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Abstract. Let X be a Shimura curve of genus at least 2. Exploiting Čerednik-Drinfeld’s
description of the special fiber of X and the specialization of its Heegner points, we show
that, under certain technical conditions, the group of automorphisms of X corresponds to
its group of Atkin-Lehner involutions.

1. Introduction

Given an indefinite division quaternion algebra B over Q of reduced discriminant D > 1 and
a maximal order O in B, Shimura [16] constructed a canonical model XD/Q of a curve over
Q as the coarse moduli space of abelian surfaces with multiplication by O. The underlying
Riemann surface XD(C)an is the (compact) quotient of the upper half-plane by the Fuchsian
group ΓD of units in O of norm 1, which is a subgroup of SL2(R) once we choose an embedding
of B into M2(R).

This curve, commonly referred to as the Shimura curve of discriminant D (and full level
structure), is equipped with a natural group of modular involutions called the Atkin-Lehner
group. On XD(C)an it is defined as the normalizer

WD = Q× · ΓD \NB×(ΓD)

of ΓD, and is naturally a subgroup of the group Aut(XD(C)an) of holomorphic automorphisms
ofXD(C)an. By exhibiting the way these automorphisms act on the moduli problem, one shows
that in factWD is a subgroup of the group Aut(XD) of automorphisms of the canonical model
XD over Q. There is one Atkin-Lehner involution ωm for each positive divisor m of D and as
an abstract group WD = {ωm; m | D} ⊆ Aut(XD) is isomorphic to (Z/2Z)r where r is the
number of prime divisors of D.

The main theme of this note is exploring the following conjecture.

Conjecture 1.1. If the genus gD of XD is at least 2. Then

Aut(XD) = WD.

One motivation for conjecturing that relies on the fact that the analogous statement for
the classical modular curve X0(N) of level N ≥ 1 holds true except for N = 37 and 63
(cf. [4], [7],[14]), in which cases there exist non-modular automorphisms. The appearance of
these exceptional automorphisms is explained by the particular geometry of the curves; in the
first case, for example, X0(37) has genus 2 and therefore there is a hyperelliptic involution u
acting on it, while the single non-trivial modular involution ω37 has only 2 fixed points, which
prevents it from being hyperelliptic. See [4] for a detailed analysis of the geometry of X0(63)
and of its automorphism group.
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Such phenomena in low genera does not arise among Shimura curves XD (but see the
discussion around (4.12) in §4). Besides, in support of Conjecture 1.1 there is the following
result, due to Kontogeorgis and the second author:

Theorem 1.2. [8, Corollary 1.8, Proposition 3.5] Assume gD ≥ 2. Then
(1) Aut(XD) = Aut(XD × Spec(Q̄)) = Aut(XD(C)an),
(2) Aut(XD) ' (Z/2Z)s with r ≤ s ≤ r + 1, and
(3) s = r if D ≤ 1500 , except possibly for D = 493, 583, 667, 697, 943.

The main tools in the proof of these statements is the analysis of the action of Aut(XD) on
(a) The special fiber of Čerednik-Drinfeld’s integral model of XD at a prime p | D of bad

reduction of the curve, or
(b) Sets of Heegner points (or CM-points) on XD(Q̄).
These actions were studied separately, and the interrelation between the two has not been

explored. The aim of this short note is to show how the interplay of the action of Aut(XD)
on (a) and (b) can be exploited to prove some instances of Conjecture 1.1 in cases where the
techniques of [8] turned out to be insufficient. Our main result, Theorem 3.1, proves the claim
of the Conjecture under certain technical conditions that cover some of the cases not treated
in Theorem 1.2. We shall illustrate it by performing the explicit calculations in the particular
case of the Shimura curve of discriminant D = 667.

Acknowledgements. We thank the anonymous referee for his/her many suggestions, which
helped us to improve considerably the readability of this note. During the preparation of this
work, the authors received financial support from MTM2009-13060-C02-01.

2. Specialization of Heegner points

Fix an embedding B ↪→ M2(R). The set of complex points of X = XD is given by

(2.1) X(C) = B×\((B̂×/Ô×)×H±),

whereB× acts onH± = C\R by linear fractional transformations and we set Ô = lim←−n≥1
O/nO

denotes the profinite completion of O and B̂ = Ô ⊗Q.
Let K be an imaginary quadratic field that splits B and fix an embedding ϕ : K ↪→ B.

