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Abstract. Building on our previous work on rigid analytic uniformizations, we introduce
Darmon points on Jacobians of Shimura curves attached to quaternion algebras over Q and
formulate conjectures about their rationality properties. Moreover, if K is a real quadratic
field, E is an elliptic curve over Q without complex multiplication and χ is a ring class
character such that LK(E,χ, 1) 6= 0 we prove a Gross–Zagier type formula relating Darmon
points to a suitably defined algebraic part of LK(E,χ, 1); this generalizes results of Bertolini,
Darmon and Dasgupta to the case of division quaternion algebras and arbitrary characters.
Finally, as an application of this formula, assuming the rationality conjectures for Darmon
points we obtain vanishing results for Selmer groups of E over extensions of K contained in
narrow ring class fields when the analytic rank of E is zero, as predicted by the Birch and
Swinnerton-Dyer conjecture.

1. Introduction

The purpose of this article is threefold. Firstly, following [10], [12] and [15] and building
on our previous work [22] on rigid analytic uniformizations, we introduce a special supply of
points on Jacobians of Shimura curves which we call Darmon points, after the foundational
work [10] of Henri Darmon in his investigation of counterparts in the real setting of the theory
of complex multiplication. To be in line with the current language, our points could also be
called “Stark–Heegner points” (as in loc. cit.), but we feel that the new terminology we adopt
here is more representative of the genesis of our constructions. Secondly, we prove an avatar
of the Gross–Zagier formula relating Darmon points to the special values of twists by ring
class characters of base changes to real quadratic fields K of L-functions of elliptic curves E
over Q, provided the analytic rank of E over K is 0. Finally, under this analytic condition
we use this formula to prove vanishing results for (twisted) Selmer groups of elliptic curves
over narrow ring class fields of real quadratic fields. Let us describe first the motivation and
background and then our results more in detail.

Let A/Q be an elliptic curve of conductor NA and let K be a real quadratic field of dis-
criminant δK with (NA, δK) = 1. Assume that there exists a prime ` which is inert in K and
divides NA exactly. If one further assumes the Heegner condition that all primes dividing
NA/` be split in K then the sign of the functional equation of the L-function LK(A, s) of A
over K is −1 and the Birch and Swinnerton-Dyer conjecture predicts that the rank of the
Mordell–Weil group A(H) is at least [H : K] for all (narrow) ring class fields H of K.

Under these conditions, in [10] Darmon introduced a family of local points on A over
the unramified quadratic extension of Q` and conjectured that they are in fact global. More
precisely, he predicted that his points are rational over narrow ring class fields of K and satisfy
properties which are analogous to those enjoyed by classical Heegner points over abelian
extensions of imaginary quadratic fields (see [4] for results in this direction); these points
should account for the expectations of high rank described above. Darmon’s points were later
lifted from elliptic curves to certain quotients of classical modular Jacobians by Dasgupta in
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[12]; this was achieved by proving a rigid analytic uniformization result for modular Jacobians
which can be phrased as an equality of L-invariants and turns out to be a strong form of a
theorem of Greenberg and Stevens ([16]). Both Darmon’s and Dasgupta’s constructions,
relying heavily on the theory of modular symbols, do not lend themselves to straightforward
extensions to more general settings in which the sign of the functional equation of LK(A, s)
is still −1 (so that a similar family of points should exist) but the Heegner condition is not
verified (cf. [11, Conjecture 3.16] or below for details). To circumvent this problem, in [15] M.
Greenberg reinterpreted Darmon’s theory in terms of group cohomology; this allowed him to
conjecturally define local points on A, generalizing Darmon’s original constructions to much
broader arithmetic contexts. It must be noted that Greenberg’s definitions are conditional
on the validity of an unproved statement ([15, Conjecture 2]); this conjecture (over Q) has
been proved by the authors of the present paper in [22] and, independently, by Dasgupta
and Greenberg in [13]. The two proofs use different methods and, as a by-product, lead to
different arithmetic applications: while the present paper is a sequel of [22] and the results
obtained here could probably not be tackled by means of [13], the latter can be exploited to
show the rationality of Darmon points in some cases, in the spirit of [4] (see forthcoming work
of Greenberg and Shahabi).

The main result of [22], of which Greenberg’s conjecture is a corollary, provides an explicit
rigid analytic uniformization of the maximal toric quotient of the Jacobian of a Shimura curve
attached to a division quaternion algebra over Q at a prime dividing exactly the level, and
can be viewed as complementary to the classical theorem of Čerednik and Drinfeld that gives
rigid uniformizations at primes dividing the discriminant. Moreover, it extends to arbitrary
quaternion algebras the results of Dasgupta for classical modular curves.

In order to describe the content of this article we need to introduce some notation, which
will be used throughout our work. As above, let K be a real quadratic field of discriminant
δK , which we embed into the real numbers by using one of its two archimedean places∞1,∞2,
and let ` be a prime number that remains inert in K. Let OK be the ring of integers of K
and for every integer c ≥ 1 let Oc = Z + cOK be the order of K of conductor c. Setting

Ôc := Oc ⊗Z Ẑ (with Ẑ being the profinite completion of Z), let

Pic+(Oc) = Ô×c K×∞,+\A×K/K
×

be the narrow (or strict) class group of Oc, where AK is the ring of adeles of K and K×∞,+
is the connected component of the identity in K×∞1

× K×∞2
. By class field theory, Pic+(Oc)

is canonically isomorphic to the Galois group Gc := Gal (Hc/K) where Hc is the narrow ring
class field of K of conductor c.

Let D ≥ 1 be the square-free product of an even number of primes and M ≥ 1 be a positive
integer prime to D such that ` - DM . Let XD

0 (M) and XD
0 (M`) denote the Shimura curves

attached to the indefinite quaternion algebra B of reduced discriminant D and choices of
Eichler orders R′ ⊂ R of levels M` and M , respectively (cf. [31], [10, Ch. IV]).

In the first part of this paper we introduce local Darmon points on the `-new quotient
JD0 (M`)`-new of the Jacobian of XD

0 (M`); if A/Q is an elliptic curve of conductor DM` then
we know by modularity and by the Jacquet–Langlands correspondence that A is a quotient of
JD0 (M`)`-new and our points lift from A those defined by Greenberg. Following [10], [12] and
[15], we formulate global rationality and reciprocity conjectures for them. All definitions and
conjectures, together with a quick review of the main results of [22], can be found in Section
3 (see, in particular, §3.2). A crucial role in the definition of Darmon points is played by the
group

Γ` :=
(
R⊗ Z[1/`]

)×
1

of elements of reduced norm 1 of R ⊗ Z[1/`], which can be embedded in SL2(Q`) and we
call the Ihara group at ` (see §2.1). The abelianization Γab

` of Γ` is well known to be finite,
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and to the study of its support we devote Section 2. In the absence of the counterparts for
Shimura curves associated with division quaternion algebras of the results proved by Ribet in
[29] (this being due to the lack of a full analogue for general Shimura curves of the so-called
Ihara’s Lemma for modular curves), we invoke a theorem of Diamond and Taylor ([14]) on
the Eisenstein-ness of certain maximal ideals of Hecke algebras to get a bound on the support
of Γab

` which is fine enough for our arithmetic purposes. The reader can find all details in §2.3
(see, in particular, Theorem 2.2), which may be of independent interest.

Let us now describe the main results of this article. Let E/Q be an elliptic curve without

complex multiplication of conductor N = NE prime to δK and denote by f0(q) =
∑∞

n=1 anq
n

the normalized newform of weight 2 on Γ0(N) associated with E by the Shimura–Taniyama
correspondence. Let LK(E, s) = LK(f0, s) be the complex L-function of E over K and assume
that

• the sign of the functional equation of LK(E, s) is +1.

This implies that LK(E, s) vanishes to even order (and is expected to be frequently non-zero)
at the critical point s = 1. This is equivalent to saying that the set of primes

Σ :=
{
q|N : ordq(N) is odd and q is inert in K

}
has even cardinality (and is possibly empty). We shall further assume that ordq(N) = 1 for all
q ∈ Σ. Let D be the product of the primes in Σ (with D := 1 if Σ = ∅), then set M := N/D.

Write Ĝc for the group of complex-valued characters of Gc, fix χ ∈ Ĝc and let LK(E,χ, s)
be the twist of LK(E, s) by χ. For the remainder of this article choose c prime to δKN . By
[11, Theorem 3.15], it follows from our running assumptions that the sign of the functional
equation for LK(E,χ, s) is +1 as well.

Write Z[χ] for the cyclotomic subring of C generated over Z by the values of χ. In Section
4 we introduce the algebraic part LK(E,χ, 1) ∈ Z[χ]S of the special value LK(E,χ, 1), where
S is a certain auxiliary finite set of prime numbers. Such an algebraic part is defined in terms
of a twisted sum of homology cycles associated with conjugacy classes of oriented optimal
embeddings of Oc into a fixed Eichler order of B of level M . Thanks to previous work of Popa
([27]), it can be shown that LK(E,χ, 1) 6= 0 if and only if LK(E,χ, 1) 6= 0 (cf. Theorem 4.8).

From now on assume that LK(E,χ, 1) 6= 0. Suppose that p is a prime number fulfilling the
conditions listed in Assumption 5.1, which exclude only finitely many primes. In particular, p
is a prime of good reduction for E such that LK(E,χ, 1) is not zero modulo p. Corresponding
to any such p, in §5.2 we introduce the notion of p-admissible primes (usually simply called
“admissible”), which are certain primes not dividing Np and inert in K. For a sign ε ∈ {±}
and a suitable p-admissible prime ` we introduce a map

∂` : J (`)
ε (K`)⊗ Z[χ]S −→ Z[χ]/pZ[χ]S

(denoted by ∂′`⊗ id in §7.2) and a twisted sum of Darmon points P εχ ∈ J
(`)
ε (K`)⊗Z[χ]S . Here

J
(`)
ε is an abelian variety over Q whose existence is a conjectural consequence of our work in

[22] and which is predicted to be isogenous to JD0 (M`)`-new (see §3.1 and §3.2 for details).
If D = 1 (i.e., B ' M2(Q)) then our Darmon points need to be replaced by the points on
modular Jacobians defined by Dasgupta in [12, §3.3] (see also [5, §1.2]).

Letting [?] denote the class of the element ? in a quotient group and writing t` for the
exponent of Γab

` , our Gross–Zagier type formula for the special value of LK(E,χ, s) can then
be stated as follows.

Theorem 1.1. The equality ∂`(P
ε
χ) = t` · [LK(E,χ, 1)] holds in Z[χ]S/pZ[χ]S.

This result extends the main theorem of [5], where a similar formula was proved for D = 1
and χ trivial. The extension of [5, Theorem 3.9] to the case of D = 1 and arbitrary characters
is relatively straightforward, the only ingredient that needs to be added being a version of
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Popa’s classical formula in the twisted setting. However, note that the methods of [5] are
heavily based on modular symbol constructions, while our proof for arbitrary D > 1 relies
on the techniques introduced in [22]. A proof of Theorem 1.1, which can also be viewed as a
“reciprocity law” in the sense of [3], is given in Theorem 7.4. As in [5], a key ingredient is a
level raising result (Theorem 6.3) at the admissible prime `; more precisely, since ` is inert in
K, the construction of Darmon points is available “at level M`”, and the proof of the above

theorem boils down to suitably relating Darmon points on J
(`)
ε to the class modulo p of the

algebraic part LK(E,χ, 1). We devote Sections 6 and 7 to a careful analysis of these issues.
What makes the formula of Theorem 1.1 interesting, and especially useful for the arithmetic

applications we are going to describe, is the fact that p does not divide the integer t`. The
possibility of requiring such a non-divisibility for a p-admissible prime ` is non-trivial and
rests on the results on the support of Γab

` that, as already mentioned, we obtain in Section 2.
We conclude this introduction by stating the main arithmetic consequences of Theorem 1.1.

Let K ′ be an extension of K contained in Hc for some c ≥ 1 as before and let LK′(E, s) be the
L-function of E over K ′. For any prime number p let Selp(E/K

′) be the p-Selmer group of E
over K ′. While Theorem 1.1 is of a genuinely local nature (that is, to obtain it we do not need
to use any conjectural global property of Darmon points), to prove the following vanishing
result (Theorem 8.15) we have to assume the validity of Conjecture 3.6, which predicts that
the Darmon points are rational over suitable (narrow) ring class fields of K.

Theorem 1.2. Assume Conjecture 3.6. If LK′(E, 1) 6= 0 then

Selp(E/K
′) = 0

for all but finitely many primes p. In particular, E(K ′) is finite.

Theorem 1.2 is a consequence of a vanishing result for p-Selmer groups of E twisted by
anticyclotomic characters (Theorem 8.11), and the set of primes for which it is valid contains
those satisfying Assumption 5.1. Observe that this result, which is predicted by the conjecture
of Birch and Swinnerton-Dyer, is (a strengthening of) the counterpart in the real quadratic
setting of the main result of [23], which was obtained (unconditionally) in the more classical
context of imaginary quadratic fields and Heegner points. When D = 1 the above theorem
represents an explicit instance of the “potential arithmetic applications” of Theorem 1.1 which
are alluded to by Bertolini, Darmon and Dasgupta in the introduction to [5]. We refer the
reader to §8.6 for other arithmetic consequences of Theorem 1.1 (e.g., twisted versions of the
Birch and Swinnerton-Dyer conjecture for E over K ′ in analytic rank 0).

Notation and conventions. Throughout our work we fix an algebraic closure Q̄ of Q and view
all number fields as subfields of Q̄. If F is a number field we write OF and GF for the ring
of integers and the absolute Galois group Gal (Q̄/F ) of F , respectively, and denote by Fv the
completion of F at a place v.

For all prime numbers ` we fix an algebraic closure Q̄` of Q` and an embedding Q̄ ↪→ Q̄`.
Moreover, C` denotes the completion of Q̄`.

If ` is a prime then F` is the finite field with ` elements. We sometimes write Fp in place
of Z/pZ when we want to emphasize the field structure of Z/pZ.

If G is a profinite group and M is a continuous G-module we let H1(G,M) be the first
group of continuous cohomology of G with coefficients in M . In particular, if G is the absolute
Galois group of a (local or global) field F then we denote H1(G,M) also by H1(F,M).

Let F be a number field, p a prime number and A/F an abelian variety. We write A[pn] for

the pn-torsion subgroup of A(Q̄). As customary, we let Selpn(A/F ) be the pn-Selmer group of
A over F , i.e. the subgroup of H1(F,A[pn]) consisting of those classes which locally at every
place of F belong to the image of the local Kummer map. If A has good reduction at a prime
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ideal q ⊂ OF such that q - p we let H1
sing(Fq, A[p]) and H1

fin(Fq, A[p]) denote the singular and

finite parts of H1(Fq, A[p]) as defined in [23, §3].
Finally, for any ring R and any pair of maps f : M → N , g : P → Q of R-modules we write

f ⊗ g : M ⊗R P → N ⊗R Q for the R-linear map obtained by extending additively the rule
m⊗ p 7→ f(m)⊗ g(p).
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Yasutaka Ihara and Alexei Skorobogatov for enlightening discussions and correspondence
which helped improve some of the results of this article. Heartfelt gratitude goes to Frank
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in Barcelona, at a delicate stage of this project. The three authors also thank the Centre de
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2. On Ihara’s group

2.1. Basic definitions. As in the introduction, let D ≥ 1 be a square-free product of an
even number of primes and let M ≥ 1 be an integer coprime with D. Let B be the (unique,
up to isomorphism) indefinite quaternion algebra over Q of discriminant D. Let R = R(M)
be a fixed Eichler order of level M in B and write ΓD0 (M) for the group of norm 1 elements
in R. If ` - DM is a prime number then let R′ = R(M`) ⊂ R be an Eichler order of level M`
contained in R and let ΓD0 (M`) be the group of norm 1 elements in R′.

