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Abstract. We study the set of isomorphism classes of principal
polarizations on abelian varieties of GL2-type. As applications of
our results, we construct examples of curves C, C ′/Q of genus two
which are nonisomorphic over Q̄ and share isomorphic unpolar-
ized modular Jacobian varieties over Q; we also show a method
to obtain genus two curves over Q whose Jacobian varieties are
isomorphic to Weil’s restriction of quadratic Q-curves, and present
examples.

1. Introduction

Let C/k be a smooth and irreducible projective algebraic curve over a
field k and let (J(C), Θ) be its principally polarized Jacobian variety.
By Torelli’s theorem, C is completely determined by (J(C), Θ) up to
isomorphism over k. The question then arises of whether the unpolar-
ized abelian variety J(C) already determines C. It turns out that the
answer has its roots in the arithmetic of the ring of endomorphisms
End(J(C)) of J(C). Indeed, in the generic case of End(J(C)) = Z, the
curve C can be recovered from J(C), but as soon as End(J(C)) ! Z,
it may be very well the case that there exist finitely many pairwise
nonisomorphic curves C1, ..., Cτ such that

J(C1) ' ... ' J(Cτ )

as unpolarized abelian varieties. This phenomenon was first observed
by Humbert in [11], where he proved the existence of two nonisomor-
phic Riemann surfaces C1 and C2 of genus 2 sharing the same simple
Jacobian variety. Humbert’s method was generalized by Lange in [12].
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Finally, it has been recently shown in [21] that there exist arbitrarily
large sets {C1, ..., Cτ}, τ >> 0, of pairwise nonisomorphic curves of
genus 2 such that J(Ci) are isomorphic simple abelian surfaces.

The aim of this paper is to yield an arithmetical and effective ap-
proach to this question by considering abelian surfaces Af defined over
Q attached by Shimura to a newform f in S2(Γ1(N)). These surfaces
are viewed as optimal quotients of the Jacobian J1(N) of the modu-
lar curve X1(N) and are canonically polarized with the polarization L
overQ pushed out from the principal polarization ΘX1(N) on J1(N). We
provide an effective criterion for determining all their principal polar-
izations defined over Q and for determining which of them correspond
to the canonical polarization of the jacobian of a curve.

In section 2, we consider abelian varieties A of GL2-type over k, i. e.
such that their algebra of endomorphisms F = Q⊗EndkA is a number
field of degree [F : Q] = dim A. In Theorem 2.10, we determine the
set of isomorphism classes of principal polarizations on A over k in
an explicit and computable way, while in Corollary 2.12 we provide
necessary and sufficient conditions for A to be principally polarizable
over the base field of definition k.

Section 3 is devoted to the study of abelian surfaces of GL2-type over
a number field k and their principal polarizations from an arithmetical
point of view. As we discuss in detail, these questions are crucially
related to the problem of finding nonisomorphic curves whose Jacobian
varieties are pairwise isomorphic as unpolarized abelian varieties. One
of our main results can be rephrased as follows.

Theorem 1.1. Let A be a principally polarizable abelian surface over
Q such that EndQA = R is an order in a quadratic field. Let R0 be the
subring of R fixed by complex conjugation. Then

(1) If either R0 = Z or R∗ contains a unit of negative norm, there
is a single isomorphism class of principal polarizations on A
over Q.

(2) Otherwise, there are exactly two isomorphism classes of princi-
pal polarizations on A over Q. More precisely, either
• there exists a curve C/Q of genus two and a quadratic Q-

curve C ′/K such that A is both isomorphic to J(C) and to
Weil’s restriction ResK/Q(C ′) of C ′ as unpolarized abelian
surfaces over Q,

or
• there exist two curves C, C ′/Q of genus two nonisomorphic

over Q such that A is isomorphic over Q to their Jacobian
varieties.
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As a consequence, we prove the existence of infinitely many abelian
surfaces A/Q of GL2-type which are simultaneously the Jacobian va-
riety of a curve C/Q of genus two and Weil’s restriction of an elliptic
curve over a quadratic field.

In the last section explicit examples are presented. First, we sum-
marize well known results about modular abelian varieties arising from
modular newforms; in the rest of the section we show how our results
can be effectively applied to abelian surfaces arising from newforms of
trivial Nebentypus by using the procedure described in [5], which al-
lows us to obtain an equation of a genus two curve from a period matrix
in a symplectic basis. In this way, we construct an explicit example
of two nonisomorphic (over Q̄) curves C, C ′/Q of genus two such that
their Jacobian varieties are isomorphic over Q to an absolutely simple
quotient of the Jacobian of the modular curve X0(65). We also provide
explicit examples of curves C of genus two over Q whose Jacobian va-
riety J(C) is of GL2-type and isomorphic to Weil’s restriction over Q
of an elliptic curve E over a quadratic field and we show a procedure
for obtaining genus two curves from quadratic Q-curves satisfying this
property. Finally, we exhibit several pairwise nonisomorphic curves
Ci/Q of genus two such that their respective Jacobian varieties J(Ci)
are mutually isogenous over Q.

Alternative methods to ours were proposed by Howe ([9], [8]) and
Villegas ([20]) and explicit equations of similar phenomena have been
given in [10]. However, Howe’s examples correspond to abelian varieties
which decompose as the product of elliptic curves with complex mul-
tiplication (CM). As he remarked himself in [10], there were no known
explicit examples of absolutely simple abelian varieties which could be
realized as the simultaneous Jacobian variety of several nonisomorphic
curves.

Acknowledgement. The third author thanks Gabriel Cardona for
some useful comments on an earlier version of the paper.

2. Abelian varieties of GL2-type

2.1. The Néron-Severi group of an abelian variety. We begin by
recalling some basic facts on abelian varieties. Let k be a field, ks a
separable closure of k and let Gk = Gal(ks/k). For any field extension
K/k, let AK = A×k K be the abelian variety obtained by base change
of A to Spec K. Let Pic(A) be the group of invertible sheaves on A,
Pic0(Aks) be the subgroup of Pic(Aks) of invertible sheaves algebraically
equivalent to 0 and Pic0(A) = Pic(A) ∩ Pic0(Aks). The Néron-Severi
group of A is NS(A) = PicA/Pic0(A). We shall denote NS(Aks)Gk =
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H0(Gk, NS(Aks)) the group of k-rational algebraic equivalence classes
of invertible sheaves. Note that in general not all elements in NS(Aks)Gk

are represented by an element in Pic(A).
For any P ∈ A(ks), let τP denote the translation by P map on

A. Every invertible sheaf L ∈ NS(Aks)Gk defines a morphism ϕL :

A→Â over k given by ϕL(P ) = τ ∗P (L) ⊗ L−1, which is an isogeny if
L is nondegenerate. A polarization on A defined over k is the class
of algebraic equivalence of an ample invertible sheaf L ∈ NS(Aks)Gk .

Equivalently, a polarization on A over k is an isogeny λ : A→Â defined
over k such that λ⊗ ks = ϕL for some ample line bundle L on Aks .

A nondegenerate invertible sheaf L on A induces an anti-involution
on the algebra of endomorphisms

∗ : Q⊗ EndkA
∼→ Q⊗ EndkA, t 7→ ϕL−1 · t̂ · ϕL.

Let Ends
kA = {β ∈ EndkA, β∗ = β} denote the subgroup of sym-

metric endomorphisms and Ends
k+A be the set of positive symmetric

endomorphisms of A.
From now on, we assume that k is a subfield of a fixed algebraic

closure Q̄ of Q.

Proposition 2.1. Let A/k be an abelian variety and let L ∈ NS(Ak̄)
Gk

be nondegenerate.
Then, for any endomorphism t ∈ Ends

kA, there exists a unique L(t) ∈
NS(Ak̄)

Gk such that ϕL(t) = ϕL·t. The following properties are satisfied:

(i) Let E and Et denote the alternating Riemann forms attached
to L and L(t) respectively. Then

Et(x, y) = E(x, ty) = E(tx, y) .

