
L-INVARIANTS AND DARMON CYCLES ATTACHED TO MODULAR

FORMS

VICTOR ROTGER, MARCO ADAMO SEVESO

Abstract. Let f be a modular eigenform of even weight k ≥ 2 and new at a prime p
dividing exactly the level with respect to an indefinite quaternion algebra. The theory of
Fontaine-Mazur allows to attach to f a monodromy module DFM

f and an L-invariant LFMf .
The first goal of this paper is building a suitable p-adic integration theory that allows us to
construct a new monodromy module Df and L-invariant Lf , in the spirit of Darmon. The
two monodromy modules are isomorphic, and in particular the two L-invariants are equal.

Let K be a real quadratic field and assume the sign of the functional equation of the
L-series of f over K is −1. The Bloch-Beilinson conjectures suggest that there should be a
supply of elements in the Selmer group of the motive attached to f over the tower of narrow
ring class fields of K. Generalizing work of Darmon for k = 2, we give a construction of
local cohomology classes which we expect to arise from global classes and satisfy an explicit
reciprocity law, accounting for the above prediction.
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1. Introduction

Let X/Q denote the canonical model of the smooth projective Shimura curve attached to an
Eichler order R in an indefinite quaternion algebra B over Q. When B ' M2(Q) (respectively
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B is a division algebra), X is the coarse moduli space parametrizing generalized elliptic curves
(resp. abelian surfaces with multiplication by a maximal order in B) together with a Γ0-level
structure.

Let k ≥ 2 be an even integer and let n := k − 2 and m := n/2. As explained in [Ja], [Sc]
for B ' M2(Q) and in [IS, 10.1] when B is division, there exists a Chow motive Mn over
Q attached to the space Sk(X) of cusp forms of weight k on X. Attached to any eigenform
f ∈ Sk(X), there exists a Grothendieck motive Mn,f over Q with coefficients over the field
Lf := Q({a`(f)}) generated by the eigenvalues of f under the action of the Hecke operators
T` for all prime `, which is constructed as the f -isotypical factor of Mn in the category of
Grothendieck motives (cf. [Sc, Thm. 1.2.4]).

Fix a prime p and let Hp(Mn) denote the p-adic étale realization of Mn obtained as the
(m + 1)-th Tate twist of the p-adic étale cohomology of a suitable Kuga-Sato variety. It is
a finite dimensional continuous representation of GQ = Gal (Q̄/Q) over Qp, endowed with a
compatible action of a Hecke algebra. Similarly, for any eigenform f ∈ Sk(X) let Vp(f) denote
the p-adic realization of Mn,f , a two-dimensional representation over Lf,p := Lf ⊗Qp.

Assume now that p divides exactly the level of R. Let T denote the maximal quotient of the
algebra generated by the Hecke operators acting on Sk(X)p−new and let Vp := Hp(Mn)p−new

denote the p-new quotient of Hp(Mn).
The restriction of Vp to a decomposition subgroup Dp ' Gal (Q̄p/Qp) is a semistable repre-

sentation and the filtered (φ,N)-module DFM = Dst(Vp) attached by Fontaine and Mazur to
Vp is a two-dimensional monodromy T⊗Qp-module over Qp in the sense of [IS, Definition 2.2].
An important invariant of its isomorphism class is the L-invariant LFM := L(DFM ) ∈ T⊗Qp

that one may associate to it. We refer the reader to [Ma] and [IS, §2] (and to Proposition
4.6 below) for details. Similarly, let DFM

f and LFMf ∈ Lf,p respectively denote the two-
dimensional monodromy module over Lf,p and L-invariant associated with f .

An illustrative explicit example arises when k = 2, since then n = 0 and M0 can simply
be interpreted as the Jacobian J of X. Then M0,f = Af is the abelian variety attached to
f by Shimura (cf. [Sh1]). As is well-known, if f is an eigenform in Sk(X)p−new then Af has
purely toric reduction at p and Tate-Morikawa’s theory allows to attach to it an L-invariant
L(Af ) ∈ Lf,p purely in terms of the p-adic rigid analytic description of this variety. When
E = Af is an elliptic curve, for instance, this L-invariant is simply

L(E) =
log(q)

ordp(q)
,

where q = q(E) is the Tate period of E.
Thanks to the work of several authors (Greenberg-Stevens, Kato-Kurihara-Tsuji, Coleman-

Iovita, Colmez) we now know that LFMf = L(Af ). The importance of this invariant partly
relies on the fact that, when ap = 1, it accounts for the discrepancy between the special values
of the classical L-series L(f, s) and the p-adic L-function Lp(f, s) at s = 1. This phenomenon
was predicted by Mazur, Tate and Teitelbaum as the exceptional zero conjecture and was first
proved by Greenberg and Stevens.

For higher weights k ≥ 4 similar phenomena occur, and several a priori different L-invariants
attached to a p-new eigenform f were defined by several authors (Teitelbaum, Coleman,
Darmon and Orton, Breuil) besides the aforementioned Fontaine-Mazur LFMf . Let us stress
that the definition of all these invariants is not always available in the general setting of
this introduction. However, we again know now, thanks to the previously mentioned works
together with [Br], [BDI] and [IS], that all these invariants are equal whenever they are defined.
See the above references for a detailed account of the theory.

The L-invariant LDf introduced by Darmon in the foundational work [Dar] (and generalized

by Orton in [Or] and Greenberg in [Gr]) is the one that is most germane to this article (cf.
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also é6). Darmon’s L-invariant is only available when B ' M2(Q) and when B is an indefinite
quaternion algebra but k = 2. Note that when B ' M2(Q) its construction heavily relies on
the theory of modular symbols, which in turn is based on the presence of cuspidal points on
the modular curve X. This feature is simply absent when B is a division algebra.

The first goal of this paper is providing a construction of an L-invariant L attached to the
space of p-new cusp forms for all quaternion algebras B in the spirit of Darmon, Greenberg
and Orton even in the case k > 2. This is achieved in 3.2 as a culmination of the results
gathered in 2 and 3, which show the existence of a suitable p-adic integration theory and form
the technical core of this paper. One of the main results of this first part of the article is
Theorem 3.5, which the reader may find of independent interest. It is an avatar of the classical
Amice-Velu-Vishik theorem and the comparison theorem of Stevens in [St]. The proof exploits
the modular representations of the quaternion algebra B studied intensively by Teitelbaum
and others (cf. 2 below for details).

In view of the above discussion it is natural to expect that our invariant L equals LFM ;
this has been proved by the second author in [Se2]: cf. Theorem 4.7 for the precise statement.
In 4.2 we construct a monodromy module D out of the L-invariant L which is shown to be
isomorphic to DFM .

Let us now describe the second goal and main motivation of this article, to which 5 is
devoted as an application of the material in 2, 3 and 4.

Let K be a number field, which for simplicity we assume to be unramified over p. As in
[BK] and [Ne2], for every place v of K define H1

st(Kv, Vp) to be the kernel of

(1) H1(Kv, Vp)→

{
H1(Kunr

v , Vp) if v - p
H1(Kv,Bst ⊗Qp Vp) if v | p

where Kunr
v is the maximal unramified extension of Kv and Bst stands for Fontaine’s ring

(cf. loc. cit.). Define the (semistable) Selmer group of the representation Vp as

(2) H1
st(K,Vp) := ker

(
H1(K,Vp)

∏
resv−→

∏
v

H1(Kv, Vp)

H1
st(Kv, Vp)

)
.

For any motiveM over a field κ and any integer j, let CHj(M) denote the Chow group of
cycles onM of codimension j with rational coefficients and let CHj(M)0 denote its subgroup
of null-homologous cycles. By the work of Nekovář (cf. [IS, 7] for precise statements in our gen-
eral quaternionic setting), the classical p-adic étale Abel-Jacobi map induces a commutative
diagram:

(3)

CHm+1(Mn ⊗K)0

clm+1
0,K→ H1

st(K,Vp)

↓ ↓ resv

CHm+1(Mn ⊗Kv)0

clm+1
0,Kv→ H1

st(Kv, Vp)

for any place v of K over p. Note that in this situation we have CHm+1(Mn)0 = CHm+1(Mn),
as proved in [IS, Lemma 10.1]. Composing with the natural projection Vp→Vp(f), we obtain a

map CHm+1(Mn ⊗K)0

clm+1
0,K (f)
→ H1

st(K,Vp(f)). As a generalization of the conjecture of Birch
and Swinnerton-Dyer, the conjectures of Bloch and Beilinson (cf. [Ne, 4]) predict that

(4) clm+1
0,K ⊗Qp : CHm+1(Mn ⊗K)0 ⊗Qp

∼?−→H1
st(K,Vp) is an isomorphism

and

(5) rankLf,p(cl
m+1
0,K (f))

?
= ords=k/2L(f ⊗K, s).
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Let N− = disc(B) ≥ 1 denote the reduced discriminant of B and let pN+ denote the level
of R. We have (N−, pN+) = 1 and, as we already mentioned, p - N+.

Assume now that K is quadratic, either real or imaginary, satisfying the following Heegner
hypothesis:

• The discriminant DK of K is coprime to N := pN+N−.
• All prime factors of N− remain inert in K.
• All prime factors of N+ split in K.
• p splits (remains inert) in K, if K is imaginary (real, respectively).

Thanks to the first condition, the sign of the functional equation of L(f ⊗K, s) is simply
(−NK ). The last three conditions imply that this sign is −1. In particular, L(f ⊗K, k/2) = 0.
Let now c ≥ 1 be a positive integer and let Hc/K denote the narrow ring class field of
conductor c, whose Galois group Gc := Gal(Hc/K) is canonically isomorphic via Artin’s
reciprocity map to the narrow Picard group Pic(Oc) of the order Oc ⊂ K of conductor c.
Assuming (c,N) = 1, for any character χ : Gc→C× the root number of the twisted L-series
L(f ⊗K,χ, s) continues to be −1 and the L-series of f ⊗Hc admits the factorisation

L(f ⊗Hc, s) =
∏
χ∈G∨c

L(f ⊗K,χ, s).

It follows that

ords=k/2L(f ⊗Hc, s) ≥ h(Oc) := |Gc|
and the Bloch-Beilinson conjecture (5) predicts that rankLf,p(cl

m+1
0,K (f)) ≥ h(Oc). In crude

terms, there should be a systematic way of producing a collection of nontrivial elements

(6) {sc ∈ H1
st(Hc, Vp(f))}

in the Selmer group of f with coefficients on the tower of class fields Hc/K for c ≥ 1,(c,N) = 1.
When K is imaginary, and N− = 1, Nekovář [Ne] was able to construct these sought-

after elements as images by the p-adic étale Abel-Jacobi map clm+1
0,K (f) of certain Heegner

cycles on Mn whose construction exploits, as in the classical case k = 2, the theory of
complex multiplication on elliptic curves. This construction was later extended to arbitrary
discriminants N− ≥ 1 by Besser (cf. [IS, §8] for a review).

Assume for the rest of the article that K is a real quadratic field. The aim of 5 is exploiting
the p-adic integration theory established in 3 in order to propose a conjectural construction
of suitable analogues of Heegner cycles for real quadratic fields.

Namely, our construction yields local cohomology classes sc ∈ H1
st(Kp, Vp) that we expect

to arise from global cohomology classes in H1
st(Hc, Vp). Notice that this makes sense, as Hc

naturally embeds in Kp because p is inert in K.
More precisely, we produce local cohomology classes sΨ ∈ H1

st(Kp, Vp) for every oriented
optimal embedding Ψ : Oc ↪→ R. We expect them to be global over Hc and we conjecture that
they satisfy a reciprocity law that describes the Galois action of Gc on them. In addition, one
further expects these classes to be related, via a Gross-Zagier formula, to the first derivative
of L(f ⊗ K, s) at s = k/2. See §5 for precise statements. This provides a higher weight
generalization of the theory of points due to Darmon [Dar] and continued in [Das], [Gr], [DG],
[LRV] and [LRV2].

A fundamental difference of this construction when compared with Nekovář’s approach is
that these cohomology classes are not defined (at least not a priori) as the image of any cycles
on CHm+1(Mn ⊗Kp)0.

Instead, letting Pn denote the space of polynomials of degree ≤ n in Kp, the role of the
Chow group in our setting is played by the module H1(Γ,Div(Hp)(Kp) ⊗ Pn). The choice
of this module is motivated by the fact that one can naturally attach a 1-cycle yΨ to each
optimal embedding Ψ, in a manner that is reminiscent of the p-adic construction of Heegner
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points for imaginary quadratic fields, and is a straightforward generalization of the points
defined by M. Greenberg in [Gr] (cf. also [LRV2]). For this reason, the cycles yΨ may be
called Stark-Heegner cycles (following loc. cit.) or also, as we suggest here, Darmon cycles.

Here, Γ ⊆ (B ⊗ Qp)
× is a group whose definition is recalled in 2 and already makes its

appearance in classical works of Ihara and in [Dar]. The module Div(Hp)(Kp) is the subgroup
of divisors with coefficients on Hp(K̄p) := K̄p \Qp that are invariant under the action of the
Galois group Gal (K̄p/Kp).

We define sΨ as the image of yΨ by a composition of morphisms

(7) H1(Γ,Div(Hp)(Kp)⊗Pn)
ΦAJ

−→ D ⊗Kp

Fm(D⊗Kp)
' DFM ⊗Kp

Fm(DFM ⊗Kp)
' H1

st(Kp, Vp)

where the first map is introduced in (56) and should be regarded as an analogue of the p-adic
Abel-Jacobi map; the second map is the isomorphism given by Theorem 4.7; the last map is
the isomorphism provided by Bloch-Kato’s exponential. Cf. 5.2 for more details.

The last section of this manuscript is devoted to the particular cases k = 2 in 6.1 and
N− = 1 in 6.2. For k = 2 we quickly review the work of [Gr] and [LRV], comparing it to
our constructions. For N− = 1 we rephrase the theory in the convenient language of modular
symbols. This formulation is employed in [Se], where Conjecture 5.7 (iii) and Conjecture 5.8
are proved for suitable genus characters of K.

Acknowledgements. It is a pleasure to thank Michael Spiess for his wise comments and ad-
vice at delicate stages of this project. The authors also thank Stefano Vigni for his comments,
that helped to improve the exposition of our results, and the Centre de Recerca Matemàtica
(Bellaterra, Spain) for its warm hospitality in Winter 2010, when part of this research was car-
ried out. Finally, we heartily thank the anonymous referee for his/her numerous suggestions
that helped us to improve the exposition.

2. Modular representations of quaternion algebras

2.1. Quaternion algebras and Hecke modules. Let B be a quaternion algebra over Q and
let N− ≥ 1 denote its reduced discriminant. Let b 7→ b denote the canonical anti-involution
of B and write Tr(b) = b+ b, n(b) = bb for the reduced trace and norm of elements of B.

Assume B is indefinite, that is, N− is the square-free product of an even number of primes.
Equivalently, there is an isomorphism ι∞ : B ⊗ R ' M2(R), that we fix for the rest of the
article.

