choice of a branch of the p-adic logarithm, since Φlog

depends on this choice. Write Φlogλ ,Lλ, Φλ and log Φλ to emphasis the depen-
dence on this choice. The dependence on λ appears in D in the definition of
the filtration, so that we write Fm+1

λ .

Proposition 3.1 For every λ ∈ Fp

Φlogλ = Φlog0 − λΦord ∈ Hom
((

∆0 ⊗Div0
(
Hurp

)
⊗Pn

)
Γ
,MSc,∨,w∞

)
.

Proof. We need to evaluate Φlogλ (x− y ⊗ τ2 − τ1 ⊗ P ) at m ∈ MSc,∨,w∞ in
order to prove the proposition. By definition:∫

P1(Qp)
logλ

(
t− τ2

t− τ1

)
P (t) dm {x→ y} (t) =

=
∫

P1(Qp)
log0

(
t− τ2

t− τ1

)
P (t) dm {x→ y} (t) +

−λ
∫

P1(Qp)
ordp

(
t− τ2

t− τ1

)
P (t) dm {x→ y} (t) .
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Thus we need to check the formula:∫
P1(Qp)

ordp

(
t− τ2

t− τ1

)
P (t) dm {x→ y} (t) =

∑
e:v1→v2

∫
Ue
P (t) dm {x→ y} (t) .

The proof of [BDG, Lemma 2.5] gives the claim.

Lemma 3.2 For every λ ∈ Fp

Lλ = L0 − λ.

Proof. Proposition 3.1 implies, in light of Corollary 2.12:

Lλ ◦ Φord ◦ ∂ = Φlogλ ◦ ∂ = Φlog0 ◦ ∂ − λΦord ◦ ∂ =
= L0 ◦ Φord ◦ ∂ − λΦord ◦ ∂ =
=
(
L0 − λ

)
◦ Φord ◦ ∂,

the equality taking place in Hom
(
H1

(
Γ,∆0 ⊗Pn

)
,MSc,∨,w∞

)
.

Now the claim follows from Theorem 2.10, arguing as in Corollary 2.12.

Suppose that in diagram (20) we have chosen the standard branch log0 of
the p-adic logarithm. Choosing a different branch logλ of the p-adic logarithm
we find, thanks to Proposition 3.1 and Lemma 3.2:

• fλ (x, y) = −x−
(
L0−λ

)
y;

• log Φλ = Φlogλ − LλΦord = log Φ0.

In particular we see that log Φλ does not depend on the choice of a branch
of the p-adic logarithm.

Assume now that f is a new modular form. We have Lf and L[f ] ∈
EndTQp

(
MSc,∨,w∞,[f ]

)
acts diagonally via the matrix diag (Lfσ : σ) on MSc,w∞[f ]

with respect to the decomposition (15). Choosing the branch of the p-adic
logarithm λ = L0

f , so that Lλf = 0, the above expressions simplify and become:

• fλ (x, y) = −x;

• log Φ0
f = log Φλf = Φlogλ

f .

Also recall that fλ is an isomorphism.

Proposition 3.3 Let f ∈ Sk0 (Γ0 (N)) be a new modular form. Then the
Df/F

m+1
0 -valued integration theory Φ0

f is equivalent via f0 to the MSc,w∞f -

valued integration theory log Φ0
f = Φ

logL0
f

f .
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4 Families of modular forms and families of mod-
ular symbols

Let W := Homcont

(
Z×p ,Gm

)
be the weight space, viewed as a rigid analytic

space over Qp, and suppose for simplicity p 6= 2. The integers Z are embed-
ded in W by sending the integer k to the function t 7→ tk−2. Note that this
normalization follows [BD2] but not [BDI], where the integer k is sent to the
function t 7→ tk. If U ⊂ W is an open affinoid defined over the local field Kp,
every κ ∈ U (Kp) can be uniquely written as a product κ (t) = ε (t)χ (t) 〈t〉s,
where ε : Z×p → K×p is a character of order p − 1, χ : Z×p → K×p is a char-
acter of order p and s ∈ OKp . We can uniquely write every element of Z×p as
a product t = [t] 〈t〉, where [t] ∈ µp−1, the group of p − 1-roots of unity, and
〈t〉 ∈ 1+pZp. With our normalization an integer k ∈ U corresponds to the char-
acter k (t) = [t]k−2 〈t〉k−2, i.e. ε (t) = [t]k−2, χ = 1 and s = k− 2. In general up
to shrinking U in a neighbourhood of k0 ∈ Z, we can assume ε (t) = [t]k0−2 and
χ = 1 for every κ ∈ U (Kp), so that κ (t) = [t]k0−2 〈t〉s. In this case we also set

(κ/2) (t) := [t]
k0−2

2 〈t〉
s
2 . Then we define, for every α ∈ Qnr,×

p ,

〈α〉κ−k0 := 〈α〉s−k0+2 = exp ((s− k0 + 2) log0 (α)) ,

〈α〉
κ−k0

2 := 〈α〉
s
2−

k0−2
2 ,

〈α〉κ−κ/2−1 := 〈α〉κ−k0
(
〈α〉

κ−k0
2

)−1

〈α〉
k0−2

2 ,

〈α〉κ/2−1 := 〈α〉
κ−k0

2 〈α〉
k0−2

2 .

Note that the first two expressions make sense for every κ ∈ U , since 〈α〉 ∈
1 + pOQnrp and log0 (α) ∈ pOQnrp (since p 6= 2 the exponential converges in
pOCp); the subsequent two expressions are defined using the other two, i.e.

(−)−1 and α
k0−2

2 have the obvious meaning.

We fix the following notation to be in force for the rest of this paper. We let
W := Q2

p − {0} be the set of non-zero vectors in Q2
p and consider the natural

continuous (for the p-adic topologies) projection

π : W → P1 (Qp)
π ((x, y)) := x/y.

For any Zp-lattice L in Q2
p we denote by L′ := L − pL the set of primitive

vectors of L and we write |L| := pordp(detB), for B any Zp-basis of L. Recall we
let L∗ := Z2

p be the standard Zp-lattice in Q2
p and we set L∞ := Zp⊕pZp. Recall

the Bruhat-Tits tree T whose set of oriented edges we denoted by E = E (T ). If
e ∈ E let Ls(e) and Lt(e) be lattices whose homothety classes represent the source
and the target of e, chosen in such a way that Ls(e) ⊃ Lt(e) with index p. To
the edge e are associated the open compact subsets We ⊂W and Ue ⊂ P1 (Qp)
defined by the rules

We := L′s(e) ∩ L
′
t(e) and Ue := π (We) .
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We remark that We depends on the choices of Ls(e) and Lt(e), so that We is
well defined (as a function of e) up to multiplication by elements of Q×p . On the
other hand Ue is well defined and in fact it is the set of ends originating from
e, when making the canonical identification E∞ (T ) = P1 (Qp) between ends of
T and P1 (Qp). In particular we recall that these subsets Ue form a basis for
the p-adic topology of P1 (Qp). We write W∞ = L′∗ ∩ L′∞ to denote the set We

obtained from the edge e∞ = (v∗, v∞), where v∗ = [L∗] and v∞ = [L∞].

For every open compact subset X ⊂ Q2
p or X ⊂ P1 (Qp), write A (X) for

the Qp-space of locally analytic functions on X, as defined in [BDI, Sec. 2].
Denote by D (X) := Homcont (A (X) ,Qp) the continuous Qp-dual space, called
the space of locally analytic distributions on X. As usual, for any µ ∈ D (X)
and F ∈ A (X), we write

∫
X
Fdµ to denote the value of µ at F ; then it is clear

what we mean by
∫
Y
Fdµ, for any open compact subset Y ⊂ X.

We let GL2 (Qp) act on the left on Q2
p by viewing elements of Q2

p as column
vectors. There is an induced action on W and T , as well as an induced action
of the subgroup GL2 (Zp) on L′∗; the action of the scalar matrices Z×p on W
preserves the set L′ for any lattice L and will be denoted as t (x, y) := (tx, ty).

It follows that A (L′∗) is endowed with a right GL2 (Zp)-action and its contin-
uous dual D := D (L′∗) is endowed with a natural left GL2 (Zp)-action. Denote
by R := D

(
Z×p
)

the space of locally analytic distributions on Z×p .
There is a natural R-module structure on D,

R× D→ D (r, µ) 7→ rµ,

defined by the formula∫
L′∗
F (x, y) d (rµ) (x, y) :=

∫
Z×p

(∫
L′∗
F (tx, ty) dµ (x, y)

)
dr (t) .

Fix an integer k ≥ 0 and let U ⊂ W be an affinoid disk such that k ∈ U ,
defined over a finite extension Kp of Qp. We can define a structure of R-algebra
on the Kp-affinoid algebra A (U) of U by means of the formula

r 7→
[
κ 7→

∫
Z×p κ (t) dr (t)

]
.

We denote by DU := A (U) ⊗̂RD the completed tensor product over R. Now
fix any κ ∈ U and define, for any Z×p -stable open compact X ⊂ Q2

p:

A(κ) (X) :=
{
F ∈ A (X) : F (tx, ty) = κ (t)F (x, y) for all t ∈ Z×p

}
.

In [BDI, Section 3] it is explained how to define a continuous R-bilinear map∫
X

: A(κ) (X)× DU → Kp,

that we denote ∫
X
F (x, y) dµU .
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For every integer n ∈ Z we will also be interested in the subspace A(κ)
n (W ) ⊂

A(κ) (W ) consisting of those functions F ∈ A(κ) (W ) such that F (px, py) =
pnF (x, y).

Finally note that for every homogeneous function F ∈ A(n)
n (W ) of degree

n we can consider the locally analytic function on P1 (Qp) with a pole of order
at most n at ∞ defined by the rule F (t) := F (t, 1). Conversely given a locally
analytic function on P1 (Qp) with a pole of order at most n at∞ we can consider
the homogeneous function of degree n defined by F (x, y) := ynF (x/y). In
this way we establish a GL2-equivariant bijection between these spaces. The
space Pn with the action previously considered corresponds to the space of
homogeneous polynomials of degree n and we will denote again by P = P (x, y)
the polynomial attached to P = P (t).

Lemma 4.1 For all α ∈ Qnr,×
p , κ ∈ U and t ∈ Z×p :

• 〈tα〉κ−k0 = κ (t) t−(k−2) 〈α〉κ−k0 ;

• 〈tα〉
κ−k0

2 = (κ/2) (t) t−
k0−2

2 〈α〉
κ−k0

2 ;

• 〈tα〉κ−κ/2−1 = κ (t) (κ/2)−1 (t) 〈α〉κ−κ/2−1;

• 〈tα〉κ/2−1 = (κ/2) (t) 〈α〉κ/2−1.

Furthermore, for every k ∈ Z ∩ U and for every α ∈ Z×p we have:

• 〈α〉k−k0 = αk−k0 ;

• 〈α〉
k−k0

2 = α
k−k0

2 ;

• 〈α〉k−k/2−1 = αk−k/2−1;

• 〈α〉k/2−1 = αk/2−1.

Suppose that X ⊂ L′∗ is an open compact subset preserved by the action of
Z×p . Whenever µ ∈ DU , P ∈ Pn and α, β ∈ A (X) satisfy α (tx) = tα (x) and
β (tx) = tβ (x), it makes sense to consider the functions on U

κ 7→ µ
(
P 〈α〉κ−k0 χX

)
,

κ 7→ µ
(
P 〈α〉

κ−k0
2 〈β〉

κ−k0
2 χX

)
,

κ 7→ µ
(
〈α〉κ/2−1 〈β〉κ−κ/2−1

χX

)
.

The above functions are analytic.

Proof. One has to first check the homogeneity properties of 〈α〉κ−k and 〈α〉
κ−k0

2

and then use their properties to check the ones of 〈α〉κ−κ/2−1 and 〈α〉κ/2−1. The
second statement follows from the fact that, whenever k (t) = [t]k−2 〈t〉k−2 is
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an integer in U , we can assume [t]k−2 = [t]k0−2, so that k ≡ k0 mod (p− 1). It
follows that [α]k−k0 = 1 whenever α ∈ Z×p and then

〈α〉k−k0 := 〈α〉k−2−k0+2 = 〈α〉k−k0 = 〈α〉k−k0 [α]k−k0 = αk−k0 .