We write XCM(K) for the set of Heegner points in X with CM by K. As a set of points in
X(C), it can be explicitly described once a choice of one of the two fixed points τ ∈ H± of
ϕ(K×) ⊂ B× has been made (and for definiteness we may choose it to be the one on the
upper half-plane), as then

(2.2) XCM(K) = B×\(B̂×/Ô× ×B×τ) ' (K×\B̂×/Ô×)× {τ}

as a subset of (2.1). The bijection in (2.2) holds because {b ∈ B×, bτ = τ} = K×.
In order to describe the specialization of such points at a prime of bad reduction of the curve

we must specify first a model of X over Spec(Z). Thanks to the work of Morita [13], there
exists a proper integral model X over Spec(Z) that suitably extends the moduli interpretation
of X to arbitrary schemes and is smooth over Spec(Z[ 1

D ]).
Fix a prime p dividing the discriminant D of B and write Xp = X ×Spec(Fp) for the special

fiber of X at p. Let B′ denote the definite quaternion algebra over Q of discriminant D′ = D/p
and O′ (resp. R′) be any maximal order (resp. Eichler order of level p) in B′.
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By the theory of Čerednik-Drinfeld (cf. [2], [3]), the special fiber Xp is semistable, that is
to say, all singular points are double ordinary points. Hence, given Q ∈ X sing

p , there exists a
finite unramified extension L/Qp, such that, if we let OL denote the ring of integers of L with
uniformizer π, then the π-adic completion of the local ring OX×Spec(OL),Q is

ÔX×Spec(R),Q ' OL[[u, v]]/(uv − π`),
for some ` = `(Q) ≥ 1. The integer `(Q) is an invariant of the singularity Q, independent of
the chosen extension L/Qp [9, Corollary 10.3.22 ], called the thickness of Q.

In addition, the theory of Čerednik-Drinfeld asserts that all irreducible components of Xp
are isomorphic to P1 over Fp2 ; the set C(Xp) of components of Xp is in bijection with the
disjoint union of two copies of

(2.3) Pic(O′) = B′×\(B̂′)×/(Ô′)×,

and the set X sing
p of singular points of Xp is in bijection with the double coset

(2.4) Pic(R′) = B′×\(B̂′)×/(R̂′)×,
which is in turn in bijection with the set of oriented Eichler orders in B′ of level p up to
conjugation by elements in B′×. Denote these bijections by

(2.5) λp : C(Xp)
'−→ Pic(O′) t Pic(O′) and λp : X sing

p
'−→ Pic(R′).

From this description, the thickness of a singular point of Xp can be read off as

(2.6) `(Q) = #λp(Q)×/2,

that is to say, half the number of units in any of the Eichler orders of level p corresponding
to Q by (2.5). (Note that all the orders in the conjugacy class λp(Q) have isomorphic unit
group.)

As it is customary, Čerednik-Drinfeld’s description of Xp can be conveniently packaged in a
single weighted graph, the so-called dual graph Gp of Xp. The set Vp of vertices of Gp is defined
to be C(Xp) and we link two vertices u, v with as many edges as singular points lying in the
intersection of the two components Cu and Cv corresponding to u and v. We write Ep for the
total set of edges in Gp.

We decorate this graph by assigning a length to each vertex and edge; namely, given a vertex
v or an edge e one sets `(v) = #λ(Cu)×/2 and `(e) = `(Qe) = #λ(Qe)×/2, respectively.

Let us introduce the double cosets

CM(K) = K×\B̂×/Ô× and CMp(K) = K×\B̂′
×
/R̂′

×
.

Both can be expressed as the disjoint union

CM(K) =
⊔
c≥1

CM(K, c) and CMp(K) =
⊔
c≥1

CMp(K, c),

where we define

(2.7) CM(K, c) = {[g] ∈ CM(K) such that K ∩ gÔg−1 is an order of conductor c in K},
and similarly for CMp(K, c).

In the sequel we shall regard CM(K, c) as a subset of XCM(K) ⊂ X(C) by means of the
isomorphism CM(K) ' XCM(K) induced by the embedding ϕ as in (2.2).