Fix an isomorphism of Q`-algebras

ι` : B ⊗Q Q`
'−→ M2(Q`)

such that ι`(R ⊗ Z`) is equal to M2(Z`) and ι`(R
′ ⊗ Z`) is equal to the subgroup of M2(Z`)

consisting of upper triangular matrices modulo `. Letting the subscript “1” denote elements
of norm 1, we define the Ihara group at ` to be the subgroup of SL2(Q`) given by

Γ` :=
(
R⊗ Z[1/`]

)×
1

ι`
↪−→ SL2(Q`).

It acts on Drinfeld’s `-adic half-plane H` := C` −Q` with dense orbits. The study of Γ` (or,
rather, of its abelianization) when ` varies over the set of primes not dividing MD will be the
goal of the next two subsections.

2.2. Finiteness of Γab
` . We begin our discussion with a direct proof of the finiteness of the

abelianization Γab
` of Γ` for all ` -MD, which is a well-known fact (cf., e.g., [19]). The reader

is referred to [25, Ch. VIII and IX] (in particular, to [25, Proposition 5.3, p. 324]) for general
results of this type.

Before proving the proposition we are interested in, let us introduce some notation. Let

π1, π2 : XD
0 (M`) −→ XD

0 (M), ΓD0 (M`)z
π17−→ ΓD0 (M)z, ΓD0 (M`)z

π27−→ ΓD0 (M)ω`z

be the two natural degeneracy maps. Here ω` is an element in R(M`) of reduced norm ` that
normalizes ΓD0 (M`). As a piece of notation, for any element γ in (respectively, subgroup G

of) ΓD0 (M`) we shall write γ̂ := ω`γω
−1
` (respectively, Ĝ := ω`Gω

−1
` ). Moreover, let

π∗ := π∗1 ⊕ π∗2 : H1

(
XD

0 (M),Z
)2 −→ H1

(
XD

0 (M`),Z
)

and
π∗ := (π1,∗, π2,∗) : H1

(
XD

0 (M`),Z
)
−→ H1

(
XD

0 (M),Z
)2

be the maps induced in homology by pull-back and push-forward, respectively. In terms of
group homology, they correspond to the maps

π∗ := (π1,∗, π2,∗) : H1

(
ΓD0 (M`),Z

)
−→ H1

(
ΓD0 (M),Z

)2
induced by corestriction and restriction, respectively.
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Proposition 2.1. The group Γab
` is finite for all primes ` -MD.

Proof. As shown in [22, equation (30)], there is a long exact sequence in homology

H1

(
ΓD0 (M`),Z

) π∗−→ H1

(
ΓD0 (M),Z

)2 −→ H1(Γ`,Z)

−→ H0

(
ΓD0 (M`),Z

)
−→ H0

(
ΓD0 (M),Z

)2
.

(1)

Since the actions on Z are trivial, the last homomorphism can be naturally identified with
the diagonal embedding of Z into Z2, which is obviously injective. Thus the exactness of (1)
implies that coker(π∗) ' H1(Γ`,Z), which in turn is isomorphic to Γab

` . But in the proof of
[22, Lemma 6.2] it is shown that the endomorphism π∗ ◦ π∗ is injective with finite cokernel.
Since coker(π∗) is a quotient of coker(π∗ ◦ π∗), it follows that Γab

` is finite. �

2.3. Results on the support of Γab
` . In this subsection we study the support (i.e., the set

of primes dividing the order) of Γab
` , which is finite by Proposition 2.1, as ` varies in the set of

primes not dividing MD. Thanks to Ihara’s Lemma, in the case of modular curves (i.e., when
D = 1) the size of Γab

` is controlled in [29, Theorem 4.3], and an explicit result on the support

of Γab
` has been given by Dasgupta in [12]. Namely, in [12, Proposition 3.7] it is shown that

the primes in this set are divisors of 6φ(M)(`2 − 1) where φ is the classical Euler function.
Assume D > 1. The extra difficulties in the non-split quaternionic setting arise from the

fact that the counterpart of [29] is not yet available. Results of this type would follow, for
instance, if Γ` had the so-called “congruence subgroup property”. In this case, it might be
possible to show that the support of Γab

` is contained in the set of primes dividing φ(M), thus
showing that it is in fact independent of `. See [7] for an account of this problem.

We will obtain results on the support of Γab
` by means of a theorem of Diamond and Taylor

([14, Theorem 2]) which represents a weak analogue of Ihara’s Lemma for Shimura curves.
To begin our study, observe that the two coverings π1 and π2 of §2.2 give rise by Picard

functoriality to a homomorphism of abelian varieties

ξ : JD0 (M)⊕ JD0 (M) −→ JD0 (M`)

between Jacobians. The kernel of ξ is isomorphic to Hom(Γab
` ,U) where U is the group of

complex numbers of norm 1. Thus we see that if a prime number p is in the support of Γab
`

then the map
ξp : JD0 (M)[p]⊕ JD0 (M)[p] −→ JD0 (M`)[p]

induced by ξ on the p-torsion subgroup is not injective. We study the kernel of ξp by means
of [14, Theorem 2].

To start with, let us fix some notation. For any prime q - D choose an isomorphism
ϕq : B ⊗Q Qq ' M2(Qq) of Qq-algebras in such a way that for all q|M one has

ϕq(R⊗ Zq) =

{(
a b
c d

)
∈ M2(Zq)

∣∣∣ c ≡ 0 (mod qn(q))

}
where qn(q) is the exact power of q dividing M . We also require that ϕ` satisfies the additional
condition

ϕ`(R
′ ⊗ Z`) =

{(
a b
c d

)
∈ M2(Z`)

∣∣∣ c ≡ 0, d ≡ 1 (mod `)

}
.

For every q as above and every integer m ≥ 0 write Γloc
0 (qm) for the subgroup of GL2(Zq)

consisting of matrices
(
a b
c d

)
with c ≡ 0 (mod qm). We further denote by Γloc

1 (qm) the subgroup

of Γloc
0 (qm) consisting of matrices

(
a b
c d

)
with d ≡ 1 (mod qm) and c ≡ 0 (mod qm). For primes

q - D let
iq : B ↪−→ GL2(Qq)

denote the composition of the canonical inclusion B ↪→ B ⊗ Qq with isomorphism ϕq. Let

ΓD1 (M) be the subgroup of ΓD0 (M) consisting of those elements γ such that iq(γ) ∈ Γloc
1 (qn(q))
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for all q|M . Moreover, let Q ≥ 1 be the smallest integer such that MQ ≥ 4 and ` - Q (so
Q = 1 if M ≥ 4) and define ΓD1 (MQ) as the subgroup of ΓD1 (M) consisting of those elements
γ such that iq(γ) ∈ Γloc

1 (q). Finally, consider the subgroup ΓD1,0(MQ, `) of ΓD1 (MQ) whose

elements are the γ such that i`(γ) ∈ Γloc
0 (`). Write XD

1 (M), XD
1 (MQ) and XD

1,0(MQ, `) for

the compact Shimura curves associated with ΓD1 (M), ΓD1 (MQ) and ΓD1,0(MQ, `), respectively,

and let JD1 (M), JD1 (MQ) and JD1,0(MQ, `) denote their Jacobian varieties. For i = 1, 2 the

inclusion ΓD1,0(MQ, `) ⊂ ΓD1 (MQ) induces coverings

ϑi : XD
1,0(MQ, `) −→ XD

1 (MQ)

defined, as above, by ϑ1([z]) = [z] and ϑ2([z]) = [ω`(z)]. By Picard functoriality, we obtain a
homomorphism

ϑ : JD1 (MQ)⊕ JD1 (MQ) −→ JD1,0(MQ, `)

between Jacobians. Further, the inclusions

ΓD1 (MQ) ⊂ ΓD1 (M) ⊂ ΓD0 (M)

induce converings of the relevant Riemann surfaces and thus, again by Picard functoriality,
homomorphisms σ : JD0 (M) → JD1 (M) and η : JD1 (M) → JD1 (MQ). Finally, the inclusion
ΓD0 (M`) ⊂ ΓD1,0(MQ, `) gives a homomorphism ρ : JD0 (M`)→ JD1,0(MQ, `). These maps fit in
the commutative diagram

(2) JD0 (M)⊕ JD0 (M)
σ⊕σ //

ξ

��

JD1 (M)⊕ JD1 (M)
η⊕η // JD1 (MQ)⊕ JD1 (MQ)

ϑ

��
JD0 (M`)

ρ // JD1,0(MQ, `).

Since σ and η arise by Picard functoriality from coverings of Riemann surfaces, their kernels
are finite. Thus the kernels of σ ⊕ σ and η ⊕ η are finite too, and we denote by C1 and C2

their orders. Note that C1 and C2 do not depend on ` (the kernel of σ is, by definition, the
Shimura subgroup of JD0 (M) and its size is known to divide φ(M): see [21]).

Observe that the kernel of ϑ is finite as well. To show this, note that the maps ϑ1 and ϑ2

induce, this time by Albanese functoriality, a homomorphism

ϑ′ : JD1,0(MQ, `) −→ JD1 (MQ)⊕ JD1 (MQ)

on Jacobians, and the composition ϑ′ ◦ ϑ is represented by the matrix
( `+1 T`
T` `+1

)
. Since the

eigenvalues of T` are bounded by 2
√
`, we see that ϑ′ ◦ ϑ is injective on tangent spaces, and

thus its kernel is finite. So the kernel of ϑ is finite; we denote its cardinality by C(`). In the
following we study the size of C(`). We first note that if a prime p divides C(`) then the map

ϑp : JD1 (MQ)[p]⊕ JD1 (MQ)[p] −→ JD1,0(MQ, `)[p]

induced by ϑ on the p-torsion subgroup is not injective.
For any discrete subgroup G of SL2(R) denote by S2(G,C) the C-vector space of cusp forms

of weight 2 and level G. Let F = {f1, . . . , fh}, where h is the dimension of JD1 (MQ), be a
basis of S2

(
ΓD1 (MQ),C

)
consisting of eigenforms for the action of the Hecke algebra and (at

the cost of renumbering) assume that {f1, . . . , fm} is a set of representatives for the set of
orbits of F under the action of GQ. Denote by A1 = Af1 , . . . , Am = Afm the abelian varieties
associated with these forms via the Eichler–Shimura construction, fix an isogeny

JD1 (MQ)
∼−→

m∏
i=1

Ai
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and let C3 be the order of its kernel, which of course does not depend on `. By the Jacquet–
Langlands correspondence, each of the abelian varieties Ai is isogenous over Q to the abelian
variety Af0,i associated with a classical modular form f0,i ∈ S2

(
Γ1(MDQ),C

)
for the congru-

ence subgroup Γ1(MDQ) ⊂ SL2(Z).
For every i = 1, . . . ,m fix an isogeny ψi : Ai → Af0,i and denote by di the size of its kernel.

Set C4 :=
∏m
i=1 di and notice that C4 is independent of `. Finally, recall that the mod p

representation of GQ associated with a modular form f ∈ S2

(
ΓD1 (MQ),C

)
is irreducible for

all but finitely many prime numbers p. For every i let ei be the product of the primes p such
that the GQ-representation Af0,i [p] is reducible, then set C5 :=

∏m
i=1 ei.

Now let us recall [14, Theorem 2], which is a (weak) substitute for Ihara’s Lemma in
the context of Shimura curves attached to non-split quaternion algebras. Let p be a prime
number not dividing 6MDQ`. Following [14], denote by T the image in End

(
JD1 (MQ)

)
of the polynomial ring generated over Z by the Hecke operators Tq and the spherical (i.e.,
diamond) operators Sq for primes q - MDQ. A maximal ideal m of T containing p is said to
be Eisenstein if for some integer d ≥ 1 and all but finitely many primes q with q ≡ 1 (mod d)
we have Tq − 2 ∈ m and Sq − 1 ∈ m. By [14, Theorem 2], the maximal ideals of T in the
support of ker(ϑp) are Eisenstein.

If m is a maximal ideal of T belonging to the support of S2

(
Γ1(MDQ),C

)
with residual

characteristic p then m is the kernel of the reduction modulo p of the homomorphism T→ OE
associated with one of the eigenforms f0,i ∈ S2

(
Γ1(MDQ),C

)
, where E is a suitable number

field. For simplicity, denote by f the eigenform associated with m. By [14, Proposition 2],
the ideal m is Eisenstein if and only if the mod p Galois representation ρm attached to m is
reducible. With notation as above, this can rephrased by saying that m is Eisenstein if and
only if the GQ-representation Af [p] is reducible.

The main result of this subsection is the following

Theorem 2.2. There exists an integer C ≥ 1 such that for all but finitely many primes
` -MD the support of Γab

` is contained in the set of primes dividing C`.

Proof. With notation as before, we show that the integer

C := 6C1C2C3C4C5MDQ,

which only depends on M , D and Q, does the job. More precisely, we show that if ` -MDQ
and the prime p belongs to the support of Γab

` then p divides C`. Thus fix a prime ` -MDQ.

As remarked earlier if the prime p lies in the support of Γab
` then ker(ξp) is not zero.

The first step of the proof consists in showing that if p - C3C4MDQ` but p divides the
order of ker(ϑp) then p|C5. To this aim, fix a maximal ideal m of T in the support of ker(ϑp).
Then m has residual characteristic p and is Eisenstein because p - 6MDQ`. Since

ker(ϑp) ⊂ JD1 (MQ)[p]⊕ JD1 (MQ)[p],

it follows that m belongs to the support of JD1 (MQ)[p]. As p - C3, the ideal m belongs to
the support of the T-module Ai[p] for some i ∈ {1, . . . ,m}. Next, since p - C4, the isogeny
ψi : Ai → Af0,i induces an isomorphism Ai[p] ' Af0,i [p] of GQ-modules where, as before, f0,i

is the classical cusp form associated with fi by the Jacquet–Langlands correspondence. Hence
m belongs to the support of the T-module Af0,i [p] as well. But, as pointed out before, m is
Eisenstein, so the GQ-representation Af0,i [p] is reducible, and this proves that p|C5.

The second (and final) step is an easy diagram chasing. Suppose that p - 6C3C4C5MDQ`.
Thanks to the first step, we already know that ϑp is injective (note that the order of ker(ϑp)
is a priori a power of p). The commutativity of diagram (2) shows that

ker(ξp) ⊂ ker
(
(η ⊕ η) ◦ (σ ⊕ σ)

)
,

so the order of ker(ξp) divides C1C2, whence p|C1C2. �
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3. Darmon points on Jacobians of Shimura curves

In this section assume that D > 1. Our goal is to define Darmon points on Jacobians
of Shimura curves over Q and on closely related abelian varieties. These points are lifts of
the local points on elliptic curves introduced by M. Greenberg in [15]. The constructions we
perform and the conjectures we formulate are the counterparts of those proposed by Dasgupta
in [12, §3.3] when D = 1, later conjecturally refined by Bertolini, Darmon and Dasgupta in
[5, §§1.2–1.3]. We keep the notation of Section 2 in force for the rest of the article.