The claim 〈α〉
k−k0

2 = α
k−k0

2 follows in a similar way and the other two equations
follow from the definition of 〈α〉κ−κ/2−1 and 〈α〉κ/2−1.

The fact that the above functions are well defined follows because Pακ−k,
Pα

κ−k0
2 β

κ−k0
2 and ακ/2−1βκ−κ/2−1 belong to A(κ), so that we can apply µ.

Finally, to show that they are indeed analytic, one can follow [BDI, Lemma
4.5].

The following proposition will be useful for the computations of the deriva-
tives of p-adic L-functions.

Proposition 4.2 Let k0 ∈ Z≥2 and P ∈ Pn with n = k0 − 2. For every lattice
L and every τ1, τ2 ∈ Hp,

d
dκ

(∫
L′
P (x, y) 〈x− τ1y〉

κ−k
2 〈x− τ2y〉

κ−k
2 dI {r → s} (x, y)

)
κ=k0

=

1
2
d
dκ

(∫
L′
P (x, y) 〈x− τ1y〉κ−k dI {r → s} (x, y)

)
κ=k0

+

1
2
d
dκ

(∫
L′
P (x, y) 〈x− τ2y〉κ−k dI {r → s} (x, y)

)
κ=k0

Proof. Use the explicit formula of [BDI, Remark 4.7] for the derivatives ap-
pearing on the right hand side and compare it with an analogous formula for
the left hand side. Note also that it makes sense to consider the derivatives in
light of Lemma 4.1.

4.1 Families of modular symbols

We let f be a weight k0 newform on the modular curve X = X0 (N), where
N = pM is a factorization into prime factors and p is a prime. The Hecke
operator at p acts on f with eigenvalues:

f | Up = ±p
k0−2

2 f .

A p-adic family of modular forms deforming f is the data of an affinoid disk
U ⊂ W in the weight space, such that k0 ∈ U and a formal q-expansion

f∞ =
∑

n
an (κ) qn, an (κ) ∈ A (U)

such that:

• For every k ∈ U ∩Z≥k0 the specialization fk is a weight k modular eigen-
form;
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• fk0 = f .

Since the slope of the Up operator acting on f is strictly less than k0 − 1,
there exists such a family, which we assume to be an eigenfamily of modular
forms of slope (k0 − 2) /2, up to shrinking U . Note that whenever k 6= k0

the modular form fk is old at p. There is a unique normalized new eigenform
f#
k ∈ Sk (Γ0 (M)) such that

fk (z) = f#
k (z)− pk−1ap (k)−1

f#
k (pz) . (21)

Let Ĩ#
k ∈ MS

k
Γ0(M) (C) (resp. Ĩk ∈ MSkΓ0(pM) (C)) be the modular symbol

attached to f#
k (resp. fk) by the rule (5). Recall the periods Ω#±

k ∈ C (resp.
Ω±k ∈ C) attached to f#

k (resp. fk) by means of Proposition 2.1, allowing us to
define the modular symbols:

I#±
k : =

(
Ω#±
k

)−1

Ĩ#
k ∈MS

k,±
Γ0(M) (Kk) ,

I±k : =
(
Ω±k
)−1

Ĩk ∈MSk,±Γ0(M) (Kk) .

Here Kk is a short notation for the field generated by the Fourier coefficients of
f#
k , which is equal to the field generated by the Fourier coefficients of fk.

We will choose from now on a sign w∞ ∈ {±1}, which is compatible with
the same choice that was used to construct the filtered Frobenius module D.
We set

Ω#
k : = Ω#w∞

k , Ωk := Ωw∞k ,

I#
k : = I#w∞

k and Ik := Iw∞k .

Note also that we may assume Ω#
k = Ωk thanks to (21). The same formula

(21) translates into the following property of the modular symbol I#
k :

Ik {r → s} (P ) = Ĩ#
k {r → s} (P )− pk−1ap (k)−1

Ĩ#
k {r/p→ s/p} (P (x, y/p)) .

(22)
Recall the space DU := D⊗̂RA (U) previously introduced. For each k ∈

Z≥2 ∩ U define a weight k specialization map

ρk :MSΓ0(M) (DU )→MSkΓ0(pM) (Cp)
ρk (I) {r → s} (P ) :=

∫
W∞

P (x, y) dI {r → s} (x, y) .

Theorem 4.3 There exists I∞ ∈MSΓ0(M) (DU ) such that:

• for every k ∈ Z≥2 ∩ U , ρk (I∞) = λ (k) Ik for some λ (k) ∈ C×p ;

• ρk0
(I∞) = Ik0 .
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By Shapiro’s Lemma the modular symbol I∞ ∈ MSΓ0(M) (DU ) gives rise
to a family of distributions {IL}L⊂Q2

p
indexed by the lattices in Q2

p which is

Γ̃-invariant for the natural action of Γ̃ on the induced module

C
(
L,MSΓ0(M) (DU (∗))

)
of maps I∗ from the set L of lattices in Q2

p to the disjoint union of the spaces
MSΓ0(M) (DU (L′)) with L ∈ L such that IL ∈ DU (L′). More precisely:

Definition 4.4 The family {IL}L∈L is defined by the rule

IL {r → s} (F ) := IL∗ {γr → γs}
(
F | γ−1

)
=
∫
L′∗

(
F | γ−1

)
IL∗ {γr → γs} ,

for any locally analytic function F ∈ AU (L′), where γL = L∗ and γ ∈ Γ̃.

Lemma 4.5 Let κ ∈ U and let L2 ⊂ L1 be an index p sublattice of L1 and let
e = ([L1] , [L2]) be the corresponding edge. Then

IL2 {r → s} (F ) = apIL1 {r → s} (F )

for every locally analytic function F ∈ Aκ (We).

Proof. [BDI, Lemma 6.3].

The specialization property of I∞ ∈MSΓ0(pM) (DU ) can be explicitly writ-
ten

I∞ {r → s}
(
PχW∞

)
= λ (k) Ik {r → s} (P ) for every P ∈ Pk−2. (23)

The following Corollary describes the specialization in terms of the modular
symbol I#

k .

Corollary 4.6 For all k ∈ Z ∩ U and all P ∈ Pk−2

I∞ {r → s} (P ) = λ (k)
(

1− pk−2ap (k)−2
)
I#
k {r → s} (P ) .

Proof. This is proved in [BD3, Proposition 2.4] using Lemma 4.5, (22) and
(21).

For every lattice L define a modular symbol π∗ (IL) ∈MS
(
Dk0−2

(
P1 (Qp)

))
by the rule

π∗ (IL) {r → s} (F ) := |L|−
k0−2

2 IL {r → s} (F (x, y)) , (24)

where F is a locally analytic function on P1 (Qp) with a pole of order at most
k0−2 at∞ and F (x, y) := yk0−2F (x/y). Recall the exact sequence (8). Thanks
to the new assumption on f it can be used to attach to the modular symbol
Ik0 ∈MS

k
Γ0(pM) (Kk0) an harmonic modular symbol Ihark0

belonging to

MS :=MSΓ

(
D0,b
n

(
P1 (Qp)

))
=MSΓ (Char (E ,Vn)) ,

where the identification is provided by Proposition 2.8.
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Corollary 4.7 For all lattices L such that [L] is even,

π∗ (IL) = Ihark0
,

the modular symbol in MSΓ

(
Dk0−2

0

(
P1 (Qp)

))
attached to f .

Proof. This is a consequence of Lemma 4.5 together with the specialization
property (23), see [BDI, Proposition 6.4]. Our restriction to even lattices, that
does not appear in [BDI], is a consequence of the fact that we are not assuming
f to be a split modular form as in [BDI] (compare with [BD2, Proposition 2.12],
where the analogous result is proved in the definite weight 2 setting).

The following definition is justified by Lemma 4.1.

Definition 4.8 The semidefinite integral attached to r, s ∈ P1 (Q), τ ∈ H+
p

(
Qur
p

)
and P ∈ Pn is defined by the formula∫ s
r

∫ τ
Pωf := |Lτ |−

k0−2
2

d

dκ

(∫
L′τ
P (x, y) 〈x− τy〉κ−k0 dµLτ {r → s} (x, y)

)
κ=k0

,

where [Lτ ] = red (τ).

We remark that the above formula do not depend on the choice of the rep-
resentative Lτ , since

log0 (px− pτy)P (px, py) = pk0−2 log0 (x− τy)P (x, y) .

Proposition 4.9 For every γ ∈ Γ and every τ ∈ H+
p

(
Qur
p

)
∫ γs
γr

∫ γτ
Pωf =

∫ γs
γr

∫ γτ (P | γ)ωf .

Proof. [BDI, Proposition 6.6].

Recall the harmonic cocycle If .

Proposition 4.10 For every τ1, τ2 ∈ H+
p

(
Qur
p

)
∫ s
r

∫ τ2 Pωf −
∫ s
r

∫ τ1 Pωf =
∫ s
r

∫ τ2

τ1
Pω

log0
f +

2p−
k0−2

2 a′p (k0)
∑
e:red(τ1)→red(τ2) I

har
k0

(e) {r → s} (P ) .

Proof. This formula is proved in the split case in [BDI, Proposition 6.7]. The
methods of the proof adapt to the non-split setting as explained in [BD2, Propo-
sition 2.19].

Combining Proposition 4.9 and 4.10 with the main result of [Co] yields the
following:
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Theorem 4.11 (Exceptional zero conjecture) Let f be a new modular form.
Then Df ' Dst (Vf ), the filtered Frobenius module attached to the modular
form f .

Corollary 4.12 Choose the branch of the p-adic logarithm corresponding to
λ = L0

f . Then the symbol
∫ s
r

∫ τ
Pωf satisfies∫ s

r

∫ τ2 Pωf −
∫ s
r

∫ τ1 Pωf =
∫ s
r

∫ τ2

τ1
Pω

logλ
f .

Proof. The Corollary follows by combining Proposition 4.10 and Proposition
3.1.

Corollary 4.13 We have∫ γΨx

x

∫ τΨ PmΨ ωf = D
k0−2

4
K log ΦAJ (jΨ) (If ) .

Proof. By Corollary 4.12 the MSc,∨,w∞f -valued semidefinite integration theory∫ s
r

∫ τ2 Pωf lifts the integration theory
∫ s
r

∫ τ2

τ1
Pω

logL0
f

f . Hence the claim follows
from Proposition 3.3 and Proposition 2.22, which allows us to compute the p-
adic Abel-Jacobi image of the Darmon cycles using any p-adic Abel-Jacobi map.

4.2 Families of modular forms on definite quaternion al-
gebras

Let N− be a squarefree positive integer divisible by an odd number of primes
and let B be the rational definite quaternion algebra ramified at N−∞. Let
OB be any maximal order in B. Write Ẑ to denote the profinite completion
of Z and set B̂ := B ⊗ Ẑ. Let Σ =

∏
l Σl be any decomposable open compact

subgroup of B̂× and let V be any Kp-vector space, equipped with a left action
of Σp.

For every prime l let Hl be a the unique (up to isomorphism) quaternion
division algebra over Ql. We can choose Ql-algebra isomorphisms ιl : B⊗Ql

'→
M2 (Ql) sending OB ⊗ Zl isomorphically onto M2 (Zl) for every l - N−∞, as
well as Ql-algebra isomorphisms ιl : B ⊗ Ql

'→ Hl for every l | N−∞, so that
ιl (OB ⊗ Zl) is the unique maximal order OHl of Hl. Setting

Γ̃Σ := ιp

(
OB [1/p] ∩

∏
l 6=p Σl

)
(25)

and letting ΓΣ be the subgroup of Γ̃Σ of elements of determinant 1, we can give
the following ad hoc definition of a V-valued p-adic automorphic form on B of
level Σ (see [BDI, Sec. 1]):

Definition 4.14 A V-valued p-adic automorphic form on B of level Σ is a
function

ϕ : GL2 (Qp)→ V such that ϕ (γgu) = u−1ϕ (g)

for all γ ∈ Γ̃Σ, g ∈ GL2 (Qp) and u ∈ ιp (Σp) .