The following theorem due to Shimura characterizes the field of definition of a Heegner
point P ∈ XCM(K).
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Theorem 2.1. [16] Let Rc be the unique order of K of conductor c. Then the field of definition
K(Q) of a CM point Q ∈ CM(K, c) of conductor c is HK

c the ring class field of Rc.

Finally, the following result characterizes the specialization of a Heegner point in XCM(K)

at the singular fibre of X at p. In order to state it, note that there is a natural projection
map:

πp : CMp(K) = \K×B̂′
×
/R̂′

×
−→ B′×\B̂′

×
/R̂′

×
= Pic(R′).

Theorem 2.2. [12, Theorem 1.1] Let p be a prime that ramifies in K. Then all points in
XCM(K) specialize to a singular point in Xp. Moreover, for any given c ≥ 1 relatively prime
to D there exists a bijection

θp : CM(K, c) '−→ CMp(K, c)

such that πp(θp(P )) = λp(P̃ ) ∈ Pic(R′), where P̃ ∈ X sing
p is the specialization of P ∈ XCM(K).

Remark 2.3. It is easy to check that the set CMp(K, c) is in correspondence with the set of
optimal embeddings of Rc into any order in Pic(R′). Moreover, the map πp sends an optimal
embedding to the isomorphism class of its target in Pic(R′).

3. The main result

We finally show how the above material can be exploited to prove particular instances of
Conjecture 1.1. In order to state our main result let us first introduce some notations.

For any positive integer m set Km = Q(
√
−m) and define the set

Mm =


{(1, 1), (2, 1)} if m = 2

{(m, 1), (m, 2)} if m ≡ 3 (mod 4)

{(m, 1)} otherwise.

Let D = p1 · · · pr be the square-free product of an even number of primes and p | D be one
of its prime factors. For any set of points S ⊂ XD(Q̄) we shall write S̃ ⊂ Xp(Fp) for its image
under the reduction map and S̄ for its image in the graph Gp under the map

Xp(Fp) −→ Vp t Ep

which to a point Q ∈ Xp(Fp) assigns the vertex or edge over which Q lies.
For a fundamental discriminant d write h(d) for the class number of the quadratic order of

that discriminant.

Theorem 3.1. Assume the genus of the Shimura curve XD is at least 2. Let m | D be a
positive divisor of D; if m ≡ 3 (mod 4), assume that h(−4m) > h(−m). Let (n, c) be a pair
inMm and fix a prime p | D, which may divide m or not.

Assume there exists a subset S ⊆ CM(Kn, c) such that
(i) ord2(#S) = r − 1,
(ii) S ∩ CM(Kn, c) \ S = ∅, and
(iii) any automorphism of the weighted graph Gp leaves S̄ invariant.
Then Aut(XD) 'WD.
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We devote the remainder of this section to proving Theorem 3.1. Write Fm for the set of
fixed points of the Atkin-Lehner involution ωm on X(Q̄). By [15, §1] we have

(3.8) Fm =
⋃

(n,c)∈Mm

CM(Kn, c).

Since Aut(X) is abelian by Theorem 1.2,

ωD(φ(P )) = φ(ωD(P )) = φ(P )

for all φ ∈ Aut(X) and P ∈ FD. Hence φ(FD) = FD.
In fact, we have the following:

Lemma 3.2. For all φ ∈ Aut(X) and any (n, c) ∈Mm, we have φ(CM(Kn, c)) = CM(Kn, c).

Proof. If m ≡ 2 or m ≡ 3 (mod 4), then FD = CM(Km, 1) so the result holds.
Ifm = 2, note that F2 = CM(Q(

√
−1), 1)tCM(Q(

√
−2), 1). Since the class number of both

quadratic fields is 1, Theorem 2.1 implies that CM(Q(
√
−1), 1) is contained inX(Q(

√
−1)) and

CM(Q(
√
−2), 1) is contained in X(Q(

√
−2)). The claim follows because Aut(X) = Aut(X ×

Spec Q̄) by Theorem 1.2.
Suppose finally that m ≡ 3 (mod 4), in which case we have Fm = CM(Km, 1)tCM(Km, 2).