3.1. Rigid uniformizations of Jacobians of Shimura curves. In this subsection we
recall, and conjecturally refine, the main results of [22].

Denote by H the maximal torsion-free quotient of the cokernel of the map π∗ introduced
in §2.2, let JD0 (M`) be the Jacobian variety of XD

0 (M`) and let JD0 (M`)`-new be its `-new
quotient, whose dimension will be denoted by g; the abelian group H is free of rank 2g. Now
consider the torus

T := Gm ⊗Z H

where Gm denotes the multiplicative group (viewed as a functor on commutative Q-algebras).
We will regard H and T as Γ`-modules with trivial action, where Γ` is the Ihara group of §2.1.
In analogy with what is proved in [12] for modular Jacobians, the abelian variety JD0 (M`)`-new

is uniformized by means of a suitable quotient of T . In order to do this, in [22, Sections 4–6]
an explicit element µ in the cohomology group H1

(
Γ`,Meas

(
P1(Q`), H

))
is introduced as

follows.
Denote by T the Bruhat–Tits tree of PGL2(Q`), by V the set of its vertices and by E the

set of its oriented edges. For any edge e ∈ E write s(e), t(e) ∈ V for its source and its target,
respectively, and ē for the same edge with reversed orientation. Let v∗ be the distinguished
vertex corresponding to the maximal order M2(Z`) and let e∗ be the edge emanating from v∗
and corresponding to the Eichler order consisting of the matrices

(
a b
c d

)
∈ M2(Z`) such that

`|c. Set v̂∗ := t(e∗).
For any abelian group M let F(V,M) and F(E ,M) denote the set of maps m : V → M

(respectively, m : E →M). Both are natural left Γ`-modules with action (γ·m)(x) := m(γ−1x)
for any γ ∈ Γ` and x ∈ V or E . Define also

F0(E ,M) :=
{
m ∈ F(E ,M) | m(ē) = −m(e)

}
and

Fhar(M) :=

{
m ∈ F0(E ,M)

∣∣∣∣ ∑
s(e)=v

m(e) = 0 for all v ∈ V

}
,

which are Γ`-submodules of F(E ,M). The Γ`-module of H-valued measures on P1(Qp) with
total mass equal to zero can be identified with Fhar(H).

Fix once and for all

• a prime number r - `DM ;
• a system of representatives {gi}`i=0 for ΓD0 (M`)\ΓD0 (M);
• a system of representatives Y = {γe}e∈E+ for ΓD0 (M`)\Γ` such that γe(e) = e∗ and of

the form

γe = gi1 ĝj1gi2 ĝj2 · · · gis ĝjs with ik, jk ∈ {0, . . . , `}

for every even oriented edge e ∈ E+.

Notice that, with these choices, for every even vertex v ∈ V+ there exists an edge e0 with
s(e0) = v such that, putting γv := γe0 , we have {γe}s(e)=v = {giγv}`i=0. This way, the set

{γv}v∈V+ is also a system of representatives for ΓD0 (M)\Γ` satisfying γv(v) = v∗ for every
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v ∈ V+. Similarly, for any odd vertex v ∈ V− we have {γe}t(e)=v = {ĝiγv}`i=0 where {γv}v∈V−
is a system of representatives for Γ̂D0 (M)\Γ` satisfying γv(v) = v̂∗ for every v ∈ V−.

The next object made its first appearance in [22, §4], where it is shown that it is indeed
well defined.

Definition 3.1. Set

µ := (Tr − r − 1) · µY ∈ H1
(
Γ`,Fhar(H)

)
= H1

(
Γ`,Meas

(
P1(Q`), H

))
where µY is the class of the cocycle

µY ∈ Z1
(
Γ`,Meas

(
P1(Q`), H

))
, µYγ (Ue) := [gγ,e] for all γ ∈ Γ` and e ∈ E+.

Here gγ,e := γeγγ
−1
γ−1(e)

∈ ΓD0 (M`) and for every g ∈ ΓD0 (M`) we write [g] ∈ H for the class of

g in the quotient H of H1

(
ΓD0 (M`),Z

)
' ΓD0 (M`)ab. Finally, Ue := γ−1

e (Z`).

By cup product, the cohomology class µ defines an integration map on the homology group
H1(Γ`,Div0H`) with values in T (C`). Composing the boundary homomorphism H2(Γ`,Z)→
H1(Γ`,Div0H`) induced by the degree map with the integration map produces a further map
H2(Γ`,Z) → T (C`) whose image is denoted by L. It turns out that L is a lattice of rank 2g
in T (Q`) which is preserved by the action of a suitable Hecke algebra. Finally, let K` denote
the (unique, up to isomorphism) unramified quadratic extension of Q`.

The following is [22, Theorem 1.1].

Theorem 3.2. The quotient T/L admits a Hecke-equivariant isogeny over K` to the rigid
analytic space associated with the product of two copies of JD0 (M`)`-new.

In fact, something more precise can be said. Write W∞ for the Atkin–Lehner involution
defined in [22, §2.2], and for any Z[W∞]-module M and sign ε ∈ {±} set Mε := M/(W∞−ε1).
Define

Tε := Gm ⊗Z Hε.

Since the cokernel of the canonical map H → H+⊕H− is supported at 2, it follows that there
exists an isogeny of 2-power degree

(3) T/L −→ T+/L+ ⊕ T−/L−

of rigid analytic tori over Q`. Then Theorem 3.2 is proved in [22] by showing that for all
ε ∈ {+,−} the quotient Tε/Lε admits a Hecke-equivariant isogeny over K` to the rigid analytic
space associated with the abelian variety JD0 (M`)`-new. In the sequel we shall assume the
following variant of [5, Conjecture 1.5].

Conjecture 3.3. If ε ∈ {+,−} then the quotient Tε/Lε is isomorphic over K` to the rigid

analytic space associated with an abelian variety J
(`)
ε defined over Q.

As in loc. cit., we expect that the abelian variety J
(`)
ε will be endowed with a natural action

of the Hecke algebra and that the isomorphism of Conjecture 3.3 will be Hecke equivariant;
moreover, we also expect that if one lets the non-trivial element of Gal (K`/Q`) act on T/L
via the Hecke operator U` then the above isomorphism will be defined over Q`. Granting
Conjecture 3.3, fix once and for all isomorphisms

(4) T±/L±
'−→ J

(`)
±

defined over K`.
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3.2. Darmon points on J
(`)
± and on JD0 (M`)`-new. In this subsection we also assume that

` is inert in K, so K` is nothing other than the completion of K at the prime above `. We
freely use the notation of [22], to which we refer for all details. Since ` is kept fixed in the
discussion to follow, for simplicity we set

Γ := Γ`.

In [22, §7.3] a class d ∈ H2
(
Γ, T (C`)

)
is introduced whose image in H2

(
Γ, T (C`)/L

)
is trivial;

moreover, the lattice L is the smallest subgroup of T (Q`) with this property. Let

r : H` −→ T

denote the GL2(Q`)-equivariant reduction map (see, e.g., [11, §5.1]) and fix once and for all a
base point τ ∈ K` −Q`, i.e., a K`-rational point on H`, such that r(τ) = v∗. The class d can
then be represented by the 2-cocycle d = dτ ∈ Z2

(
Γ, T (K`)

)
given by

(5) dγ1,γ2 := ×
∫
P1(Q`)

t− γ−1
1 (τ)

t− τ
dµYγ2(t).

It follows that there exists a map β = βτ : Γ→ T/L such that

(6) βγ1γ2 − βγ1 − βγ2 ≡ dγ1,γ2 (mod L)

for all γ1, γ2 ∈ Γ. Notice that β is well defined only up to elements of Hom(Γ, T/L).
Denote by ϑ : K ↪→ R the embedding fixed at the beginning of this paper and choose also

an embedding K ↪→ C`. If O is an order of K then an embedding ψ : K ↪→ B is said to
be an optimal embedding of O into R if ψ−1(R) = O. Denote by Emb(O, R) the set of such
embeddings. For every ψ ∈ Emb(O, R) there is a unique zψ ∈ H` ∩K such that

ψ(α)

(
zψ
1

)
= α

(
zψ
1

)
for all α ∈ K.

Define

HO` :=
{
zψ
∣∣ ψ ∈ Emb(O, R)

}
⊂ H` ∩K.

Let zψ ∈ HO` and let z′ψ be its conjugate over Q. By Dirichlet’s unit theorem, the abelian

group of units in O× of norm 1 is free of rank 1; let γψ be the generator of this group such
that ϑ(γψ) > 1 if ϑ(zψ) > ϑ(z′ψ) and such that ϑ(γψ) < 1 if ϑ(zψ) < ϑ(z′ψ).

Let t = t` denote the exponent of Γab. Set

Φ(zψ) := t · β
(
ψ(γψ)

)
∈ T (K`)/L.

Multiplication by t ensures that Φ(zψ) does not depend on the choice of a map β as above.
Actually, the point Φ(zψ) depends only on the Γ-orbit of zψ, so we can consider

Φ([zψ]) := Φ(zψ) ∈ T (K`)/L

where [zψ] is the class of zψ in Γ\(H` ∩K).

Let ν± : T/L→ J
(`)
± be the two maps obtained by composing isogeny (3) with the canonical

projections onto the factors and then with isomorphisms (4).

Definition 3.4. The Darmon points on J
(`)
± attached to O are the points

P±ψ := ν±
(
Φ([zψ])

)
∈ J (`)
± (K`)

for zψ ∈ HO` .



12 MATTEO LONGO, VICTOR ROTGER AND STEFANO VIGNI

When a choice of sign ε ∈ {±} has been made the point P εψ will be denoted simply by Pψ
(or even by Pd where d is the conductor of O, if the embedding ψ is understood). Although

in this article we shall ultimately work with points on J
(`)
ε for a fixed choice of sign ε, it is

worthwhile to explicitly introduce Darmon points on Jacobians of Shimura curves. To do this,
choose isogenies

(7) T±/L± −→ JD0 (M`)`-new

over K` and write λ± : T/L→ JD0 (M`)`-new for the two maps obtained by composing isogeny
(3) with the canonical projections onto the factors and then with isogenies (7).

Definition 3.5. The Darmon points on JD0 (M`)`-new attached to O are the points

λ±
(
Φ([zψ])

)
∈ JD0 (M`)`-new(K`)

for zψ ∈ HO` .

If A is an elliptic curve over Q of conductor N = DM then the points introduced in
Definition 3.5 map to the local points on A defined by M. Greenberg in [15] under the modular
projection JD0 (M`)`-new → A.

We conclude this subsection by stating the algebraicity properties conjecturally satisfied by
our Darmon points. Write H for the narrow ring class field of K attached to O and denote
by

(a, ψ) 7−→ ψa

the action of a ∈ Pic+(O) on ψ ∈ E(O, R) as described, e.g., in [32, Ch. III, §5C] (see also
Proposition 4.2). Finally, let Pic+(O) be the narrow class group of O and let

rec : Pic+(O)
'−→ Gal (H/K)

be the isomorphism induced by the reciprocity map of global class field theory.
For the purposes of the present paper, we formulate our rationality conjecture only for

Darmon points on J
(`)
± , but completely analogous statements could be given for points on

JD0 (M`)`-new as well.

Conjecture 3.6. If zψ ∈ HO` then P±ψ ∈ J
(`)
± (H) and

P±ψa = rec(a)−1
(
P±ψ
)

for all a ∈ Pic+(O).

This is the analogue of [5, Conjecture 1.7] and is a refinement of [12, Conjecture 3.9], which
in turn is the counterpart of [10, Conjectures 5.6 and 5.9]. From here on we shall assume the
validity of Conjecture 3.6.

4. Algebraic parts of special values and a theorem of Popa

Let E/Q be an elliptic curve of conductor N and let K be a real quadratic field as in the
introduction; moreover, again with the notation of the introduction, set

D :=
∏
q∈Σ

q ≥ 1, M := N/D.

Let f denote the modular form on ΓD0 (M) (well defined up to scalars) associated with f0 by
the Jacquet–Langlands correspondence; in particular, if D = 1 then f = f0. In this section
we introduce the algebraic part of the special value at s = 1 of the L-function

LK(E,χ, s) = LK(f0, χ, s) = LK(f, χ, s)

and describe some consequences of a formula proved by Popa in [27].
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4.1. Review of the group structure of Pic+(Oc). Recall the notation of the introduction;
in particular, let c ≥ 1 be an integer prime to δKN . As before, the reciprocity map of global
class field theory provides a canonical isomorphism

rec : Pic+(Oc)
'−→ Gc

where Gc is the Galois group over K of the narrow ring class field of K of conductor c. Let
now Pic(Oc) be the Picard group of Oc, that is the group of homothety classes of proper
Oc-ideals of K; class field theory then identifies Pic(Oc) with the Galois group over K of the
(weak) ring class field Kc of K of conductor c. It turns out that if h(c) is the order of Pic(Oc)
and h+(c) is the order of Pic+(Oc) then h+(c)/h(c) = 1 or 2, so Hc is an extension of Kc of
degree at most 2 (see, e.g., [8, Ch. 15, §I]).

Since (c, δK) = 1 by assumption, the principal ideal (
√
δK) is a proper Oc-ideal of K, so

we can consider its class DK in Pic+(Oc). Of course, D2
K = 1, hence DK is either trivial or

of order 2. Furthermore, there is a short exact sequence

(8) 0 −→ {1,DK} −→ Pic+(Oc) −→ Pic(Oc) −→ 0,

so the natural surjection Pic+(Oc) � Pic(Oc) is an isomorphism (i.e., h+(c) = h(c)) precisely
when DK is trivial. Equivalently, Pic+(Oc) = Pic(Oc) if and only if the order Oc has a unit
of norm −1. In general, sequence (8) does not split; in fact, it splits if and only if the integer
δK is not a sum of two squares (see [8, Ch. 14, §B]).

Now define the Galois element

σK := rec(DK) ∈ Gc.

It follows that σK is trivial when h+(c) = h(c) and has order 2 otherwise.
The automorphism σK plays a special role in our considerations because it allows us to

introduce, as in [2], a natural notion of parity for characters of Gc. As before, write Ĝc for
the group of complex-valued characters of Gc.

Definition 4.1. A character χ ∈ Ĝc is said to be even (respectively, odd) if χ(σK) = 1
(respectively, χ(σK) = −1).

Equivalently, a character is even if it factors through Gal (Kc/K), and is odd otherwise. In
particular, if h+(c) = h(c) then σK = 1 and all characters of Gc are even.

4.2. Oriented optimal embeddings. Equip R and Oc with local orientations at prime
numbers dividing N = DM , i.e., ring homomorphisms

Oq : R −→ kq, oq : Oc −→ kq

for every prime q|N where kq stands for the finite field with q (respectively, q2) elements if
q|M (respectively, q|D).