34



The Kp-vector space of V-valued p-adic automorphic forms of level Σ will
be denoted S (Σ, V ).

We will always assume ιp (Σp) = Γ0 (pZp) and we write Σ∞ to denote the
open compact obtained from Σ by replacing the local condition at p with the
local condition ιp (Σ∞,p) = GL2 (Zp). When V = Vk−2 we will simply write
Sk (Σ). Specializing to the case V = DU we obtain the notion of p-adic family
of automorphic forms (here again U is an affinoid disk in the weight space).

Definition 4.15 The space of p-adic families of automorphic forms on B of
level Σ parametrized by weights in U is by definition

SU (Σ) := S (Σ∞,DU ) .

The space SU (Σ) of p-adic families of automorphic forms on B of level Σ
comes equipped with specializations maps for every k ∈ U ∩ Z≥2:

ρk : SU (Σ)→ Sk (Σ) ,
(ρk (Φ) (g)) (P ) :=

∫
W∞

P (x, y) dΦ (g) ,

where P ∈ Pk−2 and P (x, y) := yk−2P (x/y) is the corresponding degree k − 2
homogeneous polynomial, an element of A(n) (W∞). Note that the definition of
ρk depends on the choice of W∞, that was only defined up to multiplication by
Q×p ; we choose W∞ := L′∗ ∩ L′∞.

We now choose the level structure as follows. Let N = pN+N− be a fac-
torization into prime factors of our given integer N , where N− corresponds to
the finite primes of ramification of B. Define the open compact group Σ by the
following local conditions:

Σl =
{

(OB ⊗ Zl)× l - N+p
ι−1
l (Γ0 (NZl)) l | N+p

(26)

Write Γ̃′ = Γ̃Σ for the corresponding group as well as Γ′ = ΓΣ.
By Jacquet-Langlands, the modular form f = fk0 that was fixed in the

previous section corresponds to a modular form ϕ = ϕk0
in the above sense for

the above choice of the level. The functions fk (resp. f#
k ) similarly correspond

to functions ϕk (resp. ϕ#
k ), for the suitable choice of the level (26) (resp. Σ∞).

Since the stabilizer of the standard edge e∗ is Γ0 (pZp), it is possible to attach

to the modular form ϕk0
a cocycle ck0 ∈ C (E ,Vk0−2)Γ̃′ by the rule

ck0 (e) := c̃ϕ (e) := p−n/2 ordp(det(g))gϕ (g) , if e = ge∗.

We note that, since ϕ is new at p, the above cocyle satisfies the rules∑
s(e)=v c (e) = 0,

∑
t(e)=v c (e) = 0 and c (e) = wpc (e) ,

where wp ∈ {±1} is the sign of the Atkin-Lehner involution at p, which is equal
to −1 if c is of split multiplicative type and is equal to 1 if c is of non-split
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multiplicative type (see [BD3, Prop. 1.4] or [BDIS, pag. 32]). Let Γ′ ⊂ Γ̃′

be the subgroup of those elements having norm 1. To the cocycle ck0 one can
attach an harmonic cocycle ino Char (E ,Vk0−2)Γ′ by the rule

char (e) :=
{

c (e) when e ∈ E+

−c (e) when e ∈ E− .

Let X = XN+,pN− be the Shimura curve attached to the indefinite quaternion
algebra B ramified at the primes dividing pN− and the choice of an Eichler
order R = RN+,pN− of level N+. By the Theorem of Cerednik-Drinfeld the
above Shimura curve admits a rigid analytic uniformization at p. The modular
form f corresponds to a rigid analytic modular form frig again by the Jacquet-
Langlands correspondence and the cocycle char is precisely the cocyle attached
to frig by taking the residues. As a consequence of the Theorem of Amice-
Velu-Teitelbaum we may attach to the harmonic cocycle char a unique locally
analytic distribution µ ∈ D0,b

n

(
P1 (Qp)

)Γ′ such that R (µ) = char. This is the
analogue of Proposition 2.8 in this definite setting.

Write L for the set of lattices in Q2
p − {0} and L0 for the set of couples

(L1, L2) such that L1 ⊃ L2. Without the normalizing condition obtained by
multiplying by the determinant p−n/2 ordp(det(g)) it is also possible to attach to
ϕk0

an element (that we will denote by the same symbol) ck0 ∈ C (L0,Vk0−2)Γ̃′ .
The same construction works for the modular forms ϕk (resp. ϕ#

k ) producing

elements ck ∈ C (L0,Vk−2)Γ̃′ (resp. c#k ∈ C (L,Vk−2)Γ̃′) defined by the rule

ck (L1, L2) := gϕ (g) if (L1, L2) = g (L∗, L∞)
(resp. ck (L) := gϕ (g) if L = gL∗).

We further normalize the cocyles c#k for k 6= k0 by the requirement:〈
c#k , c

#
k

〉
= 1, (27)

where the inner product is the one defined in [BD2, End of Section 2.2]. Then
the modular form c#k is uniquely determined up to sign. The relation (21)
translates into

ck (L1, L2) = c#k (L2)− pk−2ap (k)−1
c#k (L1) = (28)

= c#k (L2)− ap (k)−1
c#k (pL1)

In fact, the correspondence can be merged in families:

Theorem 4.16 There exists a family ϕ∞ ∈ SU (Σ) such that:

• for every k ∈ Z≥2 ∩ U , ρk (ϕ∞) = λB (k)ϕk for some λB (k) ∈ C×p ;

• ρk0
(ϕ∞) = ϕk0

.
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Denote by C (L,D (∗)) the space of maps µ∗ from L to tL∈LD (L′) such
that µL ∈ D (L′). Define C (L0,D (∗)) in a similar way, this time µL1,L2

∈
D (WL1,L2), where WL1,L2 := L′1 ∩L′2. The function on the lattices attached to

ϕ∞ obtained by Shapiro’s Lemma will be denoted µ∗ ∈ C
(
L,DU (∗)

)Γ̃′ .
Lemma 4.17 Let κ ∈ U and let L2 ⊂ L1 be an index p sublattice of L1 and let
e = ([L1] , [L2]) be the corresponding edge. Then

µL2
(F ) =

(
apµL1

)
(F )

for every locally analytic function F ∈ Aκ (We).

Proof. [BDI, Lemma 4.3]

The specialization property of ϕ∞ ∈ SU (Σ) can be explicitly written as

ϕ∞ (g)
(
PχW∞

)
= λ (k)ϕk (g) (P ) for every P ∈ Pk−2 and g ∈ GL2 (Qp) .

In terms of µ∗ and ck this property can be restated as follows.(see [BD2,
Lemma 2.10]):

µL1

(
PχL1,L2

)
= λ (k) ck (L1, L2) (P ) for every P ∈ Pk−2 and L1 ⊃ L2 (29)

The following corollary expresses the specialization in terms of c#k .

Corollary 4.18 For all k ∈ Z ∩ U and all P ∈ Pk−2,

µL (P ) = λB (k) ap (k)
(

1− pk−2ap (k)−2
)
c#k (L) (P ) .

Proof. This is proved in [BD2, Proposition 2.11] using Lemma 4.17, (29) and
(28).

For every lattice L define a locally analytic distribution π∗ (µL) which be-
longs to Dk0−2

(
P1 (Qp)

)
by the rule

π∗ (µL) (F ) := |L|−
k0−2

2 µL (F (x, y)) , (30)

where F is a locally analytic function on P1 (Qp) with a pole of order at most
k0 − 2 at ∞ and F (x, y) := yk0−2F (x/y).

Corollary 4.19 For all lattices L such that [L] is even,

π∗ (µL) = µ,

the measure in Dk0−2
0

(
P1 (Qp)

)Γ′ attached to f .
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Proof. This is a consequence of Lemma 4.17 together with the specialization
property ρk0

(ϕ∞) = ϕk0
, see [BDI, Proposition 4.4]. Our restriction to even

lattices, which does not appear in [BDI, Proposition 6.4], is again a consequence
of the fact that we are not assuming ϕ to be split modular form as in [BDI]
(compare with [BD2, Proposition 2.12], where the analogous result is proved in
the weight 2 setting).

The following definition is justified by Lemma 4.1.

Definition 4.20 The indefinite integral attached to τ ∈ H+
p

(
Qur
p

)
and P ∈ Pn

is ∫ τ
Pωf := |Lτ |−

k0−2
2

d

dκ

(∫
L′τ
P (x, y) 〈x− τy〉κ−k0 dµLτ (x, y)

)
κ=k0

where [Lτ ] = red (τ).

Proposition 4.21 For every γ ∈ Γ′ and every τ ∈ H+
p∫ γτ

Pωf =
∫ τ (P | γ)ωf .

Proof. [BDI, Proposition 4.4]

Proposition 4.22 For every τ1, τ2 ∈ H+
p

(
Qur
p

)
∫ τ2 Pωf −

∫ τ1 Pωf =
∫ τ2

τ1
Pωf + 2p−

k0−2
2 a′p (k0)

∑
e:red(τ1)→red(τ2) c

har (e) (P ) .

Proof. This is [BDI, Proposition 4.10]. Again the restriction to even elements
of H+

p

(
Qur
p

)
, which does not appear in [BDI], is a consequence of the fact that

we are not assuming that ϕ is a split form. As explained in [BD2, Proposition
2.19] in the weight 2 setting, the non-split case can be similarly treated up to
restricting to H+

p

(
Qur
p

)
and the ideas of the proof readily adapts to the higher

weight case, in order to remove the restriction appearing in [BDI].

5 p-adic L-functions

5.1 The Mazur-Kitagawa p-adic L-functions

Let g ∈ Sk (Γ0 (N)) be an eigenform and recall the modular symbol Ig ∈
MSk,w∞Γ0(M) (Kg) attached to g by means of Proposition 2.1 and the choice of
a sign w∞. Define, for our fixed g and m ∈ N>0, the function

Ig,m [P, a] : Pk−2 (Kg)× Z/mZ→ Kg

Ig,m [P, a] : = Ig {∞ → a/m} (P ) ,
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where the fact that Ig,m [P, a] depends only on the class of a in Z/mZ follows

from the invariance of Ig under the matrix
(

1 1
0 1

)
and the relation

(
1 1
0 1

)(
1 −a
0 m

)
=
(

1 −a+m
0 m

)
.

Let now χ be any primitive Dirichlet character modulo m and consider the
Gauss sum τ (χ) :=

∑
a∈Z/mZ χ (a) e2πia/m.

Proposition 5.1 Let 1 ≤ j ≤ k− 1 be an integer and let χ be a character such
that χ (−1) = (−1)k−j−1

w∞ = (−1)j−1
w∞ (since k is even). Then

∑
a∈Z/mZ χ (a) Ig,m [Pj,a, a] =

(j − 1)!τ (χ)

(−2πi)j−1 Ωg
L (g, χ, j) =: L∗ (g, χ, j) ,

where
Pj,a :=

(
x− a

m
y
)j−1

yk−j−1.

Proof. As explained in [BD2, Proposition 1.3] the above formula is a conse-
quence of the formula of Birch and Manin expressing special values of L-series
in terms of modular symbols that can be found in [MTT, Formula (8.6)], after
taking into account that Ig belongs to the w∞-eigenspace for the W∞-action and
we are assuming χ (−1) = (−1)k−j−1

w∞. The assumption that χ is a quadratic
character appearing in [BD2], which is done in view of the applications, is not
needed.

To the modular symbol I∞ we attach the symbol

I∞,m [F, a] : AU (L′∗)× Z/mZ→ Cp
I∞,m [F, a] : = I∞ {∞ → a/m} (F ) .

The following definition attaches a p-adic L-function

Lp (f, χ, κ, s) : U × Zp → Cp
(κ, s) 7→ Lp (f, χ, κ, s) .

to the data of f and a Dirichlet character.