By Theorem 2.1, points in CM(Km, 1) (resp. in CM(Km, 2)) generate the ring class field HKm
1

(resp. HKm
2 ) over K. These two class fields are different (in general we have HKm

1 ⊆ HKm
2

and the assumption h(−4m) > h(−m) amounts to saying that the inclusion is proper). Again
because Aut(X) = Aut(X × Spec Q̄), it follows that any automorphism of X must leave each
of the sets CM(Km, 1) and CM(Km, 2) invariant. �

In order to conclude the proof of Theorem 3.1, let S ⊆ CM(Kn, c) be a set as in the
statement of Theorem 3.1.

Lemma 3.3. Aut(X) leaves S invariant.

Proof. By Lemma 3.2, Aut(X) ·S is a subset of CM(Kn, c). Any automorphism of X induces
an automorphism of the weighted graph Gp, and condition (iii) implies that Aut(X) leaves
invariant the image S of S in Gp. Condition (ii) thus implies that in fact Aut(X) leaves S
invariant. �

We invoke at this point the following result, proved by Ogg in [14].

Lemma 3.4. Let C be an irreducible curve defined over a field L of characteristic 0 and
P ∈ C(L) a regular point on it. Any finite subgroup G of Aut(C/L) which leaves the point P
fixed can be embedded as a subgroup of the group µ(L) of roots of unity in L.

Fix a point P ∈ S. As a corollary of Lemma 3.4 and Theorem 1.2 (2), we deduce that the
subgroup GP ⊂ Aut(X × Spec Q̄) of automorphisms which fix P has at most two elements.
Together with Theorem 1.2 we obtain that Aut(X)/GP ' (Z/2Z)s

′ with s′ = s − 1 or s,
according to whether |GP | = 2 or 1.

Since the group Aut(X)/GP is abelian, its action on S is free. The orbits of this action all
have cardinality 2s

′ and it follows from (i) that r − 1 ≥ s′.
Combining the inequalities r−1 ≥ s′ and s′ ≥ s−1 with Theorem 1.2 we deduce that s = r

and this shows that Aut(X) = WD, as wished.



6 AUTOMORPHISMS AND REDUCTION OF HEEGNER POINTS

Remark 3.5. As the reader can check from the proof, ifm ≡ 3 (mod 4) but h(−4m) = h(−m),
Theorem 3.1 still holds true if in the statement we replace the sentence “there exists a subset
S ⊆ CM(n, c)” by “there exists a subset S ⊆ CM(m, 1) ∪ CM(m, 2)”.

4. Applicability

The obvious questions arise as to whether it is possible in practice to check the hypothesis
of Theorem 3.1 and how often should we expect them to hold.

The answer to the first question is that there is an algorithm which allows to check the
hypothesis of Theorem 3.1 and can be implemented in practice in the computer algebra system
Magma [1]. We do not sketch the details here, as these treated at length in [8], [12] and [11];
we will rather content with illustrating the method with a few successful examples.

Unfortunately we do not have a satisfactory answer for the second question beyond the
following remarks and heuristics, which fail short to settle the problem.

Fix an imaginary quadratic field K, let disc(K) denote its discriminant and ω(K) be the
number of prime factors of disc(K). Genus theory yields the lower bound

(4.9) ω(K)− 1 ≤ ord2 h(K)

for the 2-adic valuation of the class number of K. Write

δ2(K) = ord2 h(K)− ω(K) + 1 ≥ 0

for the extent to which (4.9) fails to be an equality.
It is enlightening to compare our Theorem 3.1 to [8, Theorem 1.6 (ii)], which in the current

terminology has the following immediate corollary:

Theorem 4.1. Assume m 6≡ 1 (mod 4). If m ≡ 3 (mod 4), assume further that h(−4m) >
h(−m). If δ2(K) = 0, that is to say, if (4.9) is an equality, then Aut(XD) = WD.

Theorem 3.1 is thus a new contribution to Conjecture 1.1 when either δ2(K) > 0, or
m ≡ 1 (mod 4), or m ≡ 3 (mod 4) and h(−4m) = h(−m).

Together with K, fix now a prime p | disc(K). A deep result of P. Michel [10] implies,
together with the results of [12], that as D runs over the set of discriminants of indefinite
quaternion algebras ramified at p, for any c ≥ 1 the elements of CM(K, c) are equidistributed
in the set Ep(XD) of edges of the special fiber of XD at p. See [11, Corollary 2.1] for more
details.