Write Emb(K,B) for the set of embeddings of K into B, which is non-empty because all
the primes at which B is ramified are inert in K. The group B× acts on Emb(K,B) by
conjugation on B and the stabilizer of ψ ∈ Emb(K,B) is the (non-split) torus ψ(K×). We
say that ψ ∈ Emb(K,B) is an oriented optimal embedding of Oc into R if ψ ∈ Emb(Oc, R)
and

Oq ◦ ψ|Oc = oq

for every prime q|N . The set of all such embeddings will be denoted by E(Oc, R), and the
cardinality of the set of ΓD0 (M)-conjugacy classes of elements of E(Oc, R) is h+(c).

Let ω∞ ∈ R× be an element of reduced norm −1. Note that ω∞ normalizes ΓD0 (M); in
fact, all such elements lie in a single orbit for the action of ΓD0 (M). For any γ ∈ B× set

(9) γ∗ := ω∞γω
−1
∞ .
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In particular, γ∗ ∈ R when γ ∈ R. Moreover, if ψ ∈ E(Oc, R) then it is immediate to check
that

ψ∗ := ω∞ψω
−1
∞

is in E(Oc, R) too. By definition, if ψ(
√
δK) = γ then ψ∗(

√
δK) = γ∗.

Proposition 4.2. There exists a bijection

F : E(Oc, R)/ΓD0 (M) −→ Pic+(Oc)
such that F ([ψ∗]) = DK · F ([ψ]) for all ψ ∈ E(Oc, R).

Proof. To begin with, the claimed correspondence is not canonical, as E(Oc, R)/ΓD0 (M) is
naturally a torsor under the action of Pic+(Oc). In order to describe it, we are thus led to fix
an auxiliary optimal embedding ψ0 ∈ E(Oc, R). We can now provide an explicit bijection

(10) Pic+(Oc) −→ E(Oc, R)/ΓD0 (M)

as follows. Given the class [a] ∈ Pic+(Oc) of an ideal a, the set Rψ0(a) is a left ideal, which is
known to be principal because B is indefinite. Since n(R×) = {±1}, we may find an element
a ∈ R with reduced norm n(a) > 0 such that Rψ0(a) = Ra, this a being well defined up to
elements in ΓD0 (M). Set

ψ[a] := aψ0a
−1 ∈ E(Oc, R).

It is easy to check that the rule [a] 7→
[
ψ[a]

]
induces a well-defined bijection as in (10). The

inverse of (10) can then be taken to be the searched-for F in the statement of the proposition.
Finally, notice that if a = b · (

√
δK) then we can take

a = ω∞ · b · ψ0(
√
dK)

where b ∈ R is such that n(b) > 0 and Rψ0(b) = Rb. Hence

ψa =
(
ω∞ · b · ψ0(

√
dK)

)
ψ0

(
ψ0(
√
dK)−1 · b−1 · ω−1

∞
)
.

Since ψ0(
√
dK)ψ0ψ0(

√
dK)−1 = ψ0 because Oc is a commutative ring, we conclude that

ψ[b]DK = ψ∗[b].

Thus
F ([ψ∗]) = DK · F ([ψ])

for all ψ ∈ E(Oc, R), as was to be shown. �

We choose once and for all an optimal embedding ψ0 ∈ E(Oc, R) and regard the bijection
F of Proposition 4.2, built out of ψ0, as fixed. Notice that, by this proposition, [ψ∗] = [ψ] if
and only if h+(c) = h(c). Observe also that this is the case precisely when ω∞ can be taken
to lie in Oc. Consider the composition

G := rec ◦ F : E(Oc, R)/ΓD0 (M) −→ Gc,

which is a bijection satisfying

(11) G([ψ∗]) = σK ·G([ψ])

for all ψ ∈ E(Oc, R). Now for every σ ∈ Gc choose an embedding

ψσ ∈ G−1(σ),

so that the family {ψσ}σ∈Gc is a set of representatives of the ΓD0 (M)-conjugacy classes of
oriented optimal embeddings of Oc into R. If γ, γ′ ∈ R write γ ∼ γ′ to indicate that γ and γ′

are in the same ΓD0 (M)-conjugacy class, and adopt a similar notation for (oriented) optimal
embeddings of Oc into R. Since

G([ψ∗σ]) = σK ·G([ψσ]) = σKσ
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by equality (11), we deduce that

(12) ψ∗σ ∼ ψσKσ
for all σ ∈ Gc.

After choosing a (fundamental) unit εc of Oc of norm 1, normalized so that εc > 1 with
respect to the fixed real embedding of K, define

(13) γσ := ψσ(εc) ∈ ΓD0 (M)

for all σ ∈ Gc. As an immediate consequence of (12) and (13), one has

(14) γ∗σ = ψ∗σ(εc) ∼ ψσKσ(εc) = γσKσ

for all σ ∈ Gc. This seemingly innocuous conjugacy relation will play a crucial role in the
proof of Proposition 4.4.

4.3. Homology of Shimura curves and complex conjugation. Let TM = TDM be the
algebra of Hecke operators acting on cusp forms of weight 2 on ΓD0 (M), which is generated
over Z by the Hecke operators T` for primes ` - DM and Uq for primes q|M . The algebra TM
acts naturally on the (singular) homology group H1

(
XD

0 (M),Z
)
. As before, let a` ∈ Z be the

eigenvalue of f for the action of the Hecke operator T` (respectively, U`) if ` -M (respectively,
if `|M). Set

If :=
〈
T` − a`, ` - DM ; Uq − aq, q|M

〉
⊂ TM ,

so that If is the kernel of the algebra homomorphism

(15) ϕf : TM −→ Z, T` 7−→ a`, Uq 7−→ aq

determined by f . As a piece of notation, for any TM -module A write Af := A/IfA for the
maximal quotient of A on which TM acts via ϕf .

We want to embed XD
0 (M) into its Jacobian. If D = 1 then let

(16) ζ : X0(M) −→ J0(M)

be the usual map sending the cusp ∞ on X0(M) to the origin of J0(M).
If D > 1 then, following [33], let the Hodge class be the unique ξ ∈ Pic(XD

0 (M)) ⊗ Q of
degree 1 on which the Hecke operators at primes not dividing M act as multiplication by their
degree (see [33, p. 30] for an explicit expression of ξ and [9, §3.5] for a detailed exposition).
Writing JD0 (M) for the Jacobian variety of XD

0 (M), one can define a map

XD
0 (M) −→ JD0 (M)⊗Q

by sending a point x ∈ XD
0 (M) to the class [x]−ξ. Multiplying this map by a suitable integer

m� 0 gives a finite embedding

(17) ζ : XD
0 (M) −→ JD0 (M)

defined over Q (cf. [9, §3.5]), which we fix once and for all.
Choose a parametrization

JD0 (M) −→ E

defined over Q, whose existence is guaranteed by the modularity of E and (when D > 1) the
Jacquet–Langlands correspondence. Denote by

πE : XD
0 (M) −→ E,

the surjective morphism over Q obtained by pre-composing the parametrization above with
the map ζ defined either in (16) or in (17). Let now dE be the degree of πE , and if T is a
finite set of prime numbers write ZT for the localization of Z in which the primes in T are
inverted. Throughout this article we fix a (minimal) finite set of primes S such that

• all prime divisors of 6dE belong to S;
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• the ZS-module H1

(
XD

0 (M),ZS
)
f

is torsion-free.

The universal coefficient theorem for homology ensures that this can actually be done. Then
push-forward gives an isomorphism

(18) πE,∗ : H1

(
XD

0 (M),ZS
)
f

'−→ H1(E,ZS).

Remark 4.3. Although – in order to make our choice somewhat more canonical – the set
S is taken to be minimal, enlarging S does not affect the above two properties, and so all
statements proved remain valid when S is replaced by any set containing it. This freedom of
modifying the size of S will be exploited in the proof of Theorem 6.3.

LetH be the complex upper half-plane and let Π : H → XD
0 (M) be the canonical surjection.

For every point z0 ∈ H there is a group homomorphism

(19) ΓD0 (M) −→ π1

(
XD

0 (M),Π(z0)
)

defined by the following recipe: if γ ∈ ΓD0 (M) and α : [0, 1] → H is a path from z0 to γ(z0)
then the map (19) sends γ to the (strict) homotopy class of the loop Π ◦ α around Π(z0).
Since H is simply connected, this class does not depend on the choice of α.

By Hurewicz’s theorem, the abelianization of π1

(
XD

0 (M),Π(z0)
)

is canonically isomorphic

to H1

(
XD

0 (M),Z
)
, hence there is a group homomorphism

[ · ] : ΓD0 (M) −→ H1

(
XD

0 (M),ZS
)

which is independent of the choice of the base point z0 in H.
Recall the elements γσ ∈ ΓD0 (M) with σ ∈ Gc that were introduced in §4.2. Since the group

H1

(
XD

0 (M),ZS
)

is abelian, for each σ ∈ Gc the homology class [γσ] does not depend on the

representative ψσ of the ΓD0 (M)-conjugacy class of (oriented) optimal embeddings in terms of
which γσ was defined (cf. equation (13)).

Let now ε ∈ R× be a unit of norm −1 and let τ denote the involution on H given by
z 7→ ε(z̄) where z̄ is the conjugate of the complex number z. Since ΓD0 (M) is a normal
subgroup of R×, the map τ descends to an involution on XD

0 (M) by the formula

(20) Π(z)τ = Π
(
ε(z̄)

)
for all z ∈ H; according to Shimura, this action does not depend on the choice of an ε as
above and coincides with the natural action of complex conjugation on the Riemann surface
XD

0 (M) (see, e.g., [31] for details).
The rule (20) induces an action of τ on the homology of XD

0 (M). With notation as in (9),
by definition of the homomorphism [ · ], for all γ ∈ ΓD0 (M) one has

(21) [γ]τ = [γ∗]

in H1

(
XD

0 (M),ZS
)
. The involution τ restricts to a permutation of the subset

{
[γσ]

}
σ∈Gc ; the

understanding of this permutation provided by equation (14) will be crucial for our definition
of the algebraic part of LK(E,χ, 1).

4.4. The algebraic part. Here we introduce the algebraic part of the special value of
LK(E,χ, s) at the critical point s = 1. Set

Iχ :=
∑
σ∈Gc

χ−1(σ)[γσ] ∈ H1

(
XD

0 (M),Z[χ]S
)
.

Since the [γσ] do not depend on z0 in H, the cycle Iχ is independent of z0. Consider the
push-forward

Iχ,E := πE,∗(Iχ) ∈ H1(E,Z[χ]S),
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write H1

(
XD

0 (M),Z[χ]S
)±

for the eigenspace of H1

(
XD

0 (M),Z[χ]S
)

on which the involution
τ acts as multiplication by ±1, and adopt a similar convention for H1(E,Z[χ]S). Since the
morphism πE is defined over Q, one has

Iχ ∈ H1

(
XD

0 (M),Z[χ]S
)ε

=⇒ Iχ,E ∈ H1(E,Z[χ]S)ε

for ε ∈ {+,−}. The reader is suggested to compare our homology cycle Iχ,E with the twisted
sum of period integrals I(f, χ) introduced in [2, p. 191].

The next result says that τ acts either as +1 or as −1 on Iχ according to the parity of χ
that was introduced in Definition 4.1.

Proposition 4.4. The cycle Iχ lies in the +1-eigenspace (respectively, −1-eigenspace) for τ
if χ is even (respectively, odd).

Proof. Thanks to equality (21) and the conjugacy relation of equation (14), one has

Iτχ =
∑
σ∈Gc

χ−1(σ)[γσ]τ =
∑
σ∈Gc

χ−1(σ)[γ∗σ] =
∑
σ∈Gc

χ−1(σ)[γσKσ]

= χ−1(σK) ·
( ∑
σ∈Gc

χ−1(σKσ)[γσKσ]

)
= χ(σK) ·

( ∑
ς∈Gc

χ−1(ς)[γς ]

)
= χ(σK)Iχ,

whence the claim. �

Keeping in mind that H1(E,Z) identifies with the lattice of periods associated with a
Weierstrass equation for E, it can be checked that both H1(E,Z[χ]S)+ and H1(E,Z[χ]S)−

are free of rank one over Z[χ]S ; here we fix canonical generators α+
E and α−E of these two

eigenspaces over Z[χ]S as described in [26, §2.2].
Now suppose that Iχ ∈ H1

(
XD

0 (M),Z[χ]S
)ε

with ε ∈ {+,−}: by Proposition 4.4, the
nature of ε depends on the parity of χ. Let LK(E,χ, 1)S be the unique element of Z[χ]S such
that the equality

(22) Iχ,E = LK(E,χ, 1)S · αεE
holds in H1(E,Z[χ]S).

Definition 4.5. The element LK(E,χ, 1)S ∈ Z[χ]S appearing in (22) is the algebraic part of
LK(E,χ, 1).

Since the finite set S has been fixed once and for all, from here on we drop the dependence
of the algebraic part of LK(E,χ, 1) on S from the notation and simply write LK(E,χ, 1) in
place of LK(E,χ, 1)S .

Before we proceed to crucial considerations on the vanishing of LK(E,χ, 1), a few comments
are in order.

Remark 4.6. By construction, Iχ naturally belongs to the submodule H1

(
XD

0 (M),Z[χ]
)
. In

fact, as in [5], the need to localize at S will become evident only later, but for clarity of
exposition we decided to introduce the required formalism at the outset of our work.

Remark 4.7. The definition of the algebraic part of the special value LK(E,χ, 1) given by
Bertolini, Darmon and Dasgupta in [5] is slightly different. In fact, LK(E,χ, 1) is defined in
[5, Section 2] to be the natural image of Iχ in H1

(
XD

0 (M),Z[χ]S
)
f

(note, however, that the

authors of loc. cit. only consider the classical case of modular curves, with c = 1 and trivial
χ). On the other hand, tensoring the isomorphism in (18) with Z[χ]S over ZS shows that the
two definitions of LK(E,χ, 1) are essentially equivalent.
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4.5. Vanishing of the special value. The goal of this subsection is to prove that the special
value of LK(E,χ, s) vanishes exactly when its algebraic part does. This is a consequence of a
result proved by Popa in [27, Section 5] and reformulated in more classical terms in [27, Section
6] when D = 1 and χ is unramified. In this special case, Popa’s computations are based on a
very explicit description of a bijection between suitable ideal classes and conjugacy classes of
optimal embeddings. While it seems difficult to exhibit such an explicit correspondence when
D > 1, Proposition 4.2 provides sufficient information to allow for a “classical” formulation
of Popa’s theorem in the general setting as well.

The result we are interested in is the following

Theorem 4.8 (Popa). The special value LK(E,χ, 1) is non-zero if and only if LK(E,χ, 1) is
non-zero.

Proof. As already remarked, this is a consequence of the formula for LK(E,χ, 1) proved by
Popa in [27]. Since the results of Popa are expressed in the adelic language of automorphic
representations, we explain how to deduce the theorem in the formulation that is convenient
for our purposes. In fact, in equality (27) we give an explicit formula for LK(E,χ, 1) when
the character χ is not necessarily trivial; in doing this, we freely use the notation of [27].

