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ABSTRACT. We use rigid analytic uniformization by Schottky groups to give
a bound for the order of the abelian subgroups of the automorphism group of
a Mumford curve in terms of its genus.

INTRODUCTION

Let X be a smooth irreducible projective algebraic curve of genus g > 2 over a
field k. The automorphism group Aut(X) is always finite and it is an interesting
problem to determine its size with respect to the genus. When the ground field &
has characteristic 0, it is known that the Hurwitz bound holds:

(1) Aut(X)] < 84(g — 1).

Moreover, this bound is best possible in the sense that there exist curves of genus
g that admit 84(g — 1) automorphisms for infinitely many different values of g.
When char(k) = p > 0, |[Aut(X)| is bounded by a polynomial of degree four in
g. In fact, it holds that
|Aut(X)| < 1647,

[14], provided X is not any of the Fermat curves 29t 4 ¢4+l =1, ¢ = p", n > 1,
which have even larger automorphism group [9].

For Mumford curves X over an algebraic extension of the p-adic field Qp, F.
Herrlich [5] was able to improve Hurwitz’s bound (1)) by showing that actually

[Aut(X)[ < 12(g — 1),

provided p > 7.
Moreover, the first author in a joint work with G. Cornelissen and F. Kato [2]
proved that a bound of the form

|Aut(X)| < max{12(g —1),2y/g(vg + 1)*}

holds for Mumford curves defined over non-archimedean valued fields of character-
istic p > 0.

For ordinary curves X over an algebraically closed field of characteristic p > 0,
Guralnik and Zieve [4] announced that there exists a sharp bound of the order of
g%/® for |Aut(X)].

In [11], S. Nakajima employs the Hasse-Arf theorem to prove that

[Aut(X)| < 4g +4

for any algebraic curve X whose group of automorphisms is abelian.
The results of Herrlich compared to those of Hurwitz and those of [2] compared
to Guralnik-Zieve’s indicate that if we restrict ourselves to Mumford curves with
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abelian automorphism group a stronger bound than the one of Nakajima should be
expected.

The aim of this note is studying the size of the abelian subgroups of the auto-
morphism group Aut(X) of a Mumford curve over a complete field k£ with respect
to a non-archimedean valuation. These curves are rigid analytically uniformized by
a Schottky group I' C PGLy(k) and their automorphism group is determined by
the normalizer N of T" in PGLy (k).

Our results are based on the Gauss-Bonet formula of Karass-Pietrowski-Solitar,
which relates the rank of the free group T to the index [N : I'] and on the charac-
terization of the possible abelian stabilizers N, C N of the vertices v € 7 on the
Bruhat-Tits tree of k acted upon by the group N.

Aknowledgement The authors would like to thank the referee for his remarks
and corrections.

1. ABELIAN AUTOMORPHISM GROUPS OF MUMFORD CURVES

Let k be a complete field with respect to a non-archimedean valuation. Let k
denote the residue field of k and write p = char(k) for its characteristic. Choose a
separable closure K of k.

Let ' € PGLy(k) be a Schottky group, that is, a discrete finitely generated
subgroup consisting entirely of hyperbolic elements acting on P} with limit set Lr

(cf.[3]). By a theorem of Thara, I' is a free group. The rigid analytic curve
I\(P; — Lr)

turns out to be the analytic counterpart of a smooth algebraic curve of genus
g = rank(I") > 1 over k which we shall denote Xr/k. In a fundamental work, D.
Mumford [10] showed that the stable reduction of Xt is a k-split degenerate curve:
all its connected components are rational over k and they meet at ordinary double
points rational over k. Conversely, he showed that all such curves admit a rigid
analytic uniformization by a Schottky subgroup of PGLq (k).

Let 7, denote the Bruhat-Tits tree of k. The set of ends of 7 is in one-to-
one correspondence with the projective line P!(k); we thus identify P! (k) with the
boundary of 7.

