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Abstract

Darmon cycles are an higher weight analogue of Stark-Heegner points.
They yield local cohomology classes in the Deligne representation asso-
ciated to a cuspidal form on I'g (N) of even weight ko > 2. They are
conjectured to be the restriction of global cohomology classes in the Bloch-
Kato Selmer group defined over narrow ring class fields attached to a real
quadratic field. We show that suitable linear combinations of them ob-
tained by genus characters satisfy these conjectures. We also prove p-adic
Gross-Zagier type formulas, relating the derivatives of p-adic L-functions
of the weight variable attached to imaginary (resp. real) quadratic fields
to Heegner cycles (resp. Darmon cycles). Finally we express the second
derivative of the Mazur-Kitagawa p-adic L-function of the weight variable
in terms of a global cycle defined over a quadratic extension of Q.

Résumé

Les cycles de Darmon sont un analogue de poids supérieur des points
de Stark-Heegner. Ils produisent des classes locales de cohomologie dans
la représentation de Deligne associée & une forme cuspidale sur I'o (N) de
poids pair ko> 2. Ils sont supposés étre la restriction des classes globales
de cohomologie dans le groupe de Bloch-Kato Selmer defini sur un corps de
classe d’anneaur au sens restraint attachés a un corps quadratique reél.
On montre que des combinaisons linéaires convenables obtenues par les
caractéres quadratiques du genre répondent a ces suppositions. On prouve
aussi des formules p-adiques du type Gross-Zagier, qui relient la derivée
des fonctions L avec variable poids attachées & un corps imaginaire (resp.
réel) quadratique auz cycles d’Heegner (resp. de Darmon). On exprime
la seconde dérivée de la fonction de Mazur-Kitagawa de variable poids
comme un cycle global defini sur une extension quadratique de Q.
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1 Introduction

Let Sk, (T'o (V) be the space of modular forms on I'g (V) of even weight kg > 2
and suppose that N = pM is a decomposition into prime factors with p a
rational prime not dividing M. Let K/Q be a real quadratic field such that
p is inert and the primes dividing M are split in K. When ky = 2 the paper
[Da] offers a p-adic construction of local points in the Mordel-Weil Ay (K),),
that are conjectured to be global points and to be subject to a reciprocity law
analogous to the one provided by the theory of complex multiplication. Here f
is a new modular form and A;/Q is the abelian variety attached to it by the
Eichler-Shimura construction. The theory as been extended in [Das], where the
construction has been lifted to the p-new quotient of the Jacobian Jy (V).



The present paper rather focuses on the higher weight case ky > 2. In the
paper [Or] it is offered a p-adic integration theory which is a higher weight
counterpart of Darmon’s one. Section 2 presents a lift of this p-adic integration
theory in almost the same way as the theory developed in [Das] offers a lift of the
theory developed in [Da]. Indeed, by means of this p-adic integration theory and
then following the construction of [RoSe, Section 4.2], we are able to construct
a monodromy module D € MFg, (¢, N), the category of filtered Frobenius
modules over Q,,, that should be thought of as being a realization in the category
of filtered Frobenius modules of the p-new part of the motive of weight kg
modular forms, as we are going to explain. In [RoSe] a different cohomological
approach, allow us to develop a p-integration theory which covers the compact
case of a more general Shimura curve: the p-adic integration theory developed
in [RoSe], when specialized to a modular curve, is shown to be equivalent to
the one presented here, and the monodromy modules to be isomorphic (see
[RoSe, Section 6]). The existence of this "modular symbol theoretic” p-adic
integration theory is essentially encoded in Proposition 2.8, which borrows from
the techniques in [RoSe]; but it turns out that it can not be deduced from the
results of [RoSe|, and one has a priori two independent theories.

Let us a fix a complete field extension F},/Q,. Suppose that there exists a
prime ¢ || N different from p. We can consider a factorization N = pNtTN~,
where N~ is an odd number of primes. By the Jacquet-Langlands correspon-
dence, the Eichler Shimura relations and the Brauer-Nesbitt principle (see for
example [IS, Lemma 5.9]) the Deligne representation Vj attached to the mod-
ular form f can be realized inside the p-adic étale cohomology of the Shimura
curve X = X+ ,n- attached to the indefinite quaternion algebra B of discrim-
inant pN~ and an Eichler order of level Nt in B. Set n := ko —2 and n = n/2.
More generally, in [IS, Lemma 5.9], it is explained how to construct a Chow mo-

tive M,, over Q whose p-adic realization V (m + 1) := H, (Mn’@, Qp (m+ 1))

affords representations for all modular forms on T’y (V) that are new at the
primes dividing pN~. One has a p-adic étale Abel-Jacobi map:

cly'it : CH™ Y (Mo,p,) — Eatg, (Qp,V (m+1)),

where CH™*t! is the Chow group of codimension m + 1 cycles, M, de-
notes the base change to F}, and we write again V to denote the restriction
of the global representation V' to the local group Gp,. Let D := Dy (V)
(resp. Dy := Dy (Vy))) be the associated associated filtered Frobenius module.
Dy == Dy (Vi) is indeed a Ky ® Q,-monodromy module (see [IS, Section 7]).
The above ext group is explicitly computed in [IS, (49)]:

IS: Extépp (Qp,V(m+1)) = Eatlp(F,D(m+1) =
Dg, /Fm+ = My (X, F,)" = M (I',F,)".
Here (—)" denotes the F,-dual space, My (X, F,) is the space of weight k-

modular forms on X, while M, (I, F,,) denotes the space of weight k¥ modular
forms on the Mumford curve I'"\’H,,, defined over F},, and the last equality holds



assuming F), D Q2. I" is the arithmetic group defined in subsection 5.3.2: it is
associated to the Eichler order of level NT in B and it is a subgroup of the norm
one elements in the definite quaternion algebra ramified at the primes coN .
Indeed the last one of the above identifications comes from the identification
X = T"\'H, over Q2 provided by the Cerednik-Drinfeld Theorem. In this
way the p-adic étale Abel-Jacobi can be interpreted as

log @7 : CH™ ™ (Mo, 5,) — M, (I, )"

We can consider the projection onto the f-isotypic component, thus getting a
p-adic Abel-Jacobi map with values in ejs M}, (I, Fp)v. Here e[y is the idem-
potent in the Hecke algebra corresponding to the modular form f.

Let R be the Eichler Z [1/p]-order consisting of matrices in My (Z [1/p]) that
are upper triangular mod M, set [ := R* and denote by I' C [ the subgroup of
matrices with determinant 1. Write D, to denote the filtered F)-vector space
attached to the base change of D to F},. Firstly our integration theory is a
morphism

¢ (A’®@Div’ (Hy") @ P,), — Dp, /F™ .

Here A? := Div’ P! (Q), F) = F,nQy, Div? (Hur) denotes the degree zero
divisor supported on Q" — @, that are fixed by the action of the Galois group
G@;r JFQ P,, is the space of polynomials of degree < n = kg — 2 with coefficients
in F, and F™*! is the m+ 1-step in the filtration of our monodromy module. In
order to be able to construct the right analogue of the notion of Stark-Heegner
points, following the ideas of [Da], we rather lift the above morphism to

o4 (A @ Div (Hy") @ P) . — D, /F™

The left hand side should be regarded as being a substitute of the local Chow
group. Indeed the Darmon cycles are defined as being suitable elements

o € (A% @ Div (Hy) @ P,

attached to the optimal embeddings ¥ : O — R, where O is an order of K
of conductor prime to NDg, Dy being the discriminant of K/Q. One of the
main differences with the weight 2 setting and with the cohomological approach
followed in [RoSe, Section 6] is the lack of uniqueness of the lifting ®47. In
any case one can show that the values ®47 (jy) are well defined quantities,
i.e. they do not depend on the choice of the p-adic Abel-Jacobi map ®47.
Furthermore the p-adic Abel-Jacobi images ®4 (jy) agree with the p-adic Abel-
Jacobi images of the Darmon cycles considered in [RoSe, see Section 6].
Suppose that f € S, (I'o (IV)) is a normalized newform and denote by K
the field generated by the Fourier coefficients of f. Attached to the modular
form f there is a Ky ®Qp-monodromy module Dyy), that appears like a quotient
of D in the category M Fy, (¢, N) of filtered Frobenius modules over Q,; we can
consider the p-adic Abel-Jacobi map @GJJ obtained by ®47 followed by this pro-

jection, taking values in Dy g, / F™*L The construction of these monodromy



modules, that follows [RoSe, Section 4.2], is reviewed in subsection 2.3: they
are built from a space MIS“"> | which is obtained from the cuspidal part of the
space of modular symbols with values in the F),-dual of P,, and depends on the
choice wy, of a sign at infinity. In section 3 we show how to realize our p-adic

Abel-Jacobi map as taking values in MS®¥=":

log @/ : (A" @ Div (HY") @ P,) . — D, /F™ T 5 MS=,

Our p-adic integration theory can be used to produce local cohomology
classes in E:rtéF (Qp7 Vm) as follows. Thanks to a combination of the work of
P

Bertolini, Darmon and Iovita with a result of Colmez (see Theorem 4.11) there
is an isomorphism ¢ : Dy} ~ Dpy. Let F = H/K be the narrow ring class
field attached to the order O and choose a local embedding H — F,, (assuming
F, D Qp2). Then we find an identification of the tangent spaces

¢ : Dig,p, /F"™H = Dy, [F™ S Batg, (Qp Vi)

where the last identification, provided by the Bloch-Kato exponential map, is
indeed an isomorphism in our setting. Let x : Gp/x — C* be a character and

set
jXI::E:UGG

Here (—) ® x denotes a suitable scalar extension. For every global field F' set
MW (F):=1Im (e[f] o cl{ﬁfl). Let H, /K be the extension out by the character

x- Denote by MW (H,)* the x-part of MW (H, ). As in [RoSe, Section 5] one
can formulate rationality conjectures asserting that:

X' (0)jow € (A’ ®@Div (Hp") @ Pp) [ ® x.

+
HE /K

7 (<I>AJ (%)) € res, (MW (Hy)X).

As it follows from the discussion [RoSe, Section 6], our local cohomology classes
are the same as the ones defined there in the more general setting of a Shimura
curve, when the theory is specialized to a modular curve. One of the main
motivations of this paper is indeed to provide instances where the conjectures
formulated there, or rather some of their consequences, can be proved.

Fix once and for all an identification C ~ C,. Denote by K[ the field
generated by the Fourier coefficients of f and all its companion cusp forms.
Assuming F, D K[y the tangent space Dy p /F™ ! = MS">="" (resp.
Dy, r, /F™T = ey My, (T, F,)") splits into o (f)-components corresponding
to the companion forms o (f) of f. Write @?J (resp. log @?J) to denote the
f-component of the above p-adic Abel-Jacobi maps, so that @G‘}] =, @f(‘;)
(resp. log @6;]] =@, log q)f("})). Attached to the modular form f there is a

modular symbol I; € MS“"> (resp. a rigid analitic modular form f™9) gener-
ating the f-component of MS“"> (resp. My, (T, F},)).

Let x : Gg/x — C* be a genus character, attached to the pair (x;, xo) of
Dirichlet character. Note that the values x; (—M) do not depend on i = 1,2.



The identification C ~ C, determines a prime p of K; above p and we can
decompose Vs, Dy, Dy and MWy (Hy)* according to the decomposition
Ky ®Q, = @y, Krp» where Ky denotes the p’-adic completion of K
at p’. We will write Vi), Difjp, Dps,p and MWy, (Hy)X to denote the p-
component, so that MW, (H,)* is naturally a Ky ,-vector space and the f-
component of Dy g /[F™! (resp. Dy, /F™T) appears in Dy, g, /F™H
(resp. Dygp,r, /F™).

One of the main results is the following Theorem, that is implied by the
conjectures formulated in [RoSe, Section 5]:

Theorem 1.1 Suppose N = pM, that there exists a prime q || M and that

ko

Xi (M) = (=1)7 wy
Then:
1. there is y¥ € MWy (H,) such that

o (@] (7)) =res, (u}) :

2. if yjf,p # 0 we have
MWy, (Hy)* = Kf,py}c,p'

The proof of the above Theorem follows the strategy developed in [BD2]
and [BD3] in the weight 2 setting. Indeed we also obtain p-adic Gross-Zagier
formulas that are of independent interest and an higher weight analogue of the
main results of [BD2] and [BD3].

Let W := Homcont (Z; , Gm) be the weight space, viewed as a rigid analytic
space over Q,. The integers Z are embedded in W by sending the integer k to
the function ¢ +— t*=2; let U C W be a small enough open affinoid disk centered
at kg. We will define p-adic L-functions

Lp(f/KaX7_):U_>(Cp7
L,(f/K',x,—):U — C,.

of the weight variable attached to the real quadratic field K or an imaginary
quadratic field K’ such that we can write N = pNTN~, where the primes
dividing NT are split in K and the primes dividing pN~ are inert, squarefree
and in even number.

When K/Q is a real quadratic field satisfying the above assumptions we
obtain the following formula, relating the second derivative of the above p-adic
L-function to the p-adic Abel-Jacobi image of the Darmon cycles.

Theorem 1.2 Let x : Gy+/x — C* be a genus character (here Ht s the
narrow Hilbert ring class field). Then:

d? 9D o AT (X) (I;)? if x; (=M) = (-1 2.
— [L K x,k)] _, = K gLy U ) (Iy) if X ( )= ( )}c }fM
dr2 [ P (f/ X )]n—ko { 0 if xi(=M)= (71)%WM-



Let now K'/Q be an imaginary quadratic field and consider a factorization
N = pNtN~ as above. We now focus on a genus character x of the imaginary
quadratic field K’. Denote by H, /K’ the extension cut out by the character x
X
and by yX € CH™*! (./\/ln H;{) the corresponding Heegner cycle. There is a
decomposition

MWf (HX)X = MWf (QXl)Xl EB]\/[VVJC (QXQ)X2 ’

where Q, . /Q denotes the quadratic extension cut out by the Dirichlet character
X;- Furthermore clg”‘;r1 (yX) belongs precisely to one between MWy (Qxl)X1 and
MWf (QX2)X2'

We obtain the following formula, this time relating the second derivative
of the above p-adic L-function to the p-adic Abel-Jacobi image of an Heegner
cycle.

Theorem 1.3 Let x : Gy/x — C* be a genus character (here H is the Hilbert
ring class field). If clgffl (yX) € MWy (Qxi)Xi we have

d? _f 2108 () (179)° if xi() =T = —w,
el [Lp (f/ KX 6)] oy = { 0 P ) = o

Hence the second derivative of L, (f/K,x, ) at ko encodes information
about the restriction at p of clgf}"l (yX): when x, (p) = —w, it is zero pre-
cisely when (the f-component of) the restriction of clgj“;'l (yX) at p is zero.

Information on the exact position of clg?;'l (yX), i.e. which one is the character
X; in the above statement, are given in Lemma 5.28.

We will also consider the restriction of the Mazur-Kitagawa p-adic L-function
L, (f,w,k,s) to the critical line L, (f,w, K, £/2).

Theorem 1.4 Suppose that there exists q || M and let w be a quadratic Dirichlet

character such that

ko—2 _kg—2
wy and w (p) = app™ T = —wWp.

Then:

1. the p-adic L-function L, (f/K,w, K, k/2) vanishes to order
orde=r, Lp (f,w, K, k/2) > 2;

2. there exists y* € CH™ ' (M, 0,)” and t € K} such that

2
% [Lp (f/K7 W, R, '%/2)}”:]@0 =t lOg (I)?J (yw) (frig)2 5

3. If czgjfl (y¢) # 0 then MWy, (Qu)” = Kf,pczgj;l ().



Again Q,, is the extension cut out by the character w, while (—)“ denotes the
w-component. Hence again the second derivative of the Mazur-Kitagawa p-adic
L-function L, (f,w, k, k/2) at ko encodes information on (the f-component of)
the restriction at p of clgf;rl (y*), whose p-component generates MWy ,, (Q)"
when non-zero. In particular

d2 w m w
dR2 [Lp (f/K,w, ”»“/@],«;ko #0 = MWy, Q)" = Kfmdo,f+1 (yp) :
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2 p-adic integration theory, L-invariants and the
monodromy module of weight £y modular forms

Let S be the space of modular forms of even weight k > 2, endowed with the
GL} (Q)-action

Fly=dety" ! (cz+d)" f(72).

