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Abstract. Stark-Heegner points are conjectural substitutes for Heegner points when the
imaginary quadratic field of the theory of complex multiplication is replaced by a real qua-
dratic field K. They are constructed analytically as local points on elliptic curves with
multiplicative reduction at a prime p that remains inert in K, but are conjectured to be
rational over ring class fields of K and to satisfy a Shimura reciprocity law describing the
action of GK on them. The main conjectures of [Dar] predict that any linear combination of
Stark-Heegner points weighted by the values of a ring class character ψ of K should belong
to the corresponding piece of the Mordell-Weil group over the associated ring class field, and
should be non-trivial when L′(E/K,ψ, 1) 6= 0. The main result of this article is that such
linear combinations arise from global classes in the idoneous pro-p Selmer group, and are
non-trivial when the first derivative of a weight-variable p-adic L-function Lp(f/K,ψ) does
not vanish at the point associated to (E/K,ψ). The proof rests on the construction of a
three-variable family κ(f ,g,h) of cohomology classes associated to a triple of Hida families
and a direct comparison between Stark-Heegner points and the generalised Kato classes aris-
ing by specialising κ(f ,g,h) at weights (2, 1, 1) for a suitable choice of Hida families. The
explicit formula that emerges from this comparison is of independent interest and supplies
theoretical evidence for the elliptic Stark Conjectures of [DLR].

Contents

Introduction 2
1. Background 9
1.1. Basic notations 9
1.2. Modular forms and Galois representations 9
1.3. Hida families and Λ-adic Galois representations 11
1.4. Families of Dieudonné modules 16
2. Stark-Heegner points 19
2.1. Review of Stark-Heegner points 19
2.2. Examples 23
2.3. p-adic L-functions associated to Hida families over real quadratic fields 24
2.4. A p-adic Gross-Zagier formula for Stark-Heegner points 26
3. Generalised Kato classes 27
3.1. A compatible collection of cycles 27
3.2. Galois cohomology classes 30
3.3. Λ-adic cohomology classes 33
3.4. Higher weight balanced specialisations 35
3.5. Cristalline specialisations 38
3.6. Triple product p-adic L-functions 44
3.7. Perrin-Riou’s regulator and the triple product p-adic L-function 46
4. The main results 51
4.1. Selmer groups 52
4.2. Factorisation of p-adic L-series 53
4.3. Proof of Theorems A and B 55

1991 Mathematics Subject Classification. 11G18, 14G35.

1



2 HENRI DARMON AND VICTOR ROTGER

References 59

Introduction

Let E be an elliptic curve over Q of conductor N and let K be a quadratic field of discrim-
inant D relatively prime to N , with associated Dirichlet character χK .

When χK(−N) = −1, the Birch and Swinnerton-Dyer conjecture predicts a systematic
supply of rational points on E defined over abelian extensions of K. More precisely, if H
is any ring class field of K attached to an order O of K of conductor prime to DN , the
Hasse-Weil L-function L(E/H, s) factors as a product

(1) L(E/H, s) =
∏
ψ

L(E/K,ψ, s)

of twisted L-series L(E/K,ψ, s) indexed by the finite order characters

ψ : G = Gal (H/K) −→ L×,

taking values in some fixed finite extension L of Q. The L-series in the right-hand side
of (1) all vanish to odd order, because they arise from self-dual Galois representations and
have sign χK(−N) in their functional equation. In particular, L(E/K,ψ, 1) = 0 for all ψ.
An equivariant refinement of the Birch and Swinnerton-Dyer conjecture predicts that the ψ-
eigenspace E(H)ψ ⊂ E(H) ⊗ L of the Mordell-Weil group for the action of Gal (H/K) has
dimension ≥ 1, and hence, that E(H)⊗Q contains a copy of the regular representation of G.

When K is imaginary quadratic, this prediction is largely accounted for by the theory
of Heegner points on modular or Shimura curves, which for each ψ as above produces an
explicit element Pψ ∈ E(H)ψ. The Gross-Zagier formula implies that Pψ is non-zero when
L′(E/K,ψ, 1) 6= 0. Thus it follows for instance that E(H)⊗Q contains a copy of the regular
representation of G when L(E/H, s) vanishes to order [H : K] at the center.

When K is real quadratic, the construction of non-trivial algebraic points in E(H) appears
to lie beyond the scope of available techniques. Extending the theory of Heegner points to
this setting thus represents a tantalizing challenge at the frontier of our current understanding
of the Birch and Swinnerton-Dyer conjecture.

Assume from now on that D > 0 and there is an odd prime p satisfying

(2) N = pM with p -M, χK(p) = −1, χK(M) = 1.

A conjectural construction of Heegner-type points, under the further restriction that χK(`) =
1 for all `|M , was proposed in [Dar], and extended to the more general setting of (2) in [Gr09],
[DG], [LRV], [KPM] and [Re]. It leads to a canonical collection of so-called Stark-Heegner
points

Pa ∈ E(H ⊗Qp) =
∏
℘|p

E(H℘),

indexed by the ideal classes a of Pic(O), which are regarded as here as semi-local points, i.e.,
[H : K]-tuples Pa = {Pa,℘}℘|p of local points in E(Kp). This construction, and its equivalence
with the slightly different approach of the original one, is briefly recalled in §2.1.

As a formal consequence of the definitions (cf. Lemma 2.1), the semi-local points Pa satisfy
the Shimura reciprocity law

P σa = Prec(σ)·a for all σ ∈ G,
where G acts on the group E(H ⊗Qp) in the natural way and rec : G→ Pic(O) is the Artin
map of global class field theory.
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The construction of the semi-local point Pa ∈
∏
℘|pE(H℘) is purely p-adic analytic, relying

on a theory of p-adic integration of 2-forms on the productH×Hp, whereH denotes Poincaré’s
complex upper half plane and Hp stands for Drinfeld’s rigid analytic p-adic avatar of H, the
integration being performed, metaphorically speaking, on two-dimensional regions in Hp ×H
bounded by Shintani-type cycles associated to ideal classes in K. The following statement
of the Stark-Heegner conjectures of loc.cit. is equivalent to [Dar, Conj. 5.6, 5.9 and 5.15], and
the main conjectures in [Gr09], [DG], [LRV], [KPM] and [Re] in the general setting of (2):

Stark-Heegner Conjecture. The semi-local points Pa belong to the natural image of E(H)
in E(H ⊗Qp), and the ψ-component

Pψ :=
∑

a∈Pic(O)

ψ−1(a)Pa ∈ E(H ⊗Qp)
ψ

is non-trivial if and only if L′(E/K,ψ, 1) 6= 0.

The Stark-Heegner Conjecture has been proved in many cases where ψ is a quadratic ring
class character. When ψ2 = 1, the induced representation

Vψ := IndQ
Kψ = χ1 ⊕ χ2

decomposes as the sum of two one-dimensional Galois representations attached to quadratic
Dirichlet characters satisfying

χ1(p) = −χ2(p), χ1(M) = χ2(M),

and the pair (χ1, χ2) can be uniquely ordered in such a way that the L-series L(E,χ1, s) and
L(E,χ2, s) have sign 1 and −1 respectively in their functional equations.