Let N be a finitely generated discrete subgroup of PGLa(k) that contains I' as
a normal subgroup of finite index. The group N naturally acts on 7. By taking
an appropriate extension of k, we may assume that all fixed points of N in the
boundary are rational. In turn, this implies that N acts on 7; without inversion.

Theorem 1.1. [3, p.216] [2] The group G = N/T is a subgroup of the automor-
phism group of the Mumford curve Xv. If N is the normalizer of T' in PGLy(k)
then G = Aut(Xr).

For every vertex v on 7y let N, be the stabilizer of v in N, that is,
Ny, ={g € N :g(v) =0}

Let star(v) denote the set of edges emanating from the vertex v. It is known
that star(v) is in one to one correspondence with elements in P*(k). Since N, fixes
v, it acts on star(v) and describes a natural map

(2) p: N, — PGLy(k).

See [2, Lemma 2.7]) for details. The kernel of p is trivial unless N, is isomorphic
to the semidirect product of a cyclic group with an elementary abelian group. In
this case, kerp is an elementary abelian p-group [2, Lemma 2.10].
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Assume that g > 2. This implies that I" has finite index in N. Since I" has finite
index in N, both groups N and I' share the same set of limit points £. We shall
denote by 7 the subtree of 7; whose end points are the limit points of L.

The tree 7y is acted on by N and we can consider the quotient graph Ty :=
N\7y. The graph N\7y is the dual graph of the intersection graph of the special
fibre of the quotient curve

Xy =G\Xt = N\(P}; — £).

Notice that Ty is a tree whenever X has genus 0.

The quotient graph T can be regarded as a graph of groups as follows: For
every vertex v (resp. edge e) of Tl, consider a lift v" (resp. €’) in Ty and the
corresponding stabilizer N, (resp. N./). We decorate the vertex v (resp. edge e)
with the stabilizer N, (resp. N/).

Let T be a maximal tree of Ty and let 77 C 7x be a tree of representatives of
Tn mod N, i.e., alift of T in 7. Consider the set Y of lifts of the remaining edges
Tn — T in Ty such that, for every E € Y, the origin o(E) lies in T".

The set Y = {E,...,E,} is finite. There exist elements g; € N such that
g:(t(E;)) € T', where t(E;) denotes the terminal vertex of the edge E; of Y. More-
over, the elements g; can be taken from the free group I'.

The elements g; act by conjugation on the groups Ny(g,) and impose the relations
9iNuE)9; ' = Nyi((,))- Denote by Mi := Ny,) and Ni := N, (z,)).

According to [13, Lemma 4, p. 34], the group N can be recovered as the group
generated by

N = <vagl> = <gl7"‘7gTaK‘relKaglMlg;1 = Nla"'agTMTgr_l = N’r‘>7

where K is the tree product of T".

Assume that the tree T” of representatives has x edges and k + 1 vertices. Let v;
denote the order of the stabilizer of the i-th vertex and e; the order of the stabilizer
of the i-th edge. If f; = |M;|, we define the volume of the fundamental domain as

T 1 K 1 r+1 1
pIn) =D+ —=>
i=1 fi P
Notice that when r = 0, i.e. the quotient graph Ty is a tree, this definition
coincides with the one given in [2].
Karrass, Pietrowski and Solitar proved in [8] the following discrete Gauss-Bonnet
theorem:

Proposition 1.2. Let N, Ty, g be as above. The following equality holds:
IN/T|-(Tn) =g — 1.

In order to obtain an upper bound for the group of automorphisms with respect
to the genus, we aim for a lower bound for u(Tx). Observe that if we restrict the
above sum to the maximal tree T of Ty, we deduce the following inequality

W) =31 > < uTy)

i=1 "
where equality is achieved if and only if Tl is a tree, i.e., the genus of Xy is 0.
In what follows we pursue lower bounds for u(T), where T is a maximal tree.
These should be lower bounds for u(Tn) as well.