For every integer N denote as usual by Sk (g (N)) := S,SO(N) the Ty (N)-
invariants, i.e. the space of weight k£ modular forms on T'g (N). Let Txn be
the Hecke Q-algebra generated by the operators T; for [ { N and Uj for [ | N
acting on Sy (T'o (V)). Then dimg Ty = dime Sk (T'o (V)) (see [Sh, Theorem
3.51]). The number field generated by the Fourier coefficients of a normalized
modular form f is denoted by K. The spaces Sy (I'o (IV)) are endowed with
the Petersson inner product (—, —),.

Let Px_o be the space of polynomials of degree < k — 2, endowed with the
following right GlLs-action:

aX +b
cX +d

P(X)M:=(cX +d)"?P ( > for P € Py_s (K,), (1)

b
whereM:(Z d)GG]LQ.

Usually we do not specify any field in the notation and we write Py_o =
Py_o (F) when such a choice has been made. The dual space Vi_o (F) :=
Homp (Pr_o (F),F) is then endowed with a natural GLo-left action by the
rule

(MA) (P) :=A(PM).

The same notation V_o will be in force to mean that the choice of a field has
been made. Indeed, whenever V and W are vector spaces over some field F,
we set VY := Homp (V,F) and V ® W without reference to the field.



We recall that Py_o and V_o carry a non-degenerate GlLo-invariant bilinear
form (see for example [BDIS, Sec. 1.2] or [IS, (33)]):

(= =)p,, + Pr2®@Prao—F,
<_’ _>Vk72 : Vi 2®Vi o — F.

Let A := DivP' (Q) and A° := Div’ P! (Q) be respectively the space of
divisors and degree zero divisors supported at the cusps with coefficients in
some field F', endowed with their natural action by fractional transformation
by GL2 (Q). For any space V endowed with an action by G C GLg (Q) (a
congruence group of Sy (Z) in the applications) set BS (V) := Hom (A, V) and
MS (V) := Hom (AO, V), equipped with the natural induced actions. There is
a canonical exact sequence

0>V —=>BS(V)—>MS(V)—0. (2)

We also write BSg (V) := BS (V)¢ and MS¢ (V) := MS (V)% to denote the
G-invariants. Finally when V = Vi_o = V. _5 (F) we will occasionally write

MS* = MS* (F) (and MSE = MSE, (F) for the invariants).

Recall the Bruhat-Tits tree 7 at p, whose vertices V = V(7)) are the ho-
mothety classes of Z,-lattices in Qf). Let L, := Zg be the standard Z,-lattice
in Q2 and set Lo := Zy ® pZy,. Write £ = £(T) to denote the set of ordered
edges and choose the following orientation & = ET U E™: write V1 (resp. V™)
to denote the set of those vertices v such that d(v,v.) is even (resp. odd),
where v, := [L,]; define 1 (resp. £7) to be the set of those edges e such that
s(e) € VT (resp. s(e) € V7).

We denote by Co (€,V) (resp. C(V,V)) the space of maps ¢ : € =V such
that c¢(e) = —c(e) (resp. C(V,V) the set of all maps ¢ : V — V). The set
of harmonic cocycles Cpqar (€, V) is defined by the following exact sequence (see
[Gr, Lemma 24] for the right exactness):

0 — Char(EV) — C(E,V) B cw,V) -0
Pl = Y ele). )

It will be also useful to consider the following exact sequence:

0 - VvV - cowvv) Z Co (6, V) ~ 0 )
(0%c)(e) = c(s(e)) —c(t(e)).

Let F,/Q, be any complete local field. Ay_» (P* (Qp)) := Ar—2 (P* (Qp), F})
denotes the space of F),-valued locally analytic functions on @, with a pole of or-
der at most k—2 at co. The same formula (1) endows it with a GLy (Q,)-module
structure. This space sits in the following exact sequence

0= Prg— A2 (P'(Qp)) = Ap—2 (P (Qy)) /P2 — 0.



Define the spaces DY_, (P' (Q,)), Dy—2 (P' (Qp)) and Vj_» by taking the
(continuous) F,-dual exact sequence:

0— DY_y (P (Qp)) — Di—2 (P* (Qp)) — Vi — 0.

It will also be convenient to consider the subspace

DY, (P(Qp) € Dia (P (Qy))

of bounded distributions, as defined for example in [RoSe].

We recall that there is a standard basis for the topology on P! (Q,) obtained
from the open compact subsets U, C P! (Q,) corresponding to the ends of 7
originating from e.

Note that with the only possible exception of Sk, the above spaces are en-
dowed with an action by the full group GLs (Q). Hence the matrix W, =
( 701 (1) ) acts on these spaces; furthermore, since it normalizes the groups of
the form Iy (N), the cohomology groups H® (I'g (V) , —) are endowed with a nat-
ural W-action. Suppose that V is a characteristic # 2 vector space endowed
with a Wee-action (the characteristic will be 0 in our applications): we denote
by V%= the direct summand of V.=V* &V~ on which Wy, = ws € {£1}.

We recall that there is a GLI (Q)-equivariant map

_ S, ®r C — MS*(C (5)
If{:r—y} —2m/f P(z,1)dz e C.

The composition of this morphism with the boundary map § arising from the ex-
act sequence (2) by taking the T'g (IV)-invariants identifies Si, (I'o (NV)) ®r C with
the image of H! (Tg (N), Vi_2 ((C)) in H' (T (N), Vi._2 (C)), usually called the
parabolic cohomology subgroup H},, (o (N), Vi_3 (C)). The identification

5ol : 8y (Lo (N))®rC = Hpy (Do (N), Vi_a (C)) (6)

is called the Eichler-Shimura isomorphism. Since Vj,_s is an irreducible Ty (IV)-
module (in light of the assumption k > 2, see for example [Hi, 6.1 Lemma 2]),
the following sequence is exact by definition of the parabolic cohomology, and
Hecke equivariant:

0 — BSFy(ny (C) = MSE () (C) = Hpyp (Do (N), Vi—2(C)) — 0. (7)

par

More generally we define H,,, (G, V) :=6§ (MSq (V)).

We recall the following Theorem of Shimura.

10



Proposition 2.1 There exist complex periods Qjﬂf € C such that
-1
+._ (0* T+ k,+
7= (0F) If e MSES,, (K))
The periods Qf can be chosen such that
QT = (f, f)y -
Once we make the choice of a sign we, € {£1} we set
Q= Q?"O and Iy := I}”O".
As in the introduction we let kg > 2 be a fixed even weight and set for

shortness n := ko — 2, m :=n/2 = (kg — 2) /2.

2.1 Decomposition into Eisenstein and cuspidal parts

Whenever M is a Ty-module we say that it admits an Eisenstein/cuspidal
decomposition if there exists a Hecke operator T; for some [ { N such that:

(a) we can write M = M*® & M€,
(b) the operator t; := T} — I*~1 — 1 is zero on M® and is invertible on M¢.
The following Lemmas are easily established.

Lemma 2.2 Whenever M = M® @& M¢ admits an Eisenstein/cuspidal decom-
position, M* C M with x = e, c is a T n-submodule and furthermore the decom-
position is unique.
Let My (resp. M) be a T n-module (resp. Tas-module). If f: My — My is

a Hecke equivariant morphism (i.e. a morphism such that T;f = [T for every
1t MN) and there exists T; with 1 + MN such that the properties (a) and (b)
are satisfied by My and My,

f=ref:Md M — M5 e M;

with f*: My — M5 for x=e,c.

In particular
ker (f) = ker (f°) @ ker (f°) and coker (f) = coker (f¢) @ coker (f€)
admit an FEisenstein/cuspidal decomposition.
Lemma 2.3 Suppose that we are given an exact sequence
0—-F—-M-—-C—0

of Hecke modules such that t; = 0 on E and is invertible on C. Then there
exists a unique Hecke equivariant section C — M, M = M @ M°® admits an
Eisenstein/cuspidal decomposition, M¢ = E and M¢ = C.

11



We are now going to describe the Eisenstein/cuspidal decompositions of some
spaces that will be of interest to us. Recall the groups I'g (M), 'y (pM) and T’
from the Introduction.

Eisenstein/cuspidal decomposition of MSrp, 1) (Vn)y MSt, ) (Vin),
and MSr (Crar (€,Vy))

The exact sequence (7) endows MSr, ) (Vi) and MSr,par (Vi) with
Eisenstein/cuspidal decompositions in light of Lemma 2.3: indeed in [Or, Section
7.2] a careful study of the action of the Hecke operators on BSt(ar) (V) shows
the existence of [ such that ¢, = 0 on BSp,(ar) (Va) and BSp,par) (Vin); on
the other hand by the Ramanujan-Petersson conjecture proved by Deligne this
Hecke operator is invertible on H},, (o (N), Vy).

Taking the T-invariants from the exact sequence (3) with V.= MS" (and
using Shapiro’s Lemma) gives the following commutative diagram:

0 = Char (EMS(Vo) = CEMS(VL)) — COVMS(V,)"
| | |
0 —  MSEL (Va) = MSropan (Vi) — MSran (Va)?,
(8)
where MS?gv("pM) (V) is by definition the image of Cpar (€, MS (V,,))" under
Shapiro’s isomorphism. The lower right arrow can be described explicitly in
terms of corestriction as in [Gr, Section 3.2]. Thanks to Lemma 2.2 we can endow

MSr (Char (E,Vy)) = Char (E,MS (Vn))F with a natural Eisenstein/cupidal
decomposition.

Remark 2.4 Let T := T} /""" be the p-new quotient of the Hecke algebra
Tpae- It follows from Lemma 2.2 and the FEichler-Shimura isomorphism (6)
that MSr (Char (€, Vi (F)))¢ is a free rank two module over T := T ®q F.

Eisenstein/cuspidal decomposition of MSr (V,), H! (T, MS (V,))
and H; ([A°®P,) = H (T, MS (V,))"

Sequence (4) (together with Shapiro’s Lemma) produces the long exact se-
quence

0 — MSr(Vn) = MSr, ) (Vo) — MSryipary (Vi) (9)
% H' (D, MS (V) = 0,

where the zero on the right is a consequence of H' (I'g (M), MS(V,)) = 0
(see [Or, Section 7.1]). Thanks to Lemma 2.2 we can endow MSr (V,,) and
HY (', M8 (V,)) with an Eisensten/cuspidal decomposition. It follows that
H (T,A°®P,) = H' (I, MS(V,))" is naturally endowed with a cuspidal
decomposition too.

Eisenstein/cuspidal decomposition of H! (I', Hom (P,,,V))

12



The groups H' (G, V,,) with G =Ty (N), T (pN) have an Eisenstein/cuspi-
dal decomposition. The long exact sequence obtained from (4) and Shapiro’s
Lemma gives H! (I, V,,) an Eisenstein/cuspidal decomposition too. Let V be
a finite dimensional vector space endowed with the trivial I'-action. By the
universal coefficient Theorem

H'(I',Hom (P,,V))=H"(I',V,)®V,

and the Eisenstein/cuspidal decomposition on H!(T',V,,) induces an Eisen-
stein/cuspidal decomposition on H! (T, Hom (P,,, V)).

Lemma 2.5 We have H (T, Hom (P, V)) = Hper (U, Hom (P,,, V)) = 0.

Proof. The claim is reduced V = K, and we may apply [RoSe, Lemma 3.10].
[

Taking the cuspidal parts from the exact sequence (9) and the applying
Lemma 2.2 we get the exact sequence:

0 — MSr(Vn)" — MSroar (Vi) — MSropoan (V) (10)
S HY (T, MS (V)¢ — 0.
Lemma 2.6 The boundary map 6 restricts to give an isomorphism:

8L MSPZIN (V,)© S HY (D, MS (V,))° .

To(pM)

Proof. The proof is analogous to [RoSe, Lemma 2.9] =

2.2 p-adic integration theory

Until the end of this section we fix a complete field extension F,/Q, and we will
work over this field. Consider the natural map

R: Dg (Pl (Qp)) — Char (S,Vn)
R(p), (P):=p(Pxuy,)

It induces a map
R: MS (D) (P*(Qy))) — MS (Char (€, V1)) = Char (E, MS (V).

Write ', \I" = |_| e I'..v, where y,e = e, and I'., = I'g (pM) is the stabilizer

in T of the edge e,. Whenever V is a I'._-module endowed with a (possibly
infinite) norm |—|, define the following norm on Cy (€, V):

e == sup |y.e(e)] € RUs.
ec&+
The above definition does not depend on the choice of the coset representatives.
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Lemma 2.7 Taking the invariants, the Shapiro isomorphism

Co (E,V)F ~ Ve

c—cleq)
respects the norms ||—|| and |—|.

Proof. The I'-module identification Cy (£, V) = C (€1, V) respects the norms
defined on the right hand side by the same formula. C (£, V) is identified with
the induced module Indll:h V. Mapping v to ¢’ (e) := v, le gives an explicit
inverse to the Shapiro isomorphism. The claim easily follows from the definition
of the norms. m

Proposition 2.8 Tuoking I'-invariants yields an isomorphism
MSr (DY (PL(Qy))) = MSr (Char (€, V1)) = Char (E, MS (V)"

Proof. Let |—| be a (finite) I, -invariant norm on V,,, that must exists since V,,
is finite dimensional and T',, C GLLy (L,) is contained in a compact subgroup of
GL; (Qp). Endow Cy (£,V,,) with the same norm ||—|| considered in the Lemma
2.7. Let C§ (€, V) (resp. CP,. (E,V,)) be the subspace of those elements of
Co (€,V,) (resp. Char (€, V,,)) having finite norm.

Consider the I'-modules

Hom (A, C, (E,V,)) =C. (E,Hom (A%, V,,)) with = 0, har,
Define on Hom (AO, Vn) a norm by the formula:

Im|":= sup |m(z—vy)l|.
2.y€PL(Q)

Note that the above formula defines a T, -invariant norm on Hom (D, V,,), since
the norm on V,, was I'. -invariant. Furthermore, taking the I',, -invariants we
see that the above norm is finite on Homp, (A% V,,). Indeed for every y € I,
thanks to the I'¢_ -invariance of the norm on V,,, we have

1

Im (vt =7 ty)| = |ym (v e =7 y)| = 1(ym) (@ — y)];

hence, whenever m € Hompr, (AO,VR), the sup can be taken over all a set
of representatives for the set of I'., -equivalence classes of P! (Q). Thanks to

Lemma 2.7 we also know that, setting

[l := sup [y,m(e)[’,
ecEt

defines a finite norm on Cy (5, Hom (AO, Vn))r7 and hence also on the subset

Homr (AO,ChM (E,Vn)) C Homr (AO,CO (E,Vn)) .
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Making explicit the definition of the above norms we see that

[m|" = = sup [yem(e)l' = sup |(yem(e)) (x—y)| =
ecEt ecET
z,y€P (Qp)
= sup  |yem(e) (volr - ty)| =
ecet
$7y€P1(Qp)
= sup |yem(e) (z —y)|
ecet
x,yE]P’l(Qp)

must be finite on Char (£, MS (V,,))"'. In particular, for every z,y € P*(Q)
(and every element of Homr (AO, Char (€, Vn))) we find

lm (z = y)|| = sup [yem (e) (z = y)| < [m]" < oo
ecEt

In other words for every z,y € P! (Q,) we have m (x — y) € C%,.. (£, V},), so that

the natural inclusion of Homr (AO, Czar (&, Vn)) in Homr (AO, Char (€, Vn)) is
really an identity

Homr (A°,Ch,, (€, V5)) = Homr (A%, Char (€, V) . (11)

By the Theorem of Amice-Velu-Teitelbaum (see [DT] for the apropriate for-
mulation) the morphism R restricts to give an isomorphism D%? (P! (Q,)) ~
C? . (£,V) and the claim follows from (11). m

har

Recall our fixed working field F}, and let FZ? = F, N Q," be the maximal

absolutely unramified subfield of F,. Write Div" (Hur) (resp. Div (HL)) to
denote the degree zero divisors (resp. the divisors) supported on Q" — Q) that
are fixed by the action of the Galois group G@y /FQ-

Definition 2.9 Define pairings

(A° @ Div? (HU") @ P) @ MS (DY (P! (Qyp))) — F,
(r—=8)@(re—71)@PQpu = 72 Pwe{r — s}

(A0 6 Dinh (1) & Po) & M8 (D0 (7 (Q,)) — B
(r—8)@(re—711)Q@P&@pu = 7 Pwd{r — s}

where

[z et i= [ o, (t - ) P(t)du{r — s} (1)

t—-Tl
and

[Unret= Y [ PO 0.

erred(T1)—red(T2) U(e)
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Since the pairings are I'-invariant they give pairings
wlog, gerd s (A% @ Div’ (HY") @ Py) . @ MSr (D), (P (Qy))) — Fp.
Hence there are two morphisms
wlos gord ;- (A® @ Div® (") @ P,) . — MSr (DY (P'(Q,))) .
From now on we will identify, via Proposition 2.8,
MS := MSr (D?Z’b (IPl (Qp))) = MSr (Char (€, V1))
Consider the exact sequence
0— A°@Div’ (HY") @ P,y —» A @ Div (HY) @ P, — A°@ P, — 0,
yielding the boundary map
H, (I, A°®P,) % (A°@Div’ (HY) @ P,,)..
Recall that we have introduced Eisenstein/cuspidal decompositions on both
H T,A'® Pn) and MS. Let p© be the projection onto the cuspidal part of
MS”.
Theorem 2.10 The morphism
polydi=potlo0: H (I,A°®P,) — MS“
s surjective and induces an isomorphism
H (I,A°®P,)" = MSY,

Proof. The proof is just a copy of [RoSe, Theorem 3.11] with the obvious
modifications and Lemma 2.6 in place of [RoSe, Lemma 2.9]. =

Definition 2.11 The morphisms
'8, ¢ (A° @ Div® (Hy') © Py,) . — MS“Y
are by definition ®* := p. o U* with * = log, ord.
The above Theorem allows us to define the Orton L-invariant.
Corollary 2.12 There exists a unique L € Endqy@p (MSC’V) such that
Pt 0 =Lod"0d: Hy (I‘, A’ ® Pn) — MS“V.