(ii) If t is a totally positive element, then L is a polarization if and
only if L(t) is.

(iii) For any t ∈ Ends
kA and d ∈ Z, t∗(L) = L(t2) and L(d) = L⊗d.

Proof. Let A(C) = V/Λ for a complex vector space V and a lattice
Λ. Since the involution induced by L on Ends

kA is the identity map, it
may be checked that, for any endomorphism t ∈ Ends

kA, Et : V ×V →
R, (x, y) 7→ E(tx, y) = E(x, ty) is again an alternating Riemann form
on A. Then, by the Appell-Humbert theorem, there exists a unique
invertible sheaf L(t) up to algebraic equivalence such that EL(t) = Et.
It follows from the analytical representation of the morphism ϕL in
terms of E that ϕL(t) = ϕL ◦ t. Since both t and L are defined over k,
the same holds for L(t).

As for (ii), let us denote by H the hermitian form on V attached to
L. Then, the matrix of the hermitian form Ht attached to L(t), with
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respect to any basis of V , is the product of the matrices of H and t.
Since t is a self-adjoint endomorphism on the hermitian space (V,H),
there is an orthogonal basis of V over which t has diagonal form. It is
clear that if t is totally positive, then Ht is positive definite if and only
if H is.

Finally, we know that for any endomorphism t ∈ Ends
kA and any in-

vertible sheaf L on A, Et∗(L)(x, y) = E(tx, ty) = E(t2x, y) = EL(t2)(x, y)

and thus t∗(L) = L(t2). Since EL⊗d = dE, we also have that L(d) = L⊗d.
2

Remark 2.2. Note that our construction of L(t) extends for arbitrary
t ∈ Q ⊗ EndkA to produce fractional invertible sheaves L(t) ∈ Q ⊗
NS(Ak̄)

Gk .

Theorem 2.3. For any choice of a principal polarization L0 on A
defined over k, there is an isomorphism of groups

ε : NS(Ak̄)
Gk

∼→ Ends
kA

L 7→ ϕ−1
L0
· ϕL

such that L ∈ NS(Ak̄)
Gk is a polarization if and only if ε(L) ∈ Ends

k+A
and it is principal if and only if ε(L) ∈ Auts

k+ A. Moreover, ε−1(t) =

L(t)
0 .

Proof. The first part of the theorem is well known if we replace
k by k̄. It is clear that if L0 ∈ NS(Ak̄)

Gk , ε(L) ∈ Ends
kA for any

L ∈ NS(Ak̄)
Gk . From the relation

ε(L(t)
0 ) = ϕ−1

L0
· ϕL(t)

0
= ϕ−1

L0
· ϕL0 · t = t ,

we obtain that the morphism ε is surjective and the statement is im-
mediate. 2

Definition 2.4. We shall say that two polarizations L1, L2 defined over

a field extension K/k are K-isomorphic, L1
K' L2, if and only if there

exists u ∈ AutK A such that u∗(L2) = L1. We denote by Π(Ak) the set
of k-isomorphism classes of principal polarizations on Ak defined over
k, i. e.,

Π(Ak) = { principal polarizations L defined over k}/ k' .

Proposition 2.5. [15] The set Π(Ak) is finite.

We will denote by π(Ak) the cardinality of Π(Ak). Two positive
symmetric endomorphisms β1, β2 ∈ Ends

k+A are equivalent, β1 ∼ β2,
if β1 = β∗β2β for some β ∈ Autk A. The next result follows from
Theorem 2.3.
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Corollary 2.6. The morphism ε induces a bijection of finite sets

Π(Ak) ←→ Auts
k+ A/ ∼ .

2.2. Polarizations on abelian varieties of GL2-type. We now de-
scribe explicitly the isomorphism of Theorem 2.3 for a certain class of
abelian varieties. This will provide a procedure for determining all iso-
morphism classes of principal polarizations on them in a computable
way. We will illustrate it with several examples in section 4.

Definition 2.7. An abelian variety A is of GL2-type over a field k if A
is defined over k and EndkA is an order in a number field F of degree
[F : Q] = dim A. If F is totally real, we then say that A is of real
GL2-type over k.

Remark 2.8. By Albert’s classification of involuting division algebras
(see [16]), the algebra of endomorphisms F = Q⊗EndkA of an abelian
variety A of GL2-type over k is isomorphic either to a totally real field
or a CM-field. The Rosati involution with respect to any polarization
L on A over k acts as complex conjugation on the number field F =
Q⊗EndkA (see [16]) and it can be checked that the same holds for the
involution with respect to a non necessarily ample invertible sheaf L. In
particular, Q⊗Ends

kA is isomorphic either to F or the maximal totally
real subfield F0 of F , depending on whether A is of real GL2-type or
not.

Remark 2.9. An abelian variety A/k is said to have real multiplication
by a field F if F is a totally real field contained in Q ⊗ EndkA with
[F : Q] = dim A. It is clear that the condition of being of real GL2-type
is stronger than that of being of real multiplication.

The main sources of abelian varieties of GL2-type over Q are the
abelian varieties Af attached by Shimura to an eigenform f of weight
2 for the modular congruence subgroup Γ1(N) and the real case occurs
when f ∈ S2(Γ0(N)). Actually, Ribet has proved in [19] that, assuming
Serre’s conjecture (3.2.4?) of [22], these are all the abelian varieties of
GL2-type over Q.

For the rest of this section, we fix the following notation. For any
totally real number field F0 and any subset S of F0, we shall denote by
S+ the set of totally positive elements of S.

The next theorem provides an explicit description of all polarizations
on an abelian variety of GL2-type.

Theorem 2.10. Let A be an abelian variety of GL2-type over k. Let
R = EndkA, R0 be the subring of R fixed by complex conjugation,
F = Q ⊗ R and F0 = Q ⊗ R0. Suppose that A admits a principal
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polarization L0 on A defined over k and let ε be as in Theorem 2.3.
Then,

(i) For any L ∈ NS(Ak̄)
Gk and any endomorphism s ∈ R:

deg(L) = |NormF/Q(ε(L))|,

ε(s∗(L)) =

{
s2 · ε(L) if F = F0,

NormF/F0(s) · ε(L) if [F : F0] = 2.

(ii) The class of an invertible sheaf L ∈ NS(Ak̄)
Gk is a polarization

if and only if ε(L) ∈ (R0)+. In particular, L is a principal
polarization if and only if ε(L) ∈ (R∗

0)+.
(iii) Let P (R) be the multiplicative group

P (R) =

{
(R0)

∗
+/R∗2

0 if F = F0,

(R0)
∗
+/ NormF/F0(R

∗) if [F : F0] = 2.

Then, there is a bijective correspondence between the sets Π(Ak)
and P (R) and hence

π(Ak) = 2N with 0 ≤ N ≤ [F0 : Q]− 1.

The 2N isomorphism classes of principal polarizations on A over

k are represented by the invertible sheaves L(uj)
0 , where {uj}2N

j=1

is a system of representatives of P (R).

Proof. By Theorem 2.3, for every L ∈ NS(Ak̄)
Gk , there exists

t ∈ R0 such that L = L(t)
0 . Thus, ε(s∗(L)) = ε(s∗(L(t)

0 )) = ε(L(ss̄t)
0 ) =

ss̄ · ε(L), where ¯ denotes complex conjugation. Moreover, deg(L) =
deg(ε(L))1/2 = |NormF/Q(ε(L))|. This yields (i).