For any primes `, write B` = B ⊗ Q` and fix isomorphisms ι` : B` ' M2(Q`) for ` - N−
and B` ' H` for ` | N−. Here, H` stands for a fixed choice of a division quaternion algebra
over Q`, which is unique up to isomorphism. Throughout, for each place l ≤ ∞ of Q we shall
regard B as embedded in M2(Q`) or H` via the above fixed isomorphisms.

Let N+ ≥ 1 be a positive integer coprime to N− and fix a prime p - N+N−. Write
N = pN+N− and let R0(pN+) ⊂ R0(N+) be Eichler orders in B of level pN+ and N+. Let
Γ0(pN+) (resp. Γ0(N+)) denote the subgroup of R0(pN+)× (resp.R0(N+)×) of elements of
reduced norm 1. Choose an element ωp ∈ R0(pN+) of reduced norm p normalizing Γ0(pN+)

and set Γ̂0(N+) := ωpΓ0(N+)ω−1
p . In order to lighten the notation, there is no reference to

the discriminant N− in the symbols chosen to denote these orders and groups; this should
cause no confusion, as the quaternion algebra B will always be fixed in our discussion.

Both Γ0(pN+) and Γ0(N+) are naturally embedded in SL2(R) and act discretely and dis-
continuously on Poincaré’s upper half-planeH through Möbius transformations, with compact

quotient if and only if N− > 1. Let XN−
0 (pN+), resp.XN−

0 (N+), denote Shimura’s canonical
model over Q of (the cuspidal compactification of, if N− = 1) these quotients (cf. [Sh1, 9.2]).

For reasons that will become clear later, it will also be convenient to consider the Eichler
Z[1/p]-order R := R0(N+)[1/p]. Similarly as above, let Γ denote the subgroup of elements of
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reduced norm 1 of R×. This group was first studied by Ihara and also makes an appearance
in the works [Dar], [Das], [Gr] and [LRV].

If A is a module endowed with an action of B× and G is either Γ0(pN+), Γ0(N+), Γ̂0(N+)
or Γ, the homology and cohomology groups Hi(G,A) and H i(G,A) are naturally modules
over a Hecke algebra

H(G) := Z[T` : ` - NG;U` : ` | N+
G ,W

−
` : ` | N−,Wp,W∞],

where N+
G = pN+ for G = Γ0(pN+),Γ and N+

G = N+ otherwise, and NG = N+
GN

−. If
A1 →A2 is a morphism of B×-modules, the corresponding maps

(8) H i(G,A1)→H i(G,A2)

are then morphisms of H(G)-modules. Cf. e.g. [AS, §1], [Gr, §3] and [LRV, §2] for details.
Choose an element ωp ∈ R0(pN+) (resp.ω∞) of reduced norm p (resp.−1) that normalizes

R0(pN+); such elements exist and are unique up to multiplication by elements of Γ0(pN+).
The operators Wp and W∞ mentioned above are the (Atkin-Lehner) involutions defined as
the double-coset operators attached to ωp and ω∞, respectively. For any Z[W∞]-module A
and sign ε ∈ {±1} we set Aε := A/(W∞ − ε). Up to 2-torsion, A ' A+ ⊕A−.

For any element γ in GL2(Qp) or GL2(R), write γ̂ := ωpγω
−1
p . For any subgroup G of

GL2(Qp) or GL2(R), write Ĝ = {ĝ, g ∈ G}. Note that Γ̂0(pN+) = Γ0(pN+), Γ̂ = Γ, whereas

Γ̂0(N+) 6= Γ0(N+). In fact,

(9) Γ = Γ0(N+) ?Γ0(pN+) Γ̂0(N+)

is the amalgamated product of Γ0(N+) with Γ̂0(N+) over Γ0(pN+) = Γ0(N+) ∩ Γ̂0(N+).

2.2. The Bruhat-Tits tree. Let T denote Bruhat-Tits’ tree attached to PGL2(Qp), whose
set V of vertices is the set of homothety classes of rank two Zp-submodules of Q2

p. Write E
for the set of oriented edges of the tree. Given e ∈ E , write s(e) and t(e) for the source and
target of the edge, and ē for the edge in E such that s(ē) = t(e) and t(ē) = s(e). Cf. e.g. [DT,
§1.3.1] for more details.

Write v∗, v̂∗ for the vertices associated with the standard lattice L∗ := Zp × Zp and the

lattice L̂∗ := Zp × pZp, respectively. Note that ωp acts on T , mapping v∗ to v̂∗. In general,
for any vertex v ∈ V, write v̂ := ωp(v).

Let e∗ be the edge with source s(e∗) = v∗ and t(e∗) = v̂∗. Let V+ (resp.V−) denote the
subset of vertices v ∈ V which lie at even (resp. odd) distance from v∗. Similarly, write E+

(resp. E−) for the subset of edges e in E such that s(e) ∈ V+ (resp.V−).
Let G be a subgroup of GL2(Qp) (as the ones already introduced in the previous section)

and let A be any left G-module. For any set S, e.g.S = V or E , write C(S, A) for the group
of functions on S with values in A.

Let also C0(E , A) be the subgroup of functions c in C(E , A) such that c(ē) = −c(e) for all
e ∈ E , and

Char(A) = {c ∈ C0(E , A) :
∑
s(e)=v

c(e) = 0 ∀v ∈ V }

be the subgroup of A-valued harmonic cocycles. These groups are naturally endowed with a
left action of G by the rule (γc)(e) := γ( c(γ−1e) ) and it is easy to see that they sit in the
exact sequences (cf. [Gr, Lemma 24] for the first one):

(10)
0 → Char(A) → C0(E , A)

ϕ→ C(V, A) → 0
ϕ(c)(v) :=

∑
s(e)=v c(e),

(11) 0 → A → C(V, A)
∂∗→ C0(E , A) → 0

(∂∗c)(e) := c(s(e))− c(t(e)).
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2.3. Rational representations. In this section we recall a construction of a rational repre-
sentation Vn of B× for each even integer n ≥ 0 that already appears in [BDIS, §1.2] and [IS,
§5]. Its relevance will be apparent in the next section, as according to the Eichler-Shimura
isomorphism (cf. (15) below) the cohomology groups of Vn provide a natural rational structure
for the spaces of holomorphic modular forms with respect to the arithmetic subgroups of B×.

Let B0 = {b ∈ B,Tr(b) = 0} ⊂ B , endowed with a right action of B× by the rule
b · β := β−1bβ for β ∈ B× and b ∈ B0. The pairing

(12) 〈b1, b2〉 :=
1

2
Tr(b1 · b̄2)

is non-degenerate and symmetric on B0, and allows to identify B0 with its own dual, whence
to regard B0 as a left B×-module.

For any r ≥ 0, the r-th symmetric power Symr(B0) of B0 is naturally a left B×-module
endowed with the pairing induced by (12), that we continue to denote 〈−,−〉. For r ≥ 2, the
Laplace operator

∆r : Symr(B0) → Symr−2(B0)

attached to 〈−,−〉 is defined by the rule

∆r(b1 · ... · br) :=
∑

1≤i<j=r 〈bi, bj〉 b1 · ... · b̂i · ... · b̂j · ... · br.

The Laplace operator ∆r is a morphism of B× -modules because, as one checks, 〈b1 · β, b2 ·
β〉 = 〈b1, b2〉 for all β ∈ B×, b1, b2 ∈ B0.

Definition 2.1. Let V0 = Q, V2 = B0 and, for any even integer n ≥ 4, let m := n/2 and

Vn := ker ∆m.

If R is a commutative Q-algebra, write Vn(R) := Vn ⊗ R. For n = 0, V0 = Q is endowed
simply with the trivial action of B×. For arbitrary n, we may regard the spaces Vn both as
right and left B×-modules, the pairing 〈−,−〉 identifying one with another (cf. [BDIS, 1.2]).
As such, the general theory reviewed in 2.1 and 2.2 applies in particular to these modules.

Over a base field K/Q that splits B, the modules Vn(K) admit a much simpler and classical
description, that we now review. For any even integer n ≥ 0 let Pn denote the Q-vector space
of polynomials of degree at most n with rational coefficients, and write Pn(R) := Pn ⊗R for
any algebra R as above. It can be endowed with a right action of GL2(R) by the rule

P (x) · γ :=
(cx+ d)n

det(γ)n/2
· P
(ax+ b

cx+ d

)
, γ =

(
a b
c d

)
, P ∈ Pn(R).

This way, Vn(R) = P∨n(R) := HomR(Pn(R), R), the dual of Pn(R), inherits a left GL2(R)-
action, that actually descends to PGL2(R).

Let K be a field of characteristic 0 such that B ⊗Q K ' M2(K), and identify these two
algebras by fixing an isomorphism between them. The function

B0 ⊗Q K −→ P2(K)

b 7→ tr(b ·
(
x −x2

1 −x

)
)

is an isomorphism of right B×-modules. Identifying B0 with its own dual via (12), it induces
an isomorphism of left B×-modules (we omit the details; cf. [BDIS, 1.2], where the definitions
of the pairings and actions are the same as the ones taken here, and [IS, 5], [JL, 2]):

(13) Vn(K) ' Vn(K).

Notice that we already fixed in 2.1 isomorphisms ι` : B ⊗ Q` ' M2(Q`) for places l ≤ ∞,
l - N−. Accordingly, in the sequel we shall freely identify Vn(Q`) with Vn(Q`).
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2.4. Modular forms and the Eichler-Shimura isomorphism. For any even integer n ≥ 0
set k = n+ 2 = 2(m+ 1). Let G denote Γ0(pN+), Γ0(N+), Γ̂0(N+) or Γ.

Definition 2.2. Let M be a H(G)-module and fix a prime ` - NG. We say that M admits
an `-Eisenstein/Cuspidal decomposition (of weight k) whenever there exists a decomposition
of H(G)-modules M = MEis ⊕M c such that t` := T` − `k−1 − 1 vanishes on MEis and is
invertible on M c.

Remark 2.3. If such decomposition exists, it is easy to check that it is unique.
Furthermore, let Mi, i = 1, 2, be H(Gi)-modules, where G1, G2 is any choice of groups in

either the set {Γ0(pN+),Γ} or the set {Γ0(N+), Γ̂0(N+)}. Let f : M1→M2 be a morphism
that is equivariant for the action of the good Hecke operators of H(G1) and H(G2). If both
M1 and M2 admit an `-Eisenstein/Cuspidal decomposition for some ` - NG1NG2 , then f
decomposes accordingly as f = fEis ⊕ f c. In particular, ker(f) and coker(f) also admit an
`-Eisenstein/Cuspidal decomposition.

Finally, if

0→M1→M2→M3→M4→M5→0

is a Hecke equivariant exact sequence of Hecke modules such that M1, M2, M4 and M5 admit
an `-Eisenstein/Cuspidal decomposition for a given prime `, then so does M3.

In all the instances of H(G)-modules M we shall be considering, the `-Eisenstein/Cuspidal
decomposition is in fact independent of the choice of the prime ` - NG, and we shall simply
refer to it as the Eisenstein/Cuspidal decomposition of M , dropping the prime ` from the
notations.

Let now G denote either Γ0(pN+) or Γ0(N+). Let Mk(G) denote the C-vector space
of weight k holomorphic modular forms with respect to G and Sk(G) denote its cuspidal

subspace. Let TG (resp. T̃G) be the maximal quotient of the Hecke algebra H(G) ⊗ Q that
acts faithfully on Sk(G) (resp. on Mk(G)).

As a basic example, M = Mk(G) admits an Eisenstein/Cuspidal decomposition with M c =
Sk(G) and MEis = Ek(G), the space of modular forms generated by the Eisenstein series.
These series are only defined for N− = 1; in order to have uniform notations, we set this
space to be {0} when N− > 1.

By [Sh1, Theorem 3.51] and the Jacquet-Langlands correspondence,

(14) dimC Sk(G) = dimQ TG
and in fact Sk(G) is a free module of rank one over TG ⊗ C.

The Eichler-Shimura isomorphism yields an identification of exact sequences (see [Hi, Ch.
6] and [Fr, Ch. III])

(15)

0 → Sk(G)⊗R C → (Sk(G)⊗R C)⊕ Ek(G) → Ek(G) → 0
↓ o ↓ o ↓ o

0 → H1
par(G,Vn(C)) → H1(G,Vn(C))

res→ H1
Eis(G,Vn(C)) → 0,

where H1
Eis(G,Vn(C)) is the image of the restriction map

(16) H1(G,Vn(C))−→
t⊕
i=1

H1(Gsi ,Vn(C)).

Here, CG = {s1, ..., st} denotes a set of representatives for the cusps of G and for any s ∈ CG,
Gs denotes the stabilizer of s in G.

Thanks to (13) and to the theorem of Universal Coefficients, there is an isomorphism of
Hecke modules

(17) H1(G,Vn(C)) ' H1(G,Vn)⊗ C.
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Note that the map (16) can in fact be viewed as the base change to C of the natural
restriction map

(18) H1(G,Vn) −→
t⊕
i=1

H1(Gsi ,Vn)

As a point of caution, the reader may notice that when N− > 1 the cohomology groups
appearing in (18) make no sense if we replace the module of coefficients Vn by Vn. The
kernel and image of (18) can thus be taken as the definition of H1

par(G,Vn) and H1
Eis(G,Vn),

respectively. Their direct sum yields an Eisenstein/Cuspidal decomposition of H1(G,Vn).

Remark 2.4. It thus follows from (14), (15) and (17) that H1(G,Vn)c is a free module of
rank two over TG. More precisely, since n(ω∞) = −1, it follows from the work [Sh3] that the
Atkin-Lehner involution W∞ acts on H1(G,Vn(C))c as complex conjugation. Hence, for each
choice of sign ε ∈ {±1}, H1(G,Vn)c,ε is a module of rank one over TG.

Remark 2.5. If f ∈ Sk(G) is a primitive normalized eigenform for the action of TG, it corre-
sponds via the Eichler-Shimura isomorphism to an element cf ∈ H1(G,Vn(Lf ))c , where Lf
is the number field generated over Q by the eigenvalues of f . This is a consequence of mul-
tiplicity one and the fact that H1(G,Vn)c is a rational structure for Sk(G) that is preserved
by the action of the Hecke algebra. Hence, if K is a field that contains all the eigenvalues for
the action of the Hecke operators, then H1(G,Vn(K))c admits a basis of eigenvectors for this
action.

Remark 2.6. For all i ≥ 0, the spaces H i(G,Vn) also admit an Eisenstein/Cuspidal decom-
position. For i = 1 this is the content of the above discussion. For i > 2, these groups vanish
because the cohomological dimension of G is 2.

For i = 0: if n > 0, H0(G,V0) = {0} by [Hi, p. 162, Prop. 1; p. 165, Lemma 2] and there
is nothing to prove; if n = 0, the action of the Hecke operators T` for ` - NG is given by
multiplication by `+ 1 and therefore

(19) H0(G,V0)c = {0}.

For i = 2: H2(G,Vn) ' H0
c (G,Vn)∨ by Poincaré duality and the paragraph above applies.