Proof. The Corollary can be deduced from Theorem 2.10 exactly as [RoSe,
Corollary 3.13] is deduced from [RoSe, Theorem 3.11]. m
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2.3 The monodromy module of weight ky modular forms

Choose a sign ws, and set
D = D" := MS*""= ¢ MS*" "=,

Note that D is a free rank two module over Tx, by Remark 2.4.
Define

®:= -9t 3 ¢ (A@Div’ (Hp") ® Pp) . — D.

According to Corollary 2.12 and Theorem 2.10
Frtl={(—La,z) 12 € MS®V">} =Im (P 0 ) (12)

is a free rank one Tp,-submodule.
Let o be the absolute Frobenius automorphism of Fg. Write D (Fg) =

MS& Y wee (F£)2.Then we can consider the o-linear automorphism op =1 Q¢
on D (F)) =D (Q,) ®q, F.
We define a structure of filtered Frobenius module over F}, on D as follows.

(a) The filtration is

D=F'DF' =.=F1DFF=0,
Frtt = {(—Lz,z) : 2 € MS®YV"> 1} for m := (k —2) /2.

(b) The Frobenius operator ¢ is defined on D (Fpo) by the equation ¢ =
U, ® op ®pU, ® op, i.e.

¢ (2,y) == (Upop (2) , pUpop (y)) -
(¢) The monodromy operator N is defined on D (F)) by the rule
N (z,y) = (y,0).

It is easily checked that the above conditions define indeed a filtered Frobe-
nius module structure on D, defined over Q, if we have taken F}, = Q,. The
filtered Frobenius module D over F}, is indeed obtained from the one over Q,
by base change from MFy, (¢,N) to MFr, (¢,N). Since the Hecke algebra
T is commutative, every element of this ring commutes with ¢ and N. Fur-
thermore F™*! C D is a (rank one) Tp,-submodule. Indeed D is a rank two
Tg,-monodromy module over Fj,.

Let f € Sk (Ip (pM)) be a normalized p-new weight k eigenform. Denote
by Iy~ € MS’;O(M) (K ) the modular symbol attached to the choice of the
sign ws that was chosen to define D, appropriately normalized by means of
Proposition 2.1. Let Ky be the composition of the fields Ky, where f7 is the
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modular form obtained from f by applying the automorphism o € Gg to the
Fourier coefficients of f. Up to extending F}, we can fix an embedding K[s) C F,.
Let
MS?J”‘X’ 1= Fply> — MS*“=

be the f-eigencomponent of MS®*“* on which the Hecke algebra acts through
T— Ky CF,. (13)

Write

C,Woo ,__ C,Woo
MS{™ = @, MS§;

Note that the above sum can be indexed by the [K : Q] embeddings of K in
Q. The inclusion MS[C;]”“ C MS®"> gives rise to a morphism

ers) D = Dyy,

where we define:
. ¢V, Weo C,V, Woo
D[f] = MSm EBMSm .

We also note that Diy) = @, Dy, where Dy is similarly defined.
Hence we can consider

iy (A @DV’ (V) ©P,), 2 D Yoy

Since MS[CJLT"" C MS“"= is an Hecke submodule, setting F[TJ’J]Jrl = epp (F™1)
it is easily checked that Dy gets a structure of filtered F-vector space with
multiplication by Ky ® Q,. The same remark applies to D, the Hecke algebra

acting though (13). In this way

D=, Dy- (14)

is a decomposition of filtered F),-vector spaces endowed with multiplication by
the Hecke algebra.

We write Ly € Endr,, (MS[%U“’) (resp. Ly € Endrg, (Ms;vwoo)) to de-

note the L-invariant corresponding to the modular form f (of course depending

a priori on the choice of wy,), i.e. the image of £ acting on MS[CJLEU‘” (resp.
MS%™=). It is also characterized by exploiting a property similar to the one
of Corollary 2.12 (see [RoSe, Section 4.3] for details). We have L} € K; ® Q,

and Ly € F, is the image of it under (13). Then we have

m—+1 . c,V, Woo
F[f]Jr = {(—E[f]x,x) .:L'EMS[f] } CD[f],
Fpit = {(-Lpw,2) 0 e MSFVU= L C Dy

Remark 2.13 Dy has indeed a natural Qp-structure compatible that can be
used to define on Dy the structure of a Ky ® Qp-monodromy module over Qp,
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i.e. we could have taken F, = Q,. In this way e[y) becomes an epimorphism in
MFFp, (¢,N)

On the other hand Dy is only defined when Ky C F,. Assuming K5 C F),
the decomposition (14) of filtered F),-vector spaces endowed with multiplication
by the Hecke algebra produces a decomposition

Dy /Ft = @, Dy [Fistt (15)

of the tangent space of Diyy € MFF, (¢, N). The Hecke algebra acts through
(13) on the f-component.

We can also consider
s+ (A° @DV (H2) @ P,), & D/Fmt Dy e,

The same construction holds for the inclusion MS$"> € MS®™= and produces
the analogous morphisms ®;. We will write ey to denote the projection onto
the f-component.

2.4 The p-adic Abel-Jacobi maps in the Darmon setting

Consider the exact sequence

— H; (A’®Div’ (Hy") @ P) — H; (A’ ® Div (HY") @ Py,)
— H; (AO ® Pn) —

obtained from the short exact sequence
0— A’®@Div’ (Hy") ® P,, = A°@Div (HY) @ P, > A°®@ P, — 0.

Let V be any Fj,-vector space, regarded like a trivial I-module. The appli-
cation of Hom (—, V) produces the following exact sequence:

Hom ((A°® P,).,V)— Hom ((AO ® Div (Hy") ® P”)F ,V) — (16)
Hom ((A° @ Div® (Hy") @ Py) ., V) = Hom (H; (T, A" @ P,), V)
It will be convenient to give the following:
Definition 2.14 A V-valued definite integration theory is an element
@ € Hom ((A° @ Div" (") @ P,) ., V) .
A V-valued semidefinite integration theory lifting ® is an element

@17 € Hom ((A° @ Div® (H") © P,) ., V)
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such that the image via the middle arrow of (16) is ®. One can also define the
notion of V -valued positive oriented definite integration theory and the notion of
V -valued positive oriented semidefinite integration theory by means of the exact
sequence

0—A"®@Div’ (HY ) @ P,, » A’®@Div (HY ") @ P, —» A°@P,, — 0, (17)
where Hy™" denotes the subset of those T € Hy" such that red (1) € V.

In particular we can consider the D/F™*!valued integration theory ob-
tained by ® followed by the projection onto the quotient D/F™+! that we will
denote again by the same symbol by abuse of notation:

®: (A’@Div’ (Hp") ® P,) . — D/F™

Definition 2.15 A p-adic Abel-Jacobi map (in the Darmon setting) is any
D/F™ L valued semidefinite integration theory lifting the above integration the-
ory @ (eventually positive oriented).

Proposition 2.16 There exists a D/F™ ! valued semidefinite integration the-
ory ®47 lifting the D/F™+ -valued integration theory ®. In particular the re-
striction of ®47 to (A" @ Div (HE ) ® P”)F provides a D/F™ ! valued pos-
itive oriented semidefinite integration theory lifting the restriction of ® to the
group (A° ® Div" (He ™) ® P")r‘

Proof. The claim follows from (16) specialized to V.= D/F™T! in light of
(12). =m

Remark 2.17 One of the main differences with the weight 2 setting, as well
as with the cohomological approach followed in [RoSe], is in the lack of the
uniqueness of a semidefinite integration theory. In fact note that two different
liftings differs by an element of

Hom ((A°®P,)., V),

as it follows from the exactness of (16). In any case we will be able to define the
p-adic Abel-Jacobi image of the Darmon cycles jy € (AO ® Div ('ng) ® P")F
by showing that ®47 (jg) does not depend on the choice of the p-adic Abel-Jacobi
map ®47 (see the subsequent Proposition 2.22).

2.5 Darmon cycles

Let K/Q be a real quadratic field of discriminant Dy and recall our factorization
N = pM. We make the following assumption:

Axiom 2.18 (Darmon hypothesis) The prime p is inert in K while the primes
dividing M are split.
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Choose embeddings:
c:K—Rando,: K — K,

that we will use to regard K like a subfield of both R and the quadratic unram-
ified extension Qp2/Q,. In particular the inequalities < make sense between
elements of K and we can consider H, (K) = H, N K. We may also view
VDg € K, via op.

We denote by Emb = Emb (K, M3 (Q)) the set of all the Q-algebra embed-
dings of K into My (Q). Whenever O is a Z[1/p]-order of conductor ¢ prime
to DgN we also denote by Emb(O,R) the set of Z[1/p]-embeddings of O
into our fixed Eichler Z[1/p]-order R. Define the Z [1/p]-order associated to
U € Emb as being Oy := U1 (R), so that for every fixed Z [1/p]-order O as
above Emb (O, R) C Emb is the subset of those ¥ € Emb such that Oy = O.
Attached to the embedding ¥ € Emb there are the following data:

e the two fixed points 7¢, Ty € H, for the action of ¥ (K*) on H, (K),
ordered in such a way that the action of K™ on the tangent space at Ty
is through the character z — z/Z;

e the unique fixed vertex vy € V for the action of ¥ (K *) on V, which is
nothing but the reduction red (7¢) = red (Ty);

e the unique polynomial up to sign Py in Py which is fixed by the action
of U (K*) on Py ®det™" and satisfies (Py, Py)p, = —Dk /4 (the pairing
being defined like in [BDIS]), which we fix by the choice

Py =Tt (\I/ (@/2) : ()1( __))((2)) € P,.

The other one is obtained replacing /D /2 with —v/Dg /2;

e the stabilizer 'y of ¥ in I', which is nothing but

Ty =¥ (KX)NT =W (05),

where OF stands for the subgroup of O* of norm 1 and O = Oy is the
associated order;

e the generator vy € I'y/{£1} ~ Z which is the image v := ¥ (u) of the
unique generator of u € O such that o (u) > 1.

For each 7 € H,, (K) := H,NK (use 0, to view K as a subfield of K},), we say
that 7 has positive orientation at p if red (1) € V*. We write H,f (K) to denote
the set of positive oriented elements in H, (K). We say that ¥ € Embt C
Emb has positive orientation whenever vy € V', ie. 7g¢, 7Ty € H;r (K). It
is possible to introduce the notion of negative oriented embeddings and then
we have Emb = Embt LU Emb~. We also denote by Emb™ (O, R) the subset of
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positive oriented embeddings of conductor ¢. The group I' naturally acts on
Emb by conjugation, preserving all the subsets we introduced.
We note that the association

U (1w, Py, vg)
satisfies the following property under the conjugation action by v € I':

(Towr—1, Pywn—1,Vywy-1) = (77w, 7Py = Pey vy ™t) . (18)
Once we fix x € P! (Q) we can consider
j : Emb(O,R) — A ® Div (H,) ® Py,
Jw = 7¢$-$®T¢®D;¥P$.

Lemma 2.19 The image [jy] of ju in (A @ Div (H;;T) ® P")F does not de-
pend on the choice of y € Tx that was made to define it. Furthermore it does
not depend on the choice of a representative of the class [¥] of ¥ in Emb, so
that the above association gives a well defined map

7 :T\EMb(O,R) — (A” @ Div (Hy") @ P) .-
Proof. The proof is easy. m

For later purposes it is useful to remark the following property of the data
attached to ¥ € Emb.

Remark 2.20 We have
(%, P 7g) = (T, —P\I/,’YE/I) .

Indeed the equality (T4, Pg) = (Tw, —Pu) is clear. To see that vg = 'y;l simply
note that, since the norm of u is one, u~' =u. Thus

Vg =V (u) =V (u) =" (u_l) =: 761.
Definition 2.21 The Darmon cycle attached to the embedding ¥ is the element

[jw] € (A° @ Div (HA") ® P")w also denoted by jy by abuse of notation.

The following proposition allows us to define the p-adic Abel-Jacobi image
of the Darmon cycles.

Proposition 2.22 For every ® € Hom ((AO ® Div ('ng) ® P")F 7V) let <I>f”
with 1 = 1,2 be two V -valued indefinite integration theories lifting the integration
theory ®. Then we have

e gz —2@7®P)) =037 (gr —z@ 7@ P]),
for any T € Hy and any P € K, Pyg".

In particular
o1 ([ju]) = 237 (ljw)) -
The same result holds for positive oriented V -valued integration theories.

22



Proof. By Remark 2.17 1/ — ®2'/ belongs to Hom ((A° ® P”)l" , V). More
explicitly this simply means that we may write (<I>‘14J — @‘QM) = Ao for
some A € Hom ((Ao ® Pn)r ,V), where 7 is the quotient map with source
(AO ® Div (ng) ®P")F and target (AO ®Pn)r' In other words, for every
z,y € P (Q), 7 € H, and every P € Hom (P, V):

oM (r—yRT70P) - (r-yT@P)=Ax—-y®P).
We will show that every element A € Hom ((AO ® P”)F ,V) satisfies
A(ygr —x®P)=0for P e K,Py,

from which the claim will follow, in light of the above equality.
Consider the function

ey —=A(yr—2®—) € Hm(P,, V).

It is a crossed homomorphism from I" to Hom (P, V) because V is endowed
with the trivial T-action. Let ¢, be the class of ¢, in H! (T, Hom (P,,,V)).
Consider the exact sequence (2)

0— Hom (P,,V)— BS(Hom (P,,V)) > MS (Hom (P,,V)) — 0.
We claim that ¢, = —dA, where we regard A as an element of

Hom ((A°®P,).,V) = Homp (A° @ P,,), V) = MSr (Hom (P, V)),

T

and ¢ is the boundary map arising from the above exact sequence. Once we
will have established this fact the claim will follow from Lemma 2.5, since then
we will know that ¢, = —0A = 0. But this means that there exists A €
Hom (P, V) such that OA = ¢, i.e. for every v € I" and every P € P,

A(ya—x®P)=c, (1) (P) = A (y'P) = A(P).

But (18) implies that K, Py C PLv; evaluating at y¢2 —2® P with P € K, PP
gives A (ygz —x ® P) =0.

Hence it remains to prove the equality ¢, = —dA. By definition JA is
obtained choosing A € BS (Hom (P, V)) such that A (z —y) = A (x —y) for
every degree zero divisor x — y and then noticing that

v — yA-A= (75) (y) —Ay) =
= E (Vily) (771_) - E (y) (_) € Hom (P7L7V)

is a constant function, independent of the choice of the divisor y at which to
evaluate it. Taking y = yx for any given v we find that the above cocycle is

v A(z) (’y_l—) —A(yx) (=) € Hom (P,,V)
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On the other hand, up to the identification
Hom (A’ ®P,, V) = MS (Hom (P,,V)),

¢z (7) (P) = A(yz — 2) (P) = A (yz) (P) = A () (P).
Hence the sum ¢, + A to be considered is
A (vz) (P)=A () (P)+ A (2) (y'P) = A (y2) (P) = A(z) (v 'P) - A(z) (P)

and we have to show that this is a coboundary.