Define the local sign α := ap(E), which is equal to either 1 or −1 according to whether
E has split or non-split multiplicative reduction at p. Let p be a prime of H above p, and
let σp ∈ Gal (H/Q) denote the associated Frobenius element. Because p is inert in K/Q, the
unique prime of K above p splits completely in H/K and σp belongs to a conjugacy class of
reflections in the generalised dihedral group Gal (H/Q). It depends in an essential way on the
choice of p, but, because ψ cuts out an abelian extension of Q, the Stark-Heegner point

(3) Pαψ := Pψ + α · σpPψ
does not depend on this choice. It can in fact be shown that

Pαψ =

{
2Pψ if χ2(p) = α;

0 if χ2(p) = −α.
The recent work [Mok2] of Mok and [LMY] of Longo, Martin and Yan, building on the methods
introduced in [BD2, Thm. 1], [Mok1], and [LV], asserts:

Stark-Heegner theorem for quadratic characters. Let ψ be a quadratic ring class
character of conductor prime to 2DN . Then the Stark-Heegner point Pαψ belongs to E(H)⊗Q
and is non-trivial if and only if

(4) L(E,χ1, 1) 6= 0, L′(E,χ2, 1) 6= 0, and χ2(p) = α.

The principle behind the proof of this result is to compare Pαψ to suitable Heegner points
arising from Shimura curve parametrisations, exploiting the fortuitous circumstance that the
field over which Pψ is conjecturally defined is a biquadratic extension of Q and is thus also
contained in ring class fields of imaginary quadratic fields (in many different ways).

The present work is concerned with the less well understood generic case where ψ2 6= 1,
when the induced representation Vψ is irreducible. Note that ψ is either totally even or totally
odd, i.e., complex conjugation acts as a scalar εψ ∈ {1,−1} on the induced representation Vψ.
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The field which ψ cuts out cannot be embedded in any compositum of ring class fields of
imaginary quadratic fields, and the Stark-Heegner Conjecture therefore seems impervious to
the theory of Heegner points in this case.

The semi-local point Pαψ of (3), which will again play a key role in this work, now depends
crucially on the choice of p, but it is not hard to check that its image under the localisation
homomorphism

jp : E(H ⊗Qp) −→ E(Hp) = E(Kp)

at p is independent of this choice, up to scaling by L× (cf. Lemma 2.4). It is the local point

Pαψ,p := jp(P
α
ψ ) ∈ E(Hp)⊗ L = E(Kp)⊗ L

which will play a key role in Theorems A, B and C below, which are the main results of the
paper. Theorems A and B are conditional on either one of the two non-vanishing hypotheses
below, which apply to a pair (E,K) and a choice of archimedean sign ε ∈ {−1, 1}. The first
hypothesis is the counterpart, in analytic rank one, of the non-vanishing for simultaneous
twists of modular L-series arising as the special case of [DR2, Def. 6.8] discussed in (168) of
loc.cit., where it plays a similar role in the proof of the Birch and Swinnerton–Dyer conjecture
for L(E/K,ψ, s) when L(E/K,ψ, 1) 6= 0. The main difference is that we are now concerned
with quadratic ring class characters for which L(E/K,ψ, s) vanishes to odd rather than to
even order at the center.

Analytic non-vanishing hypothesis: Given (E,K) as above, and a choice of a sign ε ∈
{1,−1}, there exists a quadratic Dirichlet character χ of conductor prime to DN satisfying

χ(−1) = −ε, χχK(p) = α, L(E,χ, 1) 6= 0, L′(E,χχK , 1) 6= 0.

The second non-vanishing hypothesis applies to an arbitrary ring class character ξ of K.

Weak non-vanishing hypothesis for Stark-Heegner points: Given (E,K) as above,
and a sign ε ∈ {1,−1}, there exists a ring class character ξ of K of conductor prime to DN
with εξ = −ε for which Pαξ,p 6= 0.

That the former hypothesis implies the latter follows by applying the Stark-Heegner the-
orem for quadratic characters to the quadratic ring class character ξ of K attached to the
pair (χ1, χ2) := (χ, χχK) supplied by the analytic non-vanishing hypothesis. The stronger
non-vanishing hypothesis is singled out because it has the virtue of tying in with mainstream
questions in analytic number theory on which there has been recent progress [Mun]. On the
other hand, the weak non-vanishing hypothesis is known to be true in the classical setting
of Heegner points, when K is imaginary quadratic. In fact, for a given E and K, all but
finitely many of the Heegner points Pa (as a ranges over all ideal classes of all possible orders
in K) are of infinite order, and Pξ and Pαξ are therefore non-trivial for infinitely many ring
class characters ξ, and for at least one character of any given conductor, with finitely many
exceptions. It seems reasonable to expect that Stark-Heegner points should exhibit a similar
behaviour, and the experimental evidence bears this out. In practice, efficient algorithms for
calculating Stark-Heegner points make it easy to produce a non-zero Pαξ,p for any given (E,K),
and indeed, the extensive experiments carried out so far have failed to produce even a single
example of a vanishing Pαξ when ξ has order ≥ 3. Thus, while these non-vanishing hypotheses
are probably difficult to prove in general, they are expected to hold systematically. Moreover,
they can easily be checked in practice for any specific triple (E,K, ε) and therefore play a
somewhat ancillary role in studying the infinite collection of Stark-Heegner points attached
to a fixed E and K.
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Let Vp(E) :=
(
lim←−E[pn]

)
⊗Qp denote the Galois representation attached to E and let

Selp(E/H) := H1
f (H,Vp(E))

be the pro-p Selmer group of E over H. The ψ-component of this Selmer group is an Lp-vector
space, where Lp is a field containing both Qp and L, by setting

Selp(E/H)ψ := {κ ∈ H1
f (H,Vp(E))⊗Qp Lp : such that σκ = ψ(σ) ·κ for all σ ∈ Gal (H/K)}.

Since E is defined over Q, the group

Selp(E/H) ' ⊕%H1
f (Q, Vp(E)⊗ %)

admits a natural decomposition indexed by the set of irreducible representations % of Gal (H/Q).
In this note we focus on the isotypic component singled out by ψ, namely

(5) Selp(E,ψ) := H1
f (Q, Vp(E)⊗ Vψ) = Selp(E/H)ψ ⊕ Selp(E/H)ψ̄

where Shapiro’s lemma combined with the inflation-restriction sequence gives the above canon-
ical identifications.

It will be convenient to assume from now on that E[p] is irreducible as a GQ-module. (This
hypothesis could certainly be relaxed at the cost of some simplicity and transparency in some
of the arguments.)

The first main result of this article is:

Theorem A. Assume that the (analytic or weak) non-vanishing hypothesis holds for (E,K, ε).
Let ψ be any non-quadratic ring class character of K of conductor prime to DN , for which
εψ = ε. Then there is a global Selmer class

κψ ∈ Selp(E,ψ)

whose natural image in the group E(Hp)⊗ Lp of local points agrees with Pαψ,p.

In particular, it follows that

(6) Pαψ,p 6= 0 ⇒ dimLp Selp(E/H)ψ ≥ 1.

As a corollary, we obtain a criterion for the infinitude of Selp(E/H)ψ in terms of the p-adic
L-function Lp(f/K,ψ) constructed in [BD2, §3], interpolating the square roots of the central
critical values L(fk/K,ψ, k/2), as fk ranges over the weight k ≥ 2 classical specializations of
the Hida family passing through the weight two eigenform f associated to E. The interpolation
property implies that Lp(f/K,ψ) vanishes at k = 2, and its first derivative Lp

′(f/K,ψ)(2)
is a natural p-adic analogue of the derivative at s = 1 of the classical complex L-function
L(f/K,ψ, s). The following result can thus be viewed as a p-adic variant of the Birch and
Swinnerton-Dyer Conjecture in this setting.

Theorem B. If Lp
′(f/K,ψ)(2) 6= 0, then dimLp Selp(E/H)ψ ≥ 1.

Theorem B is a direct corollary of (6) in light of the main result of [BD2], recalled in Theorem
2.9 below, which asserts that Pαψ,p is non-trivial when Lp

′(f/K,ψ)(2) 6= 0.