Here, the latter group stands for the cohomology group with compact support of G with
coefficients on Vn. See e.g.[Fr, Ch. III] and [MS] for more details.

Definition 2.7. Let

cor : H1(Γ0(pN+),Vn) → H1(Γ0(N+),Vn)

ˆcor : H1(Γ0(pN+),Vn) → H1(Γ̂0(N+),Vn)

denote the corestriction maps induced by the inclusions Γ0(pN+) ⊂ Γ0(N+), Γ̂0(N+) and let

H1(Γ0(pN+),Vn)p−new := Ker(cor⊕ ˆcor).

Similarly, we may define H1(Γ0(pN+),Vn)p−old,c := Im(res + ˆres)c, where

H1(Γ0(N+),Vn)⊕H1(Γ0(N+),Vn)
res + ˆres−→ H1(Γ0(pN+),Vn)

is the sum of the natural restriction maps.
Obviously, over C the above corestriction maps admit a parallel description purely in terms

of modular forms and degeneracy maps, via (15). Via the above identifications, the Peters-
son inner product induces on H1(Γ0(pN+),Vn(C))c a perfect pairing with respect to which
H1(Γ0(pN+),Vn(C))p−old,c is the orthogonal complement of H1(Γ0(pN+),Vn(C))p−new,c.
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2.5. The cohomology of Γ. Besides the relationship between H1(Γ0(pN+),Vn) and mod-
ular forms provided by the Eichler-Shimura isomorphism, these groups can also be related to
the cohomology of the group Γ introduced in 2.1 with values in the modules of functions on
Bruhat-Tits’s tree Tp, as we now review.

The long exact sequence in cohomology arising from (10) with A = Vn gives rise to an
exact sequence of H(Γ)-modules (cf. 2.1)

(20) →H0(Γ, C(V,Vn))→H1(Γ, Char(Vn))
s→H1(Γ, C0(E ,Vn)) → H1(Γ, C(V,Vn)).

By Shapiro’s lemma, for all i ≥ 0 there are isomorphisms

(21)
SV : H i(Γ, C(V,Vn)) ' H i(Γ0(N+),Vn)2,
SE : H i(Γ, C0(E ,Vn)) ' H i(Γ0(pN+),Vn),

where throughout, by a slight abuse of notation, by H i(Γ0(N+),Vn)2 we actually mean

H i(Γ0(N+),Vn) ⊕ H i(Γ̂0(N+),Vn). Note that conjugation by ωp induces a canonical iso-
morphism

(22) H i(Γ0(N+),Vn) ' H i(Γ̂0(N+),Vn)

that we will sometimes use in order to identify these two spaces without further comment.
These isomorphisms are Hecke-equivariant in the following sense: for every prime ` -

pN+N−, T` ◦ SV = SV ◦ T` and T` ◦ SE = SE ◦ T`. Although we are using the same
symbol for the Hecke operator at ` acting on the two cohomology groups, note that they lie
in the two different Hecke algebras H(Γ) and H(Γ0(N+)) (resp., H(Γ0(pN+))). The compat-
ibility with the isomorphism S follows from the key fact that T` can be defined in H(G) for
G = Γ0(pN+),Γ0(N+),Γ as a double-coset operator by means of the same choices of local
representatives. Cf. [Das, Prop. A.1], [LRV, §2.3] for more details.

Remark 2.3 and the isomorphisms of (21) can be used to define an Eisenstein/Cuspidal
decomposition on H1(Γ, C0(E ,Vn)), H1(Γ, C(V,Vn)) and H1(Γ, Char(Vn)) by transporting it

from H1(G,Vn), where G = Γ0(pN+), Γ0(N+) or Γ̂0(N+).

Lemma 2.8. There is a Hecke equivariant isomorphism

H1(Γ, Char(Vn))c
'→ H1(Γ0(pN+),Vn)p−new,c.

Proof. Composing the map s in (20) with Shapiro’s isomorphism SE in (21), we obtain a map

(23) H1(Γ, Char(Vn))
SE◦s−→ H1(Γ0(pN+),Vn),

that we already argued to be Hecke equivariant. By Definition 2.7 and (21), SE ◦ s maps
surjectively onto H1(Γ0(pN+),Vn)p−new. By [Hi, p. 165], the Γ0(pN+)-module Vn(C) is

irreducible for n > 0. Hence VΓ0(pN+)
n = 0 by (13); since Γ0(pN+) ⊂ Γ0(N+), Γ̂0(N+), the

proposition now follows for n > 0 from the exactness of (20), and (21).

When n = 0, the action of B× on Vn is trivial, whence VΓ0(pN+)
n = Vn. Since H0(G,Vn)c =

{0} both for G = Γ0(N+) and Γ̂0(N+) by (19), the proposition follows as before. �

The long exact sequence in cohomology arising from (11) with A = Vn(Kp) is

(24)
→H1(Γ0(N+),Vn(Kp))

2 → H1(Γ0(pN+),Vn(Kp))
δ→

δ→ H2(Γ,Vn(Kp))
ε→ H2(Γ0(N+),Vn(Kp))

2 → H2(Γ0(pN+),Vn(Kp)),

once we apply the isomorphisms of (21). Exactly as in (20), all maps in (24) are Hecke
equivariant and admit an Eisentein/Cuspidal decomposition.
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Lemma 2.9. The boundary map δc restricts to an isomorphism

δc : H1(Γ0(pN+),Vn(Kp))
p−new,c '→ H2(Γ,Vn(Kp))

c.

Proof. We have H2(Γ0(N+),Vn(Kp))
c = 0 by the remarks following (19). Remark 2.3 implies

that taking cuspidal parts in an exact functor. It thus follows from (24) that there is an exact
sequence

(25) (H1(Γ0(N+),Vn(Kp))
c)2 → H1(Γ0(pN+),Vn(Kp))

c δc→ H2(Γ,Vn(Kp))
c → 0.

The lemma now follows from the canonical decomposition

H1(Γ0(pN+),Vn(Kp))
c = H1(Γ0(pN+),Vn(Kp))

p−old,c ⊕H1(Γ0(pN+),Vn(Kp))
p−new,c.

�

2.6. Morita-Teitelbaum’s integral representations. Recall the PGL2-module Pn and
note that it admits as a natural Z-structure the free Z-module Pn,Z of polynomials of degree
at most n with integer coefficients. For any Z-algebra R, Pn(R) := Pn,Z⊗R is endowed with a
right PGL2(R)-action by the same formula. This way, Vn(R) = P∨n(R) := HomR(Pn(R), R),
the dual of Pn(R), inherits a left PGL2(R)-action.

For any vertex v ∈ V, choose any element γv ∈ GL2(Qp) such that γv(v) = v∗ and set

Vn,v(Zp) := γ−1
v ·Vn(Zp) ⊂ Vn(Qp).

Notice that this definition does not depend on the choice of γv, because the stabilizer of v∗
in PGL2(Qp) is PGL2(Zp), which leaves Vn(Zp) invariant. Define

Cint(V,Vn(Qp)) := {c ∈ C(V,Vn(Qp)) : c(v) ∈ Vn,v ∀v ∈ V}.
Similarly, for any oriented edge e = (v, v′) ∈ E , set Vn,e(Zp) := Vn,v(Zp) ∩ Vn,v′(Zp) ⊂

Vn(Qp) and define

Cint(E ,Vn(Qp)) := {c ∈ C(E ,Vn(Qp)) : c(e) ∈ Vn,e(Zp)∀e ∈ E},
that is naturally a Zp-module. Introduce also the Zp-modules

Cint0 (E ,Vn(Qp)) := Cint(E ,Vn(Qp)) ∩ C0(E ,Vn(Qp))

and
Cinthar(E ,Vn(Qp)) := Cint(E ,Vn(Qp)) ∩ Char(Vn(Qp)).

The next result of Teitelbaum should be regarded as a refinement of (10).

Proposition 2.10. [Te2, p. 564-566] For every even integer n ≥ 0 the natural sequence

(26) 0→Cinthar(Vn(Qp))→Cint0 (E ,Vn(Qp))→Cint(V,Vn(Qp))→ 0

is an exact sequence of PGL2(Qp)-modules.

In particular we may regard the above sequence as an exact sequence of Γ-modules by
means of the identification ιp : Bp ' M2(Qp). As a piece of notation, by extended norm on a
space A we mean a function ‖ · ‖ : A→R≥0 ∪ {+∞} satisfying the usual properties of a norm,
extended in a natural way to the semigroup of values R≥0 ∪ {+∞}.

Let Kp/Qp be a finite field extension, with ring of integers Rp, that we fix for the remainder
of this article.

Let |·| denote the absolute value of Kp. Let |·|L∗ and |·|
L̂∗

be two norms on Pn(Kp). We

require the first one to be GL(L∗) = GL2(Zp)-invariant and the second one to be GL(L̂∗)-

invariant (cf. 2.2 for notations). Choose also a GL(L∗) ∩ GL(L̂∗)-invariant norm |·|
L∗,L̂∗

on

Pn(Kp). We may choose for example |·|
L∗,L̂∗

= |·|L∗ := |·| to be the supremum of the absolute

values of the coefficients of a polynomial and set |·|
L̂∗

:=
∣∣ω−1
p ·
∣∣
L∗

. By duality we can consider

the corresponding norms on Vn(Kp).
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Define extended norms on C(V+,Vn(Kp)), C(V−,Vn(Kp)) and C0(E ,Vn(Kp)) by the rules

‖c‖+ := supv∈V+ |γv · c(v)|L∗ ,

‖c‖− := supv∈V− |γv · c(v)|L∗ .

‖c‖ := supe∈E+ |γe · c(e)|.

Here, γv (resp. γe) is any element in GL2(Qp) such that γv(v) = v∗ (resp. γe(e) = e∗). The
invariance properties of the above norms imply that the above definitions do not depend on
the choice of the sets {γv} and {γe}. Use ‖·‖+ and ‖·‖− to define a norm on C(V,Vn(Kp))
as the max. of the two.

Let C(Kp) denote either C(V,Vn(Kp)) := C(V+,Vn(Kp))⊕C(V−,Vn(Kp)), C0(E ,Vn(Kp))

or Char(Vn(Kp)) and write Cb(Kp) := {c ∈ C(Kp) : ‖c‖ < ∞}. The restriction of ‖·‖ to

Cb(Kp) is a norm with respect to which Cb(Kp) is a Banach space over Kp.

Lemma 2.11. (i) Cb(Kp) = Cb(Qp)⊗̂Kp.

(ii) Cb(Qp) = Cint(Qp)⊗Zp Qp.

Proof. We sketch a proof only for V, as the remaining cases work similarly. For (i) we first
invoke the following general fact: suppose that L/F is a finite Galois extension and that V is
a L-module on which GL/F acts semilinearly, i.e., σ (λv) = σ (λ)σ (v) for all σ ∈ GL/F , λ ∈
L, v ∈ V . Then for every subgroup H ⊂ GL/F the map

(27) LH ⊗F
(
V GL/F

)
→ V H , l ⊗ v 7→ lv

is an isomorphism. For the trivial subgroup H = {1} this is [Mi, Prop. 16.14], and for
arbitrary H it follows from that statement by taking H-invariants.

To derive (i) from this, let Lp ⊃ Kp be a field extension such that Lp/Qp is Galois and
let H = GLp/Kp ⊂ GLp/Qp . Endow C(Lp) with the action of GLp/Qp given by the rule
(σc) (s) := σ (c (s)). This action is easily checked to be well-defined and semilinear; moreover

C(Lp)
GLp/Qp = C(Qp), C(Lp)

H = C(Kp). Note also that, since σ (γs) = γs ∈ GL2 (Qp),

‖σc‖ = sups |γsσ (c (s))| = sups |σ (γsc (s))| = sups |γsc (s)| = ‖c‖ .

It follows thatGLp/Qp acts semilinearly on Cb(Lp) and that Cb(Lp)
GLp/Qp = Cb(Qp), C

b(Lp)
H =

Cb(Kp). We can apply now (27) to V = Cb(Lp), which shows (i).

As for (ii), the inclusion Cint(Qp)⊗Zp Qp ⊂ Cb(Qp) is obvious: given c ∈ Cint(Qp), ‖c‖ =
supv |γv · c(v)| is bounded because γv · c(v) ∈ Vn(Zp). As for the opposite inclusion, let
c ∈ C(Qp) be such that ‖c‖ = B <∞. Then c can be replaced by a scalar multiple of it such
in a way that ‖c‖ = supv |γv · c(v)| ≤ 1. This implies that c ∈ Cint(Qp). �

The next corollary now follows from Proposition 2.10 and Lemma 2.11.

Corollary 2.12. For every even integer n ≥ 0 the natural sequence

(28) 0→Cbhar(Vn(Kp))→Cb0(E ,Vn(Kp))→Cb(V,Vn(Kp))→ 0

is an exact sequence of PGL2(Qp)-modules.

Again we may regard the above sequence as an exact sequence of Γ-modules by means of
the identification ιp : Bp ' M2(Qp).
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3. p-adic integration and an L-invariant

3.1. The cohomology of distributions and harmonic cocyles. Let Hp denote the p-adic
upper half-plane over Qp. It is a rigid analytic variety over Qp such that Hp(Kp) = Kp \Qp.
Let OHp denote the ring of entire functions on Hp, that is a Fréchet space over Qp (cf. [DT,
Prop. 1.2.6]). For any even integer k ≥ 2, write OHp(k) for the ring OHp equipped with a
right action of GL2(Qp) given by

f |γ =
det(γ)k/2

(cz + d)k
· f(γz), for γ =

(
a b
c d

)
, f ∈ OHp .

Let Hintp denote the formal scheme over Zp introduced by Mumford in [Mu] (cf. also [Te2,
p. 567]). The rigid analytic space associated with its generic fiber is Hp. The dual graph of
its special fiber is the tree Tp (cf. [DT] and [Te2] for a detailed discussion).

Let ωZp denote the sheaf on Hintp introduced in [Te2, Def. 10], such that ωZp ⊗ Qp is the

sheaf ω of rigid analytic differential forms on Hp. The map f(z) 7→ f(z)dzk/2 induces an

isomorphism of PGL2(Qp)-modules between OHp(k) and H0(Hp, ωk/2). Set

ObHp(k) := H0(Hintp , ω
k/2
Zp ) · dz−k/2 ⊗Zp Qp ⊂ OHp(k).

Recall that n := k − 2 ≥ 0. As follows from e.g. [DT, §2.2.4] or [Te2, Theorem 15], the
residue map on OHp(k) yields an epimorphism of PGL2(Qp)-modules

(29) Res : OHp(k) � Char(Vn(Qp)).

The following deep result is proved in [Te2, p. 569-574], and will be crucial for our purposes.

Proposition 3.1. The map Res restricts to an isomorphism of PGL2(Qp)-modules

(30) Res : ObHp(k)
∼−→Cbhar(Vn(Qp)).