But now a coboundary in H* (T', Hom (P, V)) is of the form v +— yA — A
with A € Hom (P,,, V), ie. (A)(y)(P) = A(y"'P) — A(P). We can now
take A = A (z) (—) € Hom (P,,, V), so that

(2(2@ ) )Py =A@ (77'P) = A@) (P).

The same proof applies for positive oriented V-valued integration theories,
exploiting the long exact sequence obtained from (17) in place of (16). m

Now we are in the position to define the p-adic Abel-Jacobi image of the
Darmon cycles.

Definition 2.23 The p-adic Abel-Jacobi image of the Darmon cycle attached
to the embedding ¥ is the element

‘I)AJ (j\p) _ cI)AJ ([j\p]) c D/Fm+1,

where ®47 is any p-adic Abel-Jacobi map.

As in [Da] the set T\Emb™ (O, R) is naturally endowed with an action by the
(narrow) Picard group Pict (O) attached to the order O. The class field theory
identifies canonically Pict (O) with the Galois group over K of the narrow ring
class field HJ.

rec: Pict (0) 5 GH{;/K'
In this way G4 /) acts on MN\EmMbT (O, R).

Remark 2.24 Asin [Da, after Lemma 5.7] it is possible to introduce the notion
of oriented embeddings EmbT®(O,R) by firing a homomorphism

0:0— Z/MZ.

Then T preserves EmbT° (O, R), so that it makes sense to consider the quotient
T\EMbT (O, R) and this set becomes a torsor under the action of Pict (O).
Furthermore, the Atkin-Lehner involution Wie at the primes dividing 1° | M
transitively permutes the possible orientations, while the Atkin-Lehner involution
W, reverses the orientation at p.

Let x : G HS K C* be a character. It will be convenient to introduce the
following linear combination

=Y e, X 10)jow € (A*®@Div (Hy") @ Py - (19)

+
HES /K
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3 Review of the p-adic Abel-Jacobi map in the
Darmon setting

Consider the following commutative diagram:
(A°@Div’ (H¥) ©P,),. % D/FmH!
| Lf (20)
(AO ® ])iVO (HZT> X Pn>r loi{:' ]_v-[SC,\/,wOC

where:

e f(x,y) = —xz—Ly, which is easily checked to be well defined, i.e. f (Fm“) =
0, and is an isomorphism;

e log ® := dlog — £pord,
Note also that, by Corollary 2.12,
log® o0 = (<I>1°g — E<I>°rd) 00 =0,

a fact that can also be deduced by the commutativity of the diagram and the
equality ® o @ = 0. Since f is an isomorphism we can identify ® and log ®. It
is clear that the above discussion applies to Dy or Dy when f is a modular
form. Hence we will write log ®s = e o log ®.

We will use the following notation for the branches of p-adic logarithm. We
let log, be the branch of the p-adic logarithm such that log, (p) = 0 and for
every A € F}, we let

logy := logy —Aord, : F, — F,

be the branch of the p-adic logarithm such that log, (p) = —A.

Note that the definition of the monodromy module D, as well as ®, depends
in a crucial way on the choice of a branch of the p-adic logarithm, since ®'°&
depends on this choice. Write ®'°8x, £} ®* and log ®* to emphasis the depen-
dence on this choice. The dependence on A appears in D in the definition of
the filtration, so that we write F}\"H.

Proposition 3.1 For every A € F),
DL — @t — 207 € Hom ((A° @ Div” (Hy") @ Py), , MS“Y " ).

Proof. We need to evaluate ®'°8x (x —y ® 79 — 71 ® P) at m € MS®V'"> in
order to prove the proposition. By definition:
t— T2
fIP’l(Qp) log <t—7‘1> P(t)dm{z — y} (t) =

= [p1(g,) 0% (i::‘i) P(t)dm{z — y} (t) +

t— T2
-\ f]Pl(Qp) Ordp (t —

>P(t)dm{x—>y}(t).

T1
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Thus we need to check the formula:

t—TQ

f]P’l(Qp) ordy, (t —

T1

)P(t)dm{wy}<t>= S [y P dm e -y} (0).

v —v2
The proof of [BDG, Lemma 2.5] gives the claim. =
Lemma 3.2 For every A € F),
LY =L0 -\
Proof. Proposition 3.1 implies, in light of Corollary 2.12:

LYo 00 =300 =3"000 - N0 =
=L031 00 - NP0 =

_ ([,O—)\) 0 & 6 9,

the equality taking place in Hom (H1 (I‘, A% ® Pn) ,MSC’V’“’“’) .

Now the claim follows from Theorem 2.10, arguing as in Corollary 2.12. m

Suppose that in diagram (20) we have chosen the standard branch log, of
the p-adic logarithm. Choosing a different branch log, of the p-adic logarithm
we find, thanks to Proposition 3.1 and Lemma 3.2:

o Alzy)=—x— (L2N)y;
o log ®* = dlogn — £LAPOrd = Jog @O,

In particular we see that log ®* does not depend on the choice of a branch
of the p-adic logarithm.

Assume now that f is a new modular form. We have L; and Ly €
Endrg, (MS‘[:f]/w‘”) acts diagonally via the matrix diag (Lo : o) on MS[Cf]”""
with respect to the decomposition (15). Choosing the branch of the p-adic
logarithm \ = E(;, so that L} = 0, the above expressions simplify and become:

o fA(zy) = —u
o log®) = log @} = B
Also recall that f* is an isomorphism.

Proposition 3.3 Let f € S, (I'o(N)) be a new modular form. Then the
Df/F(;”H-valued integration theory <I>?c is equivalent via f° to the MS(}’w"O-
log 0

valued integration theory log ®% = P, !
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4 Families of modular forms and families of mod-
ular symbols

Let W := Homeont (Z;,Gm) be the weight space, viewed as a rigid analytic
space over QQp, and suppose for simplicity p # 2. The integers Z are embed-
ded in W by sending the integer k to the function ¢ + t*=2. Note that this
normalization follows [BD2] but not [BDI], where the integer k is sent to the
function t — t*. If U C W is an open affinoid defined over the local field K,
every k € U (K,) can be uniquely written as a product x (t) = £ (¢) x (¢) (t)°,
where € : Z) — K is a character of order p — 1, x : Z; — K is a char-
acter of order p and s € Of,. We can uniquely write every element of Z; as
a product t = [t] (t), where [t] € pu, 4, the group of p — I-roots of unity, and
(t) € 1+pZ,. With our normalization an integer k € U corresponds to the char-
acter k () = [t]" 2 ()" 2, ie. e (t) = [t}" 2, x = 1 and s = k — 2. In general up
to shrinking U in a neighbourhood of kg € Z, we can assume  (t) = []*~* and
x =1 for every x € U (K},), so that x (t) = [t]*°7% (£)°. In this case we also set

(5/2) () =[]

<t>%. Then we define, for every a € Q)™

<a>r:fo — <a>s_"”':+22 =exp ((s — ko + 2) log, (o)) ,
(a) = = ()i,

<a>n7ﬁ/271 _ <a>ﬁ7k0 (<a> £k <a> ko2 7

@7 = @) @)

Note that the first two expressions make sense for every x € U, since (o) €
1 + pOgn- and log, () € pOqyr (since p # 2 the exponential converges in

pOc,); the subsequent two expressions are defined using the other two, i.e.
(=)~ and a”™% have the obvious meaning.

We fix the following notation to be in force for the rest of this paper. We let
W = Qf, — {0} be the set of non-zero vectors in Qg and consider the natural
continuous (for the p-adic topologies) projection

7 W — P! (Qp)
™ ((z,y)) = z/y.

For any Z,-lattice L in Qg we denote by L' := L — pL the set of primitive
vectors of L and we write |L| := p°*d»(d¢t B) for B any Zy-basis of L. Recall we
let L := ZZ be the standard Z,-lattice in Q2 and we set Lo := Z, BpZy,. Recall
the Bruhat-Tits tree 7 whose set of oriented edges we denoted by £ = £ (7). If
e € Elet Ly and Ly(.) be lattices whose homothety classes represent the source
and the target of e, chosen in such a way that L) D Ly with index p. To
the edge e are associated the open compact subsets W, C W and U, C P! (Q,)
defined by the rules

W6 = L;((i) N L;(e) and Ue =T (We) .
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We remark that W, depends on the choices of Ly and Ly, so that W, is
well defined (as a function of e) up to multiplication by elements of Q<. On the
other hand U, is well defined and in fact it is the set of ends originating from
e, when making the canonical identification £> (7)) = P! (Q,) between ends of
T and P! (Q,). In particular we recall that these subsets U, form a basis for
the p-adic topology of P! (Q,). We write W, = L, N L’ to denote the set W,
obtained from the edge oo = (Vs, Vo), Where v, = [L,] and v = [Loo].

For every open compact subset X C Q2 or X C P'(Q,), write A (X) for
the Qp-space of locally analytic functions on X, as defined in [BDI, Sec. 2].
Denote by D (X)) := Homeont (A (X),Qp) the continuous Q,-dual space, called
the space of locally analytic distributions on X. As usual, for any p € D (X)
and F € A(X), we write fX Fdyu to denote the value of p at F'; then it is clear
what we mean by [ y Fdp, for any open compact subset Y C X.

We let GILa (Qp) act on the left on Q2 by viewing elements of Q2 as column
vectors. There is an induced action on W and 7, as well as an induced action
of the subgroup Gl (Z,) on L,; the action of the scalar matrices Z; on W
preserves the set L’ for any lattice L and will be denoted as t (z,y) := (tz, ty).

It follows that A (L) is endowed with a right GLL, (Z,,)-action and its contin-
uous dual D := D (L) is endowed with a natural left GLy (Z,)-action. Denote
by R:=D (Z;) the space of locally analytic distributions on Z.

There is a natural R-module structure on D,

RxD—D (r,u)— ru,
defined by the formula
S Py @y) = [ ([, F ity due,y)) dr(t).
Fix an integer £ > 0 and let U C W be an affinoid disk such that k € U,

defined over a finite extension K, of Q,. We can define a structure of R-algebra
on the K,-affinoid algebra A (U) of U by means of the formula

T |:I€l—>fZI>)< /i(t)dr(t)].

We denote by Dy := A (U) @D the completed tensor product over R. Now
fix any x € U and define, for any Z;-stable open compact X C Qg:

AR (X) = {FeAX): F(te,ty) =k (t) F (z,y) forallt € Z)}.
In [BDI, Section 3] it is explained how to define a continuous R-bilinear map
Ix P AW (X) x Dy — K,
that we denote

I x F(z,y) dug-
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For every integer n € Z we will also be interested in the subspace Aﬁf" ) (W) c
A" (W) consisting of those functions F' € A®) (W) such that F (px,py) =
prE (2,y).

Finally note that for every homogeneous function F &€ A%n) (W) of degree
n we can consider the locally analytic function on P! (Q,) with a pole of order
at most n at oo defined by the rule F (t) := F (¢,1). Conversely given a locally
analytic function on P! (Q,) with a pole of order at most n at co we can consider
the homogeneous function of degree n defined by F (z,y) := y"F (z/y). In
this way we establish a GlLs-equivariant bijection between these spaces. The
space P, with the action previously considered corresponds to the space of
homogeneous polynomials of degree n and we will denote again by P = P (z,y)
the polynomial attached to P = P (t).

Lemma 4.1 For alla € Q)"*, k€U and t € Z;:

o (ta)" 7R = R ()¢~ (o) TR,

r—kq

o (ta)

r—kq

= (k/2) ()t {a) 7

o (o) P = k(1) (/2) 7 (1) ()T
o (o)™ = (w/2) (1) ()"
Furthermore, for every k € ZNU and for every o € Z)° we have:

° <a>k—ko = qf—ko.

. <a>k/2_1 = ak/2-1,

Suppose that X C L is an open compact subset preserved by the action of
Z)y. Whenever p € Dy, P € Py, and o, 8 € A(X) satisfy o (tz) = ta(z) and
B (tz) = tB (x), it makes sense to consider the functions on U

o (Pla) )
7k0

woe n (P07 ),
foe o ((@"HE T ).

The above functions are analytic.

Proof. One has to first check the homogeneity properties of (a)" " and (o) 2 ’
and then use their properties to check the ones of ()" ~"/?~! and (a)"/?*~*. The

second statement follows from the fact that, whenever k (t) = [t} ()" 2 is
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an integer in U, we can assume [¢]" 2 = [t]** 72, so that k = ko mod (p — 1). It
follows that [a]* ™" =1 whenever a € Z,; and then

<a>k‘7ko — <a>k727k0+2 _ <a>k7ko _ <Oé>k7ko [a}k*ko _ akiko.

k—k o —
The claim («) 2 * = o™= follows in a similar way and the other two equations

follow from the definition of (a)" */*~' and (a)"/?7".

The fact that the above functions are well defined follows because Pa/~*,
" K—k
Pa 2k05 7" and a~/271357%/271 helong to A®), so that we can apply p.
Finally, to show that they are indeed analytic, one can follow [BDI, Lemma

45]. =

The following proposition will be useful for the computations of the deriva-
tives of p-adic L-functions.

Proposition 4.2 Let kg € Z2? and P € P,, withn = kg — 2. For every lattice
L and every 71,72 € H,,

% ( L P (z,y)(z — le>NTik (x — 7'2:U>NTHc dI {r — s} (x,y))n:kg —
3 (fy P (z,y) (x — 1) " dI {r — s} (x,y))mzko +
L (fy P ) (o — o)™ dI {r — s (2.1)

K,=k0

Proof. Use the explicit formula of [BDI, Remark 4.7] for the derivatives ap-
pearing on the right hand side and compare it with an analogous formula for
the left hand side. Note also that it makes sense to consider the derivatives in
light of Lemma 4.1. =

4.1 Families of modular symbols

We let f be a weight ky newform on the modular curve X = X, (N), where
N = pM is a factorization into prime factors and p is a prime. The Hecke
operator at p acts on f with eigenvalues:

ko2
flU,==xp = f.

A p-adic family of modular forms deforming f is the data of an affinoid disk
U C W in the weight space, such that ky € U and a formal g-expansion

Jfoo = Zn an (k) ¢", an (k) € A(U)
such that:

e For every k € UNZ=Z%0 the specialization f, is a weight k& modular eigen-
form;
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* fu, = f.

Since the slope of the U, operator acting on f is strictly less than £y — 1
there exists such a family, which we assume to be an eigenfamily of modular
forms of slope (kg —2) /2, up to shrinking U. Note that whenever k # ko
the modular form fi is old at p. There is a unique normalized new eigenform
f,f& € Sy (To (M)) such that

fr(2) = 7 (2) ="y, (k)1 £ (p2). (21)

Let I}f € MSF, u) (C) (resp. I € MSE (,an (C)) be the modular symbol
attached to fk (resp. fx) by the rule (5). Recall the periods Qk#i € C (resp.

Qf € C) attached to f,fﬁ (resp. fr) by means of Proposition 2.1, allowing us to
define the modular symbols:

il :(Q;fi) I e MSHE, (K,
=) IkeMSIIZ’Oi(M)(Kk).

Here K}, is a short notation for the field generated by the Fourier coefficients of
f,f& , which is equal to the field generated by the Fourier coefficients of fj.

We will choose from now on a sign we, € {£1}, which is compatible with
the same choice that was used to construct the filtered Frobenius module D.
We set

QF = Qfve, Q= Q)
I o =1 and I, == I"=.

Note also that we may assume QF = Oy thanks to (21). The same formula
(21) translates into the following property of the modular symbol I ,f :

L {r — s} (P) = I} {r — s} (P) = """y, (k)" I {r/p — s/p} (P (x.5/p)).

(22)

Recall the space Dy := DRgA (U) previously introduced. For each k €
722N U define a weight k specialization map

Pr * MSFO(M)( )—> MSFo(pJVI (C )
pr (D) {r — s} (P) = [y P(z,y)dI {r — s} (z,y).

Theorem 4.3 There exists I, € MSryar) (D) such that:
o for every k € Z=>NU, py, (Is) = A (k) I, for some X (k) € C);

® Pko (IOO) = i,-
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By Shapiro’s Lemma the modular symbol I, € MSp () (Dy) gives rise
to a family of distributions {/1} . indexed by the lattices in Q2 which is

[-invariant for the natural action of T' on the induced module
C (L, MSr,(m) (Dy (%))

of maps I, from the set £ of lattices in (@f, to the disjoint union of the spaces
MSryary (Du (L)) with L € £ such that I, € Dy (L'). More precisely:

Definition 4.4 The family {IL}; ., is defined by the rule
I {r = s} (F) = I, (=33} (F1v™) = [, (F1v) Lo {r — 53},
for any locally analytic function F € AV (L), where yL = L, and v € T'.