Hence, given an integer m > 1 and a pair (n, c) ∈ Mm, the points in CM(Kn, c) are
equidistributed in Ep(XD) for large values of D with m | D. We expect this may force the set
CM(Kn, c) to be the disjoint union of sets S which are natural candidates for sets satisfying
the hypothesis of Theorem 3.1.

We ignore how to prove this claim, but to motivate this expectation let us place ourselves
under the hypothesis thatm 6≡ 1 (mod 4), h(−4m) > h(−m) ifm ≡ 3 (mod 4), and δ2(K) > 0
(a similar circle of ideas is available with slight variations in the remaining scenarios where
Theorem 4.1 does not apply).

Let

W inert
D,m =

〈
w` : ` | D,

(
Km

`

)
= −1

〉
⊂WD, and W ram

D,m =
〈
w` : ` | D,

(
Km

`

)
= 0
〉

denote the subgroups ofWD consisting of those Atkin-Lehner involutions supported at primes
which remain inert (resp. ramify) in Km. Since there are no primes ` | D which split in Km,
we have WD = W inert

D,m ·W ram
D,m and W inert

D,m ∩W ram
D,m = {1}.
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By [6, Prop. 5.6], the groupW inert
D,m×Cl(Km) acts freely and transitively on the set CM(Km, 1)

and the orbit decomposition under Cl(Km) gives rise to the splitting

(4.10) CM(Km, 1) =
⊔
Ti

of CM(Km, 1) as a disjoint union of sets Ti, i = 1, ..., 2#{`|D,( Km
`

)=−1}. Each Ti has cardinality
h(−m) and is acted on by W ram

D,m (cf. [6, Lemma5.9]). This action is not free, as ωm ∈ W ram
D,m

fixes each of the points of Ti; but the quotient group W ram
D,m/〈ωm〉 does act freely on Ti. This

action is compatible with genus theory in that there exists a bijection of sets

(4.11) α : Cl(Km) ∼−→ Ti

such that, for each ideal class a ∈ Cl(Km), the subset gen(a) ⊆ Cl(Km) of ideal classes which
belong to the same genus of a satisfies

α(gen(a)) =
W ram
D,m

〈ωm〉
· α(a) ⊆ Ti.

Fix one of the indexes i, set T = Ti, choose a point P in T and define S = WD
〈ωm〉 · P ⊂

CM(Km, 1).
We believe Theorem 3.1 gives its best fruits when the set S is chosen to be one of these

sets introduced. To explain why, note first that the cardinality of S is 2r−1 and hence satisfies
condition (i) of Theorem 3.1.

Regarding (ii), the number of edges in the dual graph Gp is roughly |Ep| ∼ p+1
12

∏
`|D′(`− 1)

(cf. [17, Ch.V, §2]) and therefore comparatively larger than

# CM(Km, 1) = 2#{`|D,( Km
`

)=−1}h(−m)� 2#{`|D,( Km
`

)=−1}m
1
2

+ε

as D � 0. In view of this, the equidistribution result alluded to above implies that the
reduction map CM(Km, 1) −→ Ep(XD) is injective and therefore condition (ii) of Theorem 3.1
also holds for large multiples D of m, that is to say, S̄ does not overlap with CM(Km, 1) \ S.

As for (iii) is concerned, by construction

S̄ =
WD

〈ωm〉
· P̄ .

and hence the set S is invariant under the action of WD. Nevertheless, a priori there is
no reason why S should be invariant under the whole automorphism group Aut(Gp). This
can be rephrased more explicitly as follows: the above construction gives rise to exactly
h̄(−m) = h(−m)

2#{`|D,( Km
`

)=0}−1
different sets S; denote the list of such sets by S = {Sj}j=1,...,h̄(−m).

Note that 2δ2(K) divides h̄(−m)) exactly; since δ2(K) > 0, the door is open to the existence
of an exceptional involution u ∈ Aut(Gp) \WD inducing a non-trivial involution on the set S.
Condition (iii) holds if and only if there exists no such involution.

We pass now to illustrate our method in a couple of explicit examples.

Proposition 4.2. Aut(X667) = W667.

Proof. Set D = 667 = 23 · 29, m = n = D and c = 1. We have h(−4D) = 12 and h(−D) = 4
(in particular δ2(Q(

√
−D)) = 1, so Theorem 4.1 does not apply). Take p = 29, which ramifies

in KD. By Theorem 2.2, the set CM(KD, 1) ⊂ XCM(KD) is in bijection with CMp(KD, 1),
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which in turn classifies optimal embeddings of the maximal order of KD into any of the Eichler
orders parametrized by Pic(R′) as discussed in (2.4).