Definition 3.2. Let An(P1(Qp),Kp) be the space of Kp-valued locally analytic functions on
P1(Qp) with a pole of order at most n at ∞. More precisely, an element f ∈ An is a locally
analytic function f : Qp→Kp for which there exists an integer N such that f is locally analytic
on {z ∈ Qp : ordp(x) ≥ N} and admits a convergent expansion

f(z) = anz
n + an−1z

n−1 + ...+ a0 +
∑
r≥1

a−rz
−r

on {z ∈ Qp : ordp(z) < N}.

The space An(P1(Qp),Kp) carries a right action of GL2(Qp) defined by the rule

(f · γ)(x) =
(cx+ d)n

det(γ)n/2
· f(

ax+ b

cx+ d
)

for any f ∈ An(P1(Qp),Kp) and γ = ( a bc d ) ∈ GL2(Qp). Note that Pn(Kp) is a natural
GL2(Qp)-submodule of it.

Definition 3.3. Write Dn(P1(Qp),Kp) and D0
n(P1(Qp),Kp) for the strong continuous dual of

An(P1(Qp),Kp) and of its quotient by Pn(Kp), respectively.

These modules of distributions inherit from An(P1(Qp),Kp) a left action of GL2(Qp). As
explained in [DT, §2.1.1], D0

n(P1(Qp),Kp) is a Fréchet space over Kp and D0
n(P1(Qp),Kp) =

D0
n(P1(Qp),Qp)⊗̂Kp.
Morita’s (or sometimes also called Schneider-Teitelbaum) duality, yields an isomorphism

D0
n(P1(Qp),Qp)

∼−→OHp(k) that induces an isomorphism

(31) I : D0
n(P1(Qp),Kp)

∼−→OHp(k)⊗̂Kp.
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We refer the reader to [DT, §2.2] for more details; in the sequel, we shall freely identify
these two spaces. Define

D0
n(P1(Qp),Kp)

b := I−1(ObHp(k)⊗̂Kp) ⊂ D0
n(P1(Qp),Kp).

Remark 3.4. As a consequence of a variant of the theorem of Amice-Velu-Vishik (cf. e.g. [DT,
Theorem 2.3.2]), the space D0

n(P1(Qp),Kp)
b can alternatively be described as the subspace of

distributions µ ∈ D0
n(P1(Qp),Kp) for which there is a constant A such that, for i ≥ 0, j ≥ 0,

and a ∈ Zp,
|µ((x− a)i|a+pjZp)| ≤ p

A−j(i−1−k/2).

A distribution µ satisfying the above condition is then completely determined.

The composition of (29) with (31) and the natural identification Char(Vn(Kp)) ' Char(Vn(Qp))⊗̂Kp

yields an epimorphism of GL2(Qp)-modules

r : D0
n(P1(Qp),Kp) � Char(Vn(Kp))

that can be described purely in terms of distributions by the rule

r(µ)(e)(P ) =

∫
Ue

P (t)dµ(t) := µ(P · χUe).

Here Ue ⊂ P1(Qp) is the open compact subset of P1(Qp) corresponding to the ends leaving
from the oriented edge e, and χUe stands for its characteristic function.

By Proposition 3.1 and Lemma 2.11, the map r restricts to an isomorphism

(32) r : D0
n(P1(Qp),Kp)

b ∼−→ Cbhar(Vn(Kp)),

which by abuse of notation we denote with the same symbol r. The same abuse will be made
for the several maps that r induces in cohomology below.

The following theorem is the basic piece that shall allow us to introduce a p-adic integration
theory on indefinite quaternion algebras.

Theorem 3.5. There is a commutative diagram of morphisms of Hecke-modules

H1(Γ,D0
n(P1(Qp),Kp)

b) −→ H1(Γ,D0
n(P1(Qp),Kp))

↓ ↓
H1(Γ, Cbhar(Vn(Kp))) −→ H1(Γ, Char(Vn(Kp)))

such that the composition r : H1(Γ,D0
n(P1(Qp),Kp)

b)
∼−→H1(Γ, Char(Vn(Kp))) is an isomor-

phism.

In the statement, by Hecke-modules we mean modules over the Hecke algebra H(Γ) intro-
duced in 2.1. Since r and the natural inclusions

D0
n(P1(Qp))

b ↪→ D0
n(P1(Qp)), Cbhar(Vn(Kp)) ↪→ Char(Vn(Kp))

are morphisms of GL2(Qp)-modules, it follows from the discussion around (8) that there indeed
exists a commutative diagram as above, where the maps are morphisms of H(Γ)-modules.
Notice that, by (32), it suffices to show that the inclusion Cbhar(Vn(Kp)) ⊂ Char(Vn(Kp))
induces an isomorphism

(33) H1(Γ, Cbhar(Vn(Kp))) ' H1(Γ, Char(Vn(Kp))).

We devote the rest of the section to prove this statement. In order to prove (33) we need
a further preliminary discussion. Quite generally, let S be a set on which Γ acts transitively.
Fix an element s∗ ∈ S and let Γ0 ⊂ Γ denote its stabilizer in Γ, that we assume to be finitely
generated. Let {γs}s∈S be a set of representatives for the coset space Γ0\Γ such that γs∗ = 1
and γss = s∗ for all s ∈ S. Let A be Γ -module endowed with a Γ0-invariant non-archimedean
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norm |·| with values in Kp. On the group of functions C(S, A), define an extended norm by
the rule

‖c‖ := sup
s∈S
|γs(c(s))| = sup

s∈S
|(γsc)(s∗)| .

As before, let Cb(S, A) = {c ∈ C(S, A) : ‖c‖ < ∞}. It is a Γ-submodule of C(S, A) and
the restriction of norm ‖ · ‖ to Cb(S, A) turns out to be Γ-invariant, as can be easily checked.
Note that the subspace Cb(S, A) does not depend on the choice of the set {γs}.

Lemma 3.6. Let G be a finitely generated group and let M be a G-module endowed with a
G-invariant non-archimedean norm [·] with values in Kp. Then

[[c]] := sup
g∈G

[c(g)]

defines a norm on Z1(G,M).

Proof. Let {gi : i ∈ I} be a set of generators of G with #I < ∞. Given an element c ∈
Z1(G,B) define Kc := sup

i
{[c(gi)], [c(g−1

i )] ∈ R≥0. Let g ∈ G be any element. Then g =

gε1i1 ...g
εk
ik

for some ij ∈ I and εj ∈ {±1}. Let us show by induction on k that [c(g)] ≤ Kc.

When k = 1 this is clear. When k > 1 , the cocyle relation c(g) = c(gε1i1 ) + gε1i1 c(g
ε2
i2
...gεkik ),

together with the G-invariance of [·], imply that

[c(g)] ≤ max
{

[c(gε1i1 )], [gε1i1 c(g
ε2
i2
...gεkik )]

}
=

= max
{

[c(gε1i1 )], [c(gε2i2 ...g
εk
ik

)]
}
≤ Kc.

�

Proposition 3.7. For i = 0, 1 the inclusion ι : Cb(S, A) ⊂ C(S, A) induces an isomorphism

ι : H i(Γ, Cb(S, A))
'→ H i(Γ, C(S, A)).

Proof. Let i = 0. We wish to show that every Γ-invariant element of C(S, A) has bounded

norm. By Shapiro’s lemma there is an isomorphism S : C(S, A)Γ '−→AΓ0 , whose inverse is
given explicitly by the map a 7→ ca, where ca(s) = γ−1

s a. One checks from this description
that S is an isometry. Since |·| is a norm on AΓ0 ⊂ A, the proposition follows.

Assume now i = 1. Again by Shapiro’s lemma, the natural map

π : Z1(Γ, C(S, A))→ Z1(Γ0, A)

induces an isomorphism [π] : H1(Γ, C(S, A)) ' H1(Γ0, A). Let us first construct an explicit
section

τ : Z1(Γ0, A)→ Z1(Γ, C(S, A))

of π with values in the submodule Z1(Γ, Cb(S, A)) of Z1(Γ, C(S, A)).
Given a cocyle c ∈ Z1(Γ0, A) define a chain τ c(γ, s) := γ−1

s c(gγ,s), where γsγ = gγ,sγs′ ,
with gγ,s ∈ Γ0 and s′ ∈ S. An elementary verification shows that τ c ∈ Z1(Γ, C(S, A)) is
well-defined and that πτ = Id. Moreover, the morphism [τ ] : H1(Γ0, A) → H1(Γ, C(S, A))
that τ induces in cohomology is an explicit inverse of the isomorphism [π].

Let us prove that τ c ∈ Z1(Γ, Cb(S, A)). Since Γ0 is finitely generated and the norm |·| is
Γ0-invariant, it follows from Lemma 3.6 applied to (G,M, [·]) = (Γ0, A, |·|) that there exists a
constant Kc ≥ 0 such that

|c(g)| ≤ Kc for all g ∈ Γ0.

It then follows that for all γ ∈ Γ:
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‖τ c(γ, ·)‖ = sup
s∈S
|γs · τ c(γ, s)| = sup

s∈S
γsγ=gγ,sγs′

∣∣γsγ−1
s c(gγ,s)

∣∣ =

= sup
s∈S

γsγ=gγ,sγs′

|c(gγ,s)| ≤ sup
g∈Γ0

|c(g)| ≤ Kc.

We can now easily prove that ι is surjective. Indeed, let [c̃] denote the class of a cocycle c̃ ∈
Z1(Γ, C(S, A)). Set c := π(c̃) ∈ Z1(Γ0, A). By the above discussion, τ(c) ∈ Z1(Γ, Cb(S, A))
and [c̃] = [ι(τ(c))].

In order to prove that ι is injective, let [c̃] ∈ H1(Γ, Cb(S, A)). Note that Lemma 3.6 applied
to (G,M, [·]) = (Γ, Cb(S, A), ‖·‖) yields the existence of a constant Kc̃ ≥ 0 such that

(34) sup
γ∈Γ
‖c̃(γ)‖ = sup

γ∈Γ,s∈S
|γsc̃(γ, s)| ≤ Kc̃.

Suppose that the class of c̃ vanishes in H1(Γ, C(S, A)), that is, there exists C ∈ C(S, A)
such that c̃(γ) = C − γC for all γ ∈ Γ. Equivalently, for all s ∈ S we have

c̃(γ, s) = C(s)− γC(γ−1s).

If C were not bounded, there would exist a sequence {sn} ⊂ S such that |γsnC(sn)| → ∞.
Thus for n� 0 we would have |C(s∗)| < |γsnC(sn)| and by the non-archimedean property of
|·| we would conclude that

|γsn c̃(γ
−1
sn , sn)| = |γsnC(sn)− C(s∗)| = |γsnC(sn)| → ∞.

Now (34) yields a contradiction. �

We are now ready to prove Theorem 3.5, which we already reduced to proving (33).

Proof of Theorem 3.5. By Corollary 2.12 we can consider the following commutative dia-
gram, with exact rows:

0 → Cbhar(Vn(Kp)) → Cb0(E ,Vn(Kp)) → Cb(V,Vn(Kp)) → 0
∩ ∩ ∩

0 → Char(Vn(Kp)) → C0(E ,Vn(Kp)) → C(V,Vn(Kp)) → 0

The respective long exact sequences in cohomology induce the following commutative dia-
gram, with exact rows.

...→ Cb(V,Vn(Kp))
Γ → H1(Γ, Cbhar(Vn(Kp))) → H1(Γ, Cb0(E ,Vn(Kp))) → ...

↓ ↓ ↓
...→ C(V,Vn(Kp))

Γ → H1(Γ, Char(Vn(Kp))) → H1(Γ, C0(E ,Vn(Kp)))

Proposition 3.7, applied to S = V and E+, shows that the first and third vertical arrows
are isomorphisms. The same applies to the two vertical maps arising just before and after in
the long exact sequence, that we do not draw. By the five lemma the middle vertical arrow
is an isomorphism too, which is what we needed to prove. 2

3.2. Higher p-adic Abel-Jacobi maps. The object of this section is introducing certain
integration maps which will lead us to the definition of a map that will play the role of the
p-adic Abel-Jacobi map in our context.

Since the choice of the finite field extension Kp/Qp is fixed throughout, we shall drop it
from the notation and simply write Pn = Pn(Kp), Vn = Vn(Kp), An(Qp) = An(Qp,Kp),
Dn(P1(Qp)) = Dn(P1(Qp),Kp) and D0

n(P1(Qp)) = D0
n(P1(Qp),Kp). Let kp/Qp denote the

maximal unramified sub-extension of Kp/Qp.
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Definition 3.8. Define integration maps∫
ωlog : Div0(Hp)(kp)⊗Pn ⊗D0

n(P1(Qp)) → Kp

(τ2 − τ1)⊗ P ⊗ µ 7→
∫ τ2

τ1
Pωlog

µ∫
ωord : Div0(Hp)(kp)⊗Pn ⊗D0

n(P1(Qp)) → Kp

(τ2 − τ1)⊗ P ⊗ µ 7→
∫ τ2

τ1
Pωord

µ

where for any τ1, τ2 ∈ Hp, P ∈ Pn and µ ∈ D0
n(P1(Qp)):∫ τ2

τ1
Pωlog

µ :=

∫
P1(Qp)

logp

(
t− τ2

t− τ1

)
P (t)dµ(t)

and ∫ τ2

τ1
Pωord

µ :=

∫
P1(Qp)

ordp

(
t− τ2

t− τ1

)
P (t)dµ(t) =

∑
e:red(τ1)→red(τ2)

∫
Ue

P (t)dµ(t),

where the last equality follows from [BDG, Lemma 2.5], as explained e.g. in the proof of
[Se3, Prop. 5.2].

Several comments are in order concerning the definitions above. Recall that Div0(Hp)(kp)
stands for the module of degree zero divisors ofHp(Qur

p ) = Qur
p \Qp that are fixed by the action

of the Galois group Gal(Qur
p /kp). We shall regard Div0(Hp)(kp) ⊗ Pn as a right GL2(Qp)-

module by the rule

((τ2 − τ1)⊗ P ) · γ := (γ−1τ2 − γ−1τ1)⊗ (P · γ) .

Note that the definition of the first integration map depends on the choice of a branch of
a p-adic logarithm logp : K×p → Kp; we do not specify a priori any such choice.

Finally, note that in the definition of the second integration map, the fact that kp/Qp is
unramified implies that the reduction of any τ ∈ kp \ Qp is a vertex (and not an edge) of
the tree T . The sum is taken over the edges of the path joining the two vertices red(τ1) and
red(τ2).

Lemma 3.9. The map

Div0(Hp)(kp)⊗Pn → An(Qp)/Pn

(τ2 − τ1)⊗ P 7→ logp

(
t− τ2

t− τ1

)
P (t)

is GL2(Qp)-equivariant.

Proof. Write θτ2−τ1(t) := t−τ2
t−τ1

. A direct computation shows that (t−τ)·γ = det (γ)−1/2 (a− cτ)·

(t − γ̄τ), for all γ =

(
a b
c d

)
∈ GL2(Qp). Here we write γ̄ := det(γ)γ−1. It follows that

θτ2−τ1(t) · γ = a−cτ2
a−cτ1

· θγ̄τ2−γ̄τ1(t) and hence

[logp θτ2−τ1(t) · P (t)] · γ = logp(
a− cτ2

a− cτ1
) · (Pγ)(t) + logp θγ̄τ2−γ̄τ1(t) · (Pγ)(t).