Remark 1. Assume the p-primary part of (the ψ-isotypic component of) the Tate-Shafarevich
group of E/H is finite. Then Theorem A shows that Pαψ,p arises from a global point in

E(H)⊗Lp, as predicted by the Stark-Heegner conjecture. Moreover, Theorem B implies that

dimLE(H)ψ ≥ 1 if Lp
′(f/K,ψ)(2) 6= 0.

Remark 2. The irreducibility of Vψ when ψ is non-quadratic shows that Pαψ is non-trivial
if and only if the same is true for Pψ. The Stark-Heegner Conjecture combined with the
injectivity of the map from E(H) ⊗ L to E(Hp) ⊗ L suggests that Pαψ,p never vanishes when
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Pψ 6= 0, but the scenario where Pαψ is a non-trivial element of the kernel of jp seems hard to
rule out unconditionally, without assuming the Stark-Heegner conjecture a priori.

Remark 3. Section 2 is devoted to review the theory of Stark-Heegner points. For notational
simplicity, §2 has been written under the stronger Heegner hypothesis

χK(p) = −1, χK(`) = 1 for all `|M
of [Dar]. This section contains no new results and merely collects together the basic notations
and principal results of [Dar], [BD2], [Mok2] and [LMY]. Exact references for the analogous
results needed to cover the more general setting of (2) are given along the way. The remaining
sections §3 and §4, which form the main body of the article, adapt without change to proving
Theorems A and B under the general assumption (2). In particular, while quaternionic
modular forms need to be invoked in the general construction of Stark-Heegner points of
[Gr09], [DG] and [LRV], the arguments in §3 and §4 only employ classical elliptic modular
forms in order to deal with the general setting. The method described in this work also
adapts, multatis mutandis, to proving the main conjecture of [Das] for abelian varieties of
GL2-type, and the main conjecture of [RS] on “Stark-Heegner cycles” associated to higher
weight modular forms under a similar analytic or weak non-vanishing hypothesis: it suffices
for this to invoke the main theorem of [Se] in place of the Stark-Heegner theorem for quadratic
characters.

We now describe the main steps in the proof of Theorem A, which rests on a comparison
between Stark-Heegner points and the generalised Kato classes introduced in [DR2].

• Step 1. An auxiliary Stark-Heegner point. Invoking the weak non-vanishing Hypothesis for
Stark-Heegner points or its stronger analytic variant, let ξ be an auxiliary ring class character
of K having parity opposite to that of ψ, and for which the Stark-Heegner point Pαξ,p is
non-zero.

• Step 2: Theta series of weight one attached to K. A lemma of Tate on lifting projective
Galois representations from PGL2(C) to GL2(C) can be used, as in the statement of [DR2,
Lemma 6.9] and the discussion following it, to exhibit two ray class characters ψg and ψh of
K of conductor prime to N satisfying

ψgψh = ψ, ψgψ
′
h = ξ,

where ψ′h is the composition of ψh with the involution in Gal (K/Q). Letting Vg and Vh denote
the two-dimensional Artin representations induced from ψg and ψh respectively, it is easy to
check that

Vgh := Vg ⊗ Vh = Vψ ⊕ Vξ.
The fact that Vψ and Vξ have opposite parity implies that the characters ψg and ψh both
have mixed signature at infinity, and hence, that Vg and Vh are odd two-dimensional Artin
representations of GQ. A theorem of Hecke shows that the theta series g and h associated
to ψg and ψh are holomorphic modular forms of weight one, having Vg and Vh as associated
Galois representations. The eigenvalues of the frobenius element σp, which acts on Vg and Vh
as a reflection modulo the center, can be ordered so that they are of the form

(αg, βg) = (ι,−ι), (αh, βh) = (αι−1,−αι−1)

for a suitable ι ∈ L×, where we recall that α ∈ {1,−1} is the local sign at p determined by
E. Let gα and hα be the p-stabilisations of g and h satisfying

Upgα = αggα, Uphα = αhhα.

• Step 3: Generalised Kato classes. In addition to the Hida family f passing through f , a
theorem of Wiles ensures the existence of two Hida families g and h specialising to gα and hα
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at suitable weight one points. The main object of §3 is the construction of a three-variable
Euler system κ(f ,g,h) of diagonal cycles associated to (f ,g,h); cf. (104). This extends in
new directions (notably along f) the results obtained in [DR2], which were insufficient for the
purposes of this note, and required a different aproach. We do so by introducing a family
of cycles on the cube of the modular curve X(N) of full level structure, which may be of
independent interest and deserves to be explored in more detail. As we prove in Theorem
3.29, the class κ(f ,g,h) recovers the three different unbalanced triple-product p-adic Garrett-
Hida L-functions under suitable Perrin-Riou Λ-adic regulators.

The specialisation of κ(f ,g,h) in weight (2, 1, 1) gives rise to the generalised Kato class

κ(f, gα, hα) ∈ H1(Q, Vp(E)⊗ Vgh) = H1(Q, Vp(E)⊗ Vψ)⊕H1(Q, Vp(E)⊗ Vξ),
obtained, roughly speaking, as a p-adic limit of the p-adic Abel Jacobi images of Gross-Kudla
Schoen cycles attached to the triple (f, gx, hx) where (gx, hx) ranges over pairs of classical
specializations of (g,h) at points of weight k ≥ 2. (More precisely, the class κ(f, gα, hα)
is the image under a non-canonical projection of a class taking values in several copies of
Vp(E)⊗ Vgh, arising from the cohomology of modular varieties in level N = lcm(Nf , Ng, Nh).
This technical issue, which is suppressed in the introduction to lighten the exposition, is dealt
with in the main body of the article.) The generalised Kato reciprocity law proved in [DR2]
parlays the vanishing of L(f, Vgh, 1) into the conclusion that κ(f, gα, hα) is cristalline at p and
hence belongs to the Selmer group H1

f (Q, Vp(E)⊗ Vgh). Let

κψ(f, gα, hα) ∈ H1
f (Q, Vp(E)⊗ Vψ), κξ(f, gα, hα) ∈ H1

f (Q, Vp(E)⊗ Vξ)
denote the two components of the global cohomology class κ(f, gα, hα).

Just as in (5), there are canonical identifications at the local level

H1
f (Qp, Vp(E)⊗ Vψ) = H1

f (Hp, Vp(E))ψ ⊕H1
f (Hp, Vp(E))ψ̄(7)

= E(H ⊗Qp)
ψ ⊕ E(H ⊗Qp)

ψ̄,

where

H1
f (Hp, Vp(E)) := ⊕p|pH

1
f (Hp, Vp(E)).

Similar remarks apply equally of course when ψ is replaced by ξ.
Given a prime p of H above p, let

logE,p : E(Hp) −→ Hp = Kp

denote the formal group logarithm map, which is obtained by composing the inverse of the
Tate uniformization of E with the branch of the p-adic logarithm map that vanishes at the
Tate period of E. By an abuse of notation, we will identity logE,p with the homomorphisms

logE,p : E(H ⊗Qp) −→ Kp, H1
f (Qp, Vp(E)⊗ Vψ) −→ Kp ⊗ Lp

that it induces via composition with the localisation map jp and the identifications in (7).
Let

καψ(f, gα, hα) = (1 + ασp)κψ(f, gα, hα) ∈ Selp(E,ψ) := H1
f (H,Vp(E))ψ⊕ψ̄

denote the component of κψ(f, gα, hα) on which σp acts with eigenvalue α, and likewise with
ψ replaced by the auxiliary character ξ.

• Step 4: Generalised Kato classes and Stark-Heegner points. Properties of generalised Kato
classes already established in [DR2] and [DR3] can be used to show that

logE,p(κ
α
ψ(f, gα, hα)) = logE,p(κ

α
ξ (f, gα, hα)).