Definition 5.2 The Mazur-Kitagawa p-adic L-function attached to (f, χ), where
χ : Z/mZ→ C× is a character of conductor m, is defined by the rule

Lp (f, χ, κ, s) : =
∑
a∈Z/mZ χ (ap)

∫
Z×p ×Z×p

(
x− pa

m
y
)s−1

yκ−s−1dI∞
{
∞→ pa

m

}
=

=
∑
a∈Z/mZ χ (ap) I∞,m

{
∞→ pa

m

}(
Fs,paχZ×p ×Z×p

)
,

where
Fs,pa :=

(
x− pa

m
y
)s−1

yκ−s−1.
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Note that whenever (x, y) ∈ Z×p × Z×p and χ (ap) 6= 0 we have (ap,m) = 1,
so that m ∈ Z×p and

x− pa

m
y ∈ Z×p + pZp ⊂ Z×p . (31)

We have defined the above Mazur-Kitagawa p-adic L-function as a two variable
function and it is indeed analytic in both variables. For the applications we
have in mind it is sufficient to consider the restriction of this function to the
critical line (κ, κ/2). In this case we are fully justified by Lemma 4.1, since the
function of the κ-variable we have defined is the linear combination of functions
of the form:

κ 7→ µ
(
ακ/2−1βκ−κ/2−1χX

)
= µ

(
〈α〉κ/2−1 〈β〉κ−κ/2−1

χX

)
.

Here the equality follows from (31) and again Lemma 4.1 when κ = k ∈ Z ∩ U .
Hence the right hand side can be taken as a definition, while the notation on the
left hand side for more general κ ∈ U suggests what is the value at the integers.
This is indeed needed in order to investigate the interpolation properties of the
Mazur-Kitagawa p-adic L-function, as it is done in the subsequent theorem.

Theorem 5.3 Assume χ is a primitive character, k ∈ U ∩Z and 1 ≤ j ≤ k−1
satisfies χ (−1) = (−1)j−1

w∞. Then

Lp (f, χ, k, j) = λ (k)
(

1− χ (p) pj−1ap (k)−1
)
L∗ (fk, χ, j) .

Proof. In light of the preceding remarks we can appeal to the proof of [BD2,
Theorem 1.12], which uses Proposition 5.1 after a direct calculation (again the
assumption that χ is a quadratic character is not needed). Note that strictly
speaking we are only allowed to move along the line (k, k/2), since we have not
defined Lp (f, χ, κ, s) out of the line (κ, κ/2) but rather remarked that it could
be done; in other words following the proof of [BD2, Theorem 1.12] with j = k/2
we can prove the subsequent Corollary 5.4.

What really matters is the following corollary, which specializes to j = k/2
Theorem 5.3 and expresses the interpolation property in terms of the modular
form f#

k using the relation

L∗ (fk, χ, j) =
(

1− χ (p) pk−j−1ap (k)−1
)
L∗
(
f#
k , χ, j

)
,

which follows from (21).

Corollary 5.4 Assume χ (−1) = (−1)
k−2

2 w∞. Then

Lp (f, χ, k, k/2) = λ (k)
(

1− χ (p) p
k−2

2 ap (k)−1
)2

L∗
(
f#
k , χ, k/2

)
,

where

L∗
(
f#
k , χ, k/2

)
:=

(k/2− 1)!τ (χ)

(−2πi)k/2−1 Ωk
L
(
f#
k , χ, k/2

)
.
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5.2 p-adic L-functions attached to real quadratic fields

In this subsection we let K/Q be a real quadratic field such that:

• p is inert in K;

• all the prime factors of M split in K.

Let Ψ ∈ Emb+ (O,R) be an optimal embedding of conductor c prime to
DK , the discriminant of K/Q, and N . Denote by GH+

O/K
the Galois group of

the corresponding narrow ring class field. Recall the data (τΨ, PΨ, γΨ) attached
to it and further consider a Zp-lattice LΨ such that [LΨ] = vΨ. The following
definition attaches a p-adic L-function

Lp (f/K,Ψ,−) : U → Cp
κ 7→ Lp (f/K,Ψ, κ)

to the above data. It is easily checked that the definition below does not depend
on the choice of LΨ.

Definition 5.5 Let r ∈ P1 (Q) be any base point. The partial p-adic L-function
attached to (f/K,Ψ) is

Lp (f/K,Ψ, κ) := |LΨ|−
k0−2

2
∫
L′Ψ
〈PΨ (x, y)〉

κ−k0
2 PmΨ (x, y) dILΨ {r → γΨr} .

The partial p-adic L-function attached to (f/K, χ), where χ : GH+
O/K

→ C×

is a character, is

Lp (f/K, χ, κ) :=
∑
σ∈G

H
+
O/K

χ−1 (σ)Lp (f/K, σΨ, κ) .

The p-adic L-function attached to (f/K, χ), where χ : GH+
O/K

→ C× is a
character, is

Lp (f/K, χ, κ) := Lp (f/K, χ, κ)2 .

In order to justify the above definition and the fact that the above p-adic
L-functions are analytic we can appeal to Lemma 4.1 after noticing that they
are built from functions of the form κ 7→ µ

(
P 〈α〉

κ−k0
2 〈β〉

κ−k0
2 χX

)
.

Remark 5.6 The above p-adic L-functions depend, of course, on the choice of
the modular symbol I∞ that was used to define the family {IL}L⊂Q2

p
. It can be

shown that the definition depends only on the class of Ψ in Γ\Emb+ (O,R). It
turns out that many of the properties of these p-adic L-functions actually depend
only on f/K.

We note that a suitable choice of the lattice LΨ can be made as follows. Since
the group Γ acts transitively on the positive vertices V+ we can choose γ ∈ Γ
such that γvΨ = v∗. Hence v∗ = vγΨγ−1 and L∗ = γLΨ = LγΨγ−1 is associated
to the embedding γΨγ−1 ∈ [Ψ]. It is clear that this choice is the natural one in
investigating the relations with the Mazur-Kitagawa p-adic L-function, whose
definition was given in terms of I∞ = IL∗ .
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Note the following vanishing property of the above p-adic L-functions.

Proposition 5.7 The p-adic L-functions vanish at k0:

Lp (f/K,Ψ, k0) = Lp (f/K, χ, k0) = Lp (f/K, χ, k0) = 0.

Furthermore,
d

dκ
[Lp (f/K, χ, κ)]κ=k0

= 0.

Proof. By definition and (24)

Lp (f/K,Ψ, k0) : = |LΨ|−
k0−2

2
∫
L′Ψ

PmΨ (x, y) dILΨ {r → γΨr} =

=
∫

P1(Qp)
PmΨ dπ∗ (ILΨ) {r → γΨr} .

The claim now follows from Corollary 4.7. By definition the same vanishing
property holds for the other p-adic L-functions and the defining relation Lp = L2

p

yields the last assertion.

5.2.1 Interpolation properties of the p-adic L-functions attached to
real quadratic fields and functional equation

The following theorem encodes the main interpolation property of the p-adic
L-function Lp (f/K, χ, κ).

Theorem 5.8 For all k ∈ Z≥2, 6=k0 ∩ U

Lp (f/K, χ, κ) = λ (k)2
(

1− pk−2ap (k)−2
)2

D
k−2

2
K L∗

(
f#
k /K, χ, k/2

)
,

where

L∗
(
f#
k /K, χ, k/2

)
:=

(
k−2

2

)
!2
√
DK

(2πi)k−2 Ω2
k

L
(
f#
k /K, χ, k/2

)
.

Proof. The proof of [BD3, Theorem 3.5] readily adapts to our higher weight
setting. As explained in [BD3] the proof is reduced to Popa’s formula [Po,
Theorem 6.3.1].

Recall that a genus character of GK is a quadratic unramified character of
GK . Such a character corresponds to a biquadratic (or quadratic when χ = 1)
extension of Q which is explicitly given by

Hχ = Q
(√

D1,
√
D2

)
⊃ Q

(√
D
)

= K,

where DK =: D = D1D2 is a factorization of the fundamental discriminant D
into factors Di prime each other.
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Let χi (resp. εK) be the Dirichlet character attached to Q
(√
Di

)
/Q (resp.

K/Q). Then εK = χ1χ2. We say that χ is real (resp. imaginary) whenever
Hχ/K is totally real (resp. imaginary). Note that

1 = εK (−1) = χ1 (−1)χ2 (−1) ,

so that
χ1 (−1) = χ2 (−1) , (32)

depending of whether Q
(√
Di

)
/Q are imaginary or real. Note that DK ∈ Z×p ,

since by assumption p is prime to DK . In particular D
k−2

2
K extends on U to an

analytic function D
κ−2

2
K := 〈DK〉

κ−2
2 , thanks to Lemma 4.1.

Theorem 5.9 Let χ be a genus character such that χ (−1) = (−1)
k0−2

2 w∞.
Then

Lp (f/K, χ, κ) = D
κ−2

2
K Lp (f, χ1, κ, κ/2)Lp (f, χ2, κ, κ/2) ,

where (χ1, χ2) is the pair of Dirichlet characters attached to χ.

Proof. The proof of [BD3, Theorem 3.5] adapts.

Remark 5.10 Let (χ1, χ2) be the pair attached to χ. Since the primes dividing
M are split in K, it follows from (32) that χ1 (−M) = χ2 (−M). Hence we
shall simply write χi (−M).

5.2.2 Derivatives of p-adic L-functions attached to real quadratic
fields

Theorem 5.11 Let Ψ ∈ Emb+ (O,R). Then

d

dκ
[Lp (f/K,Ψ, κ)]κ=k0

=
1
2
D

k0−2
4

K ·(
log ΦAJ (jΨ) (If ) + (−1)m+1 log ΦAJ (jΨ) (If )

)
.

Proof. Consider the factorization

PΨ (x, y) = A (x− τΨy) (x− τΨy)

and write

Lp (f/K,Ψ, κ) := |LΨ|−
k0−2

2 〈A〉
κ−k0

2 ·∫
L′Ψ

PmΨ (x, y) 〈x− τΨy〉
κ−k0

2 〈x− τΨy〉
κ−k0

2 dILΨ {r → γΨr} .

In light of Proposition 5.7, the usual formula for the derivatives of the product
of two functions yields

d
dκ [Lp (f/K,Ψ, κ)]κ=k0

= |LΨ|−
k0−2

2 ·
d
dκ

[∫
L′Ψ

PmΨ (x, y) 〈x− τΨy〉
κ−k0

2 〈x− τΨy〉
κ−k0

2 dILΨ {r → γΨr}
]
κ=k0

.
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By Proposition 4.2,

|LΨ|−
k0−2

2
d

dκ

[∫
L′Ψ

PmΨ (x, y) 〈x− τΨy〉
κ−k0

2 〈x− τΨy〉
κ−k0

2 dILΨ {r → γΨr}
]
κ=k0

=
1

2
|LΨ|−

k0−2
2

d

dκ

(∫
L′ P

m
Ψ (x, y) 〈x− τΨy〉κ−k dILΨ {r → γΨr}

)
κ=k

+

1

2
|LΨ|−

k0−2
2

d

dκ

(∫
L′ P

m
Ψ (x, y) 〈x− τΨy〉κ−k dILΨ {r → γΨr}

)
κ=k

.

Note now that LΨ = LΨ and, by Remark 2.20, τΨ = τΨ, PmΨ = (−1)m Pm
Ψ

and γΨ = γ−1

Ψ
. It follows that the last expression is equal to

1
2

(∫ γΨx

x

∫ τΨ PmΨ ωf + (−1)m
∫ γ−1

Ψ
x

x

∫ τΨ Pm
Ψ
ωf

)
.

By Lemma 2.19, replacing x by γΨx to compute the integral gives∫ γ−1
Ψ
x

x

∫ τΨ Pm
Ψ
ωf =

∫ x
γΨx

∫ τΨ Pm
Ψ
ωf = −

∫ γΨx

x

∫ τΨ Pm
Ψ
ωf .

The claim now follows from Corollary 4.13.

Recall the linear combination jχ introduced in (19) and set

j
χ

:=
∑
σ∈G

H
+
O/K

χ−1 (σ) jσΨ.

Corollary 5.12 Let χ : GH+
O/K

→ C× be a character. Then

d2

dκ2
[Lp (f/K, χ, κ)]κ=k =

1
2
D

k0−2
2

K ·(
log ΦAJ (jχ) (If ) + (−1)m+1 log ΦAJ

(
j
χ)

(If )
)2

.

Proof. This is a consequence of Theorem 5.11, in light of Proposition 5.7.