Part (ii) follows immediately from Theorem 2.3 and part (i).
Finally, the bijection Π(Ak) ' P (R) is now a consequence of Corol-

lary 2.6. Dirichlet’s unit theorem then implies that π(Ak) = 2N for
0 ≤ N ≤ [F0 : Q] − 1. From (i) we obtain that any two polarizations
L, L′ on A defined over k are isomorphic if and only if ε(L) = uū ε(L′)
for some u ∈ R∗. Hence, representatives of the isomorphism classes of

principal polarizations on A over k are provided by L(uj)
0 for represen-

tatives uj of P (R). 2

Remark 2.11. If L0 ∈ NS(Ak̄)
Gk is a nonnecessarily ample invertible

sheaf on A over k of degree 1, then the map ε : NS(Ak̄)
Gk → EndkA,

defined by ε(L) = ϕ−1
L0
·ϕ(L), is also an isomorphism that still satisfies

that ε−1(t) = L(t)
0 and part (i) of the theorem above.
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Corollary 2.12. Let A be an abelian variety of GL2-type over k with a
polarization L over k of degree d ≥ 1. Then, A is principally polarizable
over k if and only if there exists t ∈ (R0)+ satisfying NormF/Q(t) = d

and L(t−1) ∈ NS(Ak̄)
Gk .

Proof. Assume L(t−1) ∈ NS(Ak̄)
Gk for some t ∈ (R0)

∗
+ such that

NormF/Q(t) = d. Then L(t−1) must be ample because t is totally pos-

itive and principal because deg(L(t−1)) = deg(L) NormF/Q(t−1) = 1.
Conversely, if L0 is a principal polarization on A over k, it must be of
the form L0 = L(t−1) for some t ∈ (R0)+ whose norm from F over Q is
d. 2

The above corollary provides an effective criterion to decide whether
a polarized abelian variety (A,L) of real GL2-type over k is principally
polarizable over k. Indeed, denote by M and T the matrices of the
alternating Riemann form E attached to L and t ∈ End+

k A with re-
spect to a fixed basis of H1(A,Z) respectively. It then suffices to check
whether M · T−1 ∈ GL2g(Z) for any t ∈ (R0)+ (up to multiplicative
elements in R∗2

0 if F = F0 or NormF/F0(R
∗) if [F : F0] = 2) such that

NormF/Q(t) = d . Note that if (A,L) is an abelian variety of GL2-type
together with a polarization L of primitive type (1, d2, . . . , dg) and de-
gree d = d2 · ... · dg, we only need to consider those t ∈ (R0)+ of norm
d such that t/m /∈ R0 for any m > 1.

3. Abelian surfaces of GL2-type

3.1. Principal polarizations on abelian surfaces. Let C/k be a
smooth projective curve defined over a number field k and let A =
J(C) = Pic0(C)/k denote the Jacobian variety of C. The sheaf of
sections of the Theta divisor ΘC associated to the curve is a principal
polarization L(ΘC) defined over k. For any other curve C ′/k such

that A
k' J(C)

k' J(C ′), Torelli’s theorem asserts that C and C ′ are
isomorphic over k if and only if there exists u ∈ Autk A such that
u∗(ΘC′) = ΘC in NS(Ak̄)

Gk .
For an abelian variety A/k, this leads us to introduce the set T (Ak)

of k-isomorphism classes of smooth algebraic curves C/k such that

J(C)
k' A. Let τ(Ak) = |T (Ak)|. The Torelli map C 7→ L(ΘC) induces

an inclusion of finite sets

T(Ak) ⊆ Π(Ak).

While a principally polarized abelian surface over an algebraic closed
field can only be the jacobian of a curve or the product of two elliptic
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curves, the panorama is a little wider from the arithmetical point of
view.

Theorem 3.1. Let A/k be an abelian surface with a principal polar-
ization L defined over k. The polarized abelian variety (A,L) is of one
of the following three types:

(1) (A,L)
k' (J(C),L(ΘC)), where C/k is a smooth curve of genus

two.

(2) (A,L)
k' (C1 × C2,Lcan), where C1 and C2 are elliptic curves

over k and Lcan is the natural product polarization on C1×C2.

(3) (A,L)
k' (ResK/k C,Lcan), where ResK/k C is the Weil restric-

tion of an elliptic curve C over a quadratic extension K/k, and
Lcan is the polarization over k isomorphic over K to the canon-
ical polarization of C × σC.

Proof. It is well known that (A,L) is isomorphic over k̄ to either
the canonically polarized Jacobian variety (J(C),L(ΘC)) of a smooth
curve of genus two or to the canonically polarized product of two elliptic
curves.

Let us first assume that (A,L) is irreducible. We then know that

there exists a curve C/Q̄ of genus two such that (A,L)
Q̄' (J(C),L(ΘC)).

Since L = L(ΘC) ∈ NS(Ak̄)
Gk , we claim that C admits a k-isomorphism

onto all its Galois conjugates σC for σ ∈ Gk. More precisely, if we re-
gard C as an embedded curve in Pic1(C), then σC = C + aσ for some
aσ ∈ Pic0(C)(Q̄). Indeed, this follows from the fact that the sheaves
σL = L(Θ σC) are all algebraically equivalent and h0(L) = 1. In par-
ticular, we obtain that the field of moduli kC of C is contained in k.
Let us now show that C does admit a projective model over k. We
distinguish two cases depending on whether the group Aut C is trivial
or not.

If Aut C 6' Z/2Z, Cardona and Quer have recently proved that C
always admits a model over its field of moduli (cf. [1]).

We now consider the case that the hyperelliptic involution v on C
generates the group of the automorphisms of C. Then, as shown by
Mestre in [14], there is a projective model C/K of C over a quadratic
extension K/k. Let σ ∈ Gk such that σ does not act trivially on K.

There is an isomorphism ϕσ : C
'→ σC of C/K onto Cσ given by

the translation by aσ map on Pic1(C). The map Pic1(C)→Pic1(C),
D 7→ D +aσ + σaσ descends to an automorphism of C, σϕσ ◦ϕσ, which
cannot be the hyperelliptic involution v, since v = −1J(C) on J(C).
As we are assuming that Aut(C) ' Z/2Z, we obtain that σϕσ = ϕ−1

σ .
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Now, Weil’s criterion on the field of definition of an algebraic variety
applies to ensure that C admits a projective model over k (cf. [23]).

Now, assume that (A,L) is reducible over k, i.e., A
k' C1 × C2 for

some elliptic curves C1 and C2. If both C1, C2 and the isomorphism

are defined over k, then (A,L)
k' (C1 × C2,Lcan). Otherwise, Ci/K

must be defined over a quadratic extension K/k and C1 = σC2 where
Gal(K/k) = 〈σ〉, since the product C1 × C2 is defined over k. This is

equivalent to saying that A
k' ResK/k C1. 2

Definition 3.2. We say that a principal polarization L on an abelian

surface A over k is split if (A,L)
k̄' (C1 × C2,Lcan) for some elliptic

curves Ci/k̄. We shall denote by σ(Ak) the number of k-isomorphism
classes of split principal polarizations on A over k.

Corollary 3.3. Let A/k be an abelian surface. Then

π(Ak) = τ(Ak) + σ(Ak).

It may very well be the case that σ(Ak) ≥ 2 for some abelian surface
A/k. This amounts to saying that A ' C1 × C2 ' C3 × C4 as un-
polarized abelian varieties for two different nonordered pairs of elliptic
curves (C1, C2) and (C3, C4) (cf. [13], p. 318).

3.2. Principal polarizations on abelian surfaces of GL2-type.
We now focus our attention on abelian surfaces of GL2-type. As an
immediate consequence of Theorem 2.10, we obtain the following.

Corollary 3.4. Let A be a principally polarizable abelian surface over
k such that EndkA = R is an order in a quadratic field F . Then

π(Ak) =

{
2 if F is real and all units in R have positive norm,

1 otherwise.