First of all, observe that, due to the normalization commonly adopted in automorphic-
theoretic contexts (cf. [20, §5.14]), the special value of LK(E,χ, s) at s = 1 corresponds to
L(1/2, πf × πχ) in [27]. As recalled in §4.2, the ΓD0 (M)-conjugacy classes of oriented optimal
embeddings of Oc into R are in bijection with the elements of the Galois group Gc. With
arguments analogous to those exposed in [27, Section 6], if ωf := 2πif(z)dz is the differential

on XD
0 (M) associated with f one then obtains an equality

(23) |l(φf )|2 =

∣∣∣∣∣ ∑
σ∈Gc

χ−1(σ)

∫ γσ(z0)

z0

f(z)dz

∣∣∣∣∣
2

=

∣∣∣∣ ∫
Iχ

ωf

∣∣∣∣2
where l is a certain linear form on a suitable space of automorphic forms (see [27, p. 852]) and
φf is the automorphic form on GL2(A) which can be attached to f as in [27, p. 857]. Equality
(23) is the analogue (with k = 1) of the formula given, in the split case, in [27, p. 862] for
an unramified χ (in this setting, see also [27, Theorem 6.3.1], which provides a formulation of
Popa’s results suitable for the arithmetic applications of [5]). Now [27, Theorem 5.3.9] with
k = 1 asserts that there is a non-zero constant Ω (denoted by C in loc. cit.) such that

(24) LK(E,χ, 1) =
ΩNc2

√
δK

∏
`|Nc

(
1 +

1

`

)
|l(φf )|2;

the explicit expression of Ω in the case where c = 1 can be found in [27, §5.4].
Combining equations (23) and (24) yields immediately the formula

(25) LK(E,χ, 1) =
ΩMc2

√
δK

∏
`|Mc

(
1 +

1

`

)∣∣∣∣ ∫
Iχ

ωf

∣∣∣∣2,
and the claim of the theorem follows from (25) by passing to the push-forward

Iχ,E = πE,∗(Iχ) ∈ H1(E,Z[χ]S).

Namely, let ωE be a Néron differential on the Néron model of E over Z; by [34, Theorem 5.6],
there is an equality

π∗E(ωE) = c(πE)ωf

with c(πE) ∈ C×; then one has

(26) c(πE)

∫
Iχ

ωf =

∫
Iχ,E

ωE = LK(E,χ, 1)

∫
αεE

ωE
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where ε ∈ {+,−} and Iχ ∈ H1

(
XD

0 (M),Z[χ]S
)ε

. Finally, combining (25) and (26) gives the
equality

(27) LK(E,χ, 1) =
∣∣LK(E,χ, 1)

∣∣2 · ΩMc2

c(πE)2
√
δK

∏
`|Mc

(
1 +

1

`

)∣∣∣∣ ∫
αεE

ωE

∣∣∣∣2,
and the theorem is proved. �

5. Admissible primes relative to f and p

For any prime number q fix an isomorphism E[q] ' (Z/qZ)2 by choosing a basis of E[q]
over Z/qZ and let

ρE,q : GQ −→ GL2(Z/qZ)

be the representation of GQ acting on E[q].

5.1. Choice of p. Here we introduce the restrictions on the prime numbers p under which we
will prove our main results; they are analogous to those made in [23, Assumption 4.1]. Before
doing this, recall the finite set of primes S of §4.3, the algebraic part LK(E,χ, 1) ∈ Z[χ]S
introduced in §4.4 and the prime r appearing in Definition 3.1. Finally, fix an integer C as in
Theorem 2.2.

Assumption 5.1. Suppose that LK(E,χ, 1) 6= 0. Then

(1) p 6∈ S;
(2) p - 2cNCδKh

+(c)(r + 1− ar);
(3) the Galois representation ρE,p is surjective;
(4) the image of LK(E,χ, 1) in the quotient Z[χ]S/pZ[χ]S is not zero;
(5) p - |E(Hc,q)tors| where Hc,q is the completion of Hc at a prime q dividing DM .

The “open image theorem” of Serre ([30]) ensures that condition 3 is satisfied for all but
finitely many primes p, while the torsion subgroup of E(Hc,q) is finite by a well-known the-
orem of Lutz ([24]); moreover, condition 4 excludes only a finite number of primes p since
LK(E,χ, 1) 6= 0 by Theorem 4.8. As a consequence, Assumption 5.1 is fulfilled by almost all
prime numbers p. Observe that, in order to avoid ambiguities, the condition LK(E,χ, 1) 6= 0
will always explicitly appear in the statements of our results.

Remark 5.2. Condition 5 in Assumption 5.1 is introduced in order to “trivialize” the image
of the local Kummer map at primes of bad reduction for E. The reader is referred to, e.g.,
[18] to see how one could relax Assumption 5.1 by imposing suitable local conditions at these
primes too.

5.2. Admissible primes. Let p be the prime number chosen in §5.1 and recall the quater-
nionic modular form f of weight 2 on ΓD0 (M) associated with E by the Jacquet–Langlands
correspondence. Following [5, §3.3] (see also [3, §2] and [23, §4.2] for an analogous definition
in the imaginary quadratic setting), we say that a prime number ` is admissible relative to f
and p (or p-admissible, or even simply admissible) if it satisfies the following conditions:

(1) ` - Npc;
(2) the support of Γab

` is contained in the set of prime divisors of C`;
(3) ` is inert in K;
(4) p - `2 − 1;
(5) p|(`+ 1)2 − a2

` .

Note that, thanks to Theorem 2.2, the first two conditions exclude only a finite number of
primes `. Moreover, as a consequence of condition 2 in Assumption 5.1, the prime p does not
divide the exponent t` of Γab

` for all admissible primes `.
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For every admissible prime ` choose once and for all a prime λ0 of Hc above ` (we will never
deal with more than one admissible prime at the same time, so ignoring the dependence of λ0

on ` should cause no confusion). Since admissible primes are inert in K and do not divide c,
if ` is such a prime then `OK splits completely in Hc, hence there are exactly h+(c) primes
of Hc above `. The choice of λ0 allows us to fix an explicit bijection between Gc and the set
of these primes via the rule

(28) σ ∈ Gc 7−→ σ(λ0).

The inverse to this bijection will be denoted

λ 7−→ σλ ∈ Gc,
so that σλ(λ0) = λ. Finally, an element σ ∈ Gc acts on the group rings Z[Gc] and Z/pZ[Gc]
in the natural way by multiplication on group-like elements (that is, γ 7→ σγ for all γ ∈ Gc).

Lemma 5.3. Let ` be an admissible prime relative to f and p. The local cohomology groups
H1

fin(Hc,`, E[p]) and H1
sing(Hc,`, E[p]) are both isomorphic to Z/pZ[Gc] as Z[Gc]-modules.

Proof. Since p - `2 − 1, one can mimic the proof of [3, Lemma 2.6] and show that the groups
H1

fin(K`, E[p]) and H1
sing(K`, E[p]) are both isomorphic to Z/pZ. But the prime ideal `OK of

OK splits completely in Hc, hence H1
fin(Hc,`, E[p]) and H1

sing(Hc,`, E[p]) are both isomorphic

to Z/pZ[Gc] as Fp-vector spaces. Finally, bijection (28) establishes isomorphisms which are
obviously Gc-equivariant. �

For ? ∈ {fin, sing} we fix once and for all isomorphisms

H1
? (K`, E[p]) ' Z/pZ

which will often be viewed as identifications according to convenience.
The next result is the counterpart of [23, Proposition 4.5]. In fact, since the group

Gal (Hc/Q) is generalized dihedral, with the non-trivial element ρ of Gal (K/Q) acting on
the abelian normal subgroup Gc by

σ 7−→ ρσρ−1 = σ−1,

the proof of [23, Proposition 4.5] is valid mutatis mutandis in our present context as well.

Proposition 5.4. Let s be a non-zero element of H1(Hc, E[p]). For every δ ∈ {±1} there
are infinitely many admissible primes ` such that p divides a` + δ(`+ 1) and res`(s) 6= 0.

The existence result of Proposition 5.4 will be crucially exploited in §8.5 to show the
vanishing of Selmer groups which is one of the goals of this paper.

6. Level raising and Galois representations

In this section we prove a level raising result modulo p at admissible primes (Theorem 6.3)

and an isomorphism between certain Galois representations over Fp attached to J
(`)
ε and E

(Theorem 6.4).

6.1. Raising the level in one admissible prime. As in Section 3, fix a prime ` - DM and

a character χ ∈ Ĝc whose parity is denoted by ε. Recall the modular eigenform f for ΓD0 (M)
introduced in Section 4 and the homomorphism ϕf : TM → Z of (15). Write

ϕ̄f : TM −→ Z/pZ
for the composition of ϕf with the projection Z→ Z/pZ and denote by mf its kernel, so that
mf = If + (p) where If = ker(ϕf ).

As is well known, π∗ is injective and this allows us to identify H1

(
XD

0 (M),ZS
)2

with the

submodule im(π∗) of H1

(
XD

0 (M`),ZS
)
, which is stable under the action of TM`; this provides



SPECIAL VALUES OF L-FUNCTIONS AND THE ARITHMETIC OF DARMON POINTS 21

H1

(
XD

0 (M),ZS
)2

with a natural structure of T`M -module. More precisely, π∗ is equivariant
for the actions of Tq, tq for primes q - M` and of Uq, uq for primes q|M , while it intertwines

the actions of
(
T` −1
` 0

)
on the domain and of u` on the codomain.

Thanks to [22, Lemma 6.2], the natural inclusion ker(π∗) ⊂ H1

(
XD

0 (M),Z
)2
ε

induces an
injection ker(π∗) ↪→ coker(π∗), so we may consider the Z- and ZS-modules

Φ` := coker(π∗)/ ker(π∗), Φ`,S := Φ` ⊗ ZS ,

respectively, which are endowed with canonical structures of TM`-modules and, again by [22,
Lemma 6.2], have finite cardinality.

For any abelian group M endowed with an action of the involution τ , let M± denote the
maximal quotient of M on which τ acts as ±1. Since the maps π1 and π2 of Section 3 are
defined over Q, if ε ∈ {+,−} then there are morphisms

π∗ε : H1

(
XD

0 (M),Z
)2
ε
→ H1

(
XD

0 (M`),Z
)
ε
, π∗,ε : H1

(
XD

0 (M`),Z
)
ε
→ H1

(
XD

0 (M),Z
)2
ε

and an equality Φ`,ε = coker(π∗ε )/ ker(π∗,ε).
By a slight abuse of notation, from here on we will use the symbols π∗ and π∗ to denote

also the analogues with ZS-coefficients of the maps of Section 3. For any congruence subgroup
G let S2(G) denote the C-vector space of weight 2 cusp forms on G. Write T`-old

M` and T`-new
M`

for the quotients of TM` acting faithfully, respectively, on the image S`-old
2

(
ΓD0 (M`)

)
of the

degeneracy map

S2

(
ΓD0 (M)

)
⊕ S2

(
ΓD0 (M)

)
−→ S2

(
ΓD0 (M`)

)
and on its orthogonal complement with respect to the Petersson scalar product. We keep the
notations Tq and Uq to denote Hecke operators in TM , while tq and uq will be used for those
in TM`.

Let m′f denote the ideal of TM` generated by tq − aq for primes q -M`, uq − aq for primes

q|M , u` − δ and the prime p. Tensoring π∗ and π∗ with TM`/m
′
f over TM` we obtain maps

π̄∗ : H1

(
XD

0 (M),ZS
)2/

m′f −→ H1

(
XD

0 (M`),ZS
)/

m′f

and

π̄∗ : H1

(
XD

0 (M`),ZS
)/

m′f −→ H1

(
XD

0 (M),ZS
)2/

m′f .

Lemma 6.1. The map π̄∗ is surjective.

Proof. As in the proof of Proposition 2.1, there is an exact sequence

0 −→ ker(π∗) −→ H1

(
XD

0 (M`),ZS
) π∗−→ H1

(
XD

0 (M),ZS
)2 −→ Γab

` ⊗ ZS −→ 0.

Since the image of π∗ is stable under TM`, the group Γab
` ⊗ ZS inherits an action of TM`.

Since p does not divide the cardinality of Γab
` and the residual characteristic of m′f is p, we

have Γab
` /m

′
f = 0, and the result follows. �

Proposition 6.2. There is a canonical isomorphism

coker(π̄∗ ◦ π̄∗) ' Φ`/m
′
f .

Proof. The module Φ`,S is the quotient of coker(π∗) by ker(π∗), so it is isomorphic to the

quotient of H1(XD
0 (M`),ZS) by the ZS-submodule generated by ker(π∗) and im(π∗). Hence

there is an exact sequence

(29) 〈ker(π∗), im(π∗)〉/m′f −→ H1

(
XD

0 (M`),ZS
)/

m′f −→ Φ`,S/m
′
f −→ 0

Thanks to Lemma 6.1, there is also an exact sequence

ker(π∗)/m
′
f −→ H1

(
XD

0 (M`),ZS
)/

m′f
π̄∗−→ H1

(
XD

0 (M),ZS
)2/

m′f −→ 0.
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We conclude that π̄∗ induces an isomorphism

(30) π̄∗ :
(
H1(XD

0 (M`),ZS)/m′f
)/
〈ker(π̄∗), im(π̄∗)〉 '−→ coker(π̄∗ ◦ π̄∗).

Since 〈ker(π̄∗), im(π̄∗)〉 is equal to the image of 〈ker(π∗), im(π∗)〉/m′f in H1

(
XD

0 (M`),ZS
)/

m′f
via the first map in (29), this shows that coker(π̄∗ ◦ π̄∗) is isomorphic to Φ`,S/m

′
f . Finally,

since p 6∈ S the groups Φ`,S/m
′
f and Φ`/m

′
f are canonically identified, whence the claim. �

Now we can prove the main result of this subsection.

Theorem 6.3. Suppose that ` is an admissible prime such that p|a` − δ(`+ 1) for a suitable
δ ∈ {+1,−1}. There exists a morphism

f` : T`-newM` −→ Z/pZ

such that

• f`(tq) = aq (mod p) for all primes q -M`;
• f`(uq) = aq (mod p) for all primes q|M ;
• f`(u`) = δ (mod p).

If mf` denotes the kernel of f` then there is a group isomorphism

(31) Φ`,ε/mf`
'−→ H1(E,Z)ε

/
pH1(E,Z)ε ' Z/pZ.

Proof. At the cost of enlarging S, in this proof we assume that ` + 1 is invertible in ZS (cf.

Remark 4.3). Then, since π∗ ◦ π∗ =
( `+1 T`
T` `+1

)
, the assignment (m,n) 7→ (` + 1)m − T`(n)

induces an isomorphism of groups

(32) H1

(
XD

0 (M),ZS
)2/

im(π∗ ◦ π∗)
'−→ H1

(
XD

0 (M),ZS
)/(

T 2
` − (`+ 1)2

)
which is equivariant for the action of the Hecke operators tq (respectively, Tq) for q - N` and
uq (respectively, Uq) for q|M on the left-hand (respectively, right-hand) side. Since u` acts

as
(
T` −1
` 0

)
on H1(XD

0 (M),ZS)2, we see that x ∈ H1

(
XD

0 (M),ZS
)/
pH1

(
XD

0 (M),ZS
)

is an
eigenvector for T` with eigenvalue a` ≡ δ(`+1) (mod p) if and only if (x, δ`x) is an eigenvector
for u` with eigenvalue δ. Thanks to this and (32), we find an isomorphism of groups

(33) coker(π∗ ◦ π∗)/m′f
'−→ H1

(
XD

0 (M),ZS
)/

mf .