Theorem A is now a consequence of the following theorem after setting

κψ := logE,p(P
α
ξ )−1 × καψ(f, gα, hα).
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Theorem C. For all g and h as above,

logE,p(κ
α
ψ(f, gα, hα)) = logE,p(P

α
ψ )× logE,p(P

α
ξ ) (mod L×).

Theorem C, which makes an explicit comparison between generalised Kato classes and
Stark-Heegner points, is the third main theorem in this paper. It is consistent with the
conjectures of [DR3] on the position of the generalised Kato class κ(f, gα, hα) in the Vgh-
isotypic component of the Mordell-Weil group of E, in light of the expected algebraicity of Pψ
and Pξ, and shows that the Stark-Heegner conjectures are compatible with the elliptic Stark
conjectures of [DLR] in the special case where g and h are theta series attached to characters
of a common real quadratic field.

The key ingredients in the proof of Theorem C are

• A Perrin-Riou-style “explicit reciprocity law” in the exceptional zero setting that follows
from the work of R. Venerucci [Ve]. Let f be a Hida family specializing to f in weight two,
restricted to a neighbourhood of f in the eigencurve which maps isomorphically to the appro-
priate neighbourhood U of 2 in weight space, and hence admitting at most one weight k spe-
cialisation fk for any given weight k. Venerucci’s reciprocity law involves the Garrett-Rankin
triple product p-adic L-function Lp

f (f , g, h) interpolating the square roots of the central crit-
ical values L(fk, Vgh, k/2) as fk runs over the classical specializations with k ∈ U ∩ Z>2, and
asserts that

(8) logE,p(κ
α
ψ(f, gα, hα)) =

d2

dk2
Lp

f (f , g, h)k=2 (mod L×).

The above p-adic L-function in fact depends on a choice of test vectors (f̆ , ğ, h̆)in level
N = lcm(Nf , Ng, Nh). This technical issue, which is also is suppressed in the introduction to
lighten the exposition, is dealt with in the main body of the article.

• A factorisation formula of the form

(9) Lp
f (f , g, h) = Lp(f/K,ψ)×Lp(f/K, ξ) (mod L×),

where Lp(f/K,ψ) is defined using a formula of Waldspurger for the square roots of the central
critical values L(fk/K,ψ, k/2), in the form made explicit by A. Popa in his Harvard PhD the-
sis. This factorisation is a manifestation of the Artin formalism for p-adic L-series, reflecting
the fact that Vg ⊗ Vh = Vψ ⊕ Vξ together with the fact that the Garrett-Rankin and Wald-
spurger type “square root p-adic L-series” have a common domain of classical interpolation.

• A formula already established in [BD2] showing that

(10) logE,p(P
α
ψ ) =

d

dk
Lp(f/K,ψ)k=2 (mod L×)

Theorem C follows by combining (8), (9) and (10).

Acknowledgements. The first author was supported by an NSERC Discovery grant, and the second

author was supported by Grant MTM2015-63829-P. The second author also acknowledges financial

support from the Spanish Ministry of Economy and Competitiveness, through the Maŕıa de Maeztu
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1. Background

1.1. Basic notations. Fix an algebraic closure Q̄ of Q. All the number fields that arise will
be viewed as embedded in this algebraic closure. For each such K, let GK := Gal (Q̄/K)
denote its absolute Galois group. For each prime p, an embedding Q̄ ↪→ Q̄p is also assumed
to be fixed, and ordp denotes the resulting p-adic valuation on Q̄×, normalized in such a way
that ordp(p) = 1.

For a variety V defined over K ⊂ Q̄, let V̄ denote the base change of V to Q̄. If F is an
étale sheaf on V , write H i

et(V̄ ,F) for the ith étale cohomology group of V̄ with values in F ,
equipped with its continuous action by GK .

Given a prime p, let Q(µp∞) = ∪r≥1Q(ζr) be the cyclotomic extension of Q obtained by
adjoining to Q a primitive pr-th root of unity ζr. Let

εcyc : GQ −→ Gal (Q(µp∞)/Q)
'−→ Z×p

denote the p-adic cyclotomic character. It can be factored as εcyc = ω〈εcyc〉, where

ω : GQ −→ µp−1 〈εcyc〉 : GQ −→ 1 + pZp
are obtained by composing εcyc with the projection onto the first and second factors in the
canonical decomposition Z×p ' µp−1× (1+pZp). IfM is a Zp[GQ]-module and j is an integer,

write M(j) =M⊗ εjcyc for the j-th Tate twist of M.
Let

Λ
◦
r := Zp[(Z/prZ)×], Λ

◦
:= Zp[[Z×p ]] := lim←−

r

Λ
◦
r

denote the group ring and completed group ring attached to the profinite group Z×p . The ring

Λ
◦

is equipped with p − 1 distinct algebra homomorphisms ωi : Λ
◦ → Λ (for 0 ≤ i ≤ p − 2) to

the local ring
Λ = Zp[[1 + pZp]] = lim←−Zp[1 + pZ/prZ] ' Zp[[T ]],

where ωi sends a group-like element a ∈ Z×p to ωi(a)〈a〉 ∈ Λ. These homomorphisms identify

Λ
◦

with the direct sum

Λ
◦

=

p−2⊕
i=0

Λ.

The local ring Λ is called the one variable Iwasawa algebra. More generally, for any integer
t ≥ 1, let

Λ
◦⊗t

:= Λ
◦⊗̂Zp

t. . . ⊗̂ZpΛ
◦
, Λ⊗t = Λ⊗̂Zp

t. . . ⊗̂ZpΛ ' Zp[[T1, . . . Tt]].

The later ring is called the Iwasawa algebra in t variables, and is isomorphic to the power
series ring in t variables over Zp, while

Λ
◦⊗t

=
⊕
α

Λ⊗t,

the sum running over the (p− 1)t distinct Z×p valued characters of (Z/pZ)×t.

1.2. Modular forms and Galois representations. Let

φ = q +
∑
n≥2

an(φ)qn ∈ Sk(M,χ)

be a cuspidal modular form of weight k ≥ 1, level M and character χ : (Z/MZ)× → C×, and
assume that φ is an eigenform with respect to all good Hecke operators T`, ` -M .

Fix an odd prime number p (that in this section may or may not divide M). Let Oφ denote
the valuation ring of the finite extension of Qp generated by the fourier coefficients of φ, and
let T denote the Hecke algebra generated over Zp by the good Hecke operators T` with ` -M
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and by the diamond operators acting on Sk(M,χ). The eigenform φ gives rise to an algebra
homomorphism

ξφ : T −→ Oφ
sending T` to a`(φ) and the diamond operator 〈`〉 to χ(`).

A fundamental construction of Shimura, Deligne, and Serre-Deligne attaches to φ an irre-
ducible two-dimensional Galois representation

%φ : GQ −→ Aut(Vφ) ' GL2(Oφ),

which is unramified at all primes ` -Mp, and for which

(11) det(1− %φ(Fr`)x) = 1− a`(φ)x+ χ(`)`k−1x2,

where Fr` denotes the arithmetic Frobenius element at `. This property characterises the
semisimple representation %φ up to isomorphism.