The claim follows, as γ−1τ = γ̄τ for every γ ∈ GL2(Qp) and logp(
a−cτ2
a−cτ1

)(Pγ)(t) ∈ Pn. �

From now on, thanks to Theorem 3.5, we shall make the identification

(35) H(Kp) := H1(Γ,D0
n(P1(Qp))

b) = H1(Γ, Char(Vn)).

The natural inclusion D0
n(P1(Qp))

b ⊆ D0
n(P1(Qp)) induces a map

H1(Γ,D0
n(P1(Qp))

b) ↪→ H1(Γ,D0
n(P1(Qp)))
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that is a monomorphism thanks to Theorem 3.5. Together with Lemma 3.9 and the cap
product, the above pairings induce maps

(36) Ψlog,Ψord : H1(Γ,Div0(Hp)(kp)⊗Pn) −→ H(Kp)
∨.

Lemma 3.10. H1(Γ,Vn) = 0.

Proof. The exact sequence (11) and the identifications (21) provided by Shapiro’s lemma
induce the long exact sequence

(37) 0→ H0(Γ,Vn)→ H0(Γ0(N+),Vn)2 → H0(Γ0(pN+),Vn)
δ→

δ→ H1(Γ,Vn)
ε→ H1(Γ0(N+),Vn)2 ∂∗→ H1(Γ0(pN+),Vn) →

Notice first that ε is a monomorphism. Indeed, if n = 0, Vn = Kp is trivial as Γ-module.
Thus H0(Γ,Vn) = H0(Γ0(N+),Vn) = H0(Γ0(pN+),Vn) = Kp. The exactness of (37)
implies our claim. If n > 0, H0(Γ0(pN+),Vn) = 0 by [Hi, pag. 165 Lemma 2] and we again
deduce that ker(ε) = 0.

It thus remains left to show that Ker(∂∗) = 0. Let us first show that Ker(∂∗)c = 0. The map
∂∗ can be composed with the degeneracy map ∂∗ : H1(Γ0(pN+),Vn) → H1(Γ0(N+),Vn)2

given by ∂∗ = (cor
Γ0(N+)
Γ0(pN+)

, cor
Γ̂0(N+)
Γ0(pN+)

). The reader may wish to recall the natural identifica-

tions already made in (22).
A computation now shows that the endomorphism ∂∗ ◦ ∂∗ of H1(Γ0(N+),Vn)2 is(

p+ 1 p−mTp
p−mTp p+ 1

)
.

Fix an embedding of Kp into the field C of complex numbers. By Deligne’s bound, the com-
plex absolute value of the eigenvalues of the Hecke operator Tp acting on H1(Γ0(N+),Vn(C))c

are bounded above by 2
√
pk−1 = 2pm

√
p. It thus follows that ∂∗ · ∂∗ restricts to a linear au-

tomorphism of the cuspidal part of H1(Γ0(N+),Vn(C)), and thus (∂∗)c is injective.
In order to conclude, let us now show that Ker(∂∗)Eis = 0 when N− = 1. Let CΓ0(N+) =

{s1, ..., st} be a set of representatives for the cusps of Γ0(N+). One then can check that
CΓ̂0(N+) = {ŝi := ωpsi} and CΓ0(pN+) = {si, ŝi} are systems of representatives for the cusps

of Γ̂0(N+) and Γ0(pN+), respectively.
It follows from (15) and the discussion around it that for our purposes it suffices to show

that for each i = 1, ..., t the natural map

H1(Γ0(N+)si ,Vn(C))
∂∗−→ H1(Γ0(pN+)si ,Vn(C))

induced by ∂∗ by restriction is a monomorphism (and analogously for Γ̂0(N+) and ŝi). But

this is clear because ∂∗ is the restriction map res
Γ0(N+)si
Γ0(pN+)si

, which is injective by a similar reason

as before: the composition with the corresponding corestriction map is multiplication by the
index [Γ0(N+)si : Γ0(pN+)si ], which is finite as it divides [Γ0(N+) : Γ0(pN+)] = p+ 1. �

Consider the exact sequence of Γ-modules

(38) 0→ Div0(Hp)(kp)→ Div(Hp)(kp)→ Z→ 0.

Taking the tensor product with Pn and forming the long exact sequence in homology yields
a connecting map

(39) H2(Γ,Pn)
∂2→ H1(Γ,Div0(Hp)(kp)⊗Pn).

Recall from 2.4 and 2.5 that the cuspidal part H(Kp)
c of H(Kp) is naturally identified with

the p-new space of cuspidal modular forms of level pN+ on the quaternion algebra B. Let
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prc : H(Kp)
∨−→(H(Kp)

c)∨ denote the natural projection. We shall use the same symbol prc
for the map prc ⊕ prc.

Theorem 3.11. For every n ≥ 0 the morphism

prc ◦Ψord ◦ ∂2 : H2(Γ,Pn)→ (H(Kp)
c)∨

is surjective and induces an isomorphism

(Ψord ◦ ∂2)c : H2(Γ,Pn)c
'→ (H(Kp)

c)∨.

Proof. Let us rewrite the homomorphism Ψord as a composition of several natural maps. First,
consider the following commutative diagram with exact rows:

(40)

0 → Div0(Hp)(kp)⊗Pn → Div(Hp)(kp)⊗Pn → Pn → 0

red⊗ 1 ↓ red⊗ 1 ↓ ‖

0 → Div0(V)⊗Pn → Div(V)⊗Pn → Pn → 0.

The long exact sequence in homology yields a commutative diagram

(41)

H2(Γ,Pn)
∂2→ H1(Γ,Div0(Hp)(kp)⊗Pn)
∂V
↘ ↓ Ψ1

H1(Γ,Div0(V)⊗Pn).

Second, let Div(E) be the quotient of Div(E) obtained by imposing the relation e + e = 0
for all e ∈ E . Note that the morphisms

path : Div0(V) → Div(E)
v1 − v2 7→

∑
e:v1→v2

e

∂ : Div(E) → Div0(V)
e 7→ s(e)− t(e)

are mutually inverse and identify the two Γ-modules. In particular we obtain from path the
commutative diagram

(42)

H2(Γ,Pn)
∂V→ H1(Γ,Div0(V)⊗Pn)
∂E
↘ ↓ Ψ2

H1(Γ,Div(E)⊗Pn).

where the morphism ∂E is obtained from the second row of (40) and the identification
Div0(V) = Div(E).

Third, consider the exact sequence obtained from (11) with A = Vn:

(43) 0→ Vn → C(V,Vn)
∂∗→ C0(E ,Vn)→ 0.

The dual exact sequence of (43) is canonically identified with the exact sequence obtained
from the second row of (40) and the identification Div0(V) = Div(E):

(44) 0→ Div(E)⊗Pn
∂⊗Id−→ Div(V)⊗Pn → Pn → 0.

More precisely the duality between (43) and (44) is induced by the evaluation pairings:

〈−,−〉V : Div(V)⊗Pn ⊗ C(V,Vn) → Kp

v ⊗ P ⊗ c 7→ c(v, P )

〈−,−〉E : Div(E)⊗Pn ⊗ C0(E ,Vn) → Kp

e⊗ P ⊗ c 7→ c(e, P ).
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By cap product, these pairings yield the following commutative diagram:

(45)
H2(Γ,Pn)

∂E→ H1(Γ,Div(E)⊗Pn)
↓ ↓ Ψ3

H2(Γ,Vn)∨
δ∨→ H1(Γ, C0(E ,Vn))∨.

The Universal Coefficients theorem guarantees that the above vertical arrows are isomor-
phisms. With these notations the morphism Ψord is obtained as follows. Let Ψ4 be the dual
of the morphism

H(Kp) = H1(Γ, Char(Vn))→ H1(Γ, C0(E ,Vn)).

Then we have

Ψord = Ψ4 ◦Ψ3 ◦Ψ2 ◦Ψ1.

Hence the morphism prc ◦Ψord is obtained by further composition with the morphism prc
dual to the inclusion ic : H(Kp)

c ⊂ H(Kp):

prc ◦Ψord ◦ ∂2 = prc ◦Ψ4 ◦Ψ3 ◦Ψ2 ◦Ψ1.

From the commutativity of diagrams (41), (42) and (45 ), we obtain the commutative
diagram

H2(Γ,Pn)
∂2→ H1(Γ,Div0(Hp)⊗Pn)

↓ ↓ Ψ3 ◦Ψ2 ◦Ψ1

H2(Γ,Vn)∨
δ∨→ H1(Γ, C0(E ,Vn))∨

prc◦Ψ4→ (H(Kp)
c)∨.

As already mentioned, the left vertical arrow is an isomorphism. To prove the second
statement of the theorem, it remains to prove that prc ◦Ψ4 ◦ δ∨ restricts to an isomorphism
on the cuspidal parts; the first statement about surjectivity will then follow from Remark 2.3.

Equivalently, since the composition prc ◦Ψ4 is dual to the morphism

H(Kp)
c ⊂ H(Kp)→ H1(Γ, C0(E ,Vn)),

we need to show that the morphism

H(Kp) = H1(Γ, Char(Vn))→ H1(Γ, C0(E ,Vn))→ H2(Γ,Vn) = H2(Γ,Pn)∨

induces an isomorphism when restricted to the cuspidal parts. This is the content of Lemmas
2.8 and 2.9. �

Remark 3.12. When n > 0 and N− > 1 we have prc = Id. Furthermore H2(Γ,Pn)c =
H2(Γ,Pn), H(Kp)

c = H(Kp) and the morphism Φord is an isomorphism.

Let T := Tp−new
Γ0(pN+)

denote the maximal quotient of the Hecke algebra H(Γ0(pN+)) ⊗ Q
acting on Sk(Γ0(pN+))p−new and put Tp = T⊗Q Qp, TKp = T⊗Q Kp.

Corollary 3.13. There exists a unique endomorphism L ∈ EndTKp ((H(Kp)
c)∨) such that

(46) prc ◦Ψlog ◦ ∂2 = L ◦ prc ◦Ψord ◦ ∂2 : H2(Γ,Pn)→ (H(Kp)
c)∨.

Proof. Let i : (H(Kp)
c)∨
∼→H2(Γ,Pn)c be the inverse of the isomorphism (Ψord ◦ ∂2)c of The-

orem 3.11 and define L = (Ψlog ◦ ∂2)c ◦ i. Since i ◦ Ψord ◦ ∂2 is the natural projection
H2(Γ,Pn) → H2(Γ,Pn)c, it is clear that (46) holds true with this choice of L. As for

the uniqueness, let L̃ ∈ EndTQp ((H(Kp)
c)∨) be any endomorphism satisfying (46) and let

L̃ = L̃Eis⊕L̃c denote its Eisenstein/cuspidal decomposition (cf. Remark 2.3). Since the Eisen-

stein subspace of (H(Kp)
c)∨ is trivial, it follows that L̃Eis = 0. Hence L̃ = L̃c and, by Theorem

3.11, L̃c = L is necessarily the endomorphism defined above. �
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Definition 3.14. The L-invariant of the space Sk(Γ0(pN+))p−new of p-new modular forms
is the endomorphism

L ∈ EndTKp ((H(Kp)
c)∨)

appearing in the above corollary.

By Remark 2.4, (H(Kp)
c)∨ is a free rank one TKp-module. Hence L ∈ TKp . But we can

even claim that L ∈ Tp, because our construction of the L-invariant is valid for any finite field
extension Kp/Qp and it is clear from Corollary 3.13 that it is invariant under base change.

4. Monodromy modules

4.1. Fontaine-Mazur theory. As in 3.2, let kp/Qp denote the maximal unramified sub-
extension of Kp/Qp. Write σ ∈ Aut(kp) for the absolute Frobenius of kp. Throughout this
section, k ≥ 2 is a fixed positive even integer.

Let Tp be a finite dimensional commutative Qp -algebra and write Tkp = Tp ⊗ kp and
TKp = Tp ⊗Kp. Set σTkp := Id⊗σ on Tkp .

Definition 4.1. A two-dimensional monodromy Tp-module over Kp is a 4-tuple (D,ϕ,N, F ·)
where D is a Tkp-module, ϕ : D → D is σ-linear endomorphism (i.e.ϕ(ax) = σ(a)x for all
a ∈ kp, x ∈ D) and N : D→D is a Tkp-linear endomorphism such that

(a) F · is a filtration on the Kp-vector space D ⊗kp Kp of the form

D ⊗Kp = F 0 ⊃ F 1 = ... = F k−1 ⊃ F k = 0

where F k−1 is a free TKp-module of rank one;

(b) D ⊗Kp = F k−1 ⊕NKp(D ⊗Kp) as a TKp-module, with NKp : F k−1 → NKp(D ⊗Kp)
a TKp-module isomorphism.

(c) N ◦ ϕ = pϕ ◦N and, for any T ∈ Tkp , ϕ ◦ T = σTkp (T ) ◦ ϕ.

The integer kD := k appearing in (a) is called the weight of the monodromy Tp-module D.
See [CI], [IS, §2] and [Ma, §9, p. 12] for related but slightly different notions, and for proofs
of some of the claims below.

Let D = (D,ϕ,N, F ·) be a two-dimensional monodromy Tp -module over Kp, that by an
abuse of notation sometimes will be denoted simply as D. When we forget the Tp-structure,
it is customary to call D a filtered Frobenius monodromy module, or simply a (ϕ,N)-module
over Kp. Write MFKp(ϕ,N) for the category of such objects, in which a morphism is a
homomorphism of kp-modules preserving the filtrations and commuting with ϕ and N . As
an illustrative example, multiplication by a scalar a ∈ kp on D is an endomorphism of vector
spaces over kp that is a morphism in MFKp(ϕ,N) if and only if a ∈ Qp. The category
MFKp(ϕ,N) is an additive tensor category admitting kernels and cokernels.

Remark 4.2. If K+
p ⊇ Kp is a complete field extension of Qp containing Kp, then the maximal

unramified sub-extension k+
p of K+

p /Qp contains kp, and there is a natural obvious notion of

base change of monodromy modules: DK+
p

:= (D⊗kp k+
p , ϕkp ⊗ σk+

p /kp
, Nkp ⊗ k+

p , F
·⊗K+

p ) is

a two-dimensional monodromy Tp-module over K+
p .