Since every abelian variety of GL2-type over k is simple over k, note
that the second possibility of Theorem 3.1 cannot occur when the sur-
face is of this type. The following definition was first introduced in
[2].

Definition 3.5. An elliptic curve C/k̄ is a k-curve if C is isogenous to
all its Galois conjugates Cσ, σ ∈ Gal(k̄/k). A k-curve C is completely
defined over an extension K/k if C is defined over K and it is isogenous
over K to all its Galois conjugates.
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Lemma 3.6. Let A be an abelian surface of real GL2-type over k,
which is k-isogenous to the Weil restriction ResK/k C of an elliptic
curve C/K, where K/k is a quadratic extension. Then C is a k-curve
completely defined over K, its j-invariant j(C) /∈ k and Q⊗EndKA is
isomorphic to M2(Q).

Proof. Let σ be the nontrivial automorphism of Gal(K/k). We
have that Q⊗EndKC = Q and there is an isogeny µ : C → σC defined
over K, since otherwise F = Q ⊗ EndkA must be either Q or contain
an imaginary quadratic field. Therefore, C is a k-curve completely
defined over K and µ ◦ σµ ∈ Q. Then, Q ⊗ EndKA ' M2(Q) and
µ◦σµ = ± deg µ. Since F is a totally real quadratic field, µ◦σµ = deg µ
and F = Q(

√
deg µ). Consequently, µ cannot be an isomorphism and

hence j(C) /∈ k. 2

Proposition 3.7. Let C1, C2 be two elliptic curves defined over the
quadratic fields K1, K2 respectively. If ResK1/QC1 and ResK2/QC2 are
Q-isomorphic and they are of real GL2-type over Q, then K1 = K2 and
C1 is isomorphic over K1 either to C2 or its Galois conjugate.

Proof. Let A = ResKi/QCi. First, we show that K1 = K2. If Ci does
not have complex multiplication, we then know by the previous lemma
that Q⊗EndKi

A = Q⊗EndQA ' M2(Q) and hence Q⊗EndK1∩K2A '
M2(Q). It follows that K1 = K2.

Assume then that both C1 and C2 have complex multiplication by the
same imaginary quadratic field L because C1 and C2 must be isogenous.
Again by the lemma, Ki = Q(j(Ci)). We have that j(Ci) = j(ai) for an
invertible ideal ai of the order End(Ci) of L. Since Ki is quadratic, the
ideal classes of ai and a−1

i are equal and, therefore, j(ai) = j(a−1
i ) =

j(ai) = j(ai), where denotes the complex conjugation. It follows that
Ki = Q(j(Ci)) is a real quadratic field. Let us assume that K1 6= K2

and let Gal(Ki/Q) = 〈σi〉. Since C1 × Cσ1
1 ' C2 × Cσ2

2 over K1 · K2

but not over Ki, there exists an isogeny µ : C1 → C2 defined over
K1 ·K2 but not over Ki. Let τ ∈ Gal(K1 ·K2/Q) be the automorphism
which does not act trivially over K1 or over K2. Then, µ̂ = µ × τµ ∈
Q ⊗ EndK1·K2A \ Q ⊗ EndKi

A. Let us denote by A the Q-algebra
generated by Q⊗ EndKi

A and µ̂. From the inclusions

Q⊗ EndKi
A ' M2(Q) ( A ⊆ Q⊗ EndQA ' M2(L) ,

we obtain that A = Q⊗EndQA and, thus, all endomorphisms of A are
defined over K1 ·K2. In particular, we obtain that Q⊗EndK1·K2(Ci) '
L, but this leads to a contradiction since the totally real field K1 ·K2

cannot contain L. Therefore, K1 = K2.
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Set K = Ki, C = C1 and Gal(K/Q) = 〈σ〉. Now, we will prove that
C is isomorphic either to C2 or to σC2 over K. Let us denote by π : A →
C the natural projection over K, so that ker π = σC. Then the period
lattice of C is Λ = {∫

γ
π∗(ω) | γ ∈ H1(A,Z)}, where ω is the invariant

differential of C. Given α ∈ Q⊗ EndKA, we will denote by Λα the set
{∫

γ
α∗(π∗(ω)) | γ ∈ H1(A,Z)}. When α∗(π∗(ω)) 6= 0, Λα is the period

lattice of a certain elliptic curve over K; these lattices cover all the
K-isomorphism classes of elliptic curves which are optimal quotients
of A over K. We will prove that all these classes are also obtained
when α only runs over F ∗. Let w ∈ EndKA be the composition of the
morphisms

A
π→ C

i
↪→ A = C × σC ,

where i is the natural inclusion. We have w∗H0(A, Ω1
A/K) = Kπ∗(ω)

and w2 = w. Moreover, Q ⊗ EndKA = F ⊕ w · F since w /∈ F and
Q⊗ EndKA is a F -algebra of dimension 2. Now, it suffices to use the
equality w · Q ⊗ EndKA = w · F . Since for every integer m 6= 0, the
classes corresponding to Λα and Λmα are isomorphic, we can assume
that α ∈ EndQA and in this case Λα is a sublattice of Λ.

There exists a cyclic isogeny between C and σC over K of a certain
degree n, which extends to an endomorphism β ∈ EndQA with the
following properties:

(1) β restricted to σC (resp. C) provides a cyclic isogeny between
σC and C (resp. C and σC) of degree n.

(2) Λβ is the period lattice of the elliptic curve isomorphic to σC
over K which satisfies Λ/Λβ ' Z/nZ.

(3) β2 = n, F = Q(β) and, moreover, for all integers m > 1 we
have that β/m /∈ EndQA.

(4) Due to the previous step, β also provides a cyclic isogeny be-
tween σC2 and C2 of degree n.

(5) For all integers a, b we have Λa+bβ = aΛ + bΛβ.

Let Λα be a lattice corresponding to the K-isomorphism class of C2

and write α = a + bβ with a, b integers which we can assume to
be coprime. We can also assume that a, b 6= 0, since otherwise the
statement is obvious. Set d = gcd(a, n). Using the fact Λ/Λβ ' Z/nZ,
it can be checked that Λα = aΛ + bΛβ is the sublattice dΛ + Λβ of Λ
of degree d. Then, we can take a = d and b = 1. Now, we can see that
Λα·β = nΛ+dΛβ is a sublattice of Λα of degree d ·n. Therefore, d must
be 1 and C and C2 are isomorphic over K. 2
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Corollary 3.8. Let A be a principally polarizable abelian surface of
GL2-type over Q. Then, σ(AQ) ≤ 1 and, in particular,

τ(AQ) =

{
π(AQ)− 1 if A

Q' ResK/QC for a Q-curve C/K,

π(AQ) otherwise.

Remark 3.9. Note that if EndQ̄A = EndQA, then π(AQ) = π(AQ̄) and
τ(AQ) = τ(AQ̄). Furthermore, if τ(AQ) = 2 then the two curves over
Q which share A as Jacobian are nonisomorphic over Q̄.

Now, Theorem 1.1 is a consequence of corollaries 3.4 and 3.8.

Corollary 3.10. There are infinitely many genus two curves over Q
such that their Jacobians are of real GL2-type and isomorphic to the
product of two elliptic curves as unpolarized abelian varieties.

Proof. As a consequence of Proposition 3.4 and Theorem 3.8, we
have that for every quadratic Q-curve C such that A = ResK/QC is of
real GL2-type and that the order EndQA contains no units of negative
norm, there is a genus two curve over Q whose Jacobian is isomorphic
to A as unpolarized abelian varieties. Fix d = 3 or 7. It is known
that for every quadratic field K there exists a Q-curve C ′/K without
CM such that K = Q(j(C ′)) and an isogeny from C ′ onto its Galois
conjugate of degree d. For such a curve there is an isomorphic curve
C/K with A = ResK/QC being of real GL2-type if and only d is a norm

of K (see [18]). Now, the statement follows from the fact that Z[
√

d]
contains no units of negative norm and the existence of infinitely many
quadratic fields K such that d ∈ NormK/Q(K∗). 2

In subsection 4.4, we will show how for some quadratic Q-curves
Theorem 1.1 allows us to construct a genus two curve over Q whose
Jacobian is isomorphic over Q to its Weil’s restriction.