Following [12] and [11], we computed a full system of optimal embeddings representing the
classes in CMp(KD, 1). The cardinality of this set is 4 and we may label its elements as

CMp(KD, 1) = {ϕ1, ϕ2, ϕ3, ϕ4}.

We also computed the image of each of the elements [ϕi] under the map πp, obtaining that
there exist three different conjugacy classes R1, R2 and R3 of orders in Pic(R′) such that

πp(ϕ1) = R1, πp(ϕ2) = πp(ϕ4) = R2, πp(ϕ3) = R3,

Moreover, we have

#R×1 /2 = #R×3 /2 = 2, #R×2 /2 = 1.

By Theorem 2.2, this implies that the points in CM(KD, 1) = {P1, P2, P3, P4} specialize as
follows: we have P̃2 = P̃4, P̃1 6= P̃3 6= P̃2 and `(P̃1) = `(P̃3) = 2, `(P̃2) = `(P̃4) = 1.

In conclusion, the set S = {P1, P2} satisfies conditions (i), (ii) and (iii) of Theorem 3.1, and
therefore Aut(X667) = W667. �

The ideas underlying the proof of Theorem 3.1 are quite flexible, and can be adapted easily
to slightly different settings. Let us exemplify it by considering the automorphism group of
an Atkin-Lehner quotient of a Shimura curve.

Given a divisor n > 1 of D = p1...pr, let X
(n)
D = XD/〈ωn〉 denote the quotient of XD by

the Atkin-Lehner involution ωn. Since WD is abelian, the quotient group W (n)
D = WD/〈ωn〉

acts in a natural way on X(n)
D . But in general it is not true that Aut(X(n)

D ) = W
(n)
D , even if

it holds that Aut(XD) = WD. Obvious examples of this phenomenon arise when the genus of
X

(n)
D is 0 or 1.
If g(X(n)

D ) ≥ 2, one can still prove that Aut(X(n)
D ) = Aut(X(n)

D × Spec(Q̄)) and that
Aut(X(n)

D ) ' (Z/2Z)t for some t ≥ r − 1 (cf. [8, Prop. 1.5]). But even when the genus of
X

(n)
D is greater than 1 we find interesting examples for which Aut(X(n)

D ) ' (Z/2Z)t with
t > r − 1. Namely, this occurs for the pairs

(4.12) (D,n) ∈ {(91, 91), (123, 123), (141, 141), (142, 2), (142, 142),
(155, 155), (158, 158), (254, 254), (326, 326), (446, 446)},

for which g(X(n)
D ) = 2, r = 2 and it is proved in [5, Prop. 4.2] that Aut(X(n)

D ) ' (Z/2Z)2. One
of the exceptional automorphisms appearing in these ten cases is the hyperelliptic involution,
while the single non-trivial involution in W (n)

D has only 2 fixed points.
We in fact suspect that t = r − 1 for all Atkin-Lehner quotients X(n)

D , provided the genus
is at least 2 and the pair (D,n) does not show up in the list (4.12). That this is the case
can be proved in many instances by applying the results of [8] and the method introduced in
this note. We sketch the details for the pair (D,n) = (69, 23), the first example for which the
ideas of [8] do not suffice to prove that t = r− 1, and one needs to invoke the tools explained
above.

Proposition 4.3. Aut(X(23)
69 ) = W

(23)
69 ' Z/2Z.
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Proof. The involution ω23 leaves the set CM(K69, 1) invariant, and the image of this set in
X

(23)
69 under the natural projection X69 −→ X

(23)
69 consists of 4 different points. That is to

say, we have
CM(K69, 1)/〈ω23〉 = {P1, P2, P3, P4}.

When we consider their specialization to the closed fiber at the prime 3, we find that
P̃1 = P̃2, P̃1 6= P̃3 6= P̃4, and `(P̃1) = 1, `(P̃3) = 1 and `(P̃4) = 3.

Hence the whole automorphism group Aut(X(23)
69 ) must fix the point P4 and Lemma 3.4

implies that |Aut(X(23)
69 )| = 2. This proves the statement. �
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