When k := k◦ + 2 ≥ 2, the representation Vφ can be realised in the p-adic étale cohomology
of an appropriate Kuga-Sato variety. Since this realisation is important for the construction
of generalised Kato classes, we now briefly recall its salient features. Let Y = Y1(M) and
X = X1(M) denote the open and closed modular curve representing the fine moduli functor
of isomorphism classes of pairs (A,P ) formed by a (generalised) elliptic curve A together with
a torsion point P on A of exact order M . Let

(12) π : A◦ −→ Y

denote the universal elliptic curve over Y .
The k◦-th open Kuga-Sato variety over Y is the k◦-fold fiber product

(13) Ak◦◦ := A◦×Y (k◦ ). . . ×YA◦

of A◦ over Y . The variety Ak◦◦ admits a smooth compactification Ak◦ which is fibered over X
and is called the k◦-th Kuga-Sato variety over X; we refer to Conrad’s appendix in [BDP1] for
more details. The geometric points in Ak◦ that lie above Y are in bijection with isomorphism
classes of tuples [(A,P ), P1, . . . , Pk◦ ], where (A,P ) is associated to a point of Y as in the
previous paragraph and P1, ..., Pk◦ are points on A.

The representation Vφ is realised (up to a suitable Tate twist) in the middle degree étale

cohomology H
k◦+1
et (Āk◦ ,Zp). More precisely, let

Hr := R1π∗ Z/prZ(1), H := R1π∗ Zp(1),

and for any k◦ ≥ 0, define

(14) Hk◦r := TSymk◦ (Hr), Hk◦ := TSymk◦ (H)

to be the sheaves of symmetric k◦-tensors of Hr and H, respectively. As defined in e.g. [BDP1,
(2.1.2)], there is an idempotent εk◦ in the ring of rational correspondences ofAk◦ whose induced
projector on the étale cohomology groups of this variety satisfy:

(15) εk◦
(
H
k◦+1
et (Āk◦ ,Zp(k◦))

)
= H1

et(X̄,Hk◦ ).
Define the Oφ-module

(16) Vφ(M) := H1
et(X̄,Hk◦ (1))⊗T,ξφ Oφ,

and write

(17) $φ : H1
et(X̄,Hk◦ (1)) −→ Vφ(M)

for the canonical projection of T[GQ]-modules arising from (16). Deligne’s results and the
theory of newforms show that the module Vφ(M) is the direct sum of several copies of a
locally free module Vφ of rank 2 over Oφ that satisfies (11).
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Let αφ and βφ the two roots of the p-th Hecke polynomial T 2−ap(φ)T +χ(p)pk−1, ordered
in such a way that ordp(αφ) ≤ ordp(βφ). (If αφ and βφ have the same p-adic valuation, simply
fix an arbitrary ordering of the two roots.) We set χ(p) = 0 whenever p divides the primitive
level of φ and thus αφ = ap(φ) and βφ = 0 in this case. The eigenform φ is said to be ordinary
at p when ordp(αφ) = 0. In that case, there is an exact sequence of GQp-modules

(18) 0→ V +
φ −→ Vφ −→ V −φ → 0, V +

φ ' Oφ(εk−1
cyc χψ

−1
φ ), V −φ ' Oφ(ψφ),

where ψφ is the unramified character of GQp sending Frp to αφ.

1.3. Hida families and Λ-adic Galois representations. Fix a prime p ≥ 3. The formal
spectrum

W := Spf(Λ)

of the Iwasawa algebra Λ = Zp[[1 + pZp]] is called the weight space attached to Λ. The
A-valued points of W over a p-adic ring A are given by

W(A) = Homalg(Λ, A) = Homgrp(1 + pZp, A×),

where the Hom’s in this definition denote continuous homomorphisms of p-adic rings and
profinite groups respectively. Weight space is equipped with a distinguished collection of
arithmetic points νk◦ ,ε , indexed by integers k◦ ≥ 0 and Dirichlet characters ε : (1+pZ/prZ)→
Qp(ζr−1)× of p-power conductor. The point νk◦ ,ε ∈ W(Zp[ζr]) is defined by

νk◦ ,ε(n) = ε(n)nk◦ ,

and the notational shorthand νk◦ := νk◦ ,1 is adopted throughout. More generally, if Λ̃ is any

finite flat Λ-algebra, a point x ∈ W̃ := Spf(Λ̃) is said to be arithmetic if its restriction to Λ
agrees with νk◦ ,ε for some k◦ and ε. The integer k = k◦ + 2 is called the weight of x and
denoted wt(x).

Let

(19) εcyc : GQ −→ Λ×

denote the Λ-adic cyclotomic character which sends a Galois element σ to the group-like
element [〈εcyc(σ)〉]. This character interpolates the powers of the cyclotomic character, in the
sense that

(20) νk◦ ,ε ◦ εcyc = ε · 〈εcyc〉k◦ = ε · εk◦cyc · ω−k◦ .
Let M ≥ 1 be an integer not divisible by p.

Definition 1.1. A Hida family of tame level M and tame character χ : (Z/MZ)× → Q̄×p is
a formal q-expansion

φ =
∑
n≥1

an(φ)qn ∈ Λφ[[q]]

with coefficients in a finite flat Λ-algebra Λφ, such that for any arithmetic point x ∈ Wφ :=
Spf(Λφ) above νk◦ ,ε, where k◦ ≥ 0 and ε is a character of conductor pr, the series

φx :=
∑
n≥1

x(an(φ))qn ∈ Q̄p[[q]]

is the q-expansion of a classical p-ordinary eigenform in the space Sk(Mpr, χεω−k◦ ) of cusp
forms of weight k = k◦ + 2, level Mpr and nebentype χεω−k◦ .

By enlarging Λφ if necessary, we shall assume throughout that Λφ contains the M -th roots
of unity.

Definition 1.2. Let x ∈ Wφ be an arithmetic point lying above the point νk◦ ,ε of weight
space. The point x is said to be
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• tame if the character ε is tamely ramified, i.e., factors through (Z/pZ)×.
• cristalline if εω−k◦ = 1, i.e., if the weight k specialisation of φ at x has trivial neben-

typus character at p.

We let W◦φ denote the set of cristalline arithmetic points of Wφ.

Note that a cristalline point is necessarily tame but of course there are tame points that
are not cristalline. The justification for this terminology is that the Galois representation Vφx
is cristalline at p when x is a cristalline.

If x is a cristalline point, then the classical form φx is always old at p if k > 2. In that
case there exists an eigenform φ◦x of level M such that φx is the ordinary p-stabiization of φ◦x.
If the weight is k = 1 or 2, φx may be either old or new at p; if it is new at p then we set
φ◦x = φx in order to have uniform notations.

We say φ is residually irreducible if the mod p Galois representation associated to the
Deligne representations associated to φ◦x for any cristalline classical point is irreducible.

Finally, the Hida family φ is said to be primitive of tame level Mφ |M if for all but finitely
many arithmetic points x ∈ Wφ of weight k ≥ 2, the modular form φx arises from a newform
of level Mφ.

The following theorem of Hida and Wiles associates a two-dimensional Galois representation
to a Hida family φ (cf. e.g. [MT, Théorème 7]).

Theorem 1.3. Assume φ is residually irreducible. Then there is a rank two Λφ-module Vφ

equipped with a Galois action

(21) %φ : GQ −→ AutΛφ
(Vφ) ' GL2(Λφ),

such that, for all arithmetic points x : Λφ −→ Q̄p,

Vφ ⊗x,Λφ
Q̄p ' Vφx .

Let

ψφ : GQp −→ Λ×φ

denote the unramified character sending a Frobenius element Frp to ap(φ). The restriction of
Vφ to GQp admits a filtration

(22) 0 → V+
φ → Vφ → V−φ → 0 where V+

φ ' Λφ(ψ−1
φ χε−1

cycεcyc) and V−φ ' Λφ(ψφ).

The explicit construction of the Galois representation Vφ plays an important role in defining
the generalised Kato classes, and we now recall its main features.