Lemma 1.3. Let G be a finite abelian subgroup of PGLa(Fpn) acting on PY(Fpn).
Let S be the subset of P1(F,) of ramified points of the cover

P! — G\P'.
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Then, either

(1) G ~Z/nZ, where (n,p) =1, S = {P1, Pa} and the ramification indices are
e(P) =e(P) =mn, or

(2) G ~ Dy = ZJ2Z x ZJ2Z, p # 2 and S = {P1, Py, P3} with ramification
indices e(Py) = e(P2) = e(P3) =2, or

(3) G ~ E(r) = Z/pZx o XZ/pZ for some r > 0 and S = {P}, with

ramification index e(P) = p".

Proof. The finite subgroups of PGLy(F,») were classified by L. E. Dickson (cf. [6]
I1.8.27], [16], [2, Theorem 2.9]). The list of abelian groups follows by selecting the
abelian groups among the possible finite subgroups of PGLy(F,= ). Notice that the
case E(r) x Z/nZ, where (n,p) =1 and n | p — 1, is never abelian. Indeed, this is
due to the fact that Z/nZ acts on E(r) by means of a primitive n-th root of unity
[12, cor 1. p.67]. The description of the ramification locus S in each case is given
in [16, th 1.]. O

Lemma 1.4. Let v be a vertex of Ty . If the finite group N/T is abelian, then N,
is abelian. Moreover, the map p : N, — PGLa(k) is injective unless Ny = E(ry).
In this case, ker(p) ~ E(ra) for some ro < 1.

Proof. The composition

N, C N - N/T,
is injective, since it is not possible for an element of finite order to be cancelled out
by factoring out the group I'. Hence N, is a abelian. The possible kernels of p are
collected in [2, Lemma 2.10]. O

Let v be a vertex of Ty decorated by the group N, and assume that there exist
s > 1 edges in its star, decorated by groups N? C N,, v =1,...,s. We define the
curvature c¢(v) of v as

1 1 1
=3 N T

It is obvious that the following formula holds:

W= Y ).

vEVert(T)

In what follows, we shall provide lower bounds for the curvature of each vertex.

We shall call a tree of groups reduced if |N,| > |N,, | for all vertices v and edges
e, € star(v). Notice that, if N, = N, for a vertex v and an edge e € star(v), then
the opposite vertex v’ of e is decorated by a group N,» O N,. The contribution of
e to the tree product is the amalgam N, *x, N,; = N,. This means that e can be
contracted without altering the tree product. From now on we shall assume that
the tree T is reduced.

For an element v € N, define the mirror of v to be the smallest subtree M (7)
of 7}, generated by the point-wise fixed vertices of 7 by ~.

Let v € N be an elliptic element (i.e., an element of N of finite order with two
distinct eigenvalues of the same valuation). Then ~ has two fixed points in P! (k)
and M () is the geodesic connecting them.

If v € N is a parabolic element (i.e., an element in N having a single eigenvalue),
then it has a unique fixed point z on the boundary P! (k).

Lemma 1.5. Let Py, Py, Q1, Q2 be four distinct points on the boundary of Tj,. Let
g(P1, P2), g(Q1,Q2) be the corresponding geodesic on Tj connecting Py, Py and
Q1, Q2 respectively. For the intersection of the geodesics g(P1, Py) and g(Q1,Q2)
there are the following possibilities:
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(1) g(P1, P2), g(Q1,Q2) have empty intersection.
(2) g(P1, P), g(Q1,Q2) intersect at only one vertex of T,.
(3) g(P1, P2), g(Q1,Q2) have a common interval as intersection.

Proof. It immediately follows from the fact that 7 is simply-connected. O

We refer to [7, prop. 3.5.1] for a detailed description on the arrangement
of the geodesics with respect to the valuations of the cross-ratio of the points

P, P, Q1,Q0.

Lemma 1.6. Two non-trivial elliptic elements v,y € PGLy(k) have the same set
of fized points in P*(k) if and only if {v,7') is a cyclic group.

Proof. If v and +' generate a cyclic group, there exists an element o such that
o' =~ and o =~/ for some i,i > 1. Since any non-trivial elliptic element has
exactly two fixed points, it is immediate that v, v and ¢ have the same set of fixed
points.