In our applications in 4.2, we shall be working with monodromy modules over the quadratic
unramified extension Qp2 of Qp that in fact can be obtained as the base change of a monodromy
module over Qp. Consider the slope decomposition

D =
⊕

α∈QD
α

where for α = r/s, r, s ∈ Z, s > 0, (r, s) = 1, Dα ⊂ D is the largest kp-vector subspace of D
that has an Okp-stable lattice D0 with ϕs(D0) = prD0.
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Since N 6= 0 by (b) and N(Dα+1) ⊂ Dα by (c), it is an exercise in commutative algebra to
show that there exists λ ∈ Q such that Dλ, Dλ+1 6= 0 are free Tkp-modules of rank 1 and the

map N : Dλ+1 → Dλ is non-zero. It then follows that D is free of rank two over Tkp and we
deduce that such a λ is unique; we call it the slope of D. It is easy to check that

D = Dλ ⊕Dλ+1, Dλ = kerN = N(D),(47)

with Di ' Tkp for i = λ, λ+ 1.(48)

Definition 4.3. The L-invariant LD of D = (D,ϕ,N, F ·) is defined to be the unique element
LD ∈ TKp such that

x− LDNKp(x) ∈ F k−1 for every x ∈ Dλ+1 ⊗Kp.

The existence and uniqueness of LD ∈ TKp are again easy to check.

Lemma 4.4. Tp ' EndMFKp (ϕ,N)(D).

Proof. It follows from (a)-(c) that there is a natural map Tp
η→EndMFadKp (ϕ,N)(D). The alge-

bra TKp preserves F k−1 and it follows from (a) that the above map induces an isomorphism

EndKp(F
k−1) = TKp . In particular η is injective. As for surjectivity, let f ∈ EndMFKp (ϕ,N)(D).

Since f commutes with ϕ, it preserves the slope decomposition (47). For i ∈ {λ, λ + 1}, let
tif ∈ Tkp be such that f|Di = tif ∈ Endkp(D

i).

SinceN : Dλ+1→Dλ is an isomorphism of Tkp-modules by (47), we may writeDλ+1 = Tkp ·e,
Dλ = TkpN(e) for some e ∈ Dλ+1. Since tλ+1

f N(e) = Ntλ+1
f (e) = Nf(e) = fN(e) = tλfN(e)

we deduce that t := tλ+1
f = tλf .

Finally, since t must commute with the σ-linear automorphism ϕ, it follows that t ∈ Tp. �

Along with LD, one may also attach to D the following invariant. The notation is as in the
previous proof.

Definition 4.5. Let U = UD ∈ Tkp be the element such that ϕN(e) = UN(e).

Notice that U exists and is well-defined, because Dλ is preserved by ϕ and Dλ = Tkp ·N(e).

The reader may check that U does not depend on the choice of the generator e of Dλ+1.
As a final remark in this short review of monodromy modules, we notice that the invariants

UD, LD and kD of a two-dimensional monodromy Tp-module D over Kp completely determine
it up to isomorphism. More precisely, we can prove the following statement:

Proposition 4.6. For any integer k ∈ Z and any pair of elements U ∈ Tkp and L ∈ TKp
there exists a two-dimensional monodromy Tp-module DU,L,k over Kp such that UDU,L = U ,
LDU,L = L and kD = k. Moreover, for any two-dimensional monodromy Tp-module D,

(49) D ' DU,L if and only if UD = U, LD = L and kD = k.

This will be useful for our purposes in 4.2. As we were not able to find an explicit proof of
this fact in the literature, let us sketch the details.

Proof. Fix k, U,L as in the statement and define

DU,L,k := Tkp ⊕ Tkp
endowed with:

• a filtration DU,L,k⊗Kp = F 0 ) F 1 = ... = F k−1 ) F k = 0, where for all 1 ≤ j ≤ k−1,

F j =
{

(−Lx, x) : x ∈ TKp
}

;



L-INVARIANTS AND DARMON CYCLES ATTACHED TO MODULAR FORMS 23

• a Frobenius operator ϕU,L,k given by the rule

ϕU,L,k(x, y) := (σTkp (x)U, p σTkp (y)U);

• a monodromy operator NU,L,k defined by the rule

NU,L,k(x, y) = (y, 0).

One immediately checks that DU,L,k is a two-dimensional monodromy Tp-module over Kp,
satisfying conditions (a), (b), (c) as required. It also follows from the definitions that kDU,L,k =
k, LDU,L,k = L and UDU,L,k = U .

In order to prove the converse, let now D = (D,ϕ,N, F ·) be any two-dimensional mon-
odromy Tp-module over Kp, say of slope λ, such that UD = U , LD = L and kD = k. As in

the proof of Lemma 4.4, we can write D = Dλ ⊕ Dλ+1 = TkpN(e) ⊕ Tkpe and this allows
us to fix the isomorphism of Tkp-modules µ : D ' DU,L = Tkp ⊕ Tkp given by µ(e) = (0, 1),
µ(N(e)) = (1, 0).

Let us show that µ is also an isomorphism of monodromy Tp-modules over Kp. It is obvious
from the construction that both have the same filtration and that µ intertwines the action of
N . It also follows immediately from Definition 4.3 and the equality LD = L that µ preserves
the filtration. Finally, µ commutes with ϕ thanks to the defining property of U , condition (c)
of Definition 4.1 and the fact that N|Dλ+1 : Dλ+1→Dλ is an isomorphism. �

Fix an algebraic closure Q̄ of Q and choose an algebraic closure Q̄p of Qp containing
Kp. Choose also a prime ideal ℘̄ of Q̄ over p, that we may use to fix an embedding of
GQp := Gal(Q̄p/Qp) into GQ := Gal (Q̄/Q).

For a p-adic representation V of GKp over Qp one defines Dst(V ) := (V ⊗ Bst)
GKp , where

Bst is Fontaine’s ring defined in [Fo] and from which Dst(V ) inherits the structure of a filtered
(ϕ,N)-module over Kp. A p-adic representation V of GKp is called semistable if the canonical
monomorphism Dst(V ) ⊗kp Bst→V ⊗Qp Bst is an isomorphism. A filtered (ϕ,N)-module D
over Kp is called admissible if D ' Dst(V ) for some semistable representation V . It can be
shown that the modules arising from Proposition 4.6 are admissible if and only if the slope is
(k − 2) /2.

The full subcategory MFadKp(ϕ,N) of MFKp(ϕ,N) of admissible two-dimensional mon-
odromy Tp-modules over Kp is an abelian tensor category such that exact sequences remain
exact in MFKp(ϕ,N). The functor Dst establishes an equivalence of categories between that

of semistable continuous representations of GKp over Qp and MFadKp(ϕ,N).

Let T = Tp−new
Γ0(pN+)

⊗ Q and put Tp := T ⊗ Qp. As recalled in the introduction, let Vp :=

Hp(Mn)p−new denote the p-new quotient of the p-adic étale realization of the motive Mn

attached to the space of p-new cusp forms of weight k with respect to Γ0(pN+). Let us regard
Vp as a representation of Gal (Q̄p/Qp), by restricting the action of GQ to the decomposition
subgroup of the fixed prime ℘̄ above. As is well-known to the experts, Vp is semistable (cf. [C]

and [CI]). Crucial for this is the fact that the Shimura curve XN−
0 (pN+) has semistable

reduction at p.
The admissible filtered (ϕ,N)-module

(50) DFM := Dst(Vp)

attached by Fontaine and Mazur to Vp is in a natural way a two-dimensional monodromy
Tp-module over Qp in the sense of Definition 4.1, for which UDFM = Up is the usual Hecke
operator at p and the slope is m; cf. again [C] and [CI]. Let

LFM := LDFM ∈ Tp
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denote the L-invariant of DFM ; note that, as follows from the definitions, LDFM
Kp

= LFM ∈ Tp
is stable under base change to Kp.

4.2. A monodromy module arising from p-adic integration. The aim of this section is
to explain how the theory developed above allows us to construct a monodromy module at-
tached to the space of p-new modular forms Sk(Γ0(pN+))p−new and the invariant L introduced
in Definition 3.14.

As before, let T = Tp−new
Γ0(pN+)

⊗Q and put Tp := T⊗Qp. For any field extension L/Q, set

(51) H(L) := H1(Γ, Char(Vn(L)));

recalling the identification Vn(L) = Vn(L) of (13) whenever L splits B, this notation is in
consonance with (35).

Fix a choice of a sign w∞ ∈ {±1}. Since H(Qp)
c,∨,w∞ is a free module of rank 1 over Tp by

Remark 2.4, we can fix a generator and identify H(Qp)
c,∨,w∞ ' Tp. Exactly as in the proof

of Proposition 4.6, we can attach now to Up,L ∈ Tp a monodromy module

(52) D := DUp,L = H(Qp)
c,∨,w∞ ⊕H(Qp)

c,∨,w∞

endowed with the filtration, Frobenius and monodromy operators described in loc. cit. In
parallel to the preparation of this note, the second author has proved the equality of the
L-invariants of the two monodromy modules just introduced in (50) and (52):

Theorem 4.7. [Se2] LD = LDFM .

In Theorem 4.7, note that the definition of both monodromy modules depends on the choice
of a branch of the p-adic logarithm. We assume that the same choice has been made for both
D and DFM .

In view of Proposition 4.6, Theorem 4.7 is equivalent to saying that there is an isomorphism
D ' DFM of two-dimensional monodromy Tp-modules over Qp (as UD = UDFM ). Let
DKp = (H(kp)

c,∨,w∞ ⊕H(kp)
c,∨,w∞ , ϕ ⊗ σkp/Qp , N ⊗ kp, F · ⊗Kp) denote the base change to

Kp of D in the sense of Remark 4.2. Let

(53) Ψ := −Ψlog ⊕Ψord : H1(Γ,Div0(Hp)(kp)⊗Pn(Kp)) −→ H(Kp)
∨ ⊕H(Kp)

∨

where Ψlog and Ψord are the integration maps introduced in (36), and set

(54) Φ := −Φlog ⊕ Φord : H1(Γ,Div0(Hp)(kp)⊗Pn(Kp))→ D⊗Kp

for the natural composition of the above map(s) onto H(Kp)
c,∨,w∞ .

By definition of Φ, the free TKp-submodule of rank one

F 1 = ... = Fm = ... = F k−1 :=
{

(−Lx, x) : x ∈ H(Kp)
c,∨,w∞}

of D⊗Kp is Im(Φ ◦ ∂2).
As it will be useful for our purposes later in the construction of Darmon cycles, let us recall

at this point that, thanks to Lemma 3.10, there is a natural isomorphism

(55) H1(Γ,Div(Hp)⊗Pn(Kp)) '
H1(Γ,Div0(Hp)⊗Pn(Kp))

Im ∂2
.

Definition 4.8. The p-adic Abel-Jacobi maps are the morphisms

ΨAJ : H1(Γ,Div(Hp)⊗Pn(Kp)) −→
H(Kp)

∨ ⊕H(Kp)
∨

Im Ψ ◦ ∂2

and

(56) ΦAJ = prc ◦ΨAJ : H1(Γ,Div(Hp)⊗Pn(Kp)) −→ D⊗Kp/F
m.

induced by Ψ and Φ, respectively, together with the isomorphism (55).
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4.3. An Eichler-Shimura construction. Let T be a finite dimensional semisimple commu-
tative algebra over Q. For any algebraic extension L/Q, set XT(L) := HomQ- alg(T, L). By an
L -valued system of eigenvalues we shall mean an element λ ∈ XT(L).

Let H be a Q-vector space endowed with a linear action of T. Given λ ∈ XT(L), a
λ−eigenvector in H is a non-zero element f ∈ H ⊗Q L such that T · f = λ(T )f for all T ∈ T;
write Hλ(L) for the subspace of H ⊗Q L spanned by such elements. When Hλ(L) 6= 0, we say
that λ occurs in H ⊗Q L. If T ⊂ EndQ(H), all λ ∈ XT(L) occur.

The Galois group GQ acts on XT(Q) by composition. Given λ ∈ XT(Q), we write [λ] for
the orbit of λ under this action. Note that ker(λ1) = ker(λ2) if and only if [λ1] = [λ2].

Set Lλ := λ(T) so that λ ∈ XT(Lλ), and L[λ] =
∏
λ′∈[λ] Lλ′ ⊂ Q; L[λ]/Q is a Galois

extension. Set H[λ](L[λ]) := ⊕λ′∈[λ]Hλ′(L[λ]); an easy descent argument shows that there

exists a T-submodule H[λ] ⊂ H over Q such that H[λ](L[λ]) = H[λ] ⊗Q L[λ].
Define I[λ] by the exact sequence

(57) 0−→I[λ]−→T λ−→Lλ−→0.

Given λ ∈ XT(Q̄), let ι : H[λ] ⊂ H be the natural inclusion and let (H∨)λ = H∨/I[λ] ·H∨
denote the maximal quotient of H∨ on which T acts through λ. Then there is a canonical
commutative diagram of T-modules with exact rows

(58)

0 → I[λ](H
∨) → H∨ → (H∨)λ → 0

‖ ↓ o
H∨

ι∨→ H∨[λ] → 0.

Let now T = Tp−new
Γ0(pN+)

⊗Q and let Hc,w∞ = H1(Γ, Char(Vn(Q)))c,w∞ be the module intro-

duced in (51); note that End(Hc,w∞) = T by Remark 2.4. By Remark 2.5, Lemma 2.8, the
Jacquet-Langlands correspondence and the q-expansion principle, dimLλ(Hc,w∞

λ (Lλ)) = 1 for
all λ ∈ XT(Q̄).

Given a non-zero eigenvector f , write λf for the corresponding system of eigenvalues and
put Lf := Lλf , I[f ] = I[λf ] and Hc,w∞

[f ] = Hc,w∞

[λf ]
.

Since the category of admissible filtered Frobenius modules over Qp is an abelian category
and the elements of I[f ] act on D, we can introduce the module D[f ] ∈ MFQp(ϕ,N) as the
one sitting in the exact sequence

0→ I[f ]D→ D
λf→ D[f ] → 0.

Tensoring (57) with Qp over Q yields an exact sequence

0→ I[λ],p → Tp
λp→ Lλ,p → 0.

Since Tp ⊂ EndMFadQp (ϕ,N)(D), we have D[f ] = D/I[λ],pD and it follows that D[f ] is canoni-

cally a two-dimensional monodromy Lf,p-module over Kp. Its L-invariant is

(59) L[f ] := λf,p(L) ∈ Lf,p

and its U -invariant is λf,p(Up) = ap(f) = ±pm. In the notation of Proposition 4.6,

(60) D[f ] = Dap(f),L[f ]
.

Explicitly, D[f ] can be described as the filtered Frobenius monodromy module over Qp

whose underlying vector space is

(61) D[f ] = (Hc,w∞,∨(Qp))
λf ⊕ (Hc,w∞,∨(Qp))

λf ' Hc,w∞,∨
[f ] (Qp)⊕Hc,w∞,∨

[f ] (Qp),
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where the latter isomorphism arises from (58). The filtration F ·[f ] is given as in Definition 4.1,

where

(62) Fm[f ] =
{

(−L[f ]x, x) : x ∈ Hc,w∞,∨
[f ] (Qp)

}
.

Let D[f ],Kp denote the base change to Kp of D[f ] in the sense of Remark 4.2. As in (54)
and (56), we can introduce the map

(63) Φ[f ] : H1(Γ,Div0(Hp)⊗Pn)
Φ−→ D⊗Kp

λf
� D[f ] ⊗Kp

and the Abel-Jacobi map

(64) ΦAJ
[f ] : H1(Γ,Div(Hp)⊗Pn)

ΦAJ

→ D⊗Kp/F
m

λf
� D[f ],Kp/F

m
[f ].