Let now χ be a genus character attached to the pair (χ1, χ2) and let H+ be
the narrow Hilbert ring class field. Recall that by Remark 5.10 χi (−M) does
not depend on i = 1, 2.

Corollary 5.13 Let χ : GH+/K → C× be a genus character. Then

d2

dκ2
[Lp (f/K, χ, κ)]κ=k =

1
2
D

k0−2
2

K ·(
1 + (−1)m+1

wMχi (−M)
)2

log ΦAJ (jχ) (If )2 .

Proof. First of all note that, since If is an eigenform for the Atkin-Lehner
involution WM with eigenvalue wM , we may write

wM log ΦAJ (jσΨ) (If ) = log ΦAJ (jσΨ) (If |WM ) = log ΦAJ
(
jαMσΨα−1

M

)
(If ) .
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Let σΨ ∈ Γ\Emb+d(O,R) be any oriented embedding as explained in Re-
mark 2.24 and note that σΨ has the same orientation at p of Ψ but for every
prime le ‖ M the orientation of σΨ is opposite to the orientation of σΨ. As
explained in Remark 2.24 the Atkin-Lehner involution WM exchanges these ori-
entations, so that αMσΨα−1

M ∈ Γ\Emb+d(O,R). Since we noted in Remark
2.24 that Γ\Emb+d(O,R) is a torsor under the GH+/K-action, there exists a
unique δσΨ ∈ GH+/K such that αMσΨα−1

M = δσΨσΨ. According to [BD3, (17)]
δσΨ = δΨσ

−2, so that we find (we have χ2 = 1):∑
σ∈G

H
+
O/K

χ (σ) log ΦAJ (jσΨ) (If ) =

= wM
∑
σ∈G

H
+
O/K

χ (σ) log ΦAJ (jδΨσ−1Ψ) (If ) =

= wMχ (δΨ)
∑
σ∈G

H
+
O/K

χ
(
δΨσ

−1
)

log ΦAJ (jδΨσ−1Ψ) (If ) =

= wMχ (δΨ)
∑
σ∈G

H
+
O/K

χ (σ) log ΦAJ (jσΨ) (If ) .

But since χ is a genus character, [BD3, Proposition 1.8] tells us that χ (δΨ) =
χi (−M). The claim now follows from 5.12.

Corollary 5.14 Let χ : GH+/K → C× be a genus character. Then:

d2

dκ2
[Lp (f/K, χ, κ)]κ=k =

{
2D

k0−2
2

K log ΦAJ (jχ) (If )2 if χi (−M) = (−1)m+1
wM

0 if χi (−M) = (−1)m wM .

5.3 p-adic L-functions attached to imaginary quadratic fields

In this subsection we let K ′/Q be an imaginary quadratic field of discriminant
DK′ and we consider a factorization N = pN+N− such that:

• p is inert or split in K ′;

• all the prime factors of N+ split in K ′;

• N− is the squarefree product of an odd number of primes which remain
inert in K ′.

Recall the definite quaternion algebra B of discriminant N−∞ and fix an
identification Bp = M2 (Qp), so that Bp acts on the p-adic upper halfplane as
well as on the Bruhat-Tits three and on the sets L and L0. As in the Darmon
setting it is possible to define the set of optimal embeddings of levelN+ and pN+

of a Z [1/p]-order O of conductor c, prime to DK′ and N , into the corresponding
Eichler order R. More precisely the definition in [BD2, Definition 3.2] is given
in terms of optimal embeddings of a Z-order OZ into an Eichler order RZ, this
last of level N+ or pN+, such that O = Z [1/p] ⊗ OZ and R = Z [1/p] ⊗ RZ.
By [BD1, Lemma 2.1] the set of optimal embeddings of level pN+ is non-empty
only when p is split, so that this assumption will be implicit when considering
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embeddings of level pN+. As explained in [BD2, Section 3.1], by the strong
approximation theorem, these sets can be realized as subsets of

R×\ (Emb (O, R)× L) when the level is N+,
R×\ (Emb (O, R)× L0) when the level is pN+.

More precisely, the elements of the first set are those represented by the couples
[Ψ, LΨ], where LΨ is preserved by the action of Ψ (O), while the elements of the
second set are those represented by the triples

[
Ψ, L1

Ψ, L
2
Ψ

]
such that L1

Ψ and
L2

Ψ are both preserved under the action of Ψ (O) (when p is split).
There are the following data attached to the optimal embeddings of level

N+, say represented by the couple [Ψ, LΨ]:

• the two fixed points τΨ, τΨ ∈ Hp for the action of Ψ (K ′×) on Hp (K ′),
ordered in such a way that the action of K ′× on the tangent space at τΨ

is through the character z 7→ z/z, when p is inert;

• the unique fixed vertex vΨ ∈ V for the action of Ψ (K ′×) on V, which is
nothing but the reduction red (τΨ) = red (τΨ), when p is inert;

• the lattice LΨ such that [LΨ] = vΨ, when p is inert, and the lattice LΨ

which is fixed by the action of the split quadratic algebra Ψ (O ⊗ Zp) and
hence admits a Zp-basis {xΨ, yΨ} of eigenvectors for this action, when p
is split;

• the unique polynomial up to sign PΨ in P2 which is fixed by the action
of Ψ (K ′×) on P2 ⊗ det−1 and satisfies 〈PΨ, PΨ〉P2

= −DK′ (the pairing
being defined as in [BDIS]), which we fix by the choice

PΨ := Tr
(

Ψ
(√

DK′

)
·
(
X −X2

1 −X

))
∈ P2,

the other one being obtained by replacing
√
DK′ with −

√
DK′ ; note that

PΨ is either irreducible over Qp or it splits into two linear forms corre-
sponding to the basis {xΨ, yΨ}, according to whether p is inert or split.

Define

L′′Ψ :=
{

L′Ψ when p is inert
Z×p xΨ ⊕ Z×p yΨ when p is split

Recall the family µ∗ that was attached to ϕ by means of Theorem 4.16. The
following definition attaches a p-adic L-function

Lp (f/K ′,Ψ,−) : U → Cp
κ 7→ Lp (f/K ′,Ψ, κ)

to the data of the embedding [Ψ, LΨ] of level N+. It is easily checked that the
subsequent definitions do not depend on the choice of LΨ such that [LΨ] = vΨ

when p is inert.
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Definition 5.15 The partial p-adic L-function attached to (f/K ′,Ψ) is

Lp (f/K ′,Ψ, κ) := |LΨ|−
k0−2

2
∫
L′′Ψ
〈PΨ (x, y)〉

κ−k0
2 PmΨ dµLΨ

.

The partial p-adic L-function attached to (f/K ′, χ), where χ : GHO/K′ →
C× is a character, is

Lp (f/K ′, χ, κ) :=
∑
σ∈GHO/K′

χ−1 (σ)Lp (f/K ′, σΨ, κ) .

The p-adic L-function attached to (f/K ′, χ), where χ : GHO/K′ → C× is a
character, is

Lp (f/K ′, χ, κ) := Lp (f/K ′, χ, κ)Lp
(
f/K ′, χ−1, κ

)
.

As before, in order to justify the above definition and the fact that the above
p-adic L-functions are analytic we can appeal to Lemma 4.1 after noticing that
they are built from functions of the form κ 7→ µ

(
P 〈α〉

κ−k0
2 〈β〉

κ−k0
2 χX

)
.

Of course Remark 5.6 also holds in this setting. Note the following vanishing
property of the p-adic L-functions, which is proved exactly as in Proposition 5.7
using (30) and Corollary 4.19.

Proposition 5.16 Assume p is inert. The p-adic L-functions vanishes at k0:

Lp (f/K ′,Ψ, k0) = Lp (f/K ′, χ, k0) = Lp (f/K ′, χ, k0) = 0.

Furthermore
d

dκ
[Lp (f/K ′, χ, κ)]κ=k0

= 0.

5.3.1 Interpolation properties of the p-adic L-functions attached to
imaginary quadratic fields and functional equation

The next two theorems collect the interpolation properties of these p-adic L-
functions.

Theorem 5.17 Assume p is inert. Then, for all k ∈ Z≥2,6=k0 ∩ U ,

Lp (f/K ′, χ, k) = λB (k)2
ap (k)2

(
1− pk−2ap (k)−2

)2

L∗
(
f#
k /K

′, χ, k/2
)

,

where

L∗
(
f#
k /K

′, χ, k/2
)

:=

(
k−2

2

)
!2D

k−1
2

K

(2π)k−2
〈
f#
k , f

#
k

〉L(f#
k /K

′, χ, k/2
)

.
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Proof. The proof proceeds precisely along the same lines as in [BD2, Theorem
3.8] and we repeat the ideas for the convenience of the reader. Using [BD2,

Lemma 3.7] and noticing that [PΨ (x, y)]
k−k0

2 = 1 by Lemma 4.1, one can show

that PΨ (x, y)
k−k0

2 = |LΨ|
k−k0

2 〈PΨ (x, y)〉
k−k0

2 on L′′Ψ = L′Ψ. Hence,

Lp (f/K ′,Ψ, k) = |LΨ|−
k−2

2
∫
L′′Ψ

P
k−2

2
Ψ dµLΨ

.

Now we simply need to replace the use of [BD2, Proposition 2.11] with the
more general, but formally identical, Corollary 4.18, which gives

|LΨ|−
k−2

2
∫
L′′Ψ

P
k−2

2
Ψ dµLΨ

=

= λB (k) ap (k)
(

1− pk−2ap (k)−2
)
|LΨ|−

k−2
2 c#k (LΨ)

(
P
k−2

2
Ψ

)
.

Summing together, multiplying Lp (f/K ′, χ, κ) with Lp
(
f/K ′, χ−1, κ

)
and ap-

plying Hatcher-Hui Xue’s formula(∑
σ∈GHO/K′

χ−1 (σ) |LσΨ|−
k−2

2 c#k (LσΨ)
(
P
k−2

2
σΨ

))
· (33)(∑

σ∈GHO/K′
χ (σ) |LσΨ|−

k−2
2 c#k (LσΨ)

(
P
k−2

2
σΨ

))
=

=
〈
c#k , c

#
k

〉
L∗
(
f#
k /K

′, χ, k/2
)

as reformulated in [BD2, Proposition 3.3] yields the result, in light of the nor-
malization (27).

Theorem 5.18 Assume p split in K ′ and let p | p be a prime of K ′ above p.
Then

Lp (f/K ′, χ, k0) =
(

1− χ (p) p
k0−2

2 ap (k0)−1
)(

1− χ−1 (p) p
k0−2

2 ap (k0)−1
)

· 〈ck0 , ck0〉L∗ (fk0/K
′, χ, k0/2)

and for all k ∈ Z≥2,6=k0 ∩ U

Lp (f/K ′, χ, k) = λ2
B (k)

(
ap (k) + pk−2ap (k)−1 − p

k−2
2 χ (p)− p

k−2
2 χ−1 (p)

)2

·L∗
(
f#
k /K

′, χ, k/2
)

.

Proof. Again the proof of [BD2, Theorem 3.12] works in this setting (even with
more general characters). We do not recall which are the main ingredients, since
the computation is more involved than Theorem 5.17. As explained in [BD2,
Proposition 3.4], the appearance of the factor 〈ck0 , ck0〉 at k = k0 is due to the
fact that no normalization condition was imposed on the modular form ck0 , so
that in the Hatcher-Hui Xue’s formula (33) this factor needs to be considered.
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We now specialize the above theorem to a genus character χ of the imaginary
quadratic field K ′, say attached to the pair of Dirichlet characters (χ1, χ2). Note
that, since p is split, χ (p) = χi (p) does not depend on i. Furthermore, since
χ (p)2 = 1, the Euler factor appearing in Theorem 5.18 can be rewritten and
one deduces the following corollary:

Corollary 5.19 Assume p split in K ′, let p | p be a prime of K ′ above p and
let χ be the genus character attached to the pair of Dirichlet characters (χ1, χ2).
Then

Lp (f/K ′, χ, k0) =
(

1− χi (p) p
k0−2

2 ap (k0)−1
)2

〈ck0 , ck0〉L∗ (fk0/K
′, χ, k/2)

and for all k ∈ Z≥2,6=k0 ∩ U

Lp (f/K ′, χ, k) = λB (k)2
ap (k)2

(
1− χi (p) p

k−2
2 ap (k)−1

)4

L∗
(
f#
k /K

′, χ, k/2
)

.