Since coker(π∗ ◦ π∗)/m′f and coker(π̄∗ ◦ π̄∗) are canonically isomorphic, Proposition 6.2 yields
an isomorphism of groups

(34) Φ`/m
′
f
'−→ H1

(
XD

0 (M),ZS
)/

mf .

It is now immediate to check that there is a canonical isomorphism

H1

(
XD

0 (M),ZS
)/

mf ' H1

(
XD

0 (M),ZS
)
f

/
pH1

(
XD

0 (M),ZS
)
f
.

By (18), the group H1

(
XD

0 (M),ZS
)
f

is isomorphic to H1(E,ZS). Since p 6∈ S, isomorphism

(34) induces an isomorphism of groups

Φ`/m
′
f
'−→ H1(E,Z)/pH1(E,Z) ' (Z/pZ)2.

All the maps involved are equivariant for the action of τ , so we get yet another isomorphism

Φ`,ε/m
′
f
'−→ H1(E,Z)ε

/
pH1(E,Z)ε ' Z/pZ.

The action of TM` on Φ` is through its `-new quotient, so m′f is fact belongs to T`-new
M` . Since

Φ`/m
′
f is a one-dimensional Fp-vector space, the action of T`-new

M` is given by a character

f` : T`-new
M` → Z/pZ whose kernel is mf` , as was to be proved. �
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6.2. Galois representations. In this subsection we show the existence of an isomorphism of

GQ-modules J
(`)
ε [p]/mf` ' E[p] and of an isomorphism of groups Φ`,ε/mf` ' H1

sing(K`, E[p]).

Our arguments are inspired by those in [3, §5.6]. We fix an admissible prime ` and we suppose
that p | a` − δ(`+ 1).

Write GK` := Gal (Q̄`/K`) for the absolute Galois group of the local field K`. Since we are
assuming Conjecture 3.3, there is a short exact sequence of left TM`[GK` ]-modules

0 −→ Lε −→ Tε(Q̄`) −→ J (`)
ε (Q̄`) −→ 0.

Since L is a free abelian group and Tε(Q̄`) is divisible, the snake lemma implies that there is
a short exact sequence of TM`[GK` ]-modules

(35) 0 −→ Tε[p] −→ J (`)
ε [p] −→ Lε/p −→ 0

where Tε[p] and J
(`)
ε [p] are the p-torsion subgroups of Tε(Q̄`) and J

(`)
ε (Q̄`), respectively. By

tensoring the above exact sequence with TM`/mf` over TM`, and recalling that p ∈ mf` , we
find an exact sequence of TM`/mf` [GK` ]-modules

0 −→
(
Tε[p]/mf`

)/
M −→ J (`)

ε [p]/mf` −→ Lε/mf` −→ 0

for a certain TM`/mf` [GK` ]-submodule M of Tε[p]/mf` . Taking GK`-cohomology of the above
exact sequence yields an exact sequence of TM`/mf`-modules

(36) Lε/mf` −→ H1
(
K`, (Tε[p]/mf`)/M

)
−→ H1

(
K`, J

(`)
ε [p]/mf`

)
−→ H1(K`, Lε/mf`).

We first study the last term in (36). Let Qab
` be the maximal abelian extension of Q`; since

Lε/mf` is abelian and defined over K`, the cohomology group H1(K`, Lε/mf`) is equal to

the group of continuous homomorphisms Homcont

(
Gal (Qab

` /K`), Lε/mf`

)
. By local class field

theory, there is an isomorphism

Gal (Qab
` /K`) ' Ẑ×O×K` ,

where O×K` is the group of units in the ring of integers OK` of K` and Ẑ ' Gal (Qunr
` /K`) is

(isomorphic to) the Galois group of the maximal unramified extension Kunr
` of K`, which is

equal to Qunr
` because the extension K`/Q` is unramified. Now recall the short exact sequence

0 −→ O×K`,1 −→ O
×
K`
−→ (OK`/`OK`)

× −→ 0

where O×K`,1 is the group of the elements of O×K` of norm 1. Since O×K`,1 is a pro-`-group and

Lε/mf` is p-torsion, the group Homcont(O×K`,1, Lε/mf`) is trivial, hence

Homcont(O×K` , Lε/mf`) = Homcont

(
(OK`/`OK`)

×, Lε/mf`

)
= 0,

the second equality being due to the fact that p - `2 − 1 = |(OK`/`OK`)×|. It follows that
there are canonical isomorphisms of groups

Homcont

(
Gal (Qab

` /K`), Lε/mf`

)
' Homcont

(
Gal (Qunr

` /K`), Lε/mf`

)
' Hom

(
Z/pZ, Lε/mf`

)
.

Let µp be the group of p-th roots of unity in Q̄`. To study the term H1
(
K`, (Tε[p]/mf`)/M

)
in

sequence (36), first recall that Tε is isomorphic to Gm⊗Hε, so Tε[p] is isomorphic to µp⊗Hε

as a GK`-module. Since the structure of TM`-module on Tε is given by the Hecke action on
Hε, there is an isomorphism

Tε[p]/mf` ' µp ⊗ (Hε/mf`).

Furthermore, it can be easily seen that there exists a submodule N of Hε/mf` such that the
TM`/mf`-module (Tε[p]/mf`)/M is isomorphic to µp ⊗

(
(Hε/mf`)/N

)
. Now, the group GK`

acts trivially on Hε and, as a consequence of Hilbert’s Theorem 90, the group H1(K`,µp) is
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isomorphic to K×` /(K
×
` )p. Since p - `2 − 1, the quotient K×` /(K

×
` )p is isomorphic to Z/pZ.

We conclude that there are group isomorphisms

H1
(
K`, (Tε[p]/mf`)/M

)
' (Hε/mf`)/N ⊗ Z/pZ ' (Hε/mf`)/N,

the second one being a consequence of the fact that p ∈ mf` .
The connecting map in (36), which under the above identifications can be rewritten as

Lε/mf` → (Hε/mf`)/N , can be explicitly computed as follows. Let ker(π∗,ε) be the projection
of ker(π∗,ε) to Hε. As above, one has

H1(K`, Tε[p]) ' H1(K`,µp)⊗Hε ' K×` /(K
×
` )p ⊗Hε ' Z/pZ⊗Hε ' Hε/p,

and the connecting homomorphism Lε/p → H1(K`, Tε[p]) which arises by taking the GK`-
cohomology of sequence (35) can be rewritten as Lε/p→ Hε/p and is induced by composing
the natural inclusion Lε ↪→ Tε(Q`) with the valuation map

ord` : Tε(Q`) = Q×` ⊗Hε
ord`⊗id−−−−−→ Z⊗Hε = Hε.

Thanks to [22, Proposition 6.3] and the fact that all the maps involved are equivariant for the
action of τ , we have ord`(Lε) = tr

(
ker(π∗,ε)

)
where tr := Tr − r − 1.

Since the Galois action commutes with the Hecke action, it follows that the image of the
connecting homomorphism Lε/mf` → (Hε/mf`)/N is tr

(
ker(π∗,ε)/mf`

)
. The endomorphism

tr of ker(π∗,ε)/mf` is just multiplication by the reduction modulo p of ar − (r + 1), which is

an isomorphism because p - ar − (r + 1) by Assumption 5.1. Hence tr takes ker(π∗,ε)/mf`
isomorphically onto its image and induces an isomorphism

(Hε/mf`)
/(

ker(π∗,ε)/mf`

) '−→ (Hε/mf`)
/
tr
(
ker(π∗,ε)/mf`

)
.

Now recall that, by definition, Φ`,ε := coker(f∗ε )/ ker(π∗,ε), so Φ`,ε/mf` is isomorphic to the
quotient of coker(f∗ε )/mf` by the image of ker(π∗,ε)/mf` . This last quotient maps surjectively

onto (Hε/mf`)
/(

ker(π∗,ε)/mf`

)
and thus there exists a canonical surjective homomorphism

Φ`,ε/mf` −� (Hε/mf`)
/
tr
(
ker(π∗,ε)/mf`

)
.

The exact sequence of TM`/mf`-modules (36) can therefore be rewritten as

(37) 0 −→ Ψ −→ H1
(
K`, J

(`)
ε [p]/mf`

)
−→ Homcont

(
Gal (Qunr

` /K`), Lε/mf`

)
where Ψ is a suitable quotient of Φ`,ε/mf` .

Theorem 6.4. (1) The GQ-modules J
(`)
ε [p]/mf` and E[p] are isomorphic.

(2) The groups Φ`,ε/mf` and H1
sing(K`, E[p]) are isomorphic.

(3) Exact sequence (37) can be rewritten as

0 −→ Φ`,ε/mf` −→ H1(K`, E[p]) −→ Homcont

(
Gal (Qunr

` /K`), Lε/mf`

)
.

Proof. By [6] and the Eichler–Shimura relations, the quotient J
(`)
ε [p]/mf` is isomorphic as a

GQ-module to the direct sum of h ≥ 1 copies of E[p]. By [3, Lemma 2.6], the Fp-vector space
H1(K`, E[p]) has dimension 2 and can be (non-canonically) decomposed into a sum

H1(K`, E[p]) = H1
fin(K`, E[p])⊕H1

sing(K`, E[p])

of one-dimensional subspaces. The image of H1
sing(K`, E[p]) in the group of continuous

homomorphisms in exact sequence (37) is trivial. Since dimFp(Ψ) ≤ dimFp(Φ`,ε/mf`) and
dimFp(Φ`,ε/mf`) = 1 by the last claim of Theorem 6.3, we conclude that h = 1 and

Ψ ' Φ`,ε/mf` ' H
1
sing(K`, E[p]),

from which all the statements follow. �
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In light of Theorem 6.4, from here on we fix an isomorphism

(38) J (`)
ε [p]/mf` ' E[p]

of GQ-modules and an isomorphism

(39) Φ`,ε/mf` ' H
1
sing(K`, E[p])

of Fp-vector spaces.

7. Gross–Zagier type formula and Darmon points

In this section assume that D > 1. Fix throughout an admissible prime `, set

Γ := Γ`

for the Ihara group at ` and denote by t the exponent t` of Γab. Building on the arguments
and constructions of [22], in this section we prove our Gross–Zagier type formula (Theorem
7.4) relating the class modulo p of LK(E,χ, 1) to a certain twisted sum of Darmon points.
This is a generalization to the case of division quaternion algebras and arbitrary characters
of the formula proved in [5, Theorem 3.9]. In fact, a suitable extension of the arguments with
modular symbols and specializations of Stark–Heegner points described in [5, §3.3] yields the
analogue of Theorem 7.4 in the D = 1 setting.

7.1. Auxiliary results. Recall from §6.2 and the proof of Theorem 6.4 that the cokernel
of the map arising from the composition of the inclusion Lε ⊂ Tε(Q`), the valuation map
ord` : Tε(Q`) → Hε and the projection Hε � Hε/mf` , which is denoted by Ψ in (37), is
a non-trivial Fp-vector space isomorphic to Φ`,ε/mf` . For any unramified extension W/K`

denote by

(40) ∂` : J (`)
ε (W ) −→ Φ`,ε/mf`

the map that is obtained by composing the inverse of isomorphism (4) with the valuation map
ord` : Tε(W )/Lε → Hε/ord`(Lε), the canonical projection to Ψ and the isomorphism of this
Fp-vector space with Φ`,ε/mf` .

Recall the GL2(Q`)-equivariant reduction map

r : H` −→ T

and the base point τ such that r(τ) = v∗ which was fixed in §3.2. Let γ1 ∈ Γ and let
{e0, . . . , en} be a set of edges ei ∈ E+ such that

• s(e1) = v∗, s(en) = γ1(v∗) =: vn;
• t(ei) = t(ei+1) =: vi for odd indices in {1, . . . , n− 1};
• s(ei) = s(ei+1) =: vi for even indices in {2, . . . , n− 2}.

Notice that, in the above, the integer n is always even. If γ2 ∈ Γ then, by [22, Proposition
5.2], there is an equality

(41) ord`

(
×
∫
P1(Q`)

t− γ−1
1 (τ)

t− τ
dµYγ2(t)

)
=

n∑
i=0

(−1)iµYγ2(ei)

of elements in H, where µY is the cocycle introduced in Definition 3.1.

Remark 7.1. In the following we adopt the identification H1

(
ΓD0 (M),ZS

)
= ΓD0 (M)ab ⊗ ZS

and write [γ] for the natural image in H1

(
ΓD0 (M),ZS

)
of an element γ ∈ ΓD0 (M).

Now we introduce the 1-cocycle

m̃Y ∈ Z1
(

Γ,F
(
V, H1

(
ΓD0 (M),ZS

)))
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defined by the rule
m̃Yγ (v) := [gγ,v]

where gγ,v ∈ ΓD0 (M) is given by the formula

gγ,v :=

γvγγ
−1
γ−1(v)

if v ∈ V+

ω−1
` γvγγ

−1
γ−1(v)

ω` if v ∈ V−.

Note that γvγγ
−1
γ−1(v)

stabilizes v∗ (respectively, v̂∗), and thus lies in ΓD0 (M) (respectively, in

Γ̂D0 (M)), if v ∈ V+ (respectively, v ∈ V−). Hence gγ,v always lies in ΓD0 (M). We leave it
to the reader to check that m̃Y is a well-defined cocycle; see Definition 3.1 and [22, §4] for a
similar construction.

Consider the composition

pr1 : H1

(
XD

0 (M),ZS
)2

� H1

(
XD

0 (M),ZS
)2/

m′f � coker(π̄∗ ◦ π̄∗) � Φ`,ε/mf` ' Z/pZ
where the first two maps are the canonical projections, the third is induced by Proposition
6.2 and the isomorphism is that of (31). If e ∈ E then set

(42) µ̃Yγ (e) := pr1

(
m̃Yγ (s(e)), m̃Yγ (t(e))

)
.

Similarly, define also the composition

pr2 : H1

(
XD

0 (M),ZS
)
� H1

(
XD

0 (M),ZS
)/

mf ' coker(π̄∗ ◦ π̄∗) � Φ`,ε/mf` ' Z/pZ
where the first isomorphism is (33). Recall from condition 5 in Assumption 5.1 that there
exists δ ∈ {±1} such that p|a` + δ(` + 1). The isomorphism in (32) is induced by the map
(x, y) 7→ (`+ 1)x− T`(y); since p|a` − δ(`+ 1), this map is just (x, y) 7→ (`+ 1)(x− δy) from

H1

(
XD

0 (M),ZS
)2/

m′f to H1

(
XD

0 (M),ZS
)/

mf . It follows that

(43) µ̃Yγ (e) = (`+ 1)pr2

(
m̃Yγ (t(e))− δm̃Yγ (s(e))

)
.

We thus obtain that µ̃Y is also well defined with values in F0(E ,Z/pZ).
Finally, introduce the map

pr3 : H1

(
XD

0 (M`),ZS
)
−� coker(π̄∗ ◦ π̄∗) −� Φ`,ε/mf` ' Z/pZ

where the first arrow is the composition of the canonical projection

H1

(
XD

0 (M`),ZS
)
−�

(
H1(XD

0 (M`),ZS)/m′f
)/
〈ker(π̄∗), im(π̄∗)〉

with isomorphism (30), and define

µ̄Y := pr3(µY).