Lemma 4.5 Let k € U and let Ly C Ly be an index p sublattice of Ly and let
e = ([L1],[L2]) be the corresponding edge. Then

IL2 {’f‘ - 8} (F) = apILl {’I“ - 3} (F)
for every locally analytic function F € A® (W,).
Proof. [BDI, Lemma 6.3]. =

The specialization property of I € MSp,par) (Du) can be explicitly writ-
ten

Io {r — s} (Pxw_) = A(k) I {r — s} (P) for every P € Py_. (23)

The following Corollary describes the specialization in terms of the modular
symbol I ,f& .

Corollary 4.6 For allk € ZNU and all P € Py_»

L {r = s} (P) = A(k) (1= p"2a, (k) ) I {r — s} (P).

Proof. This is proved in [BD3, Proposition 2.4] using Lemma 4.5, (22) and
(21). =m

For every lattice L define a modular symbol 7, (I) € MS (D*~2 (P! (Q,)))
by the rule

—2

m (1) {r — s} (F) = LT I {r — s} (F (2.y)). (24)

where F is a locally analytic function on P! (Q,) with a pole of order at most
ko—2 at oo and F (z,y) := y* ~2F (x/y). Recall the exact sequence (8). Thanks
to the new assumption on f it can be used to attach to the modular symbol
Iy, € MSlliO(pM) (Kk,) an harmonic modular symbol I,?;" belonging to

MS = MSy (D% (B (Q,))) = MSr (Char (€, V),

where the identification is provided by Proposition 2.8.
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Corollary 4.7 For all lattices L such that [L] is even,
mo () = I,
the modular symbol in MSr (Dg“_Q (P! (Qp))) attached to f.

Proof. This is a consequence of Lemma 4.5 together with the specialization
property (23), see [BDI, Proposition 6.4]. Our restriction to even lattices, that
does not appear in [BDI], is a consequence of the fact that we are not assuming
f to be a split modular form as in [BDI] (compare with [BD2, Proposition 2.12],
where the analogous result is proved in the definite weight 2 setting). m

The following definition is justified by Lemma 4.1.

Definition 4.8 The semidefinite integral attached tor,s € P* (Q), 7 € H; (Qg’")
and P € P, is defined by the formula

kg—2

[0 T Pwg =L, *

O (Ja P ey, (= s )

l{:k(}
where [L.] = red ().

We remark that the above formula do not depend on the choice of the rep-
resentative L., since

logy (pa — pry) P (px, py) = p™ 2 logy (z — 7y) P (z,y).
Proposition 4.9 For every v € I' and every T € H; (Qgr)
o T Pwyp = [T (P | y)wy
Proof. [BDI, Proposition 6.6]. m
Recall the harmonic cocycle Iy.
Proposition 4.10 For every 71,79 € H,f (QZT)
s T s T s T lo
Jo 7 Pwp = [0 7 Pop = [ 77 Pwg® +
_ko—2
2p 2 a/p (k‘o) Ze:red(rl)ared('rg) I]?:T (6) {7” - S} (P) .

Proof. This formula is proved in the split case in [BDI, Proposition 6.7]. The
methods of the proof adapt to the non-split setting as explained in [BD2, Propo-
sition 2.19]. m

Combining Proposition 4.9 and 4.10 with the main result of [Co] yields the
following:
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Theorem 4.11 (Exzceptional zero conjecture) Let f be a new modular form.
Then Dy ~ Dy (Vy), the filtered Frobenius module attached to the modular

form f.

Corollary 4.12 Choose the branch of the p-adic logarithm corresponding to
A= L§. Then the symbol [5 [T Pwy satisfies

s T s T s T lo,
frfzpwfifrflpwf:frfrfpwfgk'
Proof. The Corollary follows by combining Proposition 4.10 and Proposition
3.1 m

Corollary 4.13 We have
xr T m M .
Jor T PRwp =Dy log @ (ju) (I).
Proof. By Corollary 4.12 the MS;’v’w“-Valued semidefinite integration theory

log -0
[ [ Pwy lifts the integration theory [° f:f Puw, 7. Hence the claim follows
from Proposition 3.3 and Proposition 2.22, which allows us to compute the p-
adic Abel-Jacobi image of the Darmon cycles using any p-adic Abel-Jacobi map.
]

4.2 Families of modular forms on definite quaternion al-
gebras

Let N~ be a squarefree positive integer divisible by an odd number of primes
and let B be the rational definite quaternion algebra ramified at N~ oo. Let
Op be any maximal order in B. Write Z to denote the profinite completion
of Z and set B := B® Z. Let ¥ =[], %; be any decomposable open compact

subgroup of B* and let V be any Kj-vector space, equipped with a left action
of ¥,.

For every prime [ let H; be a the unique (up to isomorphism) quaternion
division algebra over ;. We can choose Q;-algebra isomorphisms ¢; : B Q) =
M (Q;) sending Op ® Z; isomorphically onto My (Z;) for every I + N~ oo, as
well as Q;-algebra isomorphisms ¢; : B ® Q; = Hj for every [ | N~o0, so that
1 (Op ® Z;) is the unique maximal order Oy, of H;. Setting

Ty =1, (OB [1/p] (N TL, zl) (25)

and letting I's; be the subgroup of fg of elements of determinant 1, we can give
the following ad hoc definition of a V-valued p-adic automorphic form on B of
level ¥ (see [BDI, Sec. 1]):

Definition 4.14 A V-valued p-adic automorphic form on B of level ¥ is a
function

¢ : GLy (Qp) — V such that ¢ (ygu) = u o (g)
for all v € Ts,, g€ GLy (Qp) and u € 1, (%,).
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The Kp-vector space of V-valued p-adic automorphic forms of level ¥ will
be denoted S (X, V).

We will always assume ¢, (X,) = I (pZ,) and we write X to denote the
open compact obtained from ¥ by replacing the local condition at p with the
local condition ¢y, (Xeo,p) = GL2 (Zy). When V = V_y we will simply write
Sk (). Specializing to the case V = Dy we obtain the notion of p-adic family
of automorphic forms (here again U is an affinoid disk in the weight space).

Definition 4.15 The space of p-adic families of automorphic forms on B of
level 3 parametrized by weights in U is by definition

Sy (2) = S (Zoo, Dyy) -

The space Sy (X) of p-adic families of automorphic forms on B of level ¥
comes equipped with specializations maps for every k € U N Z=2:

P Su (E) = Sk (2),
(P (@) (9)) (P) := [y, P(x,y)d®(g),

where P € Pj,_5 and P (z,y) := y* 2P (z/y) is the corresponding degree k — 2

homogeneous polynomial, an element of A(™ (W,,). Note that the definition of

p;, depends on the choice of W, that was only defined up to multiplication by
3 we choose W := L, N L{,.

We now choose the level structure as follows. Let N = pNTN~ be a fac-
torization into prime factors of our given integer IV, where N~ corresponds to
the finite primes of ramification of B. Define the open compact group X by the
following local conditions:

_ (Op®Z)* IfN*p
El‘{ i (To (NZ)) 1] N*p (26)

Write I'" = I's; for the corresponding group as well as TV = T's..
By Jacquet-Langlands, the modular form f = fj, that was fixed in the
previous section corresponds to a modular form ¢ = ¢, in the above sense for

the above choice of the level. The functions fj (resp. f,f ) similarly correspond

to functions ¢y, (resp. cpk#), for the suitable choice of the level (26) (resp. Xo).
Since the stabilizer of the standard edge e, is I'g (pZ,), it is possible to attach

to the modular form ¢, a cocycle cx, € C (€, Vko_g)rl by the rule

—n/2ord,(det(g))

Cro (€) == Cy (€) :==p g (g), if e = ge,.

We note that, since ¢ is new at p, the above cocyle satisfies the rules
Zs(e):v ¢ (6) =0, Zt(e):v ¢ (6) =0and c (E) = WpC (6) ’
where w,, € {1} is the sign of the Atkin-Lehner involution at p, which is equal

to —1 if ¢ is of split multiplicative type and is equal to 1 if ¢ is of non-split
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multiplicative type (see [BD3, Prop. 1.4] or [BDIS, pag. 32]). Let IV c I”
be the subgroup of those elements having norm 1. To the cocycle ¢, one can

attach an harmonic cocycle ino Cpq, (€, VkO_Q)F/ by the rule

har [ 8 c(e) whenee&t
(€)= { —c(e) whenee&™

Let X = Xn+ ,n- be the Shimura curve attached to the indefinite quaternion
algebra B ramified at the primes dividing p/N~ and the choice of an Eichler
order R = Ry+ ,n- of level N*. By the Theorem of Cerednik-Drinfeld the
above Shimura curve admits a rigid analytic uniformization at p. The modular
form f corresponds to a rigid analytic modular form f7%9 again by the Jacquet-
Langlands correspondence and the cocycle ¢"®" is precisely the cocyle attached
to fT% by taking the residues. As a consequence of the Theorem of Amice-
Velu-Teitelbaum we may attach to the harmonic cocycle ¢ a unique locally

analytic distribution p € D9? (P (Qp))r such that R (u) = che". This is the
analogue of Proposition 2.8 in this definite setting.

Write £ for the set of lattices in QZ — {0} and Ly for the set of couples
(L1, Ls) such that L; D Ly. Without the normalizing condition obtained by
multiplying by the determinant p~"/2°rdr(det(9)) it js also possible to attach to

¢y, an element (that we will denote by the same symbol) cx, € C (Lo, Vko,g)rl
The same construction works for the modular forms ¢, (resp. @k#) producing

elements ¢, € C (Lo, Vi_2)' (resp. ¢ € C (£, Vi_2)" ) defined by the rule

¢ (L1, L2) = g (g9) if (L1, L2) = g (Lx, Leo)
(vesp. ¢ (L) := g (g) if L = gL.).

We further normalize the cocyles ck# for k # ko by the requirement:

<ck#7ck#> =1, (27)

where the inner product is the one defined in [BD2, End of Section 2.2]. Then

the modular form c? is uniquely determined up to sign. The relation (21)

translates into

o (L1, Do) = cf (Do) —p"%a, (B) " cff (L1) = (28)
= of (La) —ap (k)" ¢f (L)

In fact, the correspondence can be merged in families:
Theorem 4.16 There exists a family ¢, € Sy (X) such that:
o for every k € Z=2NU, p; (vo) = A (k) @y, for some Ap (k) € CF;

® Piy (Poo) = Py -
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Denote by C (L£,D (x)) the space of maps u, from £ to UrcsD (L) such
that pu; € D(L'). Define C (Lo, D (*)) in a similar way, this time u;, ;, €
D (Wi, L,), where Wy, 1, := Li N L5. The function on the lattices attached to

Yoo Obtained by Shapiro’s Lemma will be denoted u, € C (E, ol (*))F/.

Lemma 4.17 Let k € U and let Ly C Ly be an index p sublattice of L1 and let
e = ([L1],[L2]) be the corresponding edge. Then

pr, (F) = (ap.uLl) (F)
for every locally analytic function F € A" (We).

Proof. [BDI, Lemma 4.3] m

The specialization property of ¢, € Sy (X) can be explicitly written as

Voo (9) (PXWOQ) = A (k) ¢y, (9) (P) for every P € Py_s and g € GL3 (Qp) .

In terms of u, and ¢ this property can be restated as follows.(see [BD2,
Lemma 2.10]):

pr, (Pxp,.1,) = A(k) ek (L1, Lg) (P) for every P € Pr_y and Ly D Ly (29)
The following corollary expresses the specialization in terms of ck#.

Corollary 4.18 For allk € ZNU and all P € Py_o,

i (P) = A (k) ay () (1= 9", (1)) of (L) (P).

Proof. This is proved in [BD2, Proposition 2.11] using Lemma 4.17, (29) and
(28). m

For every lattice L define a locally analytic distribution . (p;) which be-
longs to D¥~2 (P* (Q,)) by the rule

—2

7 () (F) o= L7 g (F (2,9)), (30)

where F is a locally analytic function on P! (Q,) with a pole of order at most
ko — 2 at oo and F (z,y) := y*2F (z/y).

Corollary 4.19 For all lattices L such that [L] is even,
T (ILLL) = K,

the measure in Dgo 2 (P! (Qp))F attached to f.
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Proof. This is a consequence of Lemma 4.17 together with the specialization
property py (0o,) = ¥4, see [BDI, Proposition 4.4]. Our restriction to even
lattices, which does not appear in [BDI, Proposition 6.4], is again a consequence
of the fact that we are not assuming ¢ to be split modular form as in [BDI]
(compare with [BD2, Proposition 2.12], where the analogous result is proved in
the weight 2 setting). m

The following definition is justified by Lemma 4.1.
Definition 4.20 The indefinite integral attached to T € H; (QZT) and P € P,
18

kg—2

T Pwy = |L;|" 2

(1, Pl @)y ()

K:ko
where [L.] = red (1).

Proposition 4.21 For every v € I and every T € H;‘

[T Pwp=[T(P|y)ws.
Proof. [BDI, Proposition 4.4] m

Proposition 4.22 For every 71,72 € H;‘ (QZT)

T T T _ko=2 ar
f ’ ow - f ' ow = fr? ow +2p E a;/D (ko) ZCZTCd(Tl)—)TCd(TQ) Ch (6) (P) .

Proof. This is [BDI, Proposition 4.10]. Again the restriction to even elements
of ’H;‘ (QZT), which does not appear in [BDI], is a consequence of the fact that
we are not assuming that ¢ is a split form. As explained in [BD2, Proposition
2.19] in the weight 2 setting, the non-split case can be similarly treated up to
restricting to H; (Q;;T) and the ideas of the proof readily adapts to the higher
weight case, in order to remove the restriction appearing in [BDI]. m

5 p-adic L-functions

5.1 The Mazur-Kitagawa p-adic L-functions

Let g € Sk (T'o(N)) be an eigenform and recall the modular symbol I, €
MSllf:(’j'C[) (K,) attached to g by means of Proposition 2.1 and the choice of
a sign we.. Define, for our fixed g and m € N>°, the function

Iym[Pia] : Py (K,) x Z/mZ — K,

Igm[Pra] : =1Ig{o0—a/m}(P),
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where the fact that I, [P, a] depends only on the class of a in Z/mZ follows
0 1

(o 1)Cow)=(o ™)

Let now x be any primitive Dirichlet character modulo m and consider the
Gauss sum 7 (x) := > ,c7/mz X (@) e2mia/m.

. . . 1 1 .
from the invariance of I, under the matrix ( > and the relation

Proposition 5.1 Let 1 < j <k —1 be an integer and let x be a character such
that x (—1) = (=) 7w = (=1) " wy (since k is even). Then

G-V,

— 9,X%,7) = L"(9,X,7),
(—2miy 1 Q, (9:23) (9:23)

Zaez/mz X (a) Ig,m [Pj,m a} =

where -
a J— i
Pja = (ﬂf—*y) yrI
m

Proof. As explained in [BD2, Proposition 1.3] the above formula is a conse-
quence of the formula of Birch and Manin expressing special values of L-series
in terms of modular symbols that can be found in [MTT, Formula (8.6)], after
taking into account that I, belongs to the w-eigenspace for the W,-action and
we are assuming y (—1) = (fl)kﬂf1 Weo. The assumption that x is a quadratic
character appearing in [BD2], which is done in view of the applications, is not
needed. m

To the modular symbol I, we attach the symbol
I |[Fya] = AY(L.) x Z/mZ — C,
Iom[Fyal @ =Ix{c0—a/m}(F).
The following definition attaches a p-adic L-function
L,(f,x,k,8):UxZ,—C,
(k) = Ly (f, x5 55 8) -
to the data of f and a Dirichlet character.

Definition 5.2 The Mazur-Kitagawa p-adic L-function attached to (f,x), where
X : Z/mZ — C* is a character of conductor m, is defined by the rule

pa s—1 K—s—1 pa
LP (vaaHa S) : :Zaez/mzx(ap) fZ;f ><Z1>,< (JL'— Ey) Yy dIOO{OO_) E} =
pa
ZaGZ/mZ X (ap) Ioo,m {OO — E} (Fs,pﬂngf ><Z;,<> ’

where
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Note that whenever (z,y) € Z) x Z) and x (ap) # 0 we have (ap,m) = 1,
so that m € Z) and

x—%yEZ;—i—pZPCZ;f. (31)

We have defined the above Mazur-Kitagawa p-adic L-function as a two variable
function and it is indeed analytic in both variables. For the applications we
have in mind it is sufficient to consider the restriction of this function to the
critical line (k, x/2). In this case we are fully justified by Lemma 4.1, since the
function of the x-variable we have defined is the linear combination of functions
of the form:

Ko 1 (aﬁ/zqﬁnfﬁ/qux) - (<a>n/271 <ﬂ>m7m/27l XX) _

Here the equality follows from (31) and again Lemma 4.1 when k =k € ZNU.
Hence the right hand side can be taken as a definition, while the notation on the
left hand side for more general x € U suggests what is the value at the integers.
This is indeed needed in order to investigate the interpolation properties of the
Mazur-Kitagawa p-adic L-function, as it is done in the subsequent theorem.