Definition 5.20 η : Z≥2 → Cp is the function

η (k) :=


λB(k)2ap(k)2

λ+(k)λ−(k)
D

k−2
2

K′ i
k−2 for k 6= k0

〈ck0 , ck0〉D
k0−2

2
K′ ik0−2 for k = k0

Theorem 5.21 The function η (k) uniquely extends to an analytic function
such that η (κ) 6= 0 on U (up to shrinking it). Moreover, for every genus char-
acter χ, say attached to the couple of Dirichlet characters (χ1, χ2),

Lp (f/K ′, χ, κ) = η (κ)Lp (f, χ1, κ, κ/2)Lp (f, χ2, κ, κ/2)

on U .

Proof. The proof is the same of [BD2, Corollary 5.3], after noticing that the
main result of [MM] extends to our higher weight setting.

5.3.2 Derivatives of p-adic L-functions attached to imaginary quadratic
fields

Assume until the end of this section that p is inert in K ′. Let X = XN+,pN−

be the Shimura curve attached to the indefinite quaternion algebra ramified at
the primes pN−. As explained in [BD1, Section 1.5], the Shimura curve X is
endowed with Hecke operators Tl for l - N as well as Atkin-Lehner involutions
W+
l for l | N+ and Atkin-Lehner involutions W−l for l | pN−. The Atkin-Lehner

involution W−p will be of particular interest for us. Write XW−p
to denote the

twist of the Shimura curve X by the cocycle in H1
(
GQp2/Qp , Aut (X)

)
which

maps the non trivial element Frobp ∈ GQp2/Qp to W−p . Recall the group Γ̃′
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defined by (26) and denote by Γ′ the subgroup of norm one elements. By the
Cerednik-Drinfeld Theorem, XW−p

admits a rigid analytic uniformization over
Qp:

Γ′\Hp = Xan
W−p

,

where Xan
W−p

is the analytification of XW−p
. We will make an abuse of notation

by writing X = Xan or XW−p
= Xan

W−p
.

The optimal embeddings of conductor N+ admit a particular simple de-
scription. More precisely, fix an embedding σp : H = HO ↪→ Qp2 (this is
possible since p is inert in K ′ and hence it splits completely in H). The p-adic
uniformization allow us to view Γ′\Emb (O, R) as a subset of X

(
Qp2

)
:

Γ′\Emb (O, R) ↪→ Γ′\Emb
(
Qp2 , Bp

)
= Γ′\Emb

(
Qp2 ,M2 (Qp)

)
= X

(
Qp2

)
.

In this way we shall identify (the class of) Ψ with its image in X
(
Qp2

)
.

Remark 5.22 In view of the above twist that enter in the rigid analytic parame-
trization, the optimal embedding Ψ corresponds in X

(
Qp2

)
to the optimal em-

bedding W−p FrobpΨ, regarded like a point of X.
Recall the rigid analytic modular form frig that was attached to the modu-

lar form f by means of the Jacquet-Langlands correspondence. It satisfies the
following relation with respect to the action of the Atkin-Lehner involution W−p
(see [BD1, Theorem 1.2]):

frig |W−p = −wpfrig, (34)

where wp is the sign of the Atkin-Lehner involution Wp acting on f .

Let Mn be the Chow motive (over Q) of weight k0 modular forms con-
structed in [IS, Appendix]. As explained in [IS, Appendix] one can attach to
an optimal embedding Ψ an element y(n)

Ψ ∈ CHm+1 (Mn,H), the Chow group
of codimension m + 1 cycles of Mn base changed to H := HO. The p-adic
realization V (m+ 1) := Hp

(
Mn,Q,Qp (m+ 1)

)
of the motiveMn affords rep-

resentations attached to cusp forms that are new at pN−. Consider the p-adic
Abel-Jacobi map

clm+1
0 : CHm+1 (Mn,H)→ Ext1GH (Qp, V (m+ 1)) .

After a base change from H to Fp ⊃ Qp2 , the p-adic Abel-Jacobi map can be
identified with

ΦAJ : CHm+1
(
Mn,Fp

)
→ Ext1MF (Fp,D (m+ 1)) =

DFp
Fm+1DFp

,

where we write D := Dst (V ). Here Dst is the Fontaine functor attaching to a
Galois representation of GFp a filtered Frobenius module over Fp. As recalled
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in the introduction, the above ext group is explicitly computed in [IS, (49)] and
the p-adic étale Abel-Jacobi map can be can be interpreted as

log ΦAJ : CHm+1
(
Mn,Fp

)
→Mk (Γ′, Fp)

∨ ,

where Mk (Γ′, Fp)
∨ denotes the Fp-dual space.

Note that the Frobenius Frobp introduced in Remark 5.22 also acts on the

Chow group CHm+1
(
Mn,Qp2

)
.

Lemma 5.23 y
(n)
FrobpΨ = (−1)m Frobpy

(n)
Ψ .

Proof. Let W be the group generated by the Atkin-Lehner involutions W±l for
l | N . The proof is easily reduced to the case m = 1, i.e. weight k0 = 4. In
this case the Heegner cycles y(2)

Ψ are defined by fixing y(2)
Ψ0

for some Ψ0 and then
exploiting the simply transitive action of GH/K′×W on the optimal embeddings
in order to make these cycles compatible with the action of this group. Indeed,
the elements y(2)

Ψ are only canonical up to sign. More precisely, they correspond
to z

(2)
Ψ ∈ EndR (AΨ) = O that are only defined up to sign. Since AΨ = E2

Ψ,
where EΨ is an elliptic curve such that End (EΨ) = EndR (AΨ), we can reduce
to consider elliptic curves. In this case we can fix an isomorphism [−]Ψ : O '
End (EΨ) with the property that for every σ ∈ Aut (C) and α ∈ O we have
σ [α]Ψ = [ασ]σΨ and define the element z(2)

Ψ by making it correspond to the
choice of a fixed root

√
DK′ ∈ K ′, the other choice −

√
DK′ giving rise to the

element −z(2)
Ψ . With this choice the elements z(2)

Ψ are compatible for the action
of the group GH/K′ ×W . Furthermore, since Frobp is induced by the complex
conjugation τ (because p is inert) we find that τ

[√
DK′

]
Ψ

=
[
−
√
DK′

]
τΨ

, which

gives Frobpz
(2)
Ψ = −z(n)

FrobpΨ.

Theorem 5.24 Let Ψ ∈ Emb+ (O,R). Then

d

dκ
[Lp (f/K ′,Ψ, κ)]κ=k0

=

1
2

(
log ΦAJ

(
y

(n)
Ψ

) (
frig

)
− wp log ΦAJ

(
Frobpy

(n)
Ψ

) (
frig

))
.

Proof. By the main result of [Se]:

d

dκ
[Lp (f/K ′,Ψ, κ)]κ=k0

=

1
2

(
log ΦAJ

(
y

(n)
Ψ

) (
frig

)
+ (−1)m log ΦAJ

(
y

(n)

Ψ

) (
frig

))
.

By Remark 5.22 and Lemma 5.23

y
(n)

Ψ
= y

(n)

W−p FrobpΨ
= W−p y

(n)
FrobpΨ = (−1)mW−p Frobpy

(n)
Ψ .
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Now the claim follows from (34).

Whenever F is a field, let us write MWf (F ) to denote the image of the
Chow group over F in Ext1GF

(
Qp, V[f ] (m+ 1)

)
, i.e. the image obtained by

clm+1
0,f := e[f ] ◦ clm+1

0 . By the theory of complex multiplication,

yχ :=
∑
σ∈GHO/K′

χ−1 (σ) y(n)
σΨ ∈ CH

m+1
(
Mn,Hχ

)χ ,

where Hχ/K
′ is the subextension of H/K ′ that corresponds to the kernel of χ.

Hence clm+1
0,f (yχ) ∈MWf (Hχ)χ.

Corollary 5.25 Let χ : GHO/K′ → C× be a character. Then

d2

dκ2
[Lp (f/K ′, χ, κ)]κ=k =

1
2
(
log ΦAJ (yχ)

(
frig

)
− wp log ΦAJ (Frobpyχ)

(
frig

))
·(

log ΦAJ
(
yχ
−1
) (
frig

)
− wp log ΦAJ

(
Frobpy

χ−1
) (
frig

))
.

Proof. This is a consequence of Theorem 5.24, in light of Proposition 5.16.

Let us now focus for the remainder of this section on a genus character χ
attached to the couple (χ1, χ2). We note that the signs of the twisted L-functions
L (f, χi, s) are given by (see [Sh, Theorem 3.66]):

(−1)
k0
2 wNχi (−N) . (35)

Furthermore, since the number of the inert primes pN− dividing N is even and
εK′ = χ1χ2, where εK′ is the Dirichlet character attached to the imaginary
quadratic extension K ′/Q,

χ1 (−N)χ2 (−N) = εK′ (−1) = −1.

Hence the signs of the twisted complex L-functions L (f, χi, s) are opposite
to each other. The genus character χ cuts out a biquadratic extension of Q.
Write Qχi to denote the quadratic extension that corresponds to the Dirichlet
character χi.

Whenever V is a Qp

[
GHχ/Q

]
-module let us write V ± to denote the subspace

on which the complex conjugation τ acts as ±, so that V = V + ⊕ V −. Since
IndGQ

GK′
(χ) = χ1 ⊕ χ2, we also have V χ = V χ1 ⊕ V χ2 , where the left hand

side is viewed as a GHχ/K′ -module and the right hand side as a GHχ/Q-module.
Since χ2 (−1) = −χ1 (−1) we may order (χ1, χ2) in such a way that Qχ1

/Q is
a real field. Then we have V χ1 ⊂ V χ,+ and V χ2 ⊂ V χ,−, so that V χ1 = V χ,+

and V χ1 = V χ,−. This remark applied to V = CHm+1
(
Mn,Hχ

)
and V =
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Ext1GHχ (Qp, Vf ) implies that CHm+1
(
Mn,Hχ

)χ and MWf (Hχ)χ both have a
direct sum decomposition with

CHm+1
(
Mn,Hχ

)χ,+ = CHm+1
(
Mn,Qχ1

)χ1 , (36)

CHm+1
(
Mn,Hχ

)χ,− = CHm+1
(
Mn,Qχ2

)χ2 ,

MWf (Hχ)χ,+ = MWf

(
Qχ1

)χ1 and

MWf (Hχ)χ,− = MWf

(
Qχ2

)χ2 .

Whenever Ψ is an oriented optimal embedding of level N+, viewed as an el-
ement of X (H), τΨ is an optimal embedding whose orientations at the primes
dividing N+ have been reversed. Define WN :=

∏
l|N+ W

+
l

∏
l|pN−W

−
l . Since

# {l : l | pN−} is even, it follows from the analogous of (34) at the primes di-
viding pN−, that WNf

rig = wNf
rig, where wN is the sign of the Atkin-Lehner

involution acting on f . Since WNΨ reverses all the orientations too, we have

τΨ = WNδΨ, for some δ ∈ GH/K′ . (37)

It is easily checked from Lemma 5.23 and (37) that clm+1
0,f (yχ) ∈MWf (Hχ)χ,±

for a suitable choice of a sign. Let H be the Hilbert ring class field.

Corollary 5.26 Let χ : GH/K → C× be a genus character. If clm+1
0,f (yχ) ∈

MWf

(
Qχi

)χi then

d2

dκ2
[Lp (f/K ′, χ, κ)]κ=k =

1
2

(
1 + app

− k0−2
2 χi (p)

)2

log ΦAJ (yχ)
(
frig

)2
.

Proof. Since clm+1
0,f (yχ) ∈MWf

(
Qχi

)χi we have

clm+1
0,f (Frobpyχ) = Frobpcl

m+1
0,f (yχ) = χi (p) clm+1

0,f (yχ) .

The p-adic Abel-Jacobi map ΦAJ (−)
(
frig

)
factors through clm+1

0,f by definition,
so that we find

log ΦAJ (Frobpyχ)
(
frig

)
= χi (p) log ΦAJ (yχ)

(
frig

)
.