In view of the above, it would be useful to have a criterion for de-
ciding whether an abelian surface of real GL2-type is principally po-
larizable or not. In addition to Corollary 2.12, we now characterize
the existence of a principal polarization on an abelian surface of real
GL2-type under some arithmetical restrictions on the ring of the endo-
morphisms.

Proposition 3.11. Let A be an abelian surface of GL2-type over k
by a real quadratic field F of class number h(F ) = 1 and assume that
EndkA = O is the ring of integers of F . Then

(1) If O∗ contains some unit of negative norm, then A is principally
polarized over k and, in particular, the degree of any polariza-
tion on A over k is a norm of F .
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(2) If O∗ contains no units of negative norm and L is a polarization
of degree d over k, then either d or −d is a norm of F. In the
first case, A is principally polarizable over k.

Proof. First, we will prove that there is an invertible sheaf on A in
NS(Ak̄)

Gk of degree 1. Since A is defined over k, there is a polarization
L on A defined over k. Let us denote by E the corresponding alter-
nating Riemann form on H1(A,Z). Since H1(A,Z) is a free O-module
of rank 2 and h(F ) = 1, we have that H1(A,Z) = Oγ1 ⊕Oγ2 for some
γ1, γ2 ∈ H1(A,Z). Consider the morphism of groups

φ : O −→ Z , α 7→ E(αγ1, γ2) .

By the nondegeneracy of the trace, there is δ ∈ F such that φ(α) =
TrF/Q(α · δ). Due to the fact that δ lies in the codifferent of O, there

is v ∈ O such that δ = v/
√

∆, where ∆ is the discriminant of F . Set

L0 = L(v−1) ∈ Q⊗NS(Ak̄)
Gk and denote by E0 its alternating Riemann

form. From the relations

E0(αγ1, γ2) = TrF/Q(α/
√

∆) ∈ Z , E0(γ, αγ) = 0

for all α ∈ O and γ ∈ H1(A,Z), we obtain L0 ∈ NS(Ak̄)
Gk . Moreover,

taking a basis γ1, αγ1, γ2, αγ2 of H1(A,Z) for a suitable α, an easy check
shows that the matrix of E0 with respect to this basis has determinant
1.

Now, assume that O∗ contains some unit u of negative norm. Then,

either L0, L(−1)
0 , L(u)

0 or L(−u)
0 must be a principal polarization. By

Corollary 2.12, we also obtain that the degree of any polarization on A
over k is a norm of F .

In the case −1 6∈ NormF/Q(O∗), by remark 2.11, there is t ∈ O such

that L(t)
0 = L, with NormF/Q(t) = ± degL. If degL is a norm of F ,

then NormF/Q(t) = degL. Therefore, either t or −t lies in O+ and,

thus, either L0 or L(−1)
0 is a polarization. 2

4. Explicit examples

In the previous section we have shown the different possibilities for
abelian surfaces of GL2-type over Q. We now illustrate these possi-
bilities with explicit examples for the case of real GL2-type. We will
not consider abelian surfaces of CM GL2-type because they are less
interesting. Indeed, these abelian surfaces have a unique primitive po-
larization L and they are principally polarizable if and only if L is
principal. Assuming Serre’s conjecture to be true, we must look for
these examples among the abelian varieties Af attached by Shimura to
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an eigenform f ∈ S2(Γ0(N)). In order to present these abelian vari-
eties as Jacobians of curves, we will use the procedure described in [5],
which is based on jacobian Thetanullwerte (see [7]).

All the computations were performed with Magma v.2.7 using the
package MAV written by E. González and J. Guàrdia ([6]). Both the
package and some files required to reproduce them are available via
the web pages of the authors.

4.1. Modular Case. We summarize here some facts about modular
abelian varieties, fixing also the notation used in the examples in the
following subsections. Let f =

∑
n≥1 anqn be a normalized newform

of S2(Γ0(N)) where, as usual, q = e2πiz. Attached to f , Shimura con-
structed an abelian variety Af over Q in two different ways. In [?], it
is presented this abelian variety as a subvariety of J0(N) while in [?]
it is constructed as an optimal quotient of J0(N) and it is proved that
both are dual. We will take Af as subvariety, and this will not be a
restriction because we only will consider the case principally polarized
and in this situation both abelian varieties are isomorphic (over Q).
More precisely, let T be the Hecke algebra of endomorphisms of the
Jacobian variety J0(N) of X0(N), and let If be the kernel of the map
T → Z[a1, a2, . . . ] which identifies every Hecke operator with the cor-
responding eigenvalue of f . Then A = J0(N)/IfJ0(N) is the abelian
variety attached by Shimura as an optimal quotient. We recall that
Kf = Q({an}) is a number field of degree n = [Kf : Q] = dim A, the
endomorphism algebra Q ⊗ EndQA is the Q-algebra generated by T
acting on A, Q⊗T/If , and this is isomorphic to Kf . Let us denote by
π : J0(N) → A the natural projection over Q. There is a Z-submodule
H of H1(J0(N),Z) of rank 2n such that H1(J0(N),Z) = ker π∗ ⊕ H.
Note that ker π∗ = IfH1(J0(N),Z).

It is well known that π∗H0(A, Ω1
A/C) is the C-vector space generated

by the Galois conjugates of f(q) dq/q and π∗H0(A, Ω1
A/Q) is the sub-

space obtained by taking the modular forms with rational q-expansion.
For a fixed rational basis h1, . . . , hn of π∗H0(A, Ω1

Af /Q), the Abel-Jacobi

map induces an isomorphism of complex torus:

A(C) −→ Cn/Λ , P 7→ (

∫ P

0

h1, . . .

∫ P

0

hn) ,

where

Λ = {(
∫

γ

h1, . . .

∫

γ

hn)|γ ∈ H1(X0(N),Z)} = {(
∫

γ

h1, . . .

∫

γ

hn)|γ ∈ H} .
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The abelian variety Af , viewed as subvariety of J0(N), is described by

Af (C) −→ Cn/Λf

P 7→ (
∫ P

0
h1, . . .

∫ P

0
hn) ,

where Λf = {(∫
γ
h1, . . .

∫
γ
hn)|γ ∈ Hf} and Hf = {γ ∈ H1(X0(N),Z) |

Ifγ = {0}}. Note Λf is a sublattice of Λ. Obviously, given T ∈
Q ⊗ T, we have that T ∈ EndQAf if and only if T leaves Λ stable or
equivalently T leaves Hf stable. Let Θ be the canonical polarization on
J0(N) and E its corresponding Riemann form, which is obtained from
the intersection numbers on H1(X0(N),Z). From now on, we shall call
the polarization L on Af obtained from the canonical polarization Θ on
J0(N) the canonical polarization on Af . Note that the corresponding
Riemann form EΛ on Λ is obtained as the restriction of E to Λ and
that, although Θ is principal, L may not be.

We know by Ogg (see [17]) that the cusps of X0(N) associated to 1/d
for d | N and gcd(d,N/d) = 1 are rational points on X0(N). Moreover,
the divisors of degree 0 generated by these cusps are torsion points on
J0(N)(Q) and the same holds for their projections on Af , although their

orders can decrease. For a given torsion Gal(Q/Q)-stable subgroup G
of Af , the abelian variety Af/G is isogenous to Af over Q. Moreover,
both abelian varieties can be isomorphic over Q only if G is the kernel
of some endomorphism in EndQ(Af ). As complex tori, if we identify
Af (C) = Cg/Λf , then Af/G(C) = Cg/ΛG, where ΛG = 〈Λf , G〉. The
polarization L induces a polarization LG on Af/G, whose alternating
Riemann form EG is given by EG = #G · EΛ : ΛG × ΛG → Z and its
degree is #G · degL. Notice that EndQ(Af ) and EndQ(Af/G) can be
different.