Theorem 5.3 Assume X is a primitive character, k € UNZ and1 < j <k—-1
satisfies x (—1) = (—1)’ " wao. Then

Ly (£ k) = A0) (1= X 0) P~ ay (B) ™) 2 (fusx:)

Proof. In light of the preceding remarks we can appeal to the proof of [BD2,
Theorem 1.12], which uses Proposition 5.1 after a direct calculation (again the
assumption that x is a quadratic character is not needed). Note that strictly
speaking we are only allowed to move along the line (k, k/2), since we have not
defined L, (f, x, &, s) out of the line (k, x/2) but rather remarked that it could
be done; in other words following the proof of [BD2, Theorem 1.12] with j = k/2
we can prove the subsequent Corollary 5.4. m

What really matters is the following corollary, which specializes to j = k/2
Theorem 5.3 and expresses the interpolation property in terms of the modular
form f,? using the relation

L (o d) = (1= x @) 97 ay 0)71) L1 (30 4)
which follows from (21).
Corollary 5.4 Assume x (—1) = (—1)% Woo. Then
k—2 1\ 2 o,
Ly (fx ki k/2) = X () (1= x ()P T ay (k) ") L7 (£ x.h/2))
where

(k/2- D7 ()

X
L (fFox.k/2) =
( ok ) (—2mi)*>~ 1 q,

(£ h/2) -
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5.2 p-adic L-functions attached to real quadratic fields
In this subsection we let K/Q be a real quadratic field such that:

e p is inert in K

e all the prime factors of M split in K.

Let ¥ € EmbT (O,R) be an optimal embedding of conductor ¢ prime to
Dk, the discriminant of K/Q, and N. Denote by GHg/K the Galois group of

the corresponding narrow ring class field. Recall the data (7g, Py, vy ) attached
to it and further consider a Z,-lattice Ly such that [Lg] = vg. The following
definition attaches a p-adic L-function

L,(f/K,¥,—):U—C,
k— Ly, (f/K, ¥, K)

to the above data. It is easily checked that the definition below does not depend
on the choice of Ly.

Definition 5.5 Letr € P! (Q) be any base point. The partial p-adic L-function
attached to (f/K, W) is

kg

Ly (F/K WV, R) = |La ™ [ (Po (.9)) 7" Py (2,9) dlp, {r — 71}

The partial p-adic L-function attached to (f/K,x), where x : GHg/K — C*
is a character, is

Ly (f/K7Xa K) = ZoeG X_l (o) Ly (f/K,O'\If7I<L).

HE /K
The p-adic L-function attached to (f/K,x), where x : GHg/K — C* isa
character, is

L;D(f/K7X7H) ::’Cp(f/K7X7’€)2'

In order to justify the above definition and the fact that the above p-adic

L-functions are analytic we can appeal to Lemma 4.1 after noticing that they
r—kg

are built from functions of the form x — pu (P <a>% (B) = XX)~

Remark 5.6 The above p-adic L-functions depend, of course, on the choice of
the modular symbol I, that was used to define the family {IL}LCQ2' It can be

shown that the definition depends only on the class of ¥ in T\EmbY (O, R). It
turns out that many of the properties of these p-adic L-functions actually depend
only on f/K.

We note that a suitable choice of the lattice Ly can be made as follows. Since
the group ' acts transitively on the positive vertices VT we can choose v € T’
such that yvg = v«. Hence vy = vyg,—1 and Ly = yLy = L,gy-1 is associated
to the embedding YW~ € [V]. It is clear that this choice is the natural one in
investigating the relations with the Mazur-Kitagawa p-adic L-function, whose
definition was given in terms of I.o = Iy, .
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Note the following vanishing property of the above p-adic L-functions.

Proposition 5.7 The p-adic L-functions vanish at kq:

£P(f/Kv\I/7k0):‘Cp(f/KvX7k0):Lp(f/K7XakO):0

Furthermore,
d
% [LP (f/Kv X H)]H:ko =0.
Proof. By definition and (24)
_ kg—2
‘C;D (f/KalpakO) : :|L\I/| 2 IL(P P\}In (xay)dIL\p {TH’Y‘IIT}:

= fIPl(Qp) Pytdm. (Ipy) {r — ver}-

The claim now follows from Corollary 4.7. By definition the same vanishing
property holds for the other p-adic L-functions and the defining relation L, = E%
yields the last assertion. m

5.2.1 Interpolation properties of the p-adic L-functions attached to
real quadratic fields and functional equation

The following theorem encodes the main interpolation property of the p-adic
L-function L, (f/K, x, k).

Theorem 5.8 For all k € Z22#ko N U

Ly (/K xom) = A (1= 420, (0)72) D 1 (7 /Ko B/2)

where

L (15, k/2) = (5)#vDi

F—2
(2mi)" Q3

L(f,f/K,X,k;/z).

Proof. The proof of [BD3, Theorem 3.5] readily adapts to our higher weight
setting. As explained in [BD3] the proof is reduced to Popa’s formula [Po,
Theorem 6.3.1]. =

Recall that a genus character of Gk is a quadratic unramified character of

Gk . Such a character corresponds to a biquadratic (or quadratic when y = 1)
extension of Q which is explicitly given by

H,=Q(vD1,VD2) 5Q(VD) = K,

where D =: D = D1 D5 is a factorization of the fundamental discriminant D
into factors D; prime each other.
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Let x; (resp. €x) be the Dirichlet character attached to Q (\/DZ—) /Q (resp.
K/Q). Then ex = x1xo- We say that x is real (resp. imaginary) whenever
H, /K is totally real (resp. imaginary). Note that

l=ex (1) =x1 (-1 x2(-1),
so that
X1 (1) = x2 (1), (32)
depending of whether Q (\/Di) /Q are imaginary or real. Note that Dg € Ly,

k=2
since by assumption p is prime to Dg. In particular D,* extends on U to an
K2 =2
analytic function D2 := (Dg) * , thanks to Lemma 4.1.

Theorem 5.9 Let x be a genus character such that x (—1) = (=1)" 7 we.
Then

r=2
Lp(f/K’X7K“) = DK2 Lp(faXla'%aH/Q)LP(f7X2a’f7"‘3/2)?
where (X1, Xa) 18 the pair of Dirichlet characters attached to x.

Proof. The proof of [BD3, Theorem 3.5] adapts. m

Remark 5.10 Let (x1,Xx2) be the pair attached to x. Since the primes dividing
M are split in K, it follows from (32) that x1 (—M) = x5 (—M). Hence we
shall simply write x,; (—M).

5.2.2 Derivatives of p-adic L-functions attached to real quadratic

fields
Theorem 5.11 Let ¥ € EmbT (O, R). Then
d 1 ko=
% [EZD (f/Kv lI}a }i)]n:ko = iDK

(108 @4 (o) (1) + (=1)" " log 47 (i) (1))
Proof. Consider the factorization
Py (2,y) = A(x —79y) (z — Toy)

and write

_kg-2 r—kg
Ly (f/E, ¥, k) = |Ly| 7 (4) 7

Joy, P (zy) (@ = Tey) 2 (@ —Twy)

k
e dIp, {r — vgr}.

In light of Proposition 5.7, the usual formula for the derivatives of the product
of two functions yields

ko—2

['C;D (f/Kv qj?"{)]/{:ko = ‘L‘I/|7 2

r—k K—

[0, P @) @ = may) = (0 = Fun) =" diny {r = yar}]

d
dk
d
dr N:ko

43



By Proposition 4.2,

rk—kq

_ko=2 d . m r—kq _  r—ko
Lol 2 [ P @) (o — 7o) " (o = Tan) 7 dlny {r = yar)]

r=kg

kg—2
2

1 — d m K
= §|L‘I" % (fL/ P\Il (x,y) <CL‘_T\IIy> kdIL‘I’ {THWWT})K:]C—’_
kg—2

1 — d g m — K—
S 1Ll ™ 2 ([ P @) (o = 7uy) ™ dluy {7 = 1))

rk=k

Note now that Ly = Lg and, by Remark 2.20, 7y = 7, PJ* = (—1)™ rx
and yg = ’y%l. It follows that the last expression is equal to
1 x rT m m "l e m
5 (J27 7 Py + (<) [177 [ PRy )

By Lemma 2.19, replacing x by vgx to compute the integral gives

—1 5 T T Pm T (T% M
Jor T Pgep = [ [T PRwp == [77 [TV Py
The claim now follows from Corollary 4.13. m

Recall the linear combination jX introduced in (19) and set

=X — .
=Y gee X' (o) jg-

HE/K
Corollary 5.12 Let x : GHg/K — C* be a character. Then

d2 kg—2

1
% [LP (f/KaXaHHK:k- = §DK2

(log @7 (%) () + (=)™ log @7 (7%) (1))

Proof. This is a consequence of Theorem 5.11, in light of Proposition 5.7. =

Let now x be a genus character attached to the pair (xy,x5) and let HT be
the narrow Hilbert ring class field. Recall that by Remark 5.10 x, (—M) does
not depend on ¢ =1, 2.

Corollary 5.13 Let x : G+ /g — C* be a genus character. Then

d? kg—2
W [Lp (f/K7Xa H)]n:k = 7DK2

(1 1™ war (-3) Tog @7 (%) (1)

Proof. First of all note that, since Iy is an eigenform for the Atkin-Lehner
involution W), with eigenvalue wys, we may write

warlog @ (j5) (I5) = log &4 (j) (Iy | War) = log @47 (3, 1) (Iy).
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Let 0¥ € T\EMbT?(O,R) be any oriented embedding as explained in Re-
mark 2.24 and note that oW has the same orientation at p of ¥ but for every
prime [¢ | M the orientation of oW is opposite to the orientation of cW. As
explained in Remark 2.24 the Atkin-Lehner involution W), exchanges these ori-
entations, so that ayo%ay,; € T\EmbT?(O,R). Since we noted in Remark
2.24 that T\EMbT®(O,R) is a torsor under the G'p+ g-action, there exists a
unique d,¢ € G+ such that aMﬁaX/fl = d,90V. According to [BD3, (17)]
dou = dyo 2, so that we find (we have y? = 1):

Yocay, s, X (@)1og @Y (jzp) (1) =
o

X (0)1og @ (js,o-1w) (Iy) =

:wM
ZUEGHé/K

=wmx (0w) ZaeGH+/K X (5\1/071) log &7 (Jswo—1w) (If) =
(@]

=wnx(0w)Xoeq, . x(0)log O (jow) (1)

/K

But since y is a genus character, [BD3, Proposition 1.8] tells us that x (dg) =
X; (—M). The claim now follows from 5.12. m

Corollary 5.14 Let x : G+ /g — C* be a genus character. Then:

d? R0zt SAT (s 2
4 — 4 2Dy% log®@? (%) (Ip)° if x;(—M)
dr?2 [Lp (FE X0 )] { * 0 ’ if X (=M)

(7 1)m+1 Wiy
(71)771 W -

5.3 p-adic L-functions attached to imaginary quadratic fields

In this subsection we let K’/Q be an imaginary quadratic field of discriminant
Dy and we consider a factorization N = pNt N~ such that:

e p is inert or split in K’;
e all the prime factors of NT split in K’;

e N~ is the squarefree product of an odd number of primes which remain
inert in K’.

Recall the definite quaternion algebra B of discriminant N~ oo and fix an
identification B, = My (Q,), so that B, acts on the p-adic upper halfplane as
well as on the Bruhat-Tits three and on the sets £ and Ly. As in the Darmon
setting it is possible to define the set of optimal embeddings of level N* and pN+
of a Z [1/pl]-order O of conductor ¢, prime to Dg+ and N, into the corresponding
Eichler order R. More precisely the definition in [BD2, Definition 3.2] is given
in terms of optimal embeddings of a Z-order Oy into an Eichler order Ry, this
last of level N* or pN*, such that O = Z[1/p] ® Oz and R = Z[1/p] ® Ryz.
By [BD1, Lemma 2.1] the set of optimal embeddings of level pN* is non-empty
only when p is split, so that this assumption will be implicit when considering
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embeddings of level pNT. As explained in [BD2, Section 3.1], by the strong
approximation theorem, these sets can be realized as subsets of

RX\ (Emb(O,R) x L)  when the level is NT,
RX\ (Emb (O, R) x Lo) when the level is pN ™.

More precisely, the elements of the first set are those represented by the couples
[, Lg], where Ly is preserved by the action of ¥ (O), while the elements of the
second set are those represented by the triples [¥, Ly, L3 ] such that Ly, and
L2, are both preserved under the action of ¥ (O) (when p is split).

There are the following data attached to the optimal embeddings of level
N, say represented by the couple [¥, Ly]:

e the two fixed points 7¢,7Tw € H, for the action of ¥ (K'*) on H, (K’),
ordered in such a way that the action of K’* on the tangent space at Ty
is through the character z — z/Z, when p is inert;

e the unique fixed vertex vy € V for the action of ¥ (K’*) on V, which is
nothing but the reduction red (tg) = red (Ty), when p is inert;

e the lattice Ly such that [Ly] = vy, when p is inert, and the lattice Ly
which is fixed by the action of the split quadratic algebra ¥ (O ® Z,,) and
hence admits a Z,-basis {xwy,yw} of eigenvectors for this action, when p
is split;

e the unique polynomial up to sign Py in Py which is fixed by the action
of ¥ (K'*) on Py ® det™! and satisfies (Py, Py)p, = —Dg (the pairing
being defined as in [BDIS]), which we fix by the choice

Py :=Tr (\I/( Dicr) - <)1( :))((2)) € Py,

the other one being obtained by replacing v/ Dg+ with —v/Dg; note that
Py is either irreducible over Q, or it splits into two linear forms corre-
sponding to the basis {zy, yw}, according to whether p is inert or split.

Define
I Ly when p is inert
v Zyxy ®Zyyy when p is split

Recall the family p, that was attached to ¢ by means of Theorem 4.16. The
following definition attaches a p-adic L-function

L,(f/K'\¥,—):U—C,
K'_}Cp(f/K/7\IlaK)

to the data of the embedding [¥, Ly] of level NT. It is easily checked that the
subsequent definitions do not depend on the choice of Ly such that [Lg] = vg
when p is inert.
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Definition 5.15 The partial p-adic L-function attached to (f/K’', ) is

k, K—

0-2 r—kg
: ng<P\I/(337y)> Z Pgldpg, .

‘CP (f/K/’\I]7H) = |L\Il|7

The partial p-adic L-function attached to (f/K',x), where x : Gy xr —
C* is a character, is

Ly (f/K' xR = Coea, o X (0) £y (1K, 00, 1),

The p-adic L-function attached to (f/K',x), where x : G,k — C* is a
character, is

Ly (f/K',x,K) ==Ly (f/K',x,5) Ly (f/K',x"",K).

As before, in order to justify the above definition and the fact that the above

p-adic L-functions are analytic we can appeal to Lemma 4.1 after noticing that
ko

0T xy ).

they are built from functions of the form x — (P () =

Of course Remark 5.6 also holds in this setting. Note the following vanishing
property of the p-adic L-functions, which is proved exactly as in Proposition 5.7
using (30) and Corollary 4.19.

Proposition 5.16 Assume p is inert. The p-adic L-functions vanishes at ko:

£p (f/K/a‘l/7k0) = ‘Cp (f/K/aX7k0) = LP (f/K/7X7 kO) =0.
Furthermore

d
% [LP (f/K/aXa K)]n:ko =0.

5.3.1 Interpolation properties of the p-adic L-functions attached to
imaginary quadratic fields and functional equation

The next two theorems collect the interpolation properties of these p-adic L-
functions.