For all 0 ≤ r < s, let

Xr := X1(Mpr), Xr,s := X1(Mpr)×X0(Mpr) X0(Mps),

where the fiber product is taken relative to the natural projection maps. In particular,

• the curve X := X0 := X1(M) represents the functor of elliptic curves A with Γ1(M)-
level structure, i.e., with a marked point of order M ;
• the curve Xr represents the functor classifying pairs (A,P ) consisting of a generalized

elliptic curve A with Γ1(M)-level structure and a point P of order pr on A;
• the curve X0,s = X1(M)×X0(M)X0(Mps) classifies pairs (A,C) consisting of a gener-

alized elliptic curve A with Γ1(M) structure and a cyclic subgroup scheme C of order
ps on A;
• the curve Xr,s classifies pairs (A,P,C) consisting of a generalized elliptic curve A with

Γ1(M) structure, a point P of order r on A and and a cyclic subgroup scheme C of
order ps on A containing P .
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The curves Xr and X0,r are smooth geometrically connected curves over Q. The natural
covering map Xr −→ X0,r is Galois with Galois group (Z/prZ)× acting on the left via the
diamond operators defined by

(23) 〈a〉(A,P ) = (A, aP ).

Let

(24) $1 : Xr+1 −→ Xr

denote the natural projection from level r+1 to level r which corresponds to the map (A,P ) 7→
(A, pP ), and to the map τ 7→ τ on upper half planes. Let

$2 : Xr+1 −→ Xr

denote the other projection, corresponding to the map (A,P ) 7→ (A/〈prP 〉, P + 〈prP 〉), which
on the upper half plane sends τ to pτ . These maps can be factored as

(25) Xr+1

µ

��

$1

##
Xr,r+1 π1

// Xr,

Xr+1

µ

��

$2

##
Xr,r+1 π2

// Xr.

For all r ≥ 1, the vertical map µ is a cyclic Galois covering of degree p, with Galois group
canonically isomorphic to (1 + pr(Z/pr+1Z)), while the horizontal maps π1 and π2 are non-
Galois coverings of degree p. When r = 0, the map µ is a cyclic Galois covering of degree
p− 1, with Galois groups canonically isomorphic to (Z/pZ)×, while π1 and π2 are non-Galois
coverings of degree p+ 1.

The Λ-adic representation Vφ shall be realised (up to twists) in quotients of the inverse
limit of étale cohomology groups arising from the tower

X∗∞ : · · · $1−→ Xr+1
$1−→ Xr

$1−→ · · · $1−→ X1
$1−→ X0

of modular curves. Define the inverse limit

(26) H1
et(X̄

∗
∞,Zp) := lim←−

$1∗

H1
et(X̄r,Zp)

where the transition maps arise from the pushforward induced by the morphism $1. This
inverse limit is a module over the completed group rings Zp[[Z×p ]] arising from the action of the
diamond operators, and is endowed with a plethora of extra structures that we now describe.

Hecke operators. The transition maps in (26) are compatible with the action of the Hecke
operators Tn for all n that are not divisible by p. Of crucial importance for us in this article
is Atkin’s operator U∗p , which operates on H1

et(X̄r,Zp) via the composition

U∗p := π1∗π
∗
2

arising from the maps in (25).
The operator U∗p is compatible with the transition maps defining H1

et(X̄
∗
∞,Zp),

Inverse systems of étale sheaves. The cohomology group H1
et(X̄

∗
∞,Zp) can be identified with

the first cohomology group of the base curve X1 with values in a certain inverse systems of
étale sheaves.

For each r ≥ 1, let

(27) L∗r := $r−1
1∗ Zp

be the pushforward of the constant sheaf on Xr via the map

$r−1
1 : Xr −→ X1
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The stalk of L∗r at a geometric point x = (A,P ) on X1 is given by

L∗r,x = Zp[A[pr]〈P 〉],
where

A[pr]〈P 〉 := {Q ∈ A[pr] such that pr−1Q = P}.
The multiplication by p map on the fibers gives rise to natural homomorphisms of sheaves

(28) [p] : L∗r+1 −→ L∗r ,
and Shapiro’s lemma gives canonical identifications

H1
et(X̄r,Zp) = H1

et(X̄1,L∗r),
for which the following diagram commutes:

H1
et(X̄r+1,Zp)

$1∗ // H1
et(X̄r,Zp)

H1
et(X̄1,L∗r+1)

[p] // H1
et(X̄1,L∗r).

Let L∗∞ := lim←−
r

L∗r denote the inverse system of étale sheaves relative to the maps [p] arising

in (28). By passing to the limit, we obtain an identification

(29) H1
et(X̄

∗
∞,Zp) = lim←−

r≥1

H1
et(X̄1,L∗r) = H1

et(X̄1,L∗∞).

Weight k specialisation maps. Recall the p-adic étale sheaves Hk◦ introduced in (14), whose
cohomology gave rise to the Deligne representations attached to modular forms of weight
k = k◦ + 2 via (16). The natural k◦-th power symmetrisation function

A[pr] −→ Hk◦r , Q 7→ Qk◦ ,

restricted to A[pr]〈P 〉 and extended to L∗r,x by Zp-linearity, induces morphisms

(30) sp∗k,r : L∗r −→ Hk◦r
of sheaves over X1 (which are thus compatible with the action of GQ on the fibers). These
specialisation morphisms are compatible with the transition maps [p] in the sense that the
diagram

L∗r+1

[p] //

sp∗k,r+1

��

L∗r
sp∗k,r
��

Hk◦r+1
// Hk◦r

commutes, where the bottom horizontal arrow denotes the natural reduction map. The maps
sp∗k,r can thus be pieced together into morphisms

(31) sp∗k : L∗∞ −→ Hk◦ .
The induced morphism

(32) sp∗k : H1
et(X̄

∗
∞,Zp) −→ H1

et(X̄1,Hk◦ ),
arising from those on H1

et(X̄1,L∗∞) via (29) will be denoted by the same symbol by abuse of
notation, and is referred to as the weight k = k◦ + 2 specialisation map. The existence of such
maps having finite cokernel reveals that the Λ-adic Galois representation H1

et(X̄
∗
∞,Zp) is rich

enough to capture the Deligne representations attached to modular forms on X1 of arbitrary
weight k ≥ 2.
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For each a ∈ 1 + pZp, the diamond operator 〈a〉 acts trivially on X1 and as multiplication

by ak◦ on the stalks of the sheaves Hk◦r . It follows that the weight k specialisation map sp∗k
factors through the quotient H1

et(X̄
∗
∞,Zp)⊗Λ,νk◦

Zp, i.e., one obtains a map

sp∗k : H1
et(X̄

∗
∞,Zp)⊗Λ,νk◦

Zp −→ H1
et(X̄1,Hk◦ ).

Remark 1.4. The inverse limit L∗∞ of the sheaves L∗r on X1 has been systematically studied
by G. Kings in [Ki, §2.3-2.4], and is referred to as a sheaf of Iwasawa modules. Jannsen
introduced in [Ja] the étale cohomology groups of such inverse systems of sheaves, and proved
the existence of a Hoschild-Serre spectral sequence, Gysin excision exact sequences and cycle
map in this context.

Ordinary projections. Let

(33) e∗ := lim
n→∞

U∗n!
p

denote Hida’s ordinary projector. Since U∗p commutes with the push-forward maps $1∗,

this idempotent operates on H1
et(X̄

∗
∞,Zp). While the structure of the Λ-module H1

et(X̄
∗
∞,Zp)

seems rather complicated, a dramatic simplification occurs after passing to their ordinary part
e∗H1

et(X̄
∗
∞,Zp), as the following classical theorem of Hida shows.