4.2. Nonisomorphic genus two curves with Q-isomorphic Jaco-
bian. We begin by studying the unique two-dimensional factor S65,B

of J0(65), given by the newform

f = q + aq2 + (1− a)q3 + q4 − q5 + (a− 3)q6 . . .

with a =
√

3. We know that EndQ(Af ) = Z[
√

3] and moreover Af is

simple in its class of isogeny over Q, because f does not admit any
extra-twist. Hence, each principal polarization on Af is the sheaf of
sections of the Theta divisor of a smooth curve C of genus two such that

Af

Q' J(C). A basis of the Z-module Hf is spanned by the modular
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symbols

γ1 = {− 1
15

, 0} − {− 1
30

, 0}+ {− 1
40

, 0} − {− 1
60

, 0},
γ2 = {− 1

20
, 0} − {− 1

35
, 0}+ {− 1

50
, 0} − {− 1

55
, 0},

γ3 = {− 1
15

, 0} − {− 1
26

, 0}+ {− 1
40

, 0} − {− 1
50

, 0} − {−2
5
,− 5

13
},

γ4 = {− 1
30

, 0} − {− 1
45

, 0}+ {− 1
52

, 0} − {− 1
55

, 0}+ {−2
5
,− 5

13
}.

An integral basis of H0(Af , Ω
1) is given by the forms h1 = (σf−f)/

√
3,

h2 = (f + σf)/2. By integrating these differentials along the paths
γ1, . . . , γ4, we obtain an analytic presentation of the abelian surface Af

as a complex torus C2/Λ. The restriction of E to Hf is the Riemann
form of a polarization on Af , given by the following Riemann matrix:

ME = (E(γi, γj))i,j =




0 2 −2 0
−2 0 −2 2
2 2 0 0
0 −2 0 0


 .

The type of this polarization is (2, 2). Thus, the primitive polariza-
tion L0 associated to it is principal. In [5] it has been checked that
(S65,B,L0) is the polarized Jacobian of the hyperelliptic curve

C65,B,1 : Y 2 = −X6 − 4X5 + 3X4 + 28X3 − 7X2 − 62X + 42,

whose absolute Igusa invariants are

{i1, i2, i3} = {−265 · 3135

133
,
139 · 3133701

5 · 133
,
7 · 3132 · 59104229

2352133
}.

Following Theorem 2.10, we now build a second polarization on S65,B,
which will exhibit S65,B as the Jacobian of a second curve C65,B,2 non-
isomorphic to C65,B,1 over Q̄. Let us consider the Hecke operator

u = 2 + T2 = 2 +
√

3 ∈ EndQAf . This is a non-square totally pos-
itive unit in the ring of integers O of Kf . The action of u on H1(Af ,Z)
with respect to the basis γ1, γ2, γ3, γ4 is given by:

Mu =




3 2 −1 1
0 0 1 0
0 −1 4 0
2 1 1 1


 .

We now take the polarization L(u)
0 , which is given by the Riemann form

Eu whose alternating Riemann matrix is MEu = 1/2 ·ME ·Mu. It is
a principal polarization on Af and nonisomorphic to L0. Since Af is

simple (over Q̄), the polarized abelian variety (Af ,L(u)
0 ) is the Jacobian
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of a curve C65,B,2 defined over Q. A symplectic basis with respect to
Eu is 



δ1

δ2

δ3

δ4


 =




1 0 0 0
0 3 1 0
0 1 0 −2
0 0 0 1







γ1

γ2

γ3

γ4


 .

In order to identify the polarized abelian variety (Af ,L(u)), we compute
the period matrix Ω = (Ω1 |Ω2) = ((

∫
δk

hjdq/q)k=1,2|(
∫

δk
hjdq/q)k=3,4)

of the forms h1, h2 along these paths. Let Z = Ω−1
1 Ω2 ∈ H2, which

belongs to the Siegel upper half space. We can now apply the method
of [5] to recover an equation of this curve. We obtain

C65,B,2 : Y 2 = −(X2 + 3X + 1)(7X4 + 37X3 + 71X2 + 44X + 8).

The absolute Igusa invariants of this curve are

{i1, i2, i3} = {−2331095

53134
,
31093206639

2 · 53134
,
7 · 31092123916753

2353134
}.

and this makes it clear that the curves C65,B,1 and C65,B,2 are noniso-
morphic over Q̄, although their Jacobians are isomorphic as unpolarized
abelian varieties over Q.

4.3. A genus two curve with Jacobian isomorphic to the Weil
restriction of a quadratic Q-curve. Let us now consider the factor
Af of J0(63) corresponding to the newform

f = q + aq2 + q4 − 2aq5 + q7 − aq8 + 6q10 + 2q11 + 2q13 + . . . ,

where a =
√

3. Again EndQ(Af ) ' Z[
√

3] =: O is the integer ring of

Kf = Q(
√

3). Let L0 be the primitive canonical polarization on Af

induced from J0(63). It turns out that L0 is principal and that the
polarized abelian variety (Af ,L) is the Jacobian of the hyperelliptic
curve (see [5]):

C63,B : Y 2 = −3X6 + 162X3 + 81.

We have that f does not have complex multiplication and the qua-
dratic character of L = Q(

√−3) is an extra-twist for f . Since the
discriminant of L is a norm of Kf , we know (see [4]) that, up to Galois
conjugation, there is a unique quadratic Q-curve C defined over L such
that C is an optimal quotient of Af defined over L. In fact, the invari-
ant differentials of the optimal quotients of Af , when pulled back to

H0(Af , Ω
1
Af /L) are given by 〈(1−i

2
(a + b

√
3)f + 1+i

2
(a− b

√
3)σf

)
dq/q〉 ,

with a + b
√

3 running over K∗
f .
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In order to obtain the other principal polarization on Af , we proceed

as in the previous example. Let u = T2 + T13 =
√

3 + 2 ∈ O∗ \ O∗2 be
the
Hecke operator acting on Af and let L(u)

0 be the principal polariza-
tion on Af associated to it by Proposition 2.1. A symplectic basis of

H1(Af ,Z) with respect the Riemann form Eu associated to L(u)
0 is:

γ1= {− 1
24

,0}−{− 1
28

,0}+{− 1
30

,0}−{− 1
51

,0}−{− 1
3
,− 2

7
},

γ2= 2({− 1
24

,0}−{− 1
28

,0}+{− 1
39

,0}−{− 1
6
,− 1

7
})−5{− 1

57
,0}

+3(−{− 1
36

,0}+{− 1
49

,0}−{− 1
51

,0}+{− 1
54

,0}+{− 1
60

,0}+{− 1
3
,− 2

7
}),

γ3= −{− 1
28

,0}+{− 1
36

,0}+{− 1
45

,0}−{− 1
49

,0}+{− 1
51

,0}−{− 1
54

,0}−{− 1
6
,− 1

7
}+{ 3

7
, 4
9
},

γ4= 2(−{− 1
36

,0}+{− 1
49

,0}−{− 1
51

,0}+{− 1
54

,0}−{− 1
57

,0})+{− 1
24

,0}
+{− 1

39
,0}−{− 1

45
,0}+{− 1

60
,0}+{− 1

3
,− 2

7
}−{ 3

7
, 4
9
}.

We take the basis of H0(Af , Ω
1
Af /L) given by

g1 =
(

1−i
2

(1 +
√

3)f + 1+i
2

(1−√3)σf
)
dq/q

=
(
(1− i

√
3)q + (3− i

√
3)q2 + (1−√3)q4 + . . .