Theorem 5.17 Assume p is inert. Then, for all k € Z=%#ko N U,

Ly (/K" X K) = A (6 ay ()7 (1= 920, (0)72) L (5 /K" o b/2)
where

HQD%
(552) Dy

(m)* 2 (52 1)

L* (f,f/K’,X,k/Q) = L (f,f/K’,X,k/Q) .
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Proof. The proof proceeds precisely along the same lines as in [BD2, Theorem
3.8] and we repeat the ideas for the convenience of the reader. Using [BD2,

k—k
Lemma 3.7] and noticing that [Py (z,y)] 2 = =1 by Lemma 4.1, one can show
k—k

—kg
that Py (z, y) B |L\1/| (Pq, (x,y)) 7 = on L(f, = L},. Hence,

L, (f/K'\W.k)=|Ly| = J 1y Py 7 du,.

Now we simply need to replace the use of [BD2, Proposition 2.11] with the
more general, but formally identical, Corollary 4.18, which gives

k=2 k=2
|Ly| 2 fL/q/,P\pg dpr, =

_ _k=2 k=2
=g (k) ay (k) (1= 92, () ) [Lo] ™% cf (Lu) (P )

Summing together, multiplying £, (f/K’, x, ) with £, (f/K',x~',x) and ap-
plying Hatcher-Hui Xue’s formula

(S o X @1 Loel ™ f (Low) (P ) (39)
(Lo o X@1Lowl” = f (Low) (Pri ) =
= (et et )L (/K x/2)

as reformulated in [BD2, Proposition 3.3] yields the result, in light of the nor-
malization (27). m

Theorem 5.18 Assume p split in K’ and let p | p be a prime of K' above p.
Then

—2

Ly (F/K' ko) = (1=x®)p™ ay (o)) (1= X7 (0) 0™ ay (o) ™)
(Chos Cho) L™ (fro/ K, X, K0 /2)
and for all k € ZZ227Fo N U

Ly (1K' k) = Xy (k) (ay () + 942, ()7 = p 5 (1) — "X (1)
L (f;f/K’,x,k/Q) .

Proof. Again the proof of [BD2, Theorem 3.12] works in this setting (even with
more general characters). We do not recall which are the main ingredients, since
the computation is more involved than Theorem 5.17. As explained in [BD2,
Proposition 3.4], the appearance of the factor (ck,, ck,) at k = ko is due to the
fact that no normalization condition was imposed on the modular form cy,, so
that in the Hatcher-Hui Xue’s formula (33) this factor needs to be considered.
|
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‘We now specialize the above theorem to a genus character x of the imaginary
quadratic field K, say attached to the pair of Dirichlet characters (x;, xs). Note
that, since p is split, x (p) = x; (p) does not depend on i. Furthermore, since
% (p)2 = 1, the Euler factor appearing in Theorem 5.18 can be rewritten and
one deduces the following corollary:

Corollary 5.19 Assume p split in K', let p | p be a prime of K' above p and
let x be the genus character attached to the pair of Dirichlet characters (X1, X2)-
Then

ko—2

Ly (£ ko) = (1= (0) 0™y () ™) ks 1) I (fia/ K7 0 /2)

and for all k € 2227k N U

Ly (F/K k) = A (6 0y (67 (1=, (0) 0Ty () 1) L7 (F2 /K7 xR f2)

Definition 5.20 7 : Z=? — C,, is the function

Ap (k)*ap(k)? 1252 ko
77(/€) = W‘?f{j ? for k # ko

0
(Cho» Cho) Dpc? i*o=2  fork =ko

Theorem 5.21 The function n (k) uniquely extends to an analytic function
such that n (k) #0 on U (up to shrinking it). Moreover, for every genus char-
acter x, say attached to the couple of Dirichlet characters (X, X2),

LP (f/K/7Xa"€) = n(K)L;D (faXla"{aﬁ/Q) LP (f?XQa’@K’/Q)
onU.

Proof. The proof is the same of [BD2, Corollary 5.3], after noticing that the
main result of [MM] extends to our higher weight setting. m

5.3.2 Derivatives of p-adic L-functions attached to imaginary quadratic
fields

Assume until the end of this section that p is inert in K. Let X = X+ ,n-
be the Shimura curve attached to the indefinite quaternion algebra ramified at
the primes pN~. As explained in [BD1, Section 1.5], the Shimura curve X is
endowed with Hecke operators T for [ N as well as Atkin-Lehner involutions
W, for I | N* and Atkin-Lehner involutions W, for I | pN~. The Atkin-Lehner
involution W, will be of particular interest for us. Write XWp_ to denote the

twist of the Shimura curve X by the cocycle in H! (Cl@p2 /0, Aut (X)) which
maps the non trivial element Frob, € Gsz /g, to W . Recall the group I
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defined by (26) and denote by I the subgroup of norm one elements. By the
Cerednik-Drinfeld Theorem, X~ admits a rigid analytic uniformization over
Qp:
/ an
I'M'\H,=X W

where X%L_ is the analytification of XW;. We will make an abuse of notation

p
by writing X = X" or XW; = X&Z,.

The optimal embeddings of conductor N admit a particular simple de-
scription. More precisely, fix an embedding o, : H = Hp — Q2 (this is
possible since p is inert in K’ and hence it splits completely in H). The p-adic
uniformization allow us to view I"\Emb (O, R) as a subset of X (Q,2):

I"\Emb (O, R) — T'\Emb (sz,Bp) =T"\Emb (sz,Mg (Qp)) =X (sz) .
In this way we shall identify (the class of) ¥ with its image in X (sz).

Remark 5.22 In view of the above twist that enter in the rigid analytic parame-
trization, the optimal embedding ¥ corresponds in X (sz) to the optimal em-
bedding W, Frob,V, regarded like a point of X.

Recall the rigid analytic modular form fr9 that was attached to the modu-
lar form f by means of the Jacquet-Langlands correspondence. It satisfies the
Jollowing relation with respect to the action of the Atkin-Lehner involution W,
(see [BD1, Theorem 1.2]):

fﬂg | Wp_ = _wpfng7 (34)
where wy, is the sign of the Atkin-Lehner involution W), acting on f.

Let M,, be the Chow motive (over Q) of weight ky modular forms con-
structed in [IS, Appendix]. As explained in [IS, Appendix]| one can attach to

an optimal embedding ¥ an element yfpn) € CH™ (M,, i), the Chow group
of codimension m + 1 cycles of M,, base changed to H := Hp. The p-adic
realization V (m + 1) := H, (Mn g Qp (m + 1)) of the motive M,, affords rep-
resentations attached to cusp forms that are new at pN~. Consider the p-adic
Abel-Jacobi map

clgLJrl . CH™H! (M ) — Ea:t};H (Qp,V(m+1)).
After a base change from H to F,, D Q,2, the p-adic Abel-Jacobi map can be
identified with
Dp,

P

oA CH™ Y (M, k) — Extyp (Fp, D (m+1)) = FmHiDg

where we write D := Dy, (V). Here Dy, is the Fontaine functor attaching to a
Galois representation of G'r, a filtered Frobenius module over Fj,. As recalled
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in the introduction, the above ext group is explicitly computed in [IS, (49)] and
the p-adic étale Abel-Jacobi map can be can be interpreted as

log @47 : CH™ (My,F,) — My (T, F,)”

where My, (I, F,)" denotes the Fj,-dual space.
Note that the Frobenius F' robp introduced in Remark 5.22 also acts on the

Chow group CH™ ! (Mn,(@p2)'
Lemma 5.23 yglr)obp,l, =(-1)" FTObpy\(pn)-

Proof. Let W be the group generated by the Atkin-Lehner involutions VVli for
1| N. The proof is easily reduced to the case m = 1, i.e. weight kg = 4. In
this case the Heegner cycles y\(I,2 ) are defined by fixing ygo) for some Wy and then
exploiting the simply transitive action of G/ x X W on the optimal embeddings

in order to make these cycles compatible with the action of this group. Indeed,

the elements y( ) are only canonical up to sign. More precisely, they correspond

to z( ) € Endg (Ag) = O that are only defined up to sign. Since Ay = EZ,
where Ey is an elliptic curve such that End (Ey) = Endg (Ag), we can reduce
to consider elliptic curves. In this case we can fix an isomorphism [—]; : O ~

End (Eg) with the property that for every o € Aut (C) and a € O we have
(2)

olaly = [a?],y and define the element zy’ by making it correspond to the
choice of a fixed root v/Dg: € K’, the other choice —v/Dg- giving rise to the

element fz\(; ). With this choice the elements z,(l? ) are compatible for the action

of the group Gg/x x W. Furthermore, since Frob, is induced by the complex
conjugation 7 (because p is inert) we find that 7 [vDg+|, = [-vDxk']_,, which

gives Frobpzfl,z) = —zg?ob g |

Theorem 5.24 Let U € EmbT (O, R). Then

d /
% [‘C (f/K 7\117’%)],4—/60 =

3 (log o4/ ( ) (f”g) wp log o4/ (Frobpy ) (f”g))
Proof. By the main result of [Se]:

ey (/K 8) i, =

% (log e (yfpn)> (frig) +(=1)" log 47 ( ) (f”g))
By Remark 5.22 and Lemma 5.23

y(ﬁ) - y(W”) Frob,¥ W_yg;)ob v (_1)m Wp_FTObeEIIn)
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Now the claim follows from (34). m

Whenever F' is a field, let us write MW, (F') to denote the image of the
Chow group over F' in EmtéF (Qp,Vm (m+ 1))7 i.e. the image obtained by
clgf}"l ==epp 0 cl6"+1. By the theory of complex multiplication,

yX = ZaeGHO/KI X (o) yly e CH™H (Mau, ),

where H, /K’ is the subextension of H/K' that corresponds to the kernel of x.
Hence clgf;'l (yX) € MWy (Hy)™.

Corollary 5.25 Let x : Gy, /x» — C* be a character. Then

d2
w [LP (f/K/’ X K)]K:k =

1 T T
3 (log A7 (yX) (f™) = wy log &7 (Frob,yX) (f9)) -
<log A7 (Z/Xq) (f™) — w,log oA/ (FTObpyX71> (fm'g)) )
Proof. This is a consequence of Theorem 5.24, in light of Proposition 5.16. =

Let us now focus for the remainder of this section on a genus character x
attached to the couple (x1, x2). We note that the signs of the twisted L-functions
L(f,x;,s) are given by (see [Sh, Theorem 3.66)):

kg

(=1)2 wnx; (=N). (35)

Furthermore, since the number of the inert primes pN~ dividing N is even and
€K’ = X1X2, Where €x- is the Dirichlet character attached to the imaginary
quadratic extension K'/Q,

X1 (=N)xo (=N) =ep (-1) = -1

Hence the signs of the twisted complex L-functions L (f,x;,s) are opposite
to each other. The genus character x cuts out a biquadratic extension of Q.
Write Q,, to denote the quadratic extension that corresponds to the Dirichlet
character ;.

Whenever V is a Q, [GHX /Q]—module let us write V* to denote the subspace
on which the complex conjugation 7 acts as &, so that V = V1T ¢ V~. Since
Indgi/ (X) = X1 D Xo, we also have VX = VX1 @ VX2 where the left hand
side is viewed as a Gy, /x/-module and the right hand side as a G, jg-module.
Since x5 (—1) = —x; (—1) we may order (x;,X») in such a way that Q,, /Q is
a real field. Then we have VX1 C VXF and VX2 C VX~ so that VX1 = VX:F
and VX1 = VX~ This remark applied to V = CH™*! (MnHX) and V =
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Extl, (Q,,Vy) implies that CH™ ! (M, g )" and MW} (Hy)* both have a
X
direct sum decomposition with

CHm+1 (M7L7HX)X’+ _ CHm+1 (M7L7QX1)X1 , (36)
CH™ (M, )" = CH™! (Mg, )",

MWy (H)*" = MWy (Qy,)*" and

MWy (H )X = MWy (Qy,)* .

Whenever ¥ is an oriented optimal embedding of level NT, viewed as an el-
ement of X (H), 7¥ is an optimal embedding whose orientations at the primes
dividing N* have been reversed. Define Wiy := [] y+ Wt [Lpn- Wi - Since
#{l:1|pN~} is even, it follows from the analogous of (34) at the primes di-
viding pN ~, that W f7%9 = wy %9, where wy is the sign of the Atkin-Lehner
involution acting on f. Since WU reverses all the orientations too, we have

TV = WyoV, for some § € Gy/x- (37)

It is easily checked from Lemma 5.23 and (37) that clm+1 (yX) e MWy (H )X’i
for a suitable choice of a sign. Let H be the Hilbert rlng class field.

Corollary 5.26 Let x : Gy — C* be a genus character. If clf'f* (yX) €
MWf <(@Xz:)x1 then

d2
@ [LP (f/K/7 X ’%)Lg:

(1 +app B Xi (P))2 log 47 (yX) (fmg)

l\DM—l

Proof. Since clgffl (yX) € MWy (Qy,)"" we have
el (FrobyyX) = Frobyclg' ™ (y*) = x; (p) clg'f* (v) -

The p-adic Abel-Jacobi map ®47 (—) ( fris ) factors through clmJrl by definition,
so that we find

log @7 (Frob,yX) (£79) = x; (p) log @ (yX) (™).

The claim follows from Corollary 5.25, since we have x = x~! and —w, =
app~ ko‘zﬁ. | ]

Corollary 5.27 Let x : Gy/x — C* be a genus character. If clf'f* (yX) €
MWy (Qy,)™" then

d / _ 210892 () (£79)° if xi (p) = app™
@z o TR 20l = { 0 ) = =,

We will also need the following deep result of Kato.
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Lemma 5.28 If y, (—N) = (—1) "= wn and L (f, x;, ko/2) # 0 with i # j or
k=2

ko .
if x,(—N)=(-1)"2 wn and x; (pN~) =1 then clg?;rl (yX) € MW (Qxi)xﬂ

Proof. We only prove the first statement, which is the one we need in the
ko—2

subsequent section. If y, (—=N) = (—1) T wy the sign of L (f, x;, $) is negative
5

and we assume that L(f7 Xj,k;o/Q) # 0. Then MWy (ij) "= 0 by K,

Theorem 14.2 (2)]. =

Remark 5.29 Suppose that 0 # clgffl (yff) € MWy, (Qxi)Xi. As an appli-
cation of Kolyvagin methods developed in [Nel] and [Ne3] one can show that

Kf,pdgf;rl (yff) =MWy, (QXi)Xi'

6 Proof of the main results

Recall our factorization N = pNTN~ = pM into factors prime each other,
where N~ is squarefree and divisible by an odd number of prime factors. In
the following theorem we will assume the existence of a prime ¢ || M and
the consideration of a factorization with ¢ | N~ will be implicit in order to
apply the results of the previous section. Recall the harmonic cocycle ¢ =

c?‘“” that was associated to f in subsection 4.2. We may assume that c*" €
Char (€, V,, (Kf))F/7 so that (cx,, ck,) € K-

Theorem 6.1 Suppose there exists q || M. Let w be a quadratic Dirichlet
character, of conductor prime to N such that

kg—2 k-2
wy and w (p) = app™ 2 = —wp.

Then:
1. the p-adic L-function L, (f,w, K, k/2) vanishes to order
orde=r, Lp (f,w, k,k/2) > 2;
2. there exists y* € CH™ (M, q,)" and t; € K{ such that
d2 AJ [, w rig 2
W[LP (f/KvwaHaK'/2)]K:k0 :tflOg‘I) (y )(f ) ;
3. If clgf;'l (yf) # 0 then MWs,, (Q,)” = Kf,pclg?;'l (yff)

4. we have
tr/2=L"(f,9,1) in K} /K[,

for any quadratic Dirichlet character ¢ such that
() =w(l) for everyl| M := N/p,
Y (p) = —w(p) and
L(f,4,1) #0.
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Proof. Set w = x; and choose an auxiliary quadratic Dirichlet character x5 of
conductor prime to the conductor of x; such that:

(@) x2 () =x; (1) foralll | N*
(b) X2 (1) = —=x1 (1) for all I | pN~ and x, (—1) = —x; (—1)
(C) L(fa X2 k0/2) 7é 0

This is possible since the main result of [MM] generalizes to higher weight
modular forms. The Dirichlet character ex := XX, cuts out an imaginary
quadratic extension K'/Q and there is a genus character x attached to the pair

(X1,X2). Furthermore, note that the sign of L (f,x;,s) is —1 in light of the

ko —2
assumption x; (—N) = (1) T wy (by (35)), while the sign of L (f, X, $) is
1. Note that, thanks to (¢) and Lemma 5.28, we can apply Corollary 5.27 with

Xi = X1-
By Theorem 5.21,

LP (f/K/7X7H) = T](K) LP (valv’% H/Z)LP (f’XQ"‘va/Q)' (38)

The factor 1 (k) Ly, (f, X2, K, £/2) does not vanish at the critical point x = ko,
since 1 (k) # 0 on U and we have

Ly (ko ko/2) = (1-x @™ a;") I (fxako/2) = (39)
— AL (f,xa ko /2) £ 0.