Theorem 1.5. [Hi2, Corollaries 3.3 and 3.7] The Galois representation e∗H1
et(X̄

∗
∞,Zp(1)) is

a free Λ-module. For each νk◦ ∈ W with k◦ ≥ 0, the weight k = k◦ + 2 specialisation map
induces maps with bounded cokernel (independent of k)

sp∗k : e∗H1
et(X̄

∗
∞,Zp(1))⊗νk◦ Zp −→ e∗H1

et(X̄1,Hk◦ (1)).

Galois representations attached to Hida families. The Galois representation Vφ of Theorem
1.3 associated by Hida and Wiles to a Hida family φ of tame level M and character χ can be
realised as a quotient of the Λ-module e∗H1

et(X̄
∗
∞,Zp(1)). More precisely, let

ξφ : TΛ −→ Λφ

be the Λ-algebra homomorphism from the Λ-adic Hecke algebra TΛ to the Λ-algebra Λφ

generated by the fourier coefficients of φ sending T` to a`(φ).
Then we have, much as in (16), a quotient map of Λ-adic Galois representations

(34) $φ : e∗H1
et(X̄

∗
∞,Zp(1)) −→ e∗H1

et(X̄
∗
∞,Zp(1))⊗TΛ,ξφ Λφ =: Vφ(M),

for which the following diagram of TΛ[GQ]-modules is commutative:

(35) e∗H1
et(X̄

∗
∞,Zp(1))

$φ //

sp∗k
��

Vφ(M)

x

��
H1

et(X̄1,Hk◦ (1))
$φx // Vφx(Mp),

for all arithmetic points x of Wφ of weight k = k◦ + 2 and trivial character.
As in (17), Vφ(M) is non-canonically isomorphic to a finite direct sum of copies of a

Λφ[GQ]-module Vφ of rank 2 over Λφ, satisfying the properties stated in Theorem 1.3.
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1.4. Families of Dieudonné modules. Let BdR denote Fontaine’s field of de Rham periods,
B+

dR be its ring of integers and log[ζp∞ ] denote the uniformizer of B+
dR associated to a norm-

compatible system ζp∞ = {ζpn}n≥0 of pn-th roots of unity. (cf. e.g.[BK93, §1]). For any finite-
dimensional de Rham Galois representation V of GQp with coefficients in a finite extension
Lp/Qp, define the de Rham Dieudonné module

D(V ) = (V ⊗BdR)GQp .

It is an Lp-vector space of the same dimension as V , equipped with a descending exhaustive

filtration FiljD(V ) = (V ⊗ logj [ζp∞ ]B+
dR)GQp by Lp-vector subspaces.

Let Bcris ⊂ BdR denote Fontaine’s ring of crystalline p-adic periods. If V is crystalline
(which is always the case if it arises as a subquotient of the étale cohomology of an algebraic
variety with good reduction at p), then there is a canonical isomorphism

D(V ) ' (V ⊗Bcris)
GQp ,

which furnishes D(V ) with a linear action of a Frobenius endomorphism Φ.
In [BK93] Bloch and Kato introduced a collection of subspaces of the local Galois coho-

mology group H1(Qp, V ), denoted respectively

H1
e (Qp, V ) ⊆ H1

f (Qp, V ) ⊆ H1
g (Qp, V ) ⊆ H1(Qp, V ),

and constructed homomorphisms

(36) logBK : H1
e (Qp, V )

∼−→ D(V )/
(
Fil0D(V ) +D(V )Φ=1

)
and

(37) exp∗BK : H1(Qp, V )/H1
g (Qp, V )

∼−→ Fil0D(V )

that are usually referred to as the Bloch-Kato logarithm and dual exponential map.
We illustrate the above Bloch-Kato homomorphisms with a few basic examples that shall

be used several times in the remainder of this article.

Example 1.6. As shown e.g. in [BK93], [Bel, §2.2], for any unramified character ψ of GQp
and all n ∈ Z we have:

(a) If n ≥ 2, or n = 1 and ψ 6= 1, then H1
e (Qp, Lp(ψε

n
cyc)) = H1(Qp, Lp(ψε

n
cyc)) is one-

dimensional over Lp and the Bloch-Kato logarithm induces an isomorphism

logBK : H1(Qp, Lp(ψε
n
cyc))

∼−→ D(Lp(ψε
n
cyc)).

(b) If n < 0, or n = 0 and ψ 6= 1, then H1
g (Qp, Lp(ψε

n
cyc)) = 0 and H1(Qp, Lp(ψε

n
cyc)) is

one-dimensional. The dual exponential gives rise to an isomorphism

exp∗BK : H1(Qp, Lp(ψε
n
cyc))

∼−→ Fil0D(Lp(ψε
n
cyc)) = D(Lp(ψε

n
cyc)).

(c) Assume ψ = 1. If n = 0, then H1(Qp, Lp) has dimension 2, H1
f (Qp, Lp) = H1

g (Qp, Lp)

has dimension 1 and H1
e (Qp, Lp) has dimension 0 over Lp. The Bloch-Kato dual

exponential map induces an isomorphism

exp∗BK : H1(Qp, Lp)/H
1
f (Qp, Lp)

∼−→ Fil0D(Lp) = D(Lp) = Lp.

Class field theory identifies H1(Qp, Lp) with Homcont(Q×p ,Qp)⊗Lp, which is spanned
by the homomorphisms ordp and logp.

If n = 1, thenH1(Qp, Lp(1)) = H1
g (Qp, Lp(1)) is 2-dimensional andH1

f (Qp, Lp(1)) =

H1
e (Qp, Lp(1)) has dimension 1 over Lp. As proved e.g. in [Bel, Prop. 2.9], Kummer

theory identifies the spaces H1
f (Qp, Lp(1)) ⊂ H1(Qp, Lp(1)) with Z×p ⊗̂Lp sitting in-

side Q×p ⊗̂Lp. Under this identification, the Bloch-Kato logarithm is the usual p-adic

logarithm on Z×p .
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Let Ẑnr
p denote the ring of integers of the completion of the maximal unramified extension

of Qp. If V is unramified then there is a further canonical isomorphism

(38) D(V ) ' (V ⊗ Ẑnr
p )GQp .

Let φ be an eigenform (with respect to the good Hecke operators) of weight k = k◦ + 2 ≥
2, level M and character χ, with fourier coefficients in a finite extension Lp of Qp. The
comparison theorem [Fa] of Faltings-Tsuji combined with (16) asserts that there is a natural
isomorphism

D(Vφ(M)) ' H1
dR(X1(M),Hk◦ (1))[φ]

of Dieudonné modules over Lp. Note that D(Vφ(M)) is the direct sum of several copies of the
two-dimensional Dieudonné module D(Vφ).

Assume that p - M and φ is ordinary at p. Then Vφ(M) is crystalline and Φ acts on
D(Vφ(M)) as

(39) Φ = χ(p)pk◦+1U−1
p .

In particular the eigenvalues of Φ on D(Vφ(M)) are χ(p)pk◦+1α−1
φ = βφ and χ(p)pk◦+1β−1

φ =

αφ, the two roots of the Hecke polynomial of φ at p.
Let φ∗ = φ⊗ χ̄ ∈ Sk(M, χ̄) denote the twist of φ by the inverse of its nebentype character.

Poincaré duality induces a perfect pairing

〈 , 〉 : D(Vφ(M))×D(Vφ∗(M)) −→ D(Lp) = Lp.

The exact sequence (18) induces in this setting an exact sequence of Dieudonné modules

(40) 0 −→ D(V +
φ (M))

i−→ D(Vφ(M))
π−→ D(V −φ (M)) −→ 0.