)
dq/q

and its conjugate g1. Let Ω = (Ω1, | Ω2) the period matrix of this
basis g1, g1 with respect to γ1, γ2, γ3, γ4 and take Z = Ω−1

1 Ω2. When
we compute the even Thetanullwerte corresponding to Z, we find that,
up to high accuracy, exactly one of them vanishes. This suggests that
(Af ,L(u)) is not irreducible. We may confirm this by giving its explicit
decomposition. Let




δ1

δ2

δ3

δ4


 =




1 0 0 −1
0 1 −1 0
0 0 1 0
0 0 0 1







γ1

γ2

γ3

γ4




so that (δ1, δ2, δ3, δ4) is a new symplectic basis for Eu. The period
matrix of g1, g1 with respect to it is Ω′ = (Ω′

1, | Ω′
2) with

Ω′
1 =

(
6.584352 · · ·+ 8.916903 . . . i 0

0 −15.444529 · · ·+ 11.404432 . . . i

)
,

Ω′
2 =

(−2.275825 · · ·+ 6.429374 . . . i 0

0 −8.860177 · · ·+ 2.487529 . . . i

)
.

The lattices Λ = 〈6.584352 + 8.916903i,−2.275825 + 6.429374i〉, Λσ =
〈−15.444529+11.404432i,−8.860177+2.487529i〉 correspond to a pair
of Galois conjugate elliptic curves C and σC and the invariants of C are
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c4(C) =
9(5− 12

√−3)

28
, c6(C) =

27(43 + 42
√−3)

212
,

j(C) =
27(121171− 36627

√−3)

686
.

Hence, we have seen that

C × σC
Q(
√−3)' (Af ,L(u))

Q' ResQ(
√−3)/QC.

4.4. Constructing a genus two curve from a quadratic Q-curve.
In the example above, we have modified the canonical polarization
on the Jacobian of an hyperelliptic curve to present it as the Weil
restriction of a Q curve. We now perform the reverse process, i.e.,
we depart from a quadratic Q-curve and construct a polarization on
its Weil restriction which transforms it in the Jacobian of a rational
genus two curve. Notice that modular tools will not be used in this
construction.

Let C be the elliptic curve Y 2 = X3 + aX + b, where a = −9(767 +
212

√
13) and b = −18(17225+4778

√
13). We denote by σ the nontrivial

Galois conjugation of K = Q(
√

13) over Q. The points on C with x-
coordinate equal to 3(−13+4

√
13) generate a subgroup G of 3-torsion

points, and the elliptic curve C/G is isomorphic over K to σC. More
precisely, there is a cyclic isogeny µ : C → σC of degree 3 defined over
K such that µ∗(ωσ) = λω, where λ = 4+

√
13 (see [3]) and ωσ and ω are

the invariant differential forms of σC and C respectively. In particular,
σµ∗(ω) = σλωσ = 3/λωσ. We note that the Weil restriction of C is of
real GL2-type, since Q⊗End(ResK/QC) = Q(

√
3). Moreover, as there

are no units of negative norm in this algebra, Corollary 3.4 ensures the
existence of a second polarization on ResK/QC. We will now build it.

Consider the period lattices

Λ = 〈w1 = 0.220377 . . . , w2 = 0.428744 . . . i〉 ,
Λσ = 〈wσ,1 = −λw1, wσ,2 = −λ/3w2〉 ,

of the curves C, σC respectively. Let γ1, γ2 (resp. γσ,1, γσ,2) be a basis of
H1(C,Z) (resp. H1(

σC,Z)) such that
∫

γi
ω = wi (resp.

∫
γσ,i

ωσ = wσ,i).

Then, (γ1, γσ,1, γ2, γσ,2) is a symplectic basis of H1(C × σC,Z) for the
canonical polarization L attached to C × σC.

The action of the endomorphisms T =
√

3 on H1(C × σC,Z) is
obtained from its action on Λ× Λσ:

T : Λ → Λσ

w 7→ λ · w ,
T : Λσ → Λ

w 7→ σλ · w = 3/λ · w .
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¿From this, we compute the matrix of the action of the fundamental
unit u = 2 +

√
3 of End(ResK/QC) on H1(C × σC,Z) (with respect to

the basis γ1, γσ,1, γ2, γσ,2):

M =




2 −3 0 0
−1 2 0 0
0 0 2 −1
0 0 −3 2


 .

Hence, the Riemann form attached to the polarization L(u) is given by

Eu =




0 0 2 −1
0 0 −3 2
−2 3 0 0
1 −2 0 0


 .

Taking into account that ω1 = ω+ωσ, ω2 = (ω−ωσ)/
√

13 form a ratio-
nal basis of H0(ResK/QC, Ω1

Q), we compute the period matrix of these
differential forms with respect to an Eu-symplectic basis of H1(C ×
σC,Z), and apply the procedure of [5]. We obtain that (ResK/QC,L(u))
is the Jacobian of one of the two curves

Y 2 = ±(12909572X6 + 17307966X5 + 8746257X4 + 2170636X3

+278850X2 + 17238X + 377) .

Both curves have good reduction at p = 23. Only for the curve cor-
responding to the sign +, we have that the characteristic polynomial
of Frobp acting on the Tate module of its Jacobian (mod p) equals
the square of the characteristic polynomial of Frobp acting on the Tate
module of C/Fp. In conclusion, the right sign is +.

4.5. Nonprincipally polarized abelian surfaces. Coming back to
the modular examples, we now illustrate what can be done to describe
briefly those abelian surfaces Af which are nonprincipally polarized.
While our ideas do not provide a systematic method to treat any
abelian surface, since we use the fact that they are of GL2-type, it
covers many interesting cases. This will be apparent in the following
subsection, where we will build a number of genus two curves with
isogenous Jacobian.

We will work with the abelian surface Af which is the unique two-
dimensional factor of J0(35). It corresponds to the newform:

f = q +aq2 +(−a− 1)q3 +(−a+2)q4 + q5− 4q6 + · · ·+(a+3)q13 + . . .

where a = (−1+
√

17)/2. We see that EndQ(Af ) = Z[(1+
√

17)/2] =: O
is the integer ring of K = Q(a). Since f does not have any extra-twist,
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Af is simple in its Q-class of isogeny and, in particular, every principal
polarization on Af determines a curve whose Jacobian is isomorphic
to Af . In addition, by Corollary 3.4, if such a curve exists, it must be
unique up to Q̄-isomorphism.

Let σ denote the Galois conjugation of K/Q, and take α = (17 +√
17)/34. The cuspidal forms h1 = αf + σ(α)σf , h2 = (f − σf)/

√
17

provide an integral basis of H0(Af , Ω
1
Q). A basis of the Z-module

H1(Af ,Z) is given by the modular symbols

γ1 = {−1/10, 0} − {−1/25, 0},
γ2 = {−1/21, 0} − {−1/28, 0},
γ3 = {−1/7, 0} − {−1/15, 0}+ {2/5, 3/7},
γ4 = {−1/10, 0} − {−1/15, 0}+ {−1/25, 0} − {−1/30, 0}.

In this basis, the matrix of the alternating Riemann form attached to
the canonical polarization L on Af is

ME = (E(γi, γj))i,j =




0 1 −1 0
−1 0 0 1
1 0 0 1
0 −1 −1 0


 .

This polarization over Q is not principal, since it is of type (1, 2). Thus,
we cannot describe (Af ,L) as a Jacobian or as a Weil restriction. We
will look for a different polarization L0 on Af allowing this explicit
description for Af . Of course, we will require L0 to be principal and
defined over Q.