Indeed the first equality follows by Corollary 5.4, the second one follows by
kg—2

the assumption x; (p) = p~ 2 a,, together with (b) assuring us that x, (p) =

—x1 (p), and the non-vanishing is a consequence of (c).

On the other hand, the factor L, (f, x1, &, £/2) vanishes at the critical point

k = ko, again by Corollary 5.4 and the assumption x; (p) = p*%ap, or
thanks to the fact that L* (f,fxl, k:O/Q) = 0 by the above considerations on

the complex L-functions. Hence

LP (f»lekOakO/Q) =0. (40)

This preliminary discussion has the effect of avoiding appealing to [BD2, Re-
mark 1.13], since we have not exploited the Mazur-Kitagawa p-adic L-function
as a two variable function.

1. A formal computation using (38) and (40) yields

d d

dr [Lp (f/Klea“)]szo = dr

P [Lp (f7 X15 K, K“/2)],¢=k0 n (k‘o) LP (fa X2, ko, k0/2) .

Note that ex (p) = —1 so that we are in the inert case and the left hand side
vanishes by Proposition 5.16. Now (39) implies that

d
% [LP (f> X1, K "i/2)],€:k0 = 07 (41)
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so that the claim 1. follows. Note that that the same sign considerations of
[BD2, Theorem 5.4] apply in order to deduce the order two vanishing along
the line (ko,s) of L, (f,x1,%,s) and hence the order two vanishing of the two
variable p-adic L-function.

2. A formal computation using (38), (40) and (41) yields

d? d?
FPel [Ly (f/ K X0 K)oy = P [Lp (fs X1, 6, 6/2)] gy 1 (o) Ly (f, X2, ko, ko /2)
(42)
By (39) and Corollary 5.27 we can write
d? 1 1 ke,
W[Lp(fa)(h’{,’i/z)]n:ko = §<Ck070k0> 1DK2 22 Fo.

L* (f, Xas ko/?)il log dA7 (%) (f’l‘ig)2

where yX € CH™ ™ (M,, g,)“. Now the claim 2. follows since we have, writing
Dk =—D € Z with D > 0 and kg = 2h,

2—kg

Dy? M =(-1)* ™D e

3. This is a consequence of Remark 5.29.

4. Let ¢ := x| be any Dirichlet character satisfying the conditions of 4.
and consider the Dirichlet character ex» := x)xo. It cuts out an imaginary
quadratic field K”/Q. There is a genus character x’ attached to the couple
(X1, X2), but now p is split in K”. In particular x; (p) = x’ (p) for any p | p and

00 —2

Corollary 5.19 yields, in light of the fact that x, (p) = —p~ "= ap:

1 ! M —1 2 * 1" /
Ly (F/K" ko) = (1=077 0 %0 (8) (b o) L* (/K" X' Ko /2) =
= 4<Ck0,CkO>L* (fko/KNaX/7k0/2)'
By (38) relative to (X1, x2) together with (39) relative to x|
(Chos Cho) L (fro /K", X' ko/2) = L* (f, X1, ko/2) n (ko) Ly (f, Xas ko, ko/2) .
Besides, thanks to (42), t;/2 =17 (ko)™ " L, (f, X2, ko, ko/2)"", so that
(Chos ko) L* (oKX Ko/2) = /217 (£, ) Ko/2) mod K32

But the left hand side is a square by the Hatcher-Hui Xue formula applied to
the newform cg, of level pN T, that can be reformulated in a similar way as it is
done in [BD2, Proposition 3.4] when ko = 2, thus getting a formula having the
same shape of (33) but involving optimal embeddings of level pN*. =

We now turn to the case where K/Q is a real quadratic field and x is a
genus character attached to (xy,X,). Recall that, by Remark 5.10, x; (—M) =

Xo (—M). Assume again c"*" € Cpq, (€, V,, (Kf))F .
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Theorem 6.2 Suppose N = pM, that there exists q || M and that

Then:

1. there exist yX € CH™T! (Mn,HX)X and sy € K}( such that
log @ (j%) (Iy) = s5 -log @ (y¥) (f7*9) ;
2 X2 (=N) = —x1 (=N), i (y¥) € MWy, (Qy,)" where x; (—N) =
(—1)% wy and, if clgf;rl (yy) #0,
MWy, (Hx)X =MWy, (Qxi)Xi = Kf,pdg,l;rl (Yx,p) -
Proof. Consider the functional equation given by Theorem 5.9:
Ly (F/E xR = D Ly (foxun i i/ Ly (foxaronf2). (43)

k
In light of the assumption x; (-M) = (71)70 wys we find

ko
Xi (=N) = (=1)* wux; (p) (44)
Furthermore, since p is inert in K, we have x; (p) = —x5 (p). In particular, one

of the two Dirichlet characters, say x;, will be such that x; (p) = —wp; then
(44) tells us that

ko

X1 (=N) = (=1) 7T wy. (45)

It follows that the Dirichlet character x; = w satisfies the assumption of The-
orem 6.1. By 1. we know that the order of vanishing of the p-adic L-function
L, (f,x1,k,k/2) is at least 2. A formal computation using this information and
(43) gives

d? d? k=2
FPel (Lp (f/ K, X B) ey = 72 [Lp (fs X156, 6/2)] gy D Lp (f, X2, Ko, ko /2) .
(46)
k
By Corollary 5.14 (again use x; (—M) = (—1)70 wyr), Theorem 6.1 2. and (46)
. w rig\2
log @ (%) (15)* = t7/2 - 1og @ (y) (f7)" Ly (f, X20 ko, ko/2) . (47)

Again note that x, (p) = —x; (p), so that (44) and (45) tells us that x, (p) =
wp = —pw a,'. Hence thanks to (39) we can rewrite (47) as

log & (jX) (I5)% = 4t7/2 - 1og 8 () (£79) L* (f, X2 k0/2) -

If L* (f, Xo, ko0/2) = 0, we deduce that log @47 (jX) (I;) = 0 and the first part of
the Theorem is trivially true by setting y,, = 0. Hence suppose L* (f, x4, ko/2) #
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0. In this case note that x, satisfies the assumption that was made on % in
Theorem 6.1 4.. Hence we know that t/2L* (f, x4, ko/2) is a square in K7, as
well as all the remaining factors. The first claim follows by setting yX = y“ and
extracting the square roots.

For the second statement we already proved that x, (—N) = —x; (—N),

2
we are assuming that x; (—=N) = (—1)UT wy and we know that y* belongs
to MW (Q,, )™, so that yX belongs to MW; (Q,,)*" by construction. Since

Indgi (x) = x1 @ xo we can write
MWf (HX)X = MWf (QXl)Xl @ wa (QX2)X2 )

When cl(J’Tf;crl (yx) # 0 we are in the case L* (f, x5, ko/2) # 0 and then yX = y~.
It follows from Theorem 6.1 3. that we have M W5 , (Qxl)XI = Kf7pcl6’ff1 (yy)

and, since L* (f, x4, ko/2) # 0, [K, Theorem 14.2 (2)] implies MW7 ,, (Qx2)X2 =
0. m

Remark 6.3 Let o (f) be the companion form of f obtained by applying the
automorphism o to the Fourier coefficients of f. If we choose CZ?;) =0 (c’}‘”),

the quantities sy appearing in the statement of Theorem 6.2 satisfies the relation
o (s7) = 8o(5)- It follows that there is s € Ky ®q F), inducing s,(g) on the o (f)-
component. Recall that F,/Q, denotes an extension such that Kz C F,, where
Ky is the field generated by the Fourier coefficients of f and its companion
forms.

Let us now prove the main result Theorem 1.1. Let V}4 be the p-adic repre-
sentation attached to the new modular form f, with associated filtered Frobenius
module Dys;. Note that MWy (H,)* is naturally a K-vector space, since the
Hecke correspondences act on the rational Chow groups through the idempotent
e[s) corresponding to the f-isotypic component. Let the assumptions be as in
Theorem 6.2. Fix an isomorphism of monodromy modules Dy >~ D4 over Q,
as granted by Theorem 4.11.

The identification ¢ : Dy ~ Dy in M Fg, (¢, N) allow us to identify the
tangent spaces:

a: MS[C}]V’%O (Fp) = FE[Ifi]]D[?}Fp < #})CZ%
= H, (K’H]Y[f] (m + 1)) = Batyp (FI”DU] (var 1))
_ FED - ("™ Dyy) 5, )
= epMp(X.F)T = M (U, F,)"

(48)

The above identifications hold over any complete field extension F),/Q,, with the

only possible exception of the last identification, that holds assuming Fj, D Q2.
The first identification is the morphism

D
0. [f]vF c,V, Woo
/ 'Fm+1D[;]F — MSj= (Fp)
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that was considered in section 3. The last five identifications are given by
IS : HY (K, Vig (m+1)) — egMy, (T, F,) " .

We have the following commutative diagram

D Xp O
Wﬁfim oL Hslt (va[f] (m+1))
Jol | IS (49)
MS[/ "™ (Fp) % oMy (I F) "

It will be convenient to give an explicit description of the monodromy module
D by means of Teitelbaum’s p-adic integration theory (as developed for example
in [Te]). More explicitly let I be the arithmetic group defined in subsection
5.3.2. As it is well known there is an analogue of Proposition 2.8 in this definite
setting: the morphism

R: Dg (]Pl (Qp)) — Char (gvvn)

that was considered in subsection 2.2 induces an isomorphism DY (P! (Qp))rl =
Char (S,Vn)rl =: Chqr (F,) (over any complete local field F,/Q,). Define D7
over Q, as follows:

DT .= Chrar (Qp)v @ Char (@p)v s

with filtration, monodromy operator and Frobenius formally defined exactly as
in 2.3, Teitelbaum’s L-invariant replacing Orton’s L-invariant. Similarly as in

section 3 there is an identification obtained by means of f (z,y) = —x — Ly:
DT N
fi—=—2r 5 Char (F,)". (50)
Fm+1D£p ar A\t p

By [IS] Teitelbaum’s L-invariant equals the L-invariant of the monodromy
module D and there is an identification DT ~ D in MFy, (¢, N). As it fol-
lows from [RoSe, proof of Lemma 4.4], in order to give an explicit identifi-
cation DT ~ D, we can simply identify the m-isotypic components as Hecke
modules. Furthermore, we can identify DT ~ D in M Fg, (¢, N), since we
have HomMFQp((z,,N) (Dl,Dg) = HomMF@pQ(d,,N) (Dl,sz,Dg)Qﬂ), whenever

D; € MFy, (¢,N) (see [RoSe, proof of Lemma 4.4]). As in [IS], let V, be
the coherent sheaf on the Shimura curve X over Q2 associated to the represen-
tation Vi, so that Do , = H' (X,V,). As it follows from [IS], the m-isotypic

component of H* (X,V,) is H (X,V,,)" = « (H' (I", V,, (Q,2))), where ¢ is
the injection [IS, (76)]. Let

<—, _>F’ : Char (sz) ® H? (FI,Vn (sz)) — @pz
be the perfect pairing [IS, (75)]. It induces an isomorphism

' (I, V, (@) = Crar (@) ay
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that we use to identify the m-isotypic components. Let I : M (F’ ,sz) 5
Char (sz) be the residue map, thus inducing a map IV : Cphq, (ng)v —
My (T,Q,2) "

Lemma 6.4 The isomorphism (51) induces an identification 1) : DT ~ D mak-
ing the following diagram commutative:

Dgl; 2 f \%
Fbr- = Cher (Q2)
g
¢D||l 1L rv
Q v
Fm+1p]]§Qp2 = Mk (Fla Qp2> .

Here the lower horizontal arrow is the composition of the last three identifications
in the definition of a.

Proof. The morphism f maps the class d = [x,y] € D@ﬂ /F™*1 to the coor-
dinate f(d) in Cpar (sz)v of the opposite of the unique element — (f (d),0)
in ker N = DT>™ representing d. Let ¢ (d) € Dg , /F™*! be the correspond-
ing element and denote by d the unique element OPf ker N = Dép’; representing
¥ (d). By unicity we have ¢ ((f (d),0)) = —d. Let

P:H (X, V) = H (I",V, (Q))
be the left inverse of ¢ as defined in [IS, (15)]. If we write z € Dg , = H' (X,V,)

as x = 2™ + 2™+ according to its slope decomposition we have 2™ = ¢ (P (z))

(see [IS]). In particular we have d = d,;, = ¢ (P (d)). Since % is induced by (51)
we deduce, from the equality ¥ ((f (d),0)) = —d, that f (d) = — (—, P (d))p.
v
Besides, the identification Dg , JFTL = (Fm+1ﬂ))@p2> arises from Serre
duality induced by cup product and the canonical identification F™¥ 1]1])@p2 =
M, (F/,Qp2) (see [IS, Proposition 6.1]). Let d be as above, so that d € ker N =
ker I and d corresponds to (—,d)y € My (F’,sz)v, where (—, —)y is the cup
product. The reciprocity law [IS, Theorem 10.3] implies
(md)y=—(I(=),Pd)x =1"(f(d)),
which is the claim. m
Lemma 6.5 We may choose ¢ : Dy = Dy in such a way that oV (evo_(f)ng) =
evr, 4 and Remark 6.3 holds.
Proof. Let us write D[Tf] (resp. Char,[f]) to denote the space obtained by

taking the f-isotypic component by means of the idempotent e(s). According to
Lemma 6.4 there is a commutative diagram:

Ph. L ¢ F,)Y
mrinr = Charls) (Fp)
Il [wad
MS{ "> () = ﬁ = M, (I",E,)".
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Here the lower row comes from (48).
The above identifications holds even with F,, = @, the only possible excep-
tion being the last one appearing in the lower row. Denote by 3 the arrow from

MS[Cf;/ > (Qp) to Char ) (Qp) ", so that we have

/6\/ : Char,[f] (Qp)vv e MS[C}]/V71UOC (Qp) .

MSC > (Qp) (resp. Charjs] (Qp)) is naturally endowed with the Q-structure
MS[CfTW (Q) (resp. Char,s) (Q)) and they are both rank one K y-modules. Fix
an isomorphism b : Cpq,. (1 (Q) ~ MSE’:T)oo (Q) of Kj-modules, thus inducing
an isomorphism b of Ky ® L-modules Cj,q 1) (L) ~ MS[cj’f]”‘” (L) over any field
extension. Once we fix Iy = I¥'>~ € MSffl]”W (Ky), we may choose I,y :=

o(Iy) e MSc’w” (Ko(s)), the quantlty Qw("]';) appearing in Proposition 2.1 being

well defined only up to multiplication by an element in K X Settlng ch ( ) =

b~ (In(f)) € Chars) (Ko(p)), the relation ¢ M=o (cf ) in Remark 6.3 is
satisfied and Theorem 6.2 is in force. By biduality we find the morphism

b Chaﬁ[f] (Qp)vv - MSF};N’U)OQ (@p)

such that bvY (ev Z?fr)) = evr,,, (after extending the scalars to Fj, O Kjp).

Since MSff}/v e (Q,) ~ Ky ®Q, there exists t € (K; ® Q)™ such that bV =

toY. By [RoSe, Lemma 4.4] EndMFQp(¢7N) (]D)m) = Ky ®Q,. Replacing ¢ by

to, the morphism Y turns into to3” = b"V, because the above morphisms are

Hecke equivariant. Hence we may assume that 3" (evch?}»)) = evr, - Recall

that the rigid analytic modular form o (f)™ was obtained as I (O’ ( f)”g) =

h‘(l}), so that IV (eva(f)m-g) = €Ucher . We have a = IV of3, hence o¥ = 3" oIV
v

satisfies ¥ (eva(f)m-g) =0 (evcg%) =evr, . ®

By Lemma 6.5 we have o (evg(f)mg> = evy, - Hence, by Remark 6.3

(which is in force in light of Lemma 6.5), Theorem 6.2 implies:

a (log @f‘]‘;]] (jX)> = log @G]’ (syX) =18 (clgf;'l (syx)) . (52)

Then we have exp (Lp (@AJ )) = clgffl (syX) if and only if we have

IS (exp ( ((IDG‘]] ))) ( l(’]";rl (syx)) This is true since the left hand

side is « (fo (‘I)AJ )) (log@ ) thanks to the commutativity of
(49). The claim follows fro
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