The claim follows from Corollary 5.25, since we have χ = χ−1 and −wp =
app
− k0−2

2 .

Corollary 5.27 Let χ : GH/K → C× be a genus character. If clm+1
0,f (yχ) ∈

MWf

(
Qχi

)χi then

d2

dκ2
[Lp (f/K ′, χ, κ)]κ=k =

{
2 log ΦAJ (yχ)

(
frig

)2 if χi (p) = app
− k0−2

2 = −wp
0 if χi (p) = −app−

k0−2
2 = wp.

We will also need the following deep result of Kato.
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Lemma 5.28 If χi (−N) = (−1)
k0−2

2 wN and L
(
f, χj , k0/2

)
6= 0 with i 6= j or

if χi (−N) = (−1)
k0−2

2 wN and χi (pN−) = 1 then clm+1
0,f (yχ) ∈MWf

(
Qχi

)χi .
Proof. We only prove the first statement, which is the one we need in the
subsequent section. If χi (−N) = (−1)

k0−2
2 wN the sign of L (f, χi, s) is negative

and we assume that L
(
f, χj , k0/2

)
6= 0. Then MWf

(
Qχj

)χj
= 0 by [K,

Theorem 14.2 (2)].

Remark 5.29 Suppose that 0 6= clm+1
0,f

(
yχp
)
∈ MWf,p

(
Qχi

)χi . As an appli-
cation of Kolyvagin methods developed in [Ne1] and [Ne3] one can show that
Kf,pcl

m+1
0,f

(
yχp
)

= MWf,p

(
Qχi

)χi .
6 Proof of the main results

Recall our factorization N = pN+N− = pM into factors prime each other,
where N− is squarefree and divisible by an odd number of prime factors. In
the following theorem we will assume the existence of a prime q ‖ M and
the consideration of a factorization with q | N− will be implicit in order to
apply the results of the previous section. Recall the harmonic cocycle char =
charf that was associated to f in subsection 4.2. We may assume that char ∈
Char (E ,Vn (Kf ))Γ′ , so that 〈ck0 , ck0〉 ∈ K×f .

Theorem 6.1 Suppose there exists q ‖ M . Let ω be a quadratic Dirichlet
character, of conductor prime to N such that

ω (−N) = (−1)
k0−2

2 wN and ω (p) = app
− k0−2

2 = −wp.

Then:

1. the p-adic L-function Lp (f, ω, κ, κ/2) vanishes to order

ordκ=k0 Lp (f, ω, κ, κ/2) ≥ 2;

2. there exists yω ∈ CHm+1 (Mn,Qω )ω and tf ∈ K×f such that

d2

dκ2
[Lp (f/K, ω, κ, κ/2)]κ=k0

= tf · log ΦAJ (yω)
(
frig

)2
;

3. If clm+1
0,f

(
yωp
)
6= 0 then MWf,p (Qω)ω = Kf,pcl

m+1
0,f

(
yωp
)
.

4. we have
tf/2 ≡ L∗ (f, ψ, 1) in K×f /K

×2
f ,

for any quadratic Dirichlet character ψ such that

ψ (l) = ω (l) for every l |M := N/p,
ψ (p) = −ω (p) and
L (f, ψ, 1) 6= 0.
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Proof. Set ω = χ1 and choose an auxiliary quadratic Dirichlet character χ2 of
conductor prime to the conductor of χ1 such that:

(a) χ2 (l) = χ1 (l) for all l | N+

(b) χ2 (l) = −χ1 (l) for all l | pN− and χ2 (−1) = −χ1 (−1)

(c) L (f, χ2, k0/2) 6= 0

This is possible since the main result of [MM] generalizes to higher weight
modular forms. The Dirichlet character εK′ := χ1χ2 cuts out an imaginary
quadratic extension K ′/Q and there is a genus character χ attached to the pair
(χ1, χ2). Furthermore, note that the sign of L (f, χ1, s) is −1 in light of the

assumption χ1 (−N) = (−1)
k0−2

2 wN (by (35)), while the sign of L (f, χ2, s) is
1. Note that, thanks to (c) and Lemma 5.28, we can apply Corollary 5.27 with
χi = χ1.

By Theorem 5.21,

Lp (f/K ′, χ, κ) = η (κ)Lp (f, χ1, κ, κ/2)Lp (f, χ2, κ, κ/2) . (38)

The factor η (κ)Lp (f, χ2, κ, κ/2) does not vanish at the critical point κ = k0,
since η (κ) 6= 0 on U and we have

Lp (f, χ2, k0, k0/2) =
(

1− χ2 (p) p
k0−2

2 a−1
p

)2

L∗ (f, χ2, k0/2) = (39)

= 4L∗ (f, χ2, k0/2) 6= 0.

Indeed the first equality follows by Corollary 5.4, the second one follows by
the assumption χ1 (p) = p−

k0−2
2 ap, together with (b) assuring us that χ2 (p) =

−χ1 (p), and the non-vanishing is a consequence of (c).
On the other hand, the factor Lp (f, χ1, κ, κ/2) vanishes at the critical point

κ = k0, again by Corollary 5.4 and the assumption χ1 (p) = p−
k0−2

2 ap, or

thanks to the fact that L∗
(
f#
k , χ1, k0/2

)
= 0 by the above considerations on

the complex L-functions. Hence

Lp (f, χ1, k0, k0/2) = 0. (40)

This preliminary discussion has the effect of avoiding appealing to [BD2, Re-
mark 1.13], since we have not exploited the Mazur-Kitagawa p-adic L-function
as a two variable function.

1. A formal computation using (38) and (40) yields

d

dκ
[Lp (f/K ′, χ, κ)]κ=k0

=
d

dκ
[Lp (f, χ1, κ, κ/2)]κ=k0

η (k0)Lp (f, χ2, k0, k0/2) .

Note that εK (p) = −1 so that we are in the inert case and the left hand side
vanishes by Proposition 5.16. Now (39) implies that

d

dκ
[Lp (f, χ1, κ, κ/2)]κ=k0

= 0, (41)
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so that the claim 1. follows. Note that that the same sign considerations of
[BD2, Theorem 5.4] apply in order to deduce the order two vanishing along
the line (k0, s) of Lp (f, χ1, κ, s) and hence the order two vanishing of the two
variable p-adic L-function.

2. A formal computation using (38), (40) and (41) yields

d2

dκ2
[Lp (f/K ′, χ, κ)]κ=k0

=
d2

dκ2
[Lp (f, χ1, κ, κ/2)]κ=k0

η (k0)Lp (f, χ2, k0, k0/2)

(42)
By (39) and Corollary 5.27 we can write

d2

dκ2
[Lp (f, χ1, κ, κ/2)]κ=k0

=
1
2
〈ck0 , ck0〉

−1
D

2−k0
2

K i2−k0 ·

L∗ (f, χ2, k0/2)−1 log ΦAJ (yχ)
(
frig

)2
where yχ ∈ CHm+1 (Mn,Qω )ω. Now the claim 2. follows since we have, writing
DK′ = −D ∈ Z with D > 0 and k0 = 2h,

D
2−k0

2
K′ i2−k0 = (−1)2−k0 D1−h ∈ Z.

3. This is a consequence of Remark 5.29.
4. Let ψ := χ′1 be any Dirichlet character satisfying the conditions of 4.

and consider the Dirichlet character εK′′ := χ′1χ2. It cuts out an imaginary
quadratic field K ′′/Q. There is a genus character χ′ attached to the couple
(χ′1, χ2), but now p is split in K ′′. In particular χi (p) = χ′ (p) for any p | p and
Corollary 5.19 yields, in light of the fact that χ2 (p) = −p−

k0−2
2 ap:

Lp (f/K ′′, χ′, k0) =
(

1− p
k0−2

2 a−1
p χ2 (p)

)2

〈ck0 , ck0〉L∗ (fk0/K
′′, χ′, k0/2) =

= 4 〈ck0 , ck0〉L∗ (fk0/K
′′, χ′, k0/2) .

By (38) relative to (χ′1, χ2) together with (39) relative to χ′1

〈ck0 , ck0〉L∗ (fk0/K
′′, χ′, k0/2) = L∗ (f, χ′1, k0/2) η (k0)Lp (f, χ2, k0, k0/2) .

Besides, thanks to (42), tf/2 = η (k0)−1
Lp (f, χ2, k0, k0/2)−1, so that

〈ck0 , ck0〉L∗ (fk0/K
′′, χ′, k0/2) ≡ tf/2L∗ (f, χ′1, k0/2) modK×2

f .

But the left hand side is a square by the Hatcher-Hui Xue formula applied to
the newform ck0 of level pN+, that can be reformulated in a similar way as it is
done in [BD2, Proposition 3.4] when k0 = 2, thus getting a formula having the
same shape of (33) but involving optimal embeddings of level pN+.

We now turn to the case where K/Q is a real quadratic field and χ is a
genus character attached to (χ1, χ2). Recall that, by Remark 5.10, χ1 (−M) =
χ2 (−M). Assume again char ∈ Char (E ,Vn (Kf ))Γ′ .
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Theorem 6.2 Suppose N = pM , that there exists q ‖M and that

χi (−M) = (−1)
k0
2 wM .

Then:

1. there exist yχ ∈ CHm+1
(
Mn,Hχ

)χ and sf ∈ K×f such that

log ΦAJ (jχ) (If ) = sf · log ΦAJ (yχ)
(
frig

)
;

2. χ2 (−N) = −χ1 (−N), clm+1
0,f (yχ) ∈ MWf,p

(
Qχi

)χi where χi (−N) =

(−1)
k0−2

2 wN and, if clm+1
0,f

(
yχp
)
6= 0,

MWf,p (Hχ)χ = MWf,p

(
Qχi

)χi = Kf,pcl
m+1
0,f (yχ,p) .

Proof. Consider the functional equation given by Theorem 5.9:

Lp (f/K, χ, κ) = D
κ−2

2
K Lp (f, χ1, κ, κ/2)Lp (f, χ2, κ, κ/2) . (43)

In light of the assumption χi (−M) = (−1)
k0
2 wM we find

χi (−N) = (−1)
k0
2 wMχi (p) (44)

Furthermore, since p is inert in K, we have χ1 (p) = −χ2 (p). In particular, one
of the two Dirichlet characters, say χ1, will be such that χ1 (p) = −wp; then
(44) tells us that

χ1 (−N) = (−1)
k0−2

2 wN . (45)

It follows that the Dirichlet character χ1 = ω satisfies the assumption of The-
orem 6.1. By 1. we know that the order of vanishing of the p-adic L-function
Lp (f, χ1, κ, κ/2) is at least 2. A formal computation using this information and
(43) gives

d2

dκ2
[Lp (f/K, χ, κ)]κ=k0

=
d2

dκ2
[Lp (f, χ1, κ, κ/2)]κ=k0

D
k0−2

2
K Lp (f, χ2, k0, k0/2) .

(46)

By Corollary 5.14 (again use χi (−M) = (−1)
k0
2 wM ), Theorem 6.1 2. and (46)

log ΦAJ (jχ) (If )2 = tf/2 · log ΦAJ (yω)
(
frig

)2
Lp (f, χ2, k0, k0/2) . (47)

Again note that χ2 (p) = −χ1 (p), so that (44) and (45) tells us that χ2 (p) =
wp = −p

k0−2
2 a−1

p . Hence thanks to (39) we can rewrite (47) as

log ΦAJ (jχ) (If )2 = 4tf/2 · log ΦAJ (yω)
(
frig

)2
L∗ (f, χ2, k0/2) .

If L∗ (f, χ2, k0/2) = 0, we deduce that log ΦAJ (jχ) (If ) = 0 and the first part of
the Theorem is trivially true by setting yχ = 0. Hence suppose L∗ (f, χ2, k0/2) 6=
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0. In this case note that χ2 satisfies the assumption that was made on ψ in
Theorem 6.1 4.. Hence we know that tf/2L∗ (f, χ2, k0/2) is a square in K×f , as
well as all the remaining factors. The first claim follows by setting yχ = yω and
extracting the square roots.