Conversely if v,7 have the same set of fixed points, say 0,00, then a simple
computation shows that ~y,~" are of the form

_f(a O d,_a’()
T=\o q) T "o @)

where a/d and a'/d" are roots of unity. Hence there exists 0 € PGLy(k) such that
ol =~ and 0¥ =~ O

Lemma 1.7. Assume that N/T is an abelian group and let v,v € N, v £ ', be
elements of prime-to-p finite order. If M(y)NM(v') # 0, then {v,~') is isomorphic
to either Do or a cyclic group.

Proof. By Lemma|l.4] the stabilizers N, of those vertices v such that (|N,|,p) =1
are abelian subgroups of PGLg(k). Let F, and F,, denote the sets of the fixed
points of v and 4/ in P!(k), respectively.

If M(y) = M(v') then F, = F,, and it follows from Lemma [1.6] that (y,~) is a
cyclic group.

On the other hand, if M (y) # M (y'), then F, # F,, and (7,~’) cannot be cyclic,
again by Lemma 1.6l In this case, any vertex v € M (y) N M (v') is fixed by (v, '),
which must be isomorphic to Dy by Lemma [1.3. U

Lemma 1.8. Assume that N/T is an abelian group. If N, is a p-group for some
vertex v in T, then N, = {1} for all e € star(v).

Proof. Assume that v € Vert(T) is lifted to v’ € Vert(7y) and that N, is an
elementary abelian group. Recall the map p : N,y — PGLy(k), which describes the
action of N,/ on star(v’).

If Im(p) = {Idpgr, (%)}, then every edge €’ € star(v') would be fixed by N, =
ker(p). If one of the edges e’ € star(v') were reduced in T to an edge e with non
trivial stabilizer then it would follow that N, = NN, and the tree would not be
reduced.

Suppose now that Im(p) # {Idpgr, (%)} By the classification of Valentini-Madan
there exists exactly one edge €’ in the star of v’ which is fixed by the whole group
Im(p) and all other edges emanating from v" are not fixed by Im(p). Therefore the
edge €’ is fixed by the whole group N,. If the edge ¢’ were reduced in T to an edge
e with non trivial stabilizer, then it would follow that N, = N, and the tree would
not be reduced.

Assume now that there exist two vertices v1,v2 on T joint by an edge e such
that N,,, N,, are elementary abelian groups and N, is a nontrivial proper subgroup
both of N,, and N,,. Let us show that this can not happen.
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Let 0,7 be two commuting parabolic elements of PGLy (k). They fix a common
point in the boundary of P! (k). Indeed, every parabolic element fixes a single point
in the boundary. If P is the unique fixed point of o, then

o(tP)=71(cP)=71P

and 7(P) is fixed also by o. Since the fixed point of ¢ in the boundary is unique,
we have 7(P) = P.

Let vf,v5 be two lifts of vy, vs on the Bruhat-Tits tree. The apartment [v], v5]
is contracted to the edge e and it is fixed by N., but not by a larger subgroup.

Since N, is contained in both abelian groups N,., N, all parabolic elements in
Ny, Ny, have the same fixed point P in the boundary P (k). Therefore, the apart-
ment [v], P[ (resp. [v3, P) is fixed by N, (resp. N,;). Moreover, the apartments
[v], P[,[vs, P[ have nonempty intersection. Since the Bruhat-Tits tree is simply
connected, the apartment [v], v}] intersects [vy, P[N[v], P[ at a bifurcation point Q:

[UI17U/2] N ([UIQ,P[H[U£7P[) = {Q}

The point @ is then fixed by N,; and N,;, and it is on the apartment [v},v5], a
contradiction. O

Let s = #star(v)

Lemma 1.9. Let v be a vertez in T. If c(v) > 0, then c(v) > .
vforv=1,...,s. It

and let N7 denote the stabilizers of the edges in the star o
holds that c(v) = 0 if and only if:

(1) Ny =Dy, s=1, N} =7 or
(2) Ny=2Zy, s=1,|N2| =1,
We have
e c(v) = % if and only if N, = Z3 and s =1,
e c(v) = % if and only if N, = Dy with s = 2 and |[N? | = |[NZ| = |2|, or
Ny = Dy with s =1 and [N} | = 1.
In the remaining cases we have c¢(v) > %
Proof. e Assume that N, = Ds. Then c¢(v) > 0. Equality ¢(v) = 0 holds only when

s =1 and the only edge leaving v is decorated by a group of order 2. If we assume
that ¢(v) > 0, then

< ¢(v)

-

and equality is achieved if s = 2 and |Ne,| = |Ne,| =2, or if s = 1 and |N! | = 1.
e Assume that N, = Z,,. Then

S

1 1
)= LN

1=V

By Lemma (1.7, the stabilizer of each edge in the star of v is trivial. Indeed, if
there were an edge e € star(v) with N, > {1}, then e would be fixed by a cyclic
group Z,,, where m | n. Let o be a generator of Z,, and let ¢” be the generator of
Zy,. The elements o, 0" have the same fixed points. Hence a lift of the edge e in
Ty would lie on the mirror of o. But then N, = N, and this is not possible by the
reducibility assumption. See also [5, Lemma 1].

If n > 2, then
n—2 _sn—2
<
2n T 2n
and equality holds only if s = 1,n = 3. If n = 2 and ¢(v) > 0 then s > 2, and

cv) =st—1>1

1
<< =55 —— <),

N —
S|
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N N/T |g

Dg * Z4 D2 X Z4 2

ZQ * Z4 ZQ X Z4 2

D2 * D2 Z% 4

ZQ * D2 Zg 2

DQ *7.4 DQ *7.5 Dg Z% 2
TABLE 1.

e Assume that N, = E(r). Then s = 1 and it follows from Lemma [1.8 that
|Ne,| = 1. If p” = 2 then ¢(v) = 0. Hence if ¢(v) > 0 then p” > 2 and

1 1 1 T —2
7§C(v):777:p )
6 2 pr 2p”
and equality holds only if p" = 3. O

Theorem 1.10. Assume that N/T is abelian. If N is not isomorphic neither to
Zo * Z3 nor Do x Z3, then

IN/T| < 4(g —1).
If we exclude the groups of Table 1l then
IN/T| <3(g—1).

The case N = Zo * Z3 gives rise to a curve of genus 2 whose automorphism group
is a cyclic group of order 6. The case N = Dy % Zs gives Tise to a curve of genus 3
with automorphism group Do X Zs.

Proof. Since g > 2 and therefore pu(Tyx) > 0, we have by Proposition [1.2] that

1
Aut(X)| =
| ( ) ‘ 1

where
A =F#{v € Vert(Tn) : ¢(v) > 0}.

If A > 2 the result follows. Assume that there is only one vertex v such that
¢(v) > 0. Since g > 2, there exist other vertices v’ on the tree Ty but their
contribution is ¢(v’) = 0.

Case 1: ¢(v) = ;. Then N, = Z3 and there exists a single edge e at the star
of v. Let v' denote the terminal vertex of e. Since ¢(v') = 0 if and only if there
exists a single edge leaving v’, the only possibilities for N are N = Dy * Z3 and
N =7y % Z3. Since N/T is abelian, the group I'y := [Da, Zs3] (resp. 'y := [Z2,Z3])
is contained in I'. According to [2, Lemma 6.6], I'; is a maximal free subgroup
of N and thus I' = T';. The rank of ' is (4 — 1)(2 — 1) = 3 in the first case and
(3—1)(2—1) =2 in the second. Therefore the first amalgam gives rise to a curve
of genus 3 with automorphism group Ds x Z3 and the second gives rise to a curve
of genus 2 with automorphism group Zs X Z3 = Zg.

Case 2: ¢(v) = i. This occurs only when N,, = Z4, D3 and s =1 or N, = D,
s =2, |[Ne,| = |Ne,| = 3. The possible groups are given in Tablefl.