Of course the monodromy module D[f ] canonically decomposes according to Lf,p =
⊕

p|p Lf,p,

where Lf,p denotes the completion of Lf at the prime p above p:

D[f ] =
⊕

p|p D[f ],p.

In the notation of Proposition 4.6, D[f ],p = Dap(f),L[f ],p
, where L[f ],p denotes the p-component

of L[f ]. We can further consider Φ[f ],p as well as ΦAJ
[f ],p.

5. Darmon cycles

5.1. Construction of Darmon homology classes. The aim of this section is to introduce
what we call Darmon cycles, that should be regarded as analogues of the classical Heegner
cycles attached to imaginary quadratic fields and weight k ≥ 4 modular forms by Nekovář
(c.f. [Ne], [IS]) and of Stark-Heegner points (also called Darmon points in [LRV2]) attached
to real quadratic fields and weight 2 modular forms (cf. [Dar], [Gr], [LRV], [LRV2]).

As in the previous sections, fix an even integer k ≥ 2 and let n = k− 2, m = n/2. Let p be
a prime and let N be a positive integer such that p | N , p2 - N . Let K/Q be a real quadratic
field in which p remains inert. Assume for simplicity that the discriminant DK of K is prime
to N . This induces a factorization of N as N = pN+N−, where (N+, N−) = 1 and all prime
factors of N+ (respectively N−) split (resp. remain inert) in K.

Crucial for our construction is the following Heegner hypothesis (see also our general dis-
cussion in the introduction), that we assume for the rest of this section.

Assumption. N− is the square-free product of an even number of primes.

In consonance with the notations introduced in §2, let Kp denote the completion of K at p,
a quadratic unramified extension of Qp. Since this field shall be fixed throughout this section
and the maximal unramified subextension of Kp is kp = Kp itself, we shall simply write Hp,
Div(Hp) and Pn instead of Hp(Kp), Div(Hp)(Kp) and Pn(Kp), respectively.

Let B be the indefinite quaternion algebra of discriminant N− over Q, R be a Z[1/p]-Eichler
order of level N+ in B and Γ be the subgroup of R× of elements of reduced norm 1.

As in §1, fix an embedding B× ↪→ GL2(Qp), that allows us to regard Γ as a subgroup of
SL2(Qp). Choose also embeddings

σ∞ : K → R and σp : K → Kp

that we use to regard K as a subfield both of R and of Kp. In particular we have D
−m

2
K ∈ Kp.

Let us denote by Emb(K,B) the set of Q-algebra embeddings of K into B. Let O ⊂ K be
a Z[1/p]-order of conductor c ≥ 1, (c,N) = 1, and let

Emb(O,R) := {Ψ : O ↪→ R such that Ψ(K) ∩R = Ψ(O)}
be the set of Z[1/p]-optimal embeddings of O into R. Attached to an embedding Ψ ∈
Emb(O,R) there is the following data:
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• the two fixed points τΨ, τΨ ∈ Hp ∩K for the action of Ψ(K×p ) on Hp ∩K, labelled in

such a way that the action of K× on the tangent space at τΨ is given by the character
z 7→ z/z;
• the unique vertex vΨ ∈ V which is fixed for the action of Ψ(K×p ) on V; we have
vΨ = red(τΨ) = red(τΨ);
• the unique polynomial up to sign PΨ in P2 that is fixed by the action of Ψ

(
K×p
)

on
P2 and satisfies 〈PΨ, PΨ〉P2

= −DK/4. We single out one by

PΨ := Tr(Ψ(
√
DK/2) ·

(
X −X2

1 −X

)
) ∈ P2;

• the stabilizer ΓΨ of Ψ in Γ, that is,

ΓΨ = Ψ(K×) ∩ Γ = Ψ(O×1 )

where O×1 := {γ ∈ O×,n(γ) = 1};
• the generator γΨ := Ψ(u) of ΓΨ/{±1} ' Z, where u ∈ O×1 is the unique generator of
O×1 /{±1} such that σ (u) > 1.

For each τ ∈ Hp, we say that τ has positive orientation at p if red(τ) ∈ V+. We write
H+
p to denote the set of positive oriented elements in Hp. We say that Ψ ∈ Emb(O,R) has

positive orientation whenever vΨ ∈ V+, i.e. τΨ, τΨ ∈ H+
p ∩K. Put

Emb(O,R) = Emb+(O,R) t Emb−(O,R)

with the obvious meaning. The group Γ acts on Emb(O,R) by conjugation, preserving ori-
entations.

The ΓΨ-module Kp · (τΨ ⊗ D−m/2K )PmΨ ⊂ Div(Hp) ⊗ Pn is endowed with the trivial ΓΨ-
action (see the computation (65) below). Hence, the choice of the generator γΨ for the cyclic

group ΓΨ allow us to fix an identification Kp = H1(ΓΨ,Kp · τΨ ⊗D−m/2K PmΨ ). The inclusion

Kp · τΨ ⊗D−m/2K PmΨ ⊂ Div(Hp)⊗Pn then induces the cycle class map

clΨ : Kp = H1(ΓΨ,Kp · τΨ ⊗D−m/2K PmΨ )→ H1(Γ,Div(Hp)⊗Pn).

The group H1(Γ,Div(Hp)⊗Pn) should be regarded as a substitute of the local Chow group
in our real quadratic setting. See 1 for more on this analogy. With this in mind we make the
following definition.

Definition 5.1. The Darmon cycle attached to an embedding Ψ ∈ Emb(O,R) is

yΨ := clΨ(1) ∈ H1(Γ,Div(Hp)⊗Pn).

Note that the Darmon cycle yΨ is represented by γΨ ⊗ τΨ ⊗D−m/2K PmΨ .

Lemma 5.2. The homology class yΨ ∈ H1(Γ,Div(Hp) ⊗ Pn) does not depend on the choice
of Ψ in its conjugacy class of optimal embeddings for the action of Γ.

Proof. Let γ ∈ Γ. The assignation Ψ 7→ (τΨ, PΨ, γΨ) behaves under conjugation by γ as

(65) (τγΨγ−1 , PγΨγ−1 , γγΨγ−1) = (γτΨ, γPΨ := PΨγ
−1, γγΨγ

−1).

from what it follows that

clΨ(1) = τΨ ⊗D−m/2K PmΨ ⊗ [γΨ] = γ · τΨ ⊗ γ ·D−m/2K PmΨ ⊗ [γγΨγ
−1] = clγΨγ−1(1).

�

As a consequence of Lemma 5.2, there is a well-defined morphism

y : Γ\Emb(O,R)→ H1(Γ,Div(Hp)⊗Pn)
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attaching a Darmon cycle y[Ψ] := yΨ to any conjugacy class [Ψ] of optimal embeddings. Invoke
now the Abel-Jacobi map

H1(Γ,Div(Hp)⊗Pn)
ΦAJ

→ D⊗Kp/F
m

introduced in (56).

Definition 5.3. The Darmon cohomology class attached to [Ψ] ∈ Γ\Emb(O,R) is s[Ψ] :=

ΦAJ(y[Ψ]) ∈ D⊗Kp/F
m.

Remark 5.4. This construction can also be formulated from a different (but equivalent) point
of view, which reinforces the analogy with the classical case of imaginary quadratic fields.
Namely, let HOp = {τ ∈ Hp : τ = τΨ for some Ψ ∈ Emb(O,R)}. Note that there is a

well-defined action of Γ on HOp . With this notation, the above formalism yields a map

(66) d : Γ\HOp
τΨ 7→Ψ−→ Γ\Emb(O,R)

y−→H1(Γ,Div(Hp)⊗Pn)
ΦAJ

−→D⊗Kp/F
m.

Remark 5.5. For every prime ` | pN+N−, let ω` ∈ R0(N+) be an element of reduced norm `
lying in the normalizator of Γ. Conjugation by ω` induces an involution W` on Γ\Emb(O,R)
given by W`(Ψ) = ω`Ψω

−1
` .

Besides, conjugation by ω` also induces an involution W` both on H1(Γ,Div(Hp)⊗Pn) and
on D⊗Kp/F

m, as already mentioned in 2.1. It follows as in the proof of Lemma 5.2 and the
Hecke equivariance of ΦAJ that there are commutative diagrams

d : Γ\Emb(O,R) → H1(Γ,Div(Hp)⊗Pn)
ΦAJ

→ D⊗Kp/F
m

↓W` ↓W` ↓W`

d : Γ\Emb(O,R) → H1(Γ,Div(Hp)⊗Pn)
ΦAJ

→ D⊗Kp/F
m.

Recall that an orientation on the Eichler order R (resp. on the quadratic order O) is the
choice, for each ` | N+N−, of a ring homomorphism R→ k` (resp.O→ k`), where k` = F`2
(resp. k` = F`) for ` | N− (resp. ` | N+).

Fix orientations both on O and on R. An optimal embedding Ψ : O→R is oriented if, for
all ` | N+N−, Ψ ⊗ k` commutes with the chosen local orientations on O ⊗ k` and R ⊗ k`,
respectively. Write

−−→
Emb+(O,R) ⊂ Emb+(O,R) for the set of oriented positive optimal

embeddings. The action of Γ on Emb+(O,R) leaves
−−→
Emb+(O,R) stable and thus induces a

well-defined action on it.
By Eichler’s theory of optimal embeddings,

−−→
Emb+(O,R) is not empty and the quotient

Γ\
−−→
Emb+(O,R) is endowed with a free transitive action of the narrow class group Pic(O) of

the Z[1
p ]-order O (cf. e.g. [Vi, Ch. III, §5C]). Denote this action by

([a], [Ψ]) 7→ [a ?Ψ], for [a] ∈ Pic(O),Ψ ∈
−−→
Emb+(O,R).

Artin’s reciprocity map of global class field theory provides an isomorphism

rec : Pic(O)
'→ Gal (HO/K),

where HO stands for the narrow ring class field attached toO. In order to state our conjectures
it is convenient to introduce the following linear combinations of Darmon cycles.

Definition 5.6. Let χ : Gal (HO/K) → C× be a character. The Darmon cycle attached to
the character χ is

yχ :=
∑

σ∈Gal (HO/K) χ
−1(σ)y[rec−1(σ)?Ψ] ∈ H1(Γ,Div(Hp)⊗Pn)⊗Kp(χ),
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where [Ψ] is any choice of a class of optimal embeddings in Γ\
−−→
Emb+(O,R) and Kp(χ) is the

field generated by the (algebraic) values of χ over Kp. Write

sχ := ΦAJ(yχ) ∈ D⊗Kp(χ)/Fm ⊗Kp(χ).

5.2. A conjecture on the global rationality of Darmon cycles. Keep the notations and
hypotheses of 5.1. As in §1 and §4.1, let Vp := Hp(Mn)p−new, that we regard this time as
a semistable continuous representation of GKp , by restricting the action of GK ⊂ GQ to the

decomposition subgroup of a prime ℘̄ of Q̄ over p.
In this section we show how Theorem 4.7 allows us to attach to each Darmon cycle yΨ a

class sΨ in the group H1
st(Kp, Vp) of local semistable cohomology classes. Cf. (1), or rather

[Ne2], for the definition of this group.
In [BK], Bloch and Kato introduced an exponential map which, in the case that concerns

us here, induces an isomorphism

(67) exp :
DFM ⊗Kp

Film(DFM ⊗Kp)

'→ H1
st(Kp, Vp),

as follows from [IS, Lemma 2.1].
Keeping the notation of §4, assume Conjecture 4.7 and fix an isomorphism DFM ' D of

two-dimensional monodromy Tp-modules over Qp. The choice of this isomorphism induces an
identification

(68)
D⊗Kp

Film(DFM ⊗Kp)
=

DFM ⊗Kp

Film(D⊗Kp)
.

In view of (67) and (68), we may regard the Darmon cohomology classes introduced above
as cocycles

(69) sΨ ∈ H1
st(Kp, Vp), sχ ∈ H1

st(Kp(χ), Vp),

for any optimal embedding Ψ ∈ Emb(O,R) and any character χ : Gal (HO/K) → C×,
respectively.

The prime p splits completely in the narrow ring class field HO. Choose and fix once and
for all an embedding ιp : HO ↪→ Kp. This choice induces a restriction morphism

resp : H1
st(HO, Vp)−→H1

st(Kp, Vp) '
DFM ⊗Kp

Film(DFM ⊗Kp)
' D⊗Kp

Film(D⊗Kp)

as in (3). The image of the global Selmer group H1
st(HO, Vp) is a Tp-submodule of

D⊗Kp
Film(D⊗Kp) .

By Lemma 4.4 every automorphism of D acts on D/Film D by multiplication by an element

in Tp. It follows that the image of H1
st(HO, Vp) in

D⊗Kp
Film(D⊗Kp) does not depend on the choice

of the isomorphism D ' DFM .

Conjecture 5.7. (i) For any optimal embedding Ψ ∈ Emb(O,R) there is a global coho-
mology class sΨ ∈ H1

st(HO, Vp) such that

sΨ = resp(sΨ)

(ii) For any Ψ ∈
−−→
Emb+(O,R) and any ideal class a ∈ Pic(O),

resp(
σsΨ) = sa?ψ,

where σ = rec(a)−1 ∈ Gal (HO/K).
(iii) For any character χ : Gal (HO/K)→ C×, sχ = resp(sχ) for some sχ ∈ H1

st(Hχ, Vp)
χ,

where Hχ/K is the abelian sub-extension of HO/K cut out by χ, and H1
st(Hχ, Vp)

χ

stands for its χ-isotypical subspace.
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Notice that (iii) is an immediate consequence of (1) and (2) above.
In light of (4), one can go still further and conjecture that for any optimal embedding

Ψ ∈ Emb(O,R) there exists an algebraic cycle Z?
Ψ ∈ CHm+1(Mn ⊗ HO)0 ⊗ Qp such that

clm+1
0 (Z?

Ψ) = sΨ and hence resp(cl
m+1
0 (Z?

Ψ)) = sΨ, satisfying a Galois reciprocity law as in
(ii). We leave to the reader the task of rephrasing the two conjectures below in terms of
algebraic cycles, in the same spirit as above.

Let f ∈ Sk(Γ0(pN+))p−new be a p-new eigenform. By means of the p-adic Abel-Jacobi map
ΦAJ

[f ] introduced in (64), we can specialize the above constructions to the f -eigencomponent

Vp(f) of Vp. Conjecture 5.7 then predicts the existence of global cohomology classes

(70) sΨ,f ∈χ (HO, Vp(f)) and sχf ∈ H
1
st(Hχ, Vp(f))χ,

such that resp(sΨ,f ) = sΨ,f , resp(s
χ
f ) = sχΨ,f and satisfying an explicit reciprocity law as in

Conjecture 5.7 (2). The p-adic representation Vp(f) canonically decomposes according to
Lf,p =

⊕
p|p Lf,p, where Lf,p denotes the completion of Lf at the prime p above p:

Vp(f) =
⊕

p|p Vp(f).