For the second statement we already proved that χ2 (−N) = −χ1 (−N),

we are assuming that χ1 (−N) = (−1)
k0−2

2 wN and we know that yω belongs
to MWf

(
Qχ1

)χ1 , so that yχ belongs to MWf

(
Qχ1

)χ1 by construction. Since
IndGQ

GK
(χ) = χ1 ⊕ χ2 we can write

MWf (Hχ)χ = MWf

(
Qχ1

)χ1 ⊕MWf

(
Qχ2

)χ2 .

When clm+1
0,f

(
yχp
)
6= 0 we are in the case L∗ (f, χ2, k0/2) 6= 0 and then yχ = yω.

It follows from Theorem 6.1 3. that we have MWf,p

(
Qχ1

)χ1 = Kf,pcl
m+1
0,f

(
yχp
)

and, since L∗ (f, χ2, k0/2) 6= 0, [K, Theorem 14.2 (2)] implies MWf,p

(
Qχ2

)χ2 =
0.

Remark 6.3 Let σ (f) be the companion form of f obtained by applying the
automorphism σ to the Fourier coefficients of f . If we choose charσ(f) := σ

(
charf

)
,

the quantities sf appearing in the statement of Theorem 6.2 satisfies the relation
σ (sf ) = sσ(f). It follows that there is s ∈ Kf ⊗QFp inducing sσ(f) on the σ (f)-
component. Recall that Fp/Qp denotes an extension such that K[f ] ⊂ Fp, where
K[f ] is the field generated by the Fourier coefficients of f and its companion
forms.

Let us now prove the main result Theorem 1.1. Let V[f ] be the p-adic repre-
sentation attached to the new modular form f , with associated filtered Frobenius
module D[f ]. Note that MWf (Hχ)χ is naturally a Kf -vector space, since the
Hecke correspondences act on the rational Chow groups through the idempotent
e[f ] corresponding to the f -isotypic component. Let the assumptions be as in
Theorem 6.2. Fix an isomorphism of monodromy modules D[f ] ' D[f ] over Qp

as granted by Theorem 4.11.
The identification ϕ : D[f ] ' D[f ] in MFQp (φ,N) allow us to identify the

tangent spaces:

α : MSc,∨,w∞[f ] (Fp) =
D[f],Fp

Fm+1D[f],Fp

ϕ
' D[f],Fp

Fm+1D[f],Fp
exp
' H1

st

(
K,V[f ] (m+ 1)

)
= Ext1MF

(
Fp,D[f ] (m+ 1)

)
=

D[f],Fp
Fm+1D[f],Fp

=
(
Fm+1D[f ],Fp

)∨
= e[f ]Mk (X,Fp)

∨ = e[f ]Mk (Γ′, Fp)
∨ .

(48)
The above identifications hold over any complete field extension Fp/Qp, with the
only possible exception of the last identification, that holds assuming Fp ⊃ Qp2 .

The first identification is the morphism

f0 :
D[f ],Fp

Fm+1D[f ],Fp

→MSc,∨,w∞[f ] (Fp)
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that was considered in section 3. The last five identifications are given by

IS : H1
st

(
K,V[f ] (m+ 1)

)
→ e[f ]Mk (Γ′, Fp)

∨ .

We have the following commutative diagram

D[f],Fp
Fm+1D[f],Fp

exp ◦ϕ→ H1
st

(
K,V[f ] (m+ 1)

)
f0 ↓ ↓ IS

MSc,∨,w∞[f ] (Fp)
α→ e[f ]Mk (Γ′, Fp)

∨ .
(49)

It will be convenient to give an explicit description of the monodromy module
D by means of Teitelbaum’s p-adic integration theory (as developed for example
in [Te]). More explicitly let Γ′ be the arithmetic group defined in subsection
5.3.2. As it is well known there is an analogue of Proposition 2.8 in this definite
setting: the morphism

R : D0
n

(
P1 (Qp)

)
→ Char (E ,Vn)

that was considered in subsection 2.2 induces an isomorphism D0
n

(
P1 (Qp)

)Γ′ =

Char (E ,Vn)Γ′ =: Char (Fp) (over any complete local field Fp/Qp). Define DT

over Qp as follows:

DT := Char (Qp)
∨ ⊕Char (Qp)

∨ ,

with filtration, monodromy operator and Frobenius formally defined exactly as
in 2.3, Teitelbaum’s L-invariant replacing Orton’s L-invariant. Similarly as in
section 3 there is an identification obtained by means of f (x, y) = −x− Ly:

f :
DT
Fp

Fm+1DT
Fp

'→ Char (Fp)
∨ . (50)

By [IS] Teitelbaum’s L-invariant equals the L-invariant of the monodromy
module D and there is an identification DT ' D in MFQp (φ,N). As it fol-
lows from [RoSe, proof of Lemma 4.4], in order to give an explicit identifi-
cation DT ' D, we can simply identify the m-isotypic components as Hecke
modules. Furthermore, we can identify DT ' D in MFQp2 (φ,N), since we

have HomMFQp (φ,N) (D1, D2) = HomMFQ
p2 (φ,N)

(
D1,Qp2 , D2,Qp2

)
, whenever

Di ∈ MFQp (φ,N) (see [RoSe, proof of Lemma 4.4]). As in [IS], let Vn be
the coherent sheaf on the Shimura curve X over Qp2 associated to the represen-
tation Vn, so that DQp2 = H1 (X,Vn). As it follows from [IS], the m-isotypic
component of H1 (X,Vn) is H1 (X,Vn)m = ι

(
H1
(
Γ′,Vn

(
Qp2

)))
, where ι is

the injection [IS, (76)]. Let

〈−,−〉Γ′ : Char

(
Qp2

)
⊗H1

(
Γ′,Vn

(
Qp2

))
→ Qp2

be the perfect pairing [IS, (75)]. It induces an isomorphism

H1
(
Γ′,Vn

(
Qp2

)) '→ Char

(
Qp2

)∨ (51)
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that we use to identify the m-isotypic components. Let I : Mk

(
Γ′,Qp2

) '→
Char

(
Qp2

)
be the residue map, thus inducing a map I∨ : Char

(
Qp2

)∨ →
Mk

(
Γ′,Qp2

)∨.

Lemma 6.4 The isomorphism (51) induces an identification ψ : DT ' D mak-
ing the following diagram commutative:

DT
Q
p2

Fm+1DT
Q
p2

f
= Char

(
Qp2

)∨
ψ ‖↓ ‖↓ I∨

DQ
p2

Fm+1DQ
p2

= Mk

(
Γ′,Qp2

)∨ .

Here the lower horizontal arrow is the composition of the last three identifications
in the definition of α.

Proof. The morphism f maps the class d = [x, y] ∈ DT
Qp2

/Fm+1 to the coor-

dinate f (d) in Char

(
Qp2

)∨ of the opposite of the unique element − (f (d) , 0)
in kerN = DT,m representing d. Let ψ (d) ∈ DQp2/F

m+1 be the correspond-

ing element and denote by d the unique element of kerN = DT,mQp2
representing

ψ (d). By unicity we have ψ ((f (d) , 0)) = −d. Let

P : H1 (X,Vn)→ H1
(
Γ′,Vn

(
Qp2

))
be the left inverse of ι as defined in [IS, (15)]. If we write x ∈ DQp2 = H1 (X,Vn)
as x = xm + xm+1 according to its slope decomposition we have xm = ι (P (x))
(see [IS]). In particular we have d = dm = ι (P (d)). Since ψ is induced by (51)
we deduce, from the equality ψ ((f (d) , 0)) = −d, that f (d) = −〈−, P (d)〉Γ′ .

Besides, the identification DQp2/F
m+1 =

(
Fm+1DQp2

)∨
arises from Serre

duality induced by cup product and the canonical identification Fm+1DQp2 =
Mk

(
Γ′,Qp2

)
(see [IS, Proposition 6.1]). Let d be as above, so that d ∈ kerN =

ker I and d corresponds to 〈−, d〉X ∈ Mk

(
Γ′,Qp2

)∨, where 〈−,−〉X is the cup
product. The reciprocity law [IS, Theorem 10.3] implies

〈−, d〉X = −〈I (−) , P (d)〉X = I∨ (f (d)) ,

which is the claim.

Lemma 6.5 We may choose ϕ : D[f ] ' D[f ] in such a way that α∨
(
evσ(f)rig

)
=

evIσ(f) and Remark 6.3 holds.

Proof. Let us write DT
[f ] (resp. Char,[f ]) to denote the space obtained by

taking the f -isotypic component by means of the idempotent e[f ]. According to
Lemma 6.4 there is a commutative diagram:

DT
[f]

Fm+1DT
[f]

f
= Char,[f ] (Fp)

∨

ψ ‖↓ ‖↓ I∨

MSc,∨,w∞[f ] (Fp) = DFp
Fm+1DFp

= Mk (Γ′, Fp)
∨ .
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Here the lower row comes from (48).
The above identifications holds even with Fp = Qp, the only possible excep-

tion being the last one appearing in the lower row. Denote by β the arrow from
MSc,∨,w∞[f ] (Qp) to Char,[f ] (Qp)

∨, so that we have

β∨ : Char,[f ] (Qp)
∨∨ →MSc,∨∨,w∞[f ] (Qp) .

MSc,w∞[f ] (Qp) (resp. Char,[f ] (Qp)) is naturally endowed with the Q-structure
MSc,w∞[f ] (Q) (resp. Char,[f ] (Q)) and they are both rank one Kf -modules. Fix
an isomorphism b : Char,[f ] (Q) ' MSc,w∞[f ] (Q) of Kf -modules, thus inducing
an isomorphism b of Kf ⊗ L-modules Char,[f ] (L) 'MSc,w∞[f ] (L) over any field
extension. Once we fix If = Iw∞f ∈ MSc,w∞[f ] (Kf ), we may choose Iσ(f) :=
σ (If ) ∈MSc,w∞[f ]

(
Kσ(f)

)
, the quantity Ωw∞σ(f) appearing in Proposition 2.1 being

well defined only up to multiplication by an element in K×σ(f). Setting charσ(f) :=

b−1
(
Iσ(f)

)
∈ Char,[f ]

(
Kσ(f)

)
, the relation charσ(f) = σ

(
charf

)
in Remark 6.3 is

satisfied and Theorem 6.2 is in force. By biduality we find the morphism

b∨∨ : Char,[f ] (Qp)
∨∨ →MSc,∨∨,w∞[f ] (Qp)

such that b∨∨
(
evchar

σ(f)

)
= evIσ(f) (after extending the scalars to Fp ⊃ K[f ]).

Since MSc,∨∨,w∞[f ] (Qp) ' Kf ⊗Qp there exists t ∈ (Kf ⊗Qp)
× such that b∨∨ =

t ◦β∨. By [RoSe, Lemma 4.4] EndMFQp (φ,N)

(
D[f ]

)
= Kf ⊗Qp. Replacing ϕ by

t◦ϕ, the morphism β∨ turns into t◦β∨ = b∨∨, because the above morphisms are
Hecke equivariant. Hence we may assume that β∨

(
evchar

σ(f)

)
= evIσ(f) . Recall

that the rigid analytic modular form σ (f)rig was obtained as I
(
σ (f)rig

)
=

charσ(f), so that I∨∨
(
evσ(f)rig

)
= evchar

σ(f)
. We have α = I∨◦β, hence α∨ = β∨◦I∨∨

satisfies α∨
(
evσ(f)rig

)
= β∨

(
evchar

σ(f)

)
= evIσ(f) .

By Lemma 6.5 we have α∨
(
evσ(f)rig

)
= evIσ(f) . Hence, by Remark 6.3

(which is in force in light of Lemma 6.5), Theorem 6.2 implies:

α
(

log ΦAJ[f ] (jχ)
)

= log ΦAJ[f ] (syχ) = IS
(
clm+1

0,f (syχ)
)

. (52)

Then we have exp
(
ϕ
(

ΦAJ[f ] (jχ)
))

= clm+1
0,f (syχ) if and only if we have

IS
(

exp
(
ϕ
(

ΦAJ[f ] (jχ)
)))

= IS
(
clm+1

0,f (syχ)
)

. This is true since the left hand

side is α
(
f0
(

ΦAJ[f ] (jχ)
))

= α
(

log ΦAJ[f ] (jχ)
)

, thanks to the commutativity of
(49). The claim follows from (52).
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