In this case we have the following bound

Aut(X)| < (g — 1) < 4o = 1),

Case 3: c¢(v) > =. Similarly as above we obtain that

1
3-

Aub(X)| < —(g—1) < >
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O

Example: Subrao Curves.
Let (k, |-|) be a complete field of characteristic p with respect to a non-archimedean
norm | - |. Assume F, C k, for some ¢ = p”, r > 1. Define the curve:

(! —y)(a? —2) = ¢,

with |¢| < 1. This curve was introduced by Subrao in [15] and it has a large
automorphism group compared to the genus. This curve is a Mumford Curve [2]
p.9] and has chessboard reduction [2, par. 9]. It is a curve of genus (¢ — 1)? and
admits the group G := Z; x Z;, as a subgroup of the automorphism group. The
group G consists of the automorphisms o, (z,y) = (z + a,y + b) where (a,b) €
Fy x F,. The discrete group N’ corresponding to G is given by Z,r * Z,r and the
free subgroup I' giving the Mumford uniformization is given by the commutator
[Zyr, Zyr], which is of rank (¢ — 1)? [13].
The Karass, Pietrowski, Solitar formula yields

(q—1)2—1=q2(1—§),

while the bound is given by
¢ =G| <2(9 - 1) = 2(¢* — 29).

Notice that the group N’ is a proper subgroup of the normalizer of T' in PGLy(k),
since the full automorphism group of the curve is isomorphic to Z2" x Dyr_y [2]. O

1.1. Elementary abelian groups.

Proposition 1.11. Let £ be a prime number and let Xr/k be a Mumford curve
over a non-archimedean local field k such that p = char(k) # . Let A C Aut(Xt)
be a subgroup of the group of automorphisms of Xr such that A ~ Z /{7 x Z/lZ %
- X ZJIL.

If £ = 2 then all stabilizers of vertices and edges of the quotient graph Tn are
subgroups of Z/27Z x 7/27 and u(Tn) = a/4 for some a € Z. If £ > 2 then all
stabilizers of vertices and edges of Ty are subgroups of Z/¢Z and u(Tn) = a/l.

Proof. Let A C Aut(Xr). There is a discrete finitely generated subgroup N’ C N
such that I' < N and N’/T" = A. Let N, be the stabilizer of a vertex in T and let
N/ = N, N N'. The composition

N, CN,CN — N/T,

is injective, since it is not possible for an element of finite order to be cancelled out
by factoring out the group I'.

The map p : N/ — PGLa(k) = PGLy(F,m) of Lemma [1.4] is injective since
(|N/],p) = 1 and hence we can regard N/ as a finite subgroup of PGLy(k) =
PGLy(Fpm).

Assume first that £ = 2. Then by Lemma 1.3 the only abelian finite subgroups
of PGLy(k) for p # 2 are Z/2Z and the dihedral group of order 4. Hence N/ is a
subgroup of Z/2Z x Z/2Z.

Since the group N acts without inversions, the stabilizer of a vertex is the
intersection of the stabilizers of the limiting edges. It again follows that N, C
7/27 x Z/27Z. Finally, we obtain from its very definition that u(Ty) = a/4 for
some a € Z.

For the case ¢ > 2 we observe that Z/¢Z is the only abelian subgroup of
PGL3(F,m ) and it follows similarly that pu(Tn) = a/¢ for some a € Z. O
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As an immediate corollary of Proposition [1.11/ we obtain the following formula
for the l-elementary subgroups of the group of automorphisms of Mumford curves.
Notice that the result below actually holds for arbitrary algebraic curves -as it can
be proved by applying the Riemann-Hurwitz formula to the covering X — X/A.

Corollary 1.12. Let ¢ # char(k) be a prime number and let X/k be a Mumford
curve of genus g > 2 over a non-archimedean local field k. Let A C Aut(X) be a
subgroup of the group of automorphisms of X such that A ~ ®5_Z/{Z for some
s> 2.

(i) If € # 2 then 571 | g — 1.
(i) If ¢ =2 then2°72| g — 1.
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