The existence of this polarization is guaranteed by Proposition 3.11.
By Theorem 2.10 and Corollary 2.12, we must check the polarizations
L(u) for those endomorphisms u ∈ EndQ(Af ) of norm 2. We take

u = T13 = (5 +
√

17)/2. The rational representation of u with respect
to the basis (γ1, γ2, γ3, γ4) is

Mu =




2 1 1 1
2 2 1 2
2 0 3 −2
0 1 −1 3


 .

The symplectic product Eu of the polarization L(u) is given by the
matrix MEu = ME ·Mu; it is of type (2,2), so that there is a principal
polarization L0 on Af over Q such that L⊗2

0 = L(u). A symplectic basis
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for H1(Af ,Z) with respect to this principal polarization is



δ1

δ2

δ3

δ4


 =




1 0 0 0
0 1 1 0
0 2 −1 −1
0 0 2 1







γ1

γ2

γ3

γ4


 .

We now compute the periods of the differential forms h1dq/q, h2dq/q
along these paths to represent (Af ,L0) as the complex torus C/Λ,
where Λ is the lattice spanned by the columns of the matrix Ω =
(Ω1 |Ω2), with

Ω1 =




3.429722 . . . i 1.265864 . . . i

−0.224497 . . . i 1.714858 . . . i


 ,

Ω2 =



−4.737944 . . . 3.044837 · · ·+ 1.898796 . . . i

2.706904 . . . −2.368972 · · ·+ 2.572287 . . . i


 .

We finally apply the method of [5] to see that this torus is the Jacobian
of the curve:

C35A : Y 2 = −(X + 1)(8X + 3)(10X3 + 14X2 + 6X + 1),

whose absolute Igusa invariants are:

{i1, i2, i3} = {−223295

5575
,
21729337 · 83

5575
,
282928321913

5575
}.

As we mentioned before, this is the only rational curve whose Jacobian
is isomorphic to Af .

4.6. Distinct genus two curves with isogenous Jacobians. We
now describe a method to find many nonisomorphic genus two curves
with isogenous Jacobians. As before, we will work with the only two-
dimensional factor Af of J0(35). We shall consider abelian surfaces
obtained as quotients Af/G, where G is a finite rational torsion sub-
group of Af .

The existence of a nontrivial rational 2-torsion point on the Jacobian
J(C35,A) is evident from the equation of the curve C35,A. Rational
torsion points on Af can also be found by means of cuspidal divisors
on X0(35). We have the rational cusps 0, 1/5, 1/7,∞ of X0(35) at
our disposal. Consider the cuspidal divisors D5 = (0) − (1/5), D7 =
(0)− (1/7) and D∞ = (0)− (∞) on X0(35). We denote by G the group
generated by their projections on Af .
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The integrals
∫ 0

∞ hjdq/q, provide the projection of D∞ on Af : it is the
point (−0.677587 . . . ,−0.084914 . . . ), which corresponds to the path in
H1(Af ,Q) given by 1/8γ2 − 1/4γ3 + 1/8γ4 = −9/8δ2 + 5/8δ3 + 3/4δ4.
Similarly, we obtain

D5 ←→ 1/8γ2 + 1/4γ3 + 1/8γ4 = −1/8δ2 + 1/8δ3 + 1/4δ4 ,
D7 ←→ 1/2γ2 = −1/2δ2 + 1/2δ3 + 1/2δ4 .

Thus G ' Z/8Z × Z/2Z × Z/2Z is generated by the images of the
divisors D5, D7, D5 − D∞ (we shall denote these images by the same
letters, since there is no risk of confusion). Note that all points in
G are rational torsion points on Af . For every subgroup G′ of G the
quotient abelian variety Af/G

′ could admit, in principle, a principal
polarization over Q since the degree of the polarization induced by L
on A/G′ is 2 · #G′ ∈ Norm(Kf/Q). We will only examine the cyclic
subgroups of G.

The first step to check whether Af/G
′ is principally polarized is the

determination of EndQ(Af/G
′). Let us consider the Hecke operator

v = 2u − 1 = T11 + T18 corresponding to the fundamental unit of
negative norm 4 +

√
17 in Kf . We have:

v(D∞) = 3D∞ , v(D5) = 3D5 , v(D7) = 3D7 ,

i. e., v acts on G as the multiplication by 3 and hence leaves every
subgroup of G stable. This implies that the order Z[

√
17] is contained

in EndQ(A/G
′) for all subgroups G′ of G. Nevertheless, the action of u

on G only leaves the following cyclic subgroups stable:

G′ = 〈P 〉 order of P u(P )
〈4D∞〉 2 0
〈2D∞〉 4 4D∞

〈D5 + D7〉 8 −2(D5 + D7)

For these three subgroups G′, we can ensure that EndQ(A/G′) = O,
and then Proposition 3.11 tells us that A/G′ is principally polarized;
we will show how to build the principal polarization for Af/〈4D∞〉.

In order to do so, we consider the lattice

Λ′ = 〈γ1, γ2, γ3, γ4, 1/2γ2 − γ3 + 1/2γ4〉 ⊂ H1(Af ,Q),

with basis γ′1 = 1/2(γ2 + γ4), γ′2 = 1/2(γ2 − γ4), γ′3 = γ′1, γ′4 = γ3. The
canonical polarization E on J0(35) provides a natural symplectic form
on this lattice, which we shall denote by E/Λ′ . Its matrix with respect
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to the basis (γ′1, γ
′
2, γ

′
3, γ

′
4) is

ME/Λ′ =




0 −1/2 −1/2 −1/2
1/2 0 −1/2 1/2
1/2 1/2 0 −1
1/2 −1/2 1 0


 .

The type of the corresponding primitive polarization on A/〈4D∞〉 is
(1, 4). We now proceed as in the previous subsection to derive a prin-
cipal polarization from E/Λ′ : we use the operator u2 (of norm 4) to
define the Riemann form E ′ determined by the matrix A/〈4D∞〉 given
by the symplectic form

ME′ := ME/Λ′M
2
u =




0 −4 −14 −14
4 0 6 4
14 −6 0 −8
14 −4 8 0


 ,

which is of type (2,2), and hence it is the square of a principal polar-
ization L′0. Computing periods and jacobian Thetanullwerte, we find
that (Af/〈4D∞〉,L′0) is the Jacobian of the curve:

C35,B : Y 2 = −10X(4X + 5)(5X + 8)(25X3 + 110X2 + 156X + 70),

with absolute Igusa invariants:

{i1, i2, i3} = {−2134353595

51775
,−21043335938933

51375
,

−2437 · 4323592571 · 126949

51375
}.

Applying the same procedure to the quotient A/〈2D5〉, we arrive at
the curve:

C35,C : Y 2 = −2(11X+16)(5X+8)(3X+5)(127X3+598X2+938X+490),

with absolute Igusa invariants:

{i1, i2, i3} = {228895

5377
,−21911 · 23 · 8931489

5377
,−21043 · 8922683 · 11239

5377
}.

Finally, the quotient A/〈D5 + D7〉 is Q-isomorphic to the Jacobian of
the curve:

C35,D : Y 2 = −142(8X + 13)(X2 + 4744X + 3776)
(2173X3 + 10154X2 + 15820X + 8218),

with absolute Igusa invariants:

{i1, i2, i3} = {21310952140635

52757112
,
21211 · 17 · 10935171 · 2140633

5275718
,
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2435109233871 · 2140632271175273

5275718
}.

In conclusion, we have found four nonisomorphic curves C35,A, C35,B,
C35,C , C35,D, whose Jacobians are pairwise isogenous.
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1992.

[20] F. Rodriguez-Villegas. Explicit models of genus 2 curves with split CM. In
Algorithmic number theory (Leiden, 2000), volume 1838 of Lecture Notes in
Comput. Sci., pages 505–513. Springer, Berlin, 2000.

[21] V. Rotger. Quaternions, polarizations and class numbers. to appear in J. reine
angew. Math., 2003.

[22] J.-P. Serre. Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke
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