Write sχf,p for the corresponding conjectural cohomology class and write sχf,p for the one ob-

tained from the Darmon cohomology class sχf (that can be directly defined by means of ΦAJ
[f ],p).

In light of the results achieved in [Ko] and [Ne] for classical Heegner points and cycles in the
imaginary quadratic setting, it seems reasonable to formulate the following conjecture.

Conjecture 5.8. Assume sχf,p 6= 0. Then

H1
st(Hχ, Vp(f))χ = Lf,ps

χ
f,p.

Note that Conjecture 5.8 predicts that, although the map resp above may not be injective,
the global cohomology class sχf is determined by sχf whenever sχf 6= 0. In particular, resp would

induce an isomorphism

H1
st(Hχ, Vp(f))χ = Lf,ps

χ
f,p
'→ Lf,ps

χ
f,p.

It is also possible to formulate Gross-Zagier type conjectures for these cycles, although a
proof of them seems to be a long way off, as even their counterparts for classical Heegner
cycles remain completely open.

Conjecture 5.9.

sχf,p 6= 0 ⇐⇒ L′(f/K, χ, k/2) 6= 0

and in particular

sχf,p 6= 0 ⇒ L′(f/K, χ, k/2) 6= 0.

Note that the second statement in the above conjecture makes sense even when it is not
known that there exists a global cohomology class sχf inducing sχf as predicted by Conjecture

5.7. See [LRV2] for a proof of an avatar of this formula for Darmon points, where k = 2,
sχf is replaced by its image on a suitable group of connected components and L′(f/K, χ, 1) is

replaced by the (comparatively much simpler) special value L(f0/K, χ, 1) of the L-function of
an eigenform f0 ∈ S2(Γ0(N+)).

6. Particular cases

The circle of ideas in this manuscript specialize, in the particular cases of k = 2 or N− = 1,
to scenarios that can be tackled by means of finer, simpler methods, as we now describe.

For k = 2 and any N− ≥ 1, the p-adic integration theory of §3 admits a much finer
multiplicative version, that allows to introduce p-adic Darmon points on Jacobians of Shimura
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curves, as envisaged by first time by Darmon in [Dar], and completed later in [Das], [Gr], [DG],
[LRV] and [LRV2]. We briefly recall these results in §6.1 below.

For N− = 1 and any k ≥ 2, the presence of cuspidal points on the classical modular curve
X0(pN+) allows for a re-interpretation of the whole theory in terms of modular symbols. This
was again first visioned by Darmon in [Dar], for k = 2.

In §6.2 we develop the theory for k > 2 in the language of modular symbols, in a way that
shall be employed in the forthcoming work [Se]. From this point of view, the p-adic integration
theory may be viewed as a lift of Orton’s integration theory [Or]. By means of this approach,
the work [Se] of the second author offers a nontrivial partial result towards the conjectures
posed in §5.2 for N− = 1.

Below, we treat separately the cases k = 2 and N− = 1. For the sake of simplicity in the
exposition, we leave aside the overlapping case N− = 1, k = 2: this is the setting considered
in the original paper [Dar] of Darmon, where both methods converge.

6.1. The case N− > 1 and k = 2. Assume, only for this section, that N− > 1 and k = 2.
Thus m = n = 0. We proved in Theorem 3.11 that there is a surjective homomorphism

prc ◦Ψord ◦ ∂2 : H2(Γ,Kp)→ (Hc)∨

that yields an isomorphism when restricted to H2(Γ,Kp)
c. Notice that, since k = 2, HEis is

not trivial (take Eisenstein parts of (20)). However, since N− > 1, it follows from (15) and
Lemma 2.8 that Hc ' H1(Γ0(pN+),Kp)

p−new.
The theory developed in [Gr], [DG] and [LRV] shows that there is a multiplicative refinement

of the above, as we now briefly recall. Setting

T ?(Kp) := Hom(H1(Γ0(pN+),Z)p−new,K×p ),

it is shown in [LRV, §5] that there is a Hecke-equivariant multiplicative integration map

Φ0 : H1(Γ,Div0(Hp))→ T ?(Kp)

such that Φord = ord ◦Φ0 and Φlog = log ◦Φ0, up to extending scalars from Z to Kp. Similarly
as in (39), let

∂0
2 : H2(Γ,Z)→ H1(Γ,Div0(Hp))

denote the boundary morphism such that ∂2 = ∂0
2 ⊗Z Kp and one may define

L0 := Im(Φ0 ◦ ∂0
2) ⊂ T ?(Kp)

It is shown in [LRV, §6] that L0 is a lattice in T ?(Qp); hence, one may define the rigid

analytic torus J :=
T ?(Qp)
L0

over Qp. There is a natural action of the involution W∞ on

J which allows to split the torus J ∼ J+ × J− up to an isogeny of 2-power degree. The
two factors J+ and J− are in fact isogenous and the main results of [DG] and [LRV] show

that J+ admits a Hecke-equivariant isogeny with Jac(XN−
0 (pN+))p−new over the quadratic

unramified extension Kp of Qp. This is achieved by proving that the L-invariants of J+ and

of Jac(XN−
0 (pN+))p−new, in the sense of Tate-Morikawa’s uniformization theory, are equal.

This is a particular instance of Theorem 4.7 above.
Let now K be a real quadratic field in which p is inert, so that Kp is isomorphic to the

completion of K at p. Using the above results, it is possible to attach a Darmon point

yΨ ∈ Jac(XN−
0 (pN+))p−new(Kp) to each optimal embedding Ψ : O ↪→ R as in §5.1; see [Gr,

§10], [DG] and [LRV2, §3] for full details and for the precise statement of the conjecture that
is the analogue of Conjecture 5.7.
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6.2. The case N− = 1 and k > 2. Let ∆ := DivP1(Q) and ∆0 := Div0 P1(Q) be respectively
the space of divisors and degree zero divisors supported to the cusps with coefficients in Kp,
so that

(71) 0→ ∆0 → ∆→ Kp → 0.

For anyKp-vector spaceA endowed with an action byG ⊂ GL2(Q) set BS(A) := Hom(∆, A)
and MS(A) := Hom(∆0, A), endowed with the natural induced actions. Then there is a
canonical exact sequence

(72) 0→ A→ BS(A)→MS(A)→ 0.

We also write BSG(A) := BS(A)G and MSG(A) :=MS(A)G to denote the G-invariants.
When A = D0

n(P1(Qp),Kp)
b and A = Char(Vn(Kp)), the corresponding exact sequences

are connected by the morphisms induced by the morphism r introduced in §3.1. Taking the
long exact sequences induced in Γ-cohomology we find:

Proposition 6.1. There is a commutative diagram

(73)
MSΓ(D0

n(P1(Qp),Kp)
b)

δ→ H1(Γ,D0
n(P1(Qp),Kp)

b)
r ↓ ↓ r

MSΓ(Char(Vn(Kp)))
δ→ H1(Γ, Char(Vn(Kp)))

where both vertical maps r and the cuspidal part δc of the lower horizontal map are isomor-
phisms.

Proof. By Theorem 3.5, the right vertical arrow is an isomorphism. Exploiting the isomor-
phisms

(74)
MSΓ(Char(Vn(Kp))) ↪→ MSΓ(C0(E ,Vn(Kp)))

↓ o ↓ o
MSΓ0(pN+)(Vn(Kp))

p−new ↪→ MSΓ0(pN+)(Vn(Kp))

provided by Shapiro’s lemma as in (21), a similar but simpler argument shows that the left
vertical arrow is also an isomorphism (see [Se, Proposition 2.8] for details). As for the lower
horizontal arrow, the Eichler-Shimura isomorphism factors as the composition

(75) ES : Sk(Γ0(pN+))⊗R C '→MSΓ0(pN+)(Vn(C))c
δc→ H1(Γ0(pN+),Vn)c.

Here the morphism δ appearing in (75) is obtained from (72) with A = Vn(C) and G =
Γ0(pN+). It follows from this description that the morphism δc obtained from δ in (73) is
identified with the morphism obtained from δc in (75) by taking the p-new parts. Since ES is
an isomorphism, δc in (75) is an isomorphism and the p-new parts of the source and the target
are identified by the Hecke equivariance of δc; for this reason the lower δ in (73) induces an
isomorphism between the cuspidal parts.

Finally, the commutativity of the diagram follows from a rather tedious but elementary
diagram-chasing computation. �

Set MS(Kp) := MSΓ(Char(Vn(Kp))). Since the boundary morphisms δ in Proposition

6.1 are Hecke equivariant, they induce an isomorphism δc : MS(Kp)
c '→ H(Kp)

c between the
cuspidal parts. There is a commutative diagram

(76)

H2(Γ,Pn(Kp))
∂2→ H1(Γ,Div0(Hp)(kp)⊗Pn(Kp))

Ψlog,Ψord

−→ H(Kp)
∨

↓ ↓ ↓ δ∨

H1(Γ,∆0 ⊗Pn(Kp))
∂1→ (∆0 ⊗Div0(Hp)(kp)⊗Pn(Kp))Γ

Ψlog
MS ,Ψ

ord
MS−→ MS(Kp)

∨.
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Here, the morphisms Ψlog,Ψord in the top row are the ones introduced in Section 3.2.

Similarly, the corresponding maps Ψlog
MS ,ΨMS in the lower row are obtained by performing

the obvious formal modifications in the definition of the pairings in Definition 3.8 and in (36).
The connecting map ∂1 arises from the long exact sequence in homology associated to (38),

tensored with ∆0⊗Pn(Kp). Quite similarly, the first (second) vertical arrow is the connecting
map arising in the long exact sequence induced by the short exact sequence (71) tensored with
Pn(Kp) (respectively, tensored with Div0(Hp)(kp)⊗Pn(Kp)).

By Theorem 3.11, (Ψord ◦ ∂2)c : H2(Γ,Pn(Kp))
c '−→(H(Kp)

c)∨ is an isomorphism. The
same circle of ideas appearing in the proof of this theorem, paying care to the Eisenstein
subspaces, shows that

(77) (Ψord
MS ◦ ∂1)c : H1(Γ,∆0 ⊗Pn(Kp))

c '−→ (MS(Kp)
c)∨

is also an isomorphism.

It then follows from the isomorphism δc : MS(Kp)
c '→ H(Kp)

c that the left vertical arrow
also induces an isomorphism H2(Γ,Pn(Kp))

c ' H1(Γ,∆0⊗Pn(Kp))
c. This is helpful, because

it allows to construct an L-invariant L, as the one already introduced in Definition 3.14, purely
in terms of modular symbols, as we now explain.

Let as before prc : MS(Kp)
∨−→(MS(Kp)

c)∨ denote the natural projection and write
Φ∗MS = prc ◦ Ψ∗MS for either ∗ = log or ord. In light of (77) and reasoning exactly as in
the proof of Corollary 3.13, there exists a unique endomorphism LMS ∈ EndTp((MS(Qp)

c)∨)
such that

(78) Φlog
MS ◦ ∂1 = LMS ◦ Φord

MS ◦ ∂1 : H1(Γ,∆0 ⊗Pn(Kp))→ (MS(Kp)
c)∨.

The invariants L and LMS are equal, as follows from (76), (77) and the definition of the L-
invariants. On the f -isotypic component LMS specializes to the Orton L-invariant (see [Or]).
Hence they induce isomorphic monodromy modules. Indeed, let w∞ ∈ {±1} be a choice of a
sign and define a monodromy module

(79) DMS = Dw∞
MS := MS(Qp)

c,∨,w∞ ⊕MS(Qp)
c,∨,w∞

over Qp as in (52), providing it with a structure of filtered Frobenius module by formally
replacing H by MS, and L by LMS . It follows from the discussion above and the explicit

description of both monodromy modules that the isomorphism δc : MSc
'→ Hc induces an

isomorphism

(80) D
'−→DMS .

Finally, we conclude this section by showing how the Darmon cycles that were introduced
in §5.1 can also be recovered by means of the theory of modular symbols when N− = 1; this
point of view is of fundamental importance in [Se]. As in (54), set

ΦMS := −Φlog
MS ⊕ Φord

MS : (∆0 ⊗Div0(Hp)⊗Pn(Kp))Γ−→DMS(Kp).

As in Definition 4.8 and in (56), we would like to be able to use ΦMS to construct a
morphism ΦAJ

MS : (∆0 ⊗ Div(Hp)(kp) ⊗ Pn(Kp))Γ −→DMS/F
m. There is however a slight

complication here, as (∆0 ⊗ Pn(Kp))Γ is not trivial. The reader may like to compare this
situation with the one encountered in §4.2, where the counterpart of (∆0 ⊗ Pn(Kp))Γ is
H1(Γ,Vn), that is trivial by Lemma 3.10. This motivates the following definition.

Definition 6.2. A p-adic Abel-Jacobi map with respect to ΦMS is a morphism

(81) ΦAJ
MS : (∆0 ⊗Div(Hp)(kp)⊗Pn(Kp))Γ−→DMS ⊗Kp/F

m
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such that the natural diagram

(∆0 ⊗Div0(Hp)⊗Pn(Kp))Γ
ΦMS−→ DMS(Kp)

↓ ↓

(∆0 ⊗Div(Hp)(kp)⊗Pn(Kp))Γ
ΦAJ
MS−→ DMS(Kp)/F

m

is commutative.

Such morphisms exist, but they are not unique. Using now the notation introduced in §5.1,
there is a diagram

(82)

Γ\Emb(O,R)
y→ H1(Γ,Div(Hp)(kp)⊗Pn(Kp))

ΦAJ

→ D⊗Kp/F
m

yMS ↘ ↓ ↓

(∆0 ⊗Div(Hp)⊗Pn(Kp))Γ
ΦAJ
MS→ DMS ⊗Kp/F

m.

Here yMS (Ψ) is defined to be the class of γΨx−x⊗τΨ⊗D−m/2K PmΨ , where an arbitrary choice
of x ∈ P1 (Q) has beeen fixed. The map yMS is indeed well defined, as easily follows by arguing
as in Lemma 5.2. Thus, along with the Darmon cohomology classes s[Ψ] attached to [Ψ] ∈
Γ\Emb(O,R) introduced in Definition 5.3, we can also define sMS([Ψ]) := ΦAJ

MS(yMS (Ψ)) ∈
DMS ⊗Kp/F

m.
Although the triangle in (82) is commutative, we warn the reader that the square in (82)

may not be. This is due to the fact that an arbitrary choice of a p-adic Abel-Jacobi map ΦAJ
MS

has been made. Fortunately, it can be shown that the image of Ψ in DMS ⊗Kp/F
m does not

depend on the choice of ΦAJ
MS ; see [Se, Proposition 2.22] for more details, where it is proved

that although the square in (82) may not be commutative, one still has

(83) ΦAJ(yΨ) = ΦAJ
MS(yMS(Ψ)).
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[Ne] J. Nekovář, Kolyvagin’s method for Chow groups of Kuga-Sato varieties, Invent. Math. 107 (1992),

99-125.
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