Lemma 7.2. µ̄Y = µ̃Y .

Proof. Fix γ ∈ Γ and e ∈ E+ and let gγ,e ∈ ΓD0 (M`) be such that γeγ = gγ,eγe′ for some
e′ ∈ E+. By Definition 3.1, one has

µ̄Yγ (e) = pr3

(
[gγ,e]

)
,

while by (42) there is an equality

µ̃Yγ (e) = pr1

(
[gγ,e], [ω

−1
` gγ,eω`]

)
.

By construction, there is a commutative triangle

H1

(
XD

0 (M`),ZS
)

��

// // coker(π̄∗ ◦ π̄∗)

H1

(
XD

0 (M),ZS
)2

55 55kkkkkkkkkkkk
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where the vertical arrow is induced by the map ΓD0 (M`)→ ΓD0 (M)2 taking γ to (γ, ω−1
` γω`)

via the canonical projections and the other two maps are the surjections already appearing
in the definitions of pr1 and pr3. This shows the required equality for even edges, and the
analogous equality for odd edges follows similarly. �

Let us denote by ∂′` the composition of the map ∂` in (40) with the isomorphism (31)
between Φ`,ε/mf` and Z/pZ. Let us also write dε for the composition of the 2-cocycle d

introduced in (5) with the map T (K`)→ J
(`)
ε (K`) defined in the obvious way. Similarly, if β

is as in (6) then let βε : Γ → J
(`)
ε (K`) be the induced map. Observe that, with this notation

in force, Definition 3.4 reads

(44) P εψ := t · βε
(
ψ(γψ)

)
∈ J (`)

ε (K`).

It is worthwhile to explicitly remark that in this section we view the Darmon points P εψ as
rational over the local field K`. In fact, the Gross–Zagier type results we are about to prove
are of a genuinely local nature, so we do not need to assume that the points we work with are
global, as predicted by Conjecture 3.6.

From (41) and Lemma 7.2 we obtain equalities

(45) ∂′`
(
dε(γ1, γ2)

)
=

n∑
i=0

(−1)iµ̄Yγ2(ei) =

n∑
i=0

(−1)iµ̃Yγ2(ei),

with the edges ei being defined as for equality (41); namely, the ei ∈ E+ satisfy

• s(e1) = v∗, s(en) = γ−1
1 (v∗) =: vn;

• t(ei) = t(ei+1) =: vi for odd indices in {1, . . . , n− 1};
• s(ei) = s(ei+1) =: vi for even indices in {2, . . . , n− 2}.

Define a function ατ : Γ→ Z/pZ by setting

ατ (γ) := −(`+ 1)pr2

(
m̃Yγ (v∗)

)
.

Observe that, by definition, ατ = ατ ′ for all τ ′ with r(τ ′) = v∗. Fix now zψ ∈ HO` and recall
the element γψ ∈ O× attached to zψ as in §3.2.

Lemma 7.3. Suppose δ = −1. The equality

∂′`(P
ε
ψ) = t · ατ

(
ψ(γψ)

)
holds in Z/pZ.

Proof. Fix γ1, γ2 ∈ Γ and e ∈ E . Choose a sequence {e0, . . . , en} of even edges joining the
vertices v∗ and γ−1

1 (v∗) as in (45). Since δ = −1, by (43) there is an equality

n∑
i=0

(−1)iµ̃Yγ2(ei) = (`+ 1)
n∑
i=0

(−1)ipr2

(
m̃Yγ (t(e)) + m̃Yγ (s(e))

)
.

The terms in the right-hand sum cancel out telescopically and we find that

(46)
n∑
i=0

(−1)iµ̃Yγ2(ei) = −(`+ 1)pr2

(
m̃Yγ (t(en))− m̃Yγ (s(e0))

)
.

Observe that

m̃Yγ1γ2(v∗)− m̃Yγ1(v∗) =
[
γ1γ2γ

−1

γ−1
2 γ−1

1 (v∗)

]
−
[
γ1γ
−1

γ−1
1 (v∗)

]
=
[
γγ−1

1 (v∗)
γ2γ
−1

γ−1
2 γ−1

1 (v∗)

]
= m̃Yγ2

(
γ−1

1 (v∗)
)
.

(47)

Combining (45), (46) and (47) we obtain

(48) ∂′`
(
dε(γ1, γ2)

)
= ατ (γ1γ2)− ατ (γ1)− ατ (γ2).
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It is then a consequence of equations (6) and (48) that both ∂′` ◦ βε and ατ split the 2-cocycle
∂′` ◦ dε ∈ Z2(Γ,Z/pZ), whence

(49) ∂′`
(
t · βε(γ)

)
= t · ατ (γ)

for all γ ∈ Γ because ∂′` is a group homomorphism. In light of (44), the claim of the lemma
follows upon taking γ = ψ(γψ) in equality (49). �

7.2. A Gross–Zagier formula. If ψ : K ↪→ B is an embedding then, as in §3.2, let zψ ∈
H` ∩K be the (unique) point such that ψ(α)

(zψ
1

)
= α

(zψ
1

)
for all α ∈ K.

Recall the set {ψσ | σ ∈ Gc} of representatives for the ΓD0 (M)-equivalence classes of optimal
embeddings of Oc into R fixed in §4.2. For simplicity, set τσ := zψσ and vσ := r(τσ) for all
σ ∈ Gc. Since the reduction map is Γ-equivariant and ` is prime to c, the stabilizer of vσ in
GL2(Q`) coincides with GL2(Z`), hence vσ = v∗ for all σ ∈ Gc. Define

(50) P εχ :=
∑
σ∈Gc

P εψσ ⊗ χ
−1(σ) ∈ J (`)

ε (K`)⊗ Z[χ]S

and, again to ease the writing, set γσ := γψσ ∈ O×c for all σ ∈ Gc.
Let [?] be the class of the element ? in a quotient group. Now we can prove our Gross–

Zagier type formula for the (algebraic part of the) special value LK(E,χ, 1), which can also
be regarded as an explicit reciprocity law in the sense of [3].

Theorem 7.4. Suppose δ = −1. Then

(∂′` ⊗ id)(P εχ) = t ·
[
LK(E,χ, 1)

]
in Z[χ]S/pZ[χ]S.

Proof. Combining Lemma 7.3 with the fact that r(τσ) = v∗ for all σ ∈ Gc gives

(51) (∂′` ⊗ id)(P εχ) = t ·
∑
σ∈Gc

ατσ
(
ψσ(γσ)

)
⊗ χ−1(σ)

in Z[χ]S/pZ[χ]S . Since ατσ
(
ψσ(γσ)

)
= pr2

(
[γσ]

)
, by definition of LK(E,χ, 1) one has∑

σ∈Gc

ατσ
(
ψσ(γσ)

)
⊗ χ−1(σ) =

[
LK(E,χ, 1)

]
in Z[χ]S/pZ[χ]S . The result then follows from equality (51). �

8. Arithmetic results and consequences

With our special value formula (Theorem 7.4) at hand, in this section we prove the results
on the vanishing of the Selmer groups and on the Birch and Swinnerton-Dyer conjecture for
E in the case of analytic rank 0 that were anticipated in the introduction.

8.1. A result on local Kummer maps. Quite generally, let F be a number field and let

κ : J (`)
ε (F ) −→ H1

(
F, J (`)

ε [p]
)

be the Kummer map relative to J
(`)
ε . Composing κ with the maps induced by the canonical

projection J
(`)
ε [p]→ J

(`)
ε [p]/mf` and by isomorphism (38) yields a map

(52) κ̄ : J (`)
ε (F ) −→ H1(F,E[p]).

By a slight abuse of notation, we adopt the symbol κ̄ also for the map

κ̄ : J (`)
ε (K`) −→ H1(K`, E[p])



SPECIAL VALUES OF L-FUNCTIONS AND THE ARITHMETIC OF DARMON POINTS 29

which is obtained by considering the local counterpart of the Kummer map κ and viewing
(38) as an isomorphism of Gal (Q̄`/K`)-modules via the inclusion Gal (Q̄`/K`) ↪→ GQ induced
by the injection Q̄ ↪→ Q̄` fixed at the outset.

If q is a prime number let resq : H1(F,E[p])→ H1(Fq, E[p]) be the restriction map and let

δq : E(Fq) −→ H1(Fq, E[p]), κq : J (`)
ε (Fq) −→ H1

(
Fq, J

(`)
ε [p]

)
be the local Kummer maps at q relative to E and J

(`)
ε , respectively. Finally, for any prime p

of F above p let νp be the (normalized) valuation of Fp and let ep := νp(p) be the absolute
ramification index of Fp (in particular, ep = 1 if p is unramified in F ).

Proposition 8.1. Assume that ep < p− 1 for all p|p. If P ∈ J (`)
ε (F ) then

resq
(
κ̄(P )

)
∈ Im(δq)

for all primes q -M`.

A proof of this proposition, obtained by combining the description of the image of the local
Kummer maps above p in terms of flat cohomology given in [23, §3.3] with classical results of
Raynaud on p-torsion group schemes ([28]), can be found in [23, Proposition 5.2].

8.2. Linear algebra preliminaries. The goal of this subsection is to recall the arguments
in [23, §8] and introduce the technical tools (Propositions 8.4 and 8.6) that will be needed to
prove the main arithmetic theorems of this paper.

Let χ ∈ Ĝc be our complex-valued character of Gc. Since p 6∈ S by condition 1 in As-
sumption 5.1, every prime ideal p of Z[χ] above p determines a prime ideal pS := pZ[χ]S of
Z[χ]S .

Lemma 8.2. Let p be a prime ideal of Z[χ] above p. The completion of Z[χ] at p is canonically
isomorphic to the completion of Z[χ]S at pS.

Proof. For all integers n ≥ 1 write S̄n for the multiplicative system of Z[χ]/pn which is the
image of S under the natural projection. For every n ≥ 1 there is a canonical ring isomorphism

(53)
(
Z[χ]/pn

)
S̄n
' Z[χ]S/p

n
S .

But the elements of S̄n are invertible in Z[χ]/pn since p does not belong to S, hence the
localization

(
Z[χ]/pn

)
S̄n

canonically identifies with Z[χ]/pn. In light of (53), the lemma is

proved by passing to the inverse limit. �

Choose a prime ideal p of Z[χ] above p such that

(54) the image of LK(E,χ, 1) in Z[χ]S/pS is not zero.

This can be done thanks to condition 4 in Assumption 5.1. Denote byW the p-adic completion
of Z[χ]. The prime p is unramified in Z[χ] since it does not divide h+(c) by condition 2 in
Assumption 5.1, hence the ideal pW is the maximal ideal of W; in particular, we conclude
from Lemma 8.2 that

Z[χ]S/pS =W/pW.

For any Z[Gc]-module M write M ⊗χ C (respectively, M ⊗χW) for the tensor product of the
Z[Gc]-modules M and C (respectively, M and W), where the structure of Z[Gc]-module on C
(respectively, W) is induced by χ. As in the introduction, if M is a Z[Gc]-module define also

Mχ :=
{
x ∈M ⊗Z C | σ(x) = χ(σ)x for all σ ∈ Gc

}
,

so that there is a canonical identification

Mχ = M ⊗χ C
of C[Gc]-modules (for a proof of this fact see, e.g., [23, Proposition 8.1]).
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Choose once and for all an (algebraic) isomorphism Cp ' C which is the identity on Z[χ].
Henceforth we shall view C as a W-module via this isomorphism, obtaining an isomorphism(

E(Hc)⊗χW
)
⊗W C ' E(Hc)⊗χ C.

The following flatness result will be frequently used in the sequel.

Lemma 8.3. The module W is flat over Z[Gc], and every Fp[Gc]-module is flat.

Proof. First of all, W is flat over Z. Moreover, if ` is a prime number dividing h+(c) then
` 6= p, hence W/`W = 0. The flatness of W follows from [1, Theorem 1.6]. The second
assertion can be shown in the same way. �

The next statement is proved exactly as [23, Proposition 8.3].

Proposition 8.4. If Selp(E/Hc)⊗χW = 0 then E(Hc)
χ = 0.

Thus the triviality of E(Hc)
χ is guaranteed by that of Selp(E/Hc)⊗χW.

The rest of this subsection is devoted to a couple of further algebraic lemmas which are
needed to prove the vanishing of the twisted p-Selmer groups; this part follows [23, §8.2]
closely, so we will merely sketch the arguments and refer to loc. cit. for complete proofs.

In the following, use the symbol χ also to denote the Z-linear extension

Z[Gc]
χ−→ Z[χ] ⊂ W

of the character χ. Composing χ with the projection onto W/pW yields a homomorphism
which factors through Fp[Gc] = Z[Gc]/pZ[Gc], and we define χp : Fp[Gc] → W/pW to be
the resulting map. In particular, the homomorphism χp gives W/pW a structure of Fp[Gc]-
module (which is nothing other than the structure induced naturally by that of Z[Gc]-module
onW), and for an Fp[Gc]-module M the notation M⊗χp (W/pW) will indicate that the tensor
product is taken over Fp[Gc] with respect to χp.

Set Iχp := ker(χp) and for any Fp[Gc]-module M let M [Iχp ] be the Iχp-torsion submodule
of M , i.e. the submodule of M which is annihilated by all the elements of Iχp . Finally, adopt

similar notations and conventions for the map χ−1
p : Fp[Gc] → W/pW which is induced by

the inverse character to χ.
The flatness result of Lemma 8.3 yields the following important facts:

• for every Fp[Gc]-module M there are canonical identifications

M ⊗χW = M ⊗χp (W/pW) = M [Iχp ]⊗χp (W/pW) = M [Iχp ]⊗χW

of W-modules ([23, Lemma 8.4]);
• if M is an Fp[Gc]-module then M [Iχp ] injects into M ⊗χW amd M

[
Iχ−1

p

]
injects into

M
[
Iχ−1

p

]
⊗χW ([23, Lemma 8.5]).

As a consequence, the linear algebra results in [23, §8.2] carry over verbatim to our real
quadratic setting; here we content ourselves with recalling the proof of a crucial statement
about the non-triviality of (the dual of) a certain restriction map in Galois cohomology.

To begin with, for any Fp-vector space V denote the Fp-dual of V by

V ∨ := HomFp(V,Fp).

The dual of an Fp[Gc]-module inherits a natural structure of Fp[Gc]-module: a Galois element
σ acts on a homomorphism ϕ by σ(ϕ) := ϕ ◦ σ−1. Furthermore, if f is a map of Fp[Gc]-
modules then its dual f∨ is again Gc-equivariant. It can be immediately checked that if an
Fp[Gc]-module is of Iχp-torsion then its dual is of Iχ−1

p
-torsion.

Let ` be an admissible prime and let

res` : Selp(E/Hc) −→ H1
fin(Hc,`, E[p])



SPECIAL VALUES OF L-FUNCTIONS AND THE ARITHMETIC OF DARMON POINTS 31

be the natural restriction map; with a slight abuse of notation, we will adopt the same symbol
also for the map

res` : Selp(E/Hc)[Iχp ] −→ H1
fin(Hc,`, E[p])[Iχp ]

between the Iχp-torsion submodules which is induced by the previous one.

Lemma 8.5. If there exists s ∈ Selp(E/Hc)[Iχp ] such that res`(s) 6= 0 then the map

res∨` ⊗ id : H1
fin(Hc,`, E[p])[Iχp ]

∨ ⊗χW −→ Selp(E/Hc)[Iχp ]
∨ ⊗χW

is injective and non-zero.

Proof. Keeping in mind the two consequences of Lemma 8.3 recalled above, proceed as in the
proof of [23, Lemma 8.8]. �

With this auxiliary result at hand, we can prove

Proposition 8.6. If there exists s ∈ Selp(E/Hc)[Iχp ] such that res`(s) 6= 0 then the map

res∨` ⊗ id : H1
fin(Hc,`, E[p])∨ ⊗χW −→ Selp(E/Hc)

∨ ⊗χW
is non-zero.

Proof. In the commutative square

H1
fin(Hc,`, E[p])∨ ⊗χW

res∨` ⊗id
//

����

Selp(E/Hc)
∨ ⊗χW

����
H1

fin(Hc,`, E[p])[Iχp ]
∨ ⊗χW � � // Selp(E/Hc)[Iχp ]

∨ ⊗χW

the vertical maps are surjective and the bottom horizontal arrow is (injective and) non-zero
by Lemma 8.5. Hence the upper horizontal arrow must be non-zero. �

8.3. Construction of an Euler system. As before, let Oc be the order of K of conductor
c and let Hc be the narrow ring class field of K of conductor c. Let ` be an admissible prime
such that p|`+ 1 +a` (so δ = −1 in Theorem 6.3) and choose zψ ∈ HOc` . Now recall the prime
λ0 of Hc above ` fixed in §5.2; there is a canonical isomorphism

iλ0 : Hc,λ0
'−→ K`,

with Hc,λ0 being the completion of Hc at λ0. Since we are assuming Conjecture 3.6, we can
consider the Darmon point

Pc = P εψ ∈ J (`)
ε (Hc) ↪−→ J (`)

ε (K`),

where the injection is induced by iλ0 . With κ̄ as in (52) for F = Hc, define a cohomology
class

κ(`) := κ̄(Pc) ∈ H1(Hc, E[p]).

The collection of classes {κ(`)} indexed by the set of admissible primes is an Euler system
relative to E/K and, as in [23], will be used in the sequel to bound the p-Selmer groups. In
the following we will deduce the main properties of κ(`).

Recall the choice of the prime ideal p of Z[χ] above p made in (54); the ring W is the
completion of Z[χ] at p. Let us introduce the map

(55) dχ` : H1(Hc, E[p]) −→ H1
sing(Hc,`, E[p])⊗χW

obtained by composing the restriction from H1(Hc, E[p]) to H1(Hc,`, E[p]) with the map
H1(Hc,`, E[p]) → H1(Hc,`, E[p]) ⊗χW which takes x to x ⊗ 1 and finally with the canonical
projection to the singular part of the cohomology.
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As explained in [23, §9.3] (to which we refer for details), the choice of a prime λ0 of Hc

above ` made in §5.2 induces natural isomorphisms

H1
? (Hc,`, E[p])

'−→ H1
? (K`, E[p])⊗Z Z[Gc]

for ? ∈ {fin, sing}, so that we can (and do) view dχ` as taking values in the W-module
H1

sing(K`, E[p])⊗ZW.

Proposition 8.7. If LK(E,χ, 1) 6= 0 then dχ`
(
κ(`)

)
6= 0.

Proof. Let ι : Z[χ]S ↪→W be the natural inclusion (cf. Lemma 8.2). There is a commutative
square

J
(`)
ε (K`)

κ̄ //

∂`

��

H1(K`, E[p])

δ`
����

Φ`,ε/mf`

ϑ`

'
// H1

sing(K`, E[p])

in which δ` is the projection and ϑ` is isomorphism (39). Tensoring with Z[χ]S over Z and
then composing with the relevant maps id⊗ ι yields a commutative diagram

(56) J
(`)
ε (K`)⊗ Z[χ]S

κ̄⊗id //

∂`⊗id

��

H1(K`, E[p])⊗ Z[χ]S

δ`⊗id

����

id⊗ι // H1(K`, E[p])⊗W

δ`⊗id

����
Φ`,ε/mf` ⊗ Z[χ]S

ϑ`⊗id

'
//

id⊗ι

��

H1
sing(K`, E[p])⊗ Z[χ]S

id⊗ι // H1
sing(K`, E[p])⊗W

Φ`,ε/mf` ⊗W

ϑ`⊗id

'

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

The arguments described in [23, §§9.1–9.3] show that

dχ`
(
κ(`)

)
=
(
(ϑ` ◦ ∂`)⊗ ι

)
(P εχ)

where P εχ is defined in (50). Since ϑ` ⊗ id is an isomorphism, showing that dχ`
(
κ(`)

)
6= 0 is

equivalent to showing that

(57) (∂` ⊗ ι)(P εχ) 6= 0 in Φ`,ε/mf` ⊗W ' W/pW
(here the map ∂` ⊗ ι is equal to the composition of the left vertical arrows in (56)).

In order to prove (57) consider the map

Z[χ]S/pZ[χ]S
ι−→W/pW

induced by ι. The non-vanishing of LK(E,χ, 1) is equivalent, by Theorem 4.8, to the non-
vanishing of LK(E,χ, 1). On the other hand, ι

([
LK(E,χ, 1)

])
6= 0 by (54) and p - t` because

` is admissible, hence claim (57) follows from Theorem 7.4. �

8.4. Local Tate pairings and global duality. For every place v of Q, including the
archimedean one, denote by

〈 , 〉v : H1(Hc,v, E[p])×H1(Hc,v, E[p]) −→ Z/pZ
the local Tate pairing at v. Global Tate duality, which is a consequence of the reciprocity
law of class field theory (specifically, of the global reciprocity law for elements in the Brauer
group of Hc), asserts that

(58)
∑
v

〈resv(k), resv(s)〉v = 0
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for all k, s ∈ H1(Hc, E[p]). Actually, since the Brauer group of R has order 2 and p is odd by
condition 2 in Assumption 5.1, for all k, s ∈ H1(Hc, E[p]) one has

(59)
∑
q

〈resq(k), resq(s)〉q = 0

with q running over the set of prime numbers (in other words, in (58) we can restrict the sum
to the finite places of Q).

Let now ` be an admissible prime. As explained in [23, §9.4], the local Tate pairing 〈 , 〉`
gives rise to isomorphisms of one-dimensional W/pW-vector spaces

(60) H1
? (Hc,`, E[p])⊗χW

'−→ H1
• (Hc,`, E[p])∨ ⊗χW

for {?, •} = {fin, sing}. Moreover, the restriction

res` : Selp(E/Hc) −→ H1
fin(Hc,`, E[p])

induces a W-linear map

η` : H1
sing(Hc,`, E[p])⊗χW −→ Selp(E/Hc)

∨ ⊗χW.

Lemma 8.8. If there exists s ∈ Selp(E/Hc)[Iχp ] such that res`(s) 6= 0 then η` is non-zero.

Proof. Immediate from (60) and Proposition 8.6. �

In the next lemma the symbol δq stands for the local Kummer map at q.

Lemma 8.9. If q is a prime dividing N then Im(δq) = 0.

Proof. Since δq factors through E(Hc,q)/pE(Hc,q), the statement follows from condition 5 in
Assumption 5.1. �

Now recall the map dχ` defined in (55).

Proposition 8.10. The element dχ`
(
κ(`)

)
belongs to the kernel of η`.

Proof. Keeping Lemma 8.9 and formula (59) in mind, proceed exactly as in the proof of [23,
Proposition 9.6]. �

8.5. Proof of the first vanishing result. As a first arithmetic consequence of Theorem
7.4, we prove a vanishing result for twisted Selmer groups: all other results will follow from
this one. Recall that we are assuming Conjecture 3.6 throughout.

Theorem 8.11. If LK(E,χ, 1) 6= 0 then Selp(E/Hc)⊗χW = 0.

Proof. By what was said in §8.2, it is enough to show that Selp(E/Hc)[Iχp ] = 0. Assume that
s ∈ Selp(E/Hc)[Iχp ] is not zero and choose an admissible prime ` such that p|a` + ` + 1 and
res`(s) 6= 0, which exists by Proposition 5.4. Since LK(E,χ, 1) 6= 0, Proposition 8.7 ensures
that dχ`

(
κ(`)

)
6= 0; then dχ`

(
κ(`)

)
generates H1

sing(Hc,`, E[p]) ⊗χ W over W. On the other

hand, Proposition 8.10 says that dχ`
(
κ(`)

)
belongs to the kernel of the W-linear map η`, and

this contradicts the non-triviality of η` that was shown in Lemma 8.8. �

By exploiting the surjectivity of the representation ρE,p (condition 3 in Assumption 5.1)
and the flatness of W over Z[Gc] (Lemma 8.3), formal algebraic considerations yield also the
following reformulation of Theorem 8.11.

Theorem 8.12. If LK(E,χ, 1) 6= 0 then

Selpn(E/Hc)⊗χW = 0

for all integers n ≥ 1.

The reader is referred to [23, Theorem 9.8] for details.
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8.6. Applications. In this subsection let K ′ be an extension of K contained in Hc and let

λ : Gal (K ′/K) −→ C×

be a character. Adopting the usual notation for twisted L-functions and eigenspaces, the first
consequence of Theorem 8.11 is the following

Theorem 8.13. If LK(E, λ, 1) 6= 0 then E(K ′)λ = 0.

Proof. Let χ ∈ Ĝc be the character induced by λ in the obvious way, so that there is an
equality of twisted L-functions

LK(E,χ, s) = LK(E, λ, s)

up to finitely many Euler factors (cf., e.g., [34, §7]). Therefore LK(E,χ, 1) 6= 0, whence
E(Hc)

χ = 0 by a combination of Proposition 8.4 and Theorem 8.11. But there is a natural
inclusion E(K ′)λ ⊂ E(Hc)

χ, and the theorem is proved. �

Theorem 8.13 is the λ-twisted conjecture of Birch and Swinnerton-Dyer for E over K ′ in
the case of analytic rank 0. In fact, under this analytic condition Theorem 8.11 also yields
a vanishing result for the groups Selp(E/K

′) for all prime numbers p satisfying Assumption
5.1 (recall that this excludes only finitely many primes). As will be clear, to obtain this it is
crucial that we were able to prove Theorem 8.11 for all complex-valued characters χ of Gc.

To begin with, we need some further notation and an auxiliary result. Let Qnr
p be the

maximal unramified extension of Qp, let OQnr
p

be its ring of integers and let κp be its residue

field (which is an algebraic closure of Fp). In order to avoid confusion, for every χ ∈ Ĝc denote
by Wχ the ring W associated with χ as in §8.2. Finally, since every Wχ is a finite unramified
extension of Zp, for all χ we can (and do) fix embeddings Wχ ↪→ OQnr

p
, which endow κp with

a structure of Wχ-module. Then define

Selp(E/K
′)λ :=

{
x ∈ Selp(E/K

′)⊗Z κp | σ(x) = λ(σ)x for all σ ∈ Gal (K ′/K)
}
.

From here on let p be a prime satisfying Assumption 5.1.

Lemma 8.14. If LK(E, λ, 1) 6= 0 then Selp(E/K
′)λ = 0.

Proof. Let χ ∈ Ĝc be the character induced by λ. Then, as in the proof of Theorem 8.13,
LK(E,χ, 1) 6= 0, whence Selp(E/Hc) ⊗χWχ = 0 by Theorem 8.11. Since p - h+(c), one can
apply Maschke’s theorem to the Gc-representation Selp(E/Hc)⊗Z κp and mimic the proof of
[23, Proposition 8.1] to obtain an identification

Selp(E/Hc)
χ = Selp(E/Hc)⊗χ κp

of κp[Gc]-modules. Thus we get that

(61) Selp(E/Hc)
χ =

(
Selp(E/Hc)⊗χWχ

)
⊗Wχ κp = 0.

On the other hand, as explained in [17, Lemma 4.3], the surjectivity of ρE,p ensures that E
has no non-trivial p-torsion rational over Hc, and then the inflation-restriction exact sequence
in Galois cohomology gives an injection Selp(E/K

′) ↪→ Selp(E/Hc), which in turn induces an
injection

(62) Selp(E/K
′)λ ↪−→ Selp(E/Hc)

χ

of eigenspaces. The lemma follows by combining (61) and (62). �

Let now LK′(E, s) be the L-function of E over K ′.

Theorem 8.15. If LK′(E, 1) 6= 0 then

Selpn(E/K ′) = 0

for all integers n ≥ 1.
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Proof. Routine algebraic considerations show that it is enough to prove the result for n = 1.
For simplicity, set G′ := Gal (K ′/K). There is a factorization

(63) LK′(E, s) =
∏
λ

LK(E, λ, s)

where λ varies over the complex-valued characters of G′. Now observe that the embeddings
Wχ ↪→ OQnr

p
fixed before induce a bijection between the κp-valued and the C-valued characters

of G′. Therefore, since p - [K ′ : K], Maschke’s theorem ensures that there is a decomposition

(64) Selp(E/K
′)⊗Z κp =

⊕
λ

Selp(E/K
′)λ

as a direct sum of eigenspaces. Since LK′(E, 1) 6= 0, equality (63) implies that LK(E, λ, 1) 6= 0
for all λ, hence Selp(E/K

′)λ = 0 for all λ by Lemma 8.14. Since Selp(E/K
′) is a finite-

dimensional Fp-vector space, the theorem is an immediate consequence of (64). �

As a piece of notation, for every integer n ≥ 1 let Xpn(E/K ′) be the pn-Shafarevich–Tate
group of E over K ′. Theorem 8.15 immediately yields

Corollary 8.16. If LK′(E, 1) 6= 0 then Xpn(E/K ′) = 0 for all n ≥ 1 and E(K ′) is finite.

This is the conjecture of Birch and Swinnerton-Dyer for E over K ′ in analytic rank 0.

Remark 8.17. 1) The Birch and Swinnerton-Dyer conjecture for E over K ′ in analytic rank 0
can also be obtained directly from Theorem 8.13 via a decomposition argument analogous to
the one used in the proof of Theorem 8.15.

2) If K ′ = K then Theorem 8.15 is part of a result due to Kolyvagin (a sketch of proof
of which can be found in [23, Theorem 9.11]) establishing (unconditionally) the finiteness of
E(K) and X(E/K) for all quadratic fields K such that LK(E, 1) 6= 0. The key ingredients
in Kolyvagin’s proof of this theorem are non-vanishing results for the special values of the
first derivatives of base changes of L(E, s) to suitable auxiliary imaginary quadratic fields and
Kolyvagin’s results in rank one. In light of this, even in the particular case where K ′ = K
our proof of Theorem 8.15, albeit conditional, is genuinely new, since it takes place entirely
“in rank zero” and in the real quadratic setting, without invoking any result over imaginary
quadratic fields.

3) It should be possible, with some extra effort, to extend the techniques of this article and
obtain the finiteness of the full Shafarevich–Tate groups X(E/K ′).
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