Since V −φ (M is unramified, we have D(V −φ (M)) ' (V −φ (M)⊗ Ẑnr
p )GQp . This submodule may

also be characterized as the eigenspace D(V −φ (M)) = D(Vφ(M))Φ=αφ of eigenvalue αφ for the

action of frobenius.
The rule φ̆ 7→ ωφ̆ that attaches to any modular form its associated differential form gives

rise to an isomorphism Sk(M,χ)Lp [φ]
∼−→ Fil0(D(Vφ(M))) ⊂ D(Vφ(M)). Moreover, the map

π of (40) induces an isomorphism

(41) Sk(M,χ)Lp [φ]
∼−→ Fil0(D(Vφ(M)))

π−→ D(V −φ (M)).

Any element ω ∈ D(V −φ∗(M)) gives rise to a linear map

ω : D(V +
φ (M)) −→ Lp, η 7→ 〈η, π−1(ω)〉.

Similarly, any η ∈ D(V +
φ∗(M)) also gives rise to a linear functional

η : D(V −φ (M)) −→ Lp, ω 7→ 〈π−1(ω), η〉.

Let now Λ̃ be a finite flat extension of the Iwasawa algebra Λ and let U denote a free Λ̃-
module of finite rank equipped with an unramified Λ̃-linear action of GQp . Define the Λ-adic
Dieudonné module

D(U) := (U⊗̂Ẑnr
p )GQp .

As shown in e.g. [Och03, Lemma 3.3], D(U) is a free module over Λ̃ of the same rank as U.
Examples of such Λ-adic Dieudonné modules arise naturally in the context of families of

modular forms thanks to Theorem 1.3. Indeed, let φ be a Hida family of tame level M and
character χ, and let φ∗ denote the Λ-adic modular form obtained by twisting φ by χ̄.



18 HENRI DARMON AND VICTOR ROTGER

Let Vφ and Vφ(M) denote the global Λ-adic Galois representations described in (34).
It follows from (22) that to the restriction of Vφ to GQp one might associate two natural
unramified Λ[GQp ]-modules of rank one, namely

V−φ ' Λφ(ψφ) and U+
φ = V+

φ(χ−1εcycε
−1
cyc).

Define similarly the unramified modules V−φ(M) and U+
φ(M).

Let

(42) Sord
Λ (M,χ)[φ] :=

{
φ̆ ∈ Sord

Λ (M,χ) s.t.

∣∣∣∣ T`φ̆ = a`(φ)φ̆, ∀` -Mp,

Upφ̆ = ap(φ)φ̆

}
,

For any cristalline arithmetic point x ∈ W◦φ of weight k, the specialization of a Λ-adic test

vector φ̆ ∈ Sord
Λ (M,χ)[φ] at x is a classical eigenform φ̆x ∈ Sk(Mp,χ) with coefficients in

Lp = x(Λφ)⊗Qp and the same eigenvalues as φx for the good Hecke operators.
Likewise, define

Sord
Λ (M, χ̄)∨[φ] =

{
η : Sord

Λ (M, χ̄)→ Λφ

∣∣∣∣ η ◦ T ∗` = a`(φ)η, ∀` -Mp,
η ◦ U∗p = ap(φ)η

}
Let Qφ denote the field of fractions of Λφ. Associated to any test vector φ̆ ∈ Sord

Λ (M,χ)[φ],
[DR1, Lemma 2.19] describes a Qφ-linear dual test vector

(43) φ̆
∨ ∈ Sord

Λ (M, χ̄)∨[φ] ⊗̂Qφ

such that for any ϕ ∈ Sord
Λ (M, χ̄) and any point x ∈ W◦f ,

x(φ̆
∨

(ϕ)) =
〈φ̆x,ϕx〉
〈φ̆x, φ̆

∗
x〉

where 〈 , 〉 denotes the pairing induced by Poincaré duality on the modular curve associated
to the congruence subgroup Γ1(M)∩Γ0(p). This way, the specialization of a Λ-adic dual test

vector φ̆
∨ ∈ Sord

Λ (M, χ̄)∨[φ] at x gives rise to a linear functional

φ̆
∨
x : Sk(Mp, χ̄)[φ∗x] −→ Lp,

which in view of the above isomorphisms we may identify with an element ηφ̆x
∈ D(V +

φx
(Mp)).

A natural Qf -basis of Sord
Λ (M,χ)[φ] ⊗̂Qφ is given by the Λ-adic modular forms φ(qd) as

d ranges over the positive divisors of M/Mφ and it is also obvious that {φ(qd)∨ : d | M
Mφ
}

provides a Qφ-basis of Sord
Λ (M, χ̄)∨[φ] ⊗̂Qφ.

The following statement shows that the linear maps described above can be made to vary
in families.

Proposition 1.7. For any Λ-adic test vector φ̆ ∈ Sord
Λ (M,χ)[φ] there exist

(1) a homomorphism of Λφ-modules

〈 , ωφ̆〉 : D(U+
φ∗(M)) −→ Λφ

such that for every x ∈ W◦φ, the specialization of ωφ̆ at x is the linear form

x ◦ 〈 , ωφ̆〉 = 〈 , ωφ̆x
〉 : D(U+

φ∗x
(Mp)) −→ Lp.

(2) and a homomorphism of Λφ-modules

〈 , ηφ̆〉 : D(V−φ∗(M)) −→ Qφ,
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whose specialization at a classical point x ∈ W◦φ such that φx is the ordinary stabiliza-

tion of an eigenform φ◦x of level M , agrees with the functional

x ◦ 〈 , ηφ̆〉 =
φ̆
∨
x

E0(φ◦x)E1(φ◦x)
: D(V −φ∗x

(Mp)) −→ Lp.

Here

(44) E0(φ◦x) = 1− χ−1(p)β2
φ◦x
p1−k, E1(φ◦x) = 1− χ(p)α−2

φ◦x
pk−2

are the Euler factors appearing in [DR1, Theorem 1.3].

Proof. This is a reformulation of [KLZ, Proposition 10.1.1 and 10.1.2], which in turn builds on
[Oh2]. Namely, Prop. 10.1.1 of loc. cit. proves the statement, except that the interpolation
property in the second claim reads as

x ◦ 〈 , ηφ̆〉 =
φ̆
∨
x

λ(φ◦x)E0(φ◦x)E1(φ◦x)
: D(V −φ∗x

(Mp)) −→ Lp.

where λ(φ◦x) ∈ Q̄× denotes the pseudo-eigenvalue of φ◦x, which we recall it is the scalar given
by

(45) WM (φ◦x) = λ(φ◦x) · φ◦∗x ,
where WM : Sk(M,χ) → Sk(M,χ−1) stands for the Atkin-Lehner operator. Since we are
assuming that Λφ contains the M -th roots of unity (cf. the remark right after Definition
1.1), Prop. 10.1.2 of loc. cit. shows that there exists an element λ(φ) ∈ Λφ interpolating the
pseudo-eigenvalues of the classical p-stabilized specializations of φ. The claim follows, as the
functional 〈 , ηφ̆〉 above is obtained as the product of that of [KLZ] and λ(φ). �

Remark 1.8. If φ̆x is the p-stabilization of an eigenform φ̆◦x of level M , then

ωφ̆x = (1−
βφ◦x
αφ◦x

)$∗1ωφ◦x
and φ̆

∨
x = (1−

βφ◦x
αφ◦x

)$∗1φ̆
◦∨
x .

2. Stark-Heegner points

2.1. Review of Stark-Heegner points. This section recalls briefly the construction of
Stark-Heegner points originally proposed in [Dar] and compares it with the equivalent but
slightly different presentation given in the introduction. As explained in Remark 3, we provide
the details under the running assumptions of loc. cit., and we refer to the references quoted in
the introduction for the analogous story under the more general hypothesis (2).

Let E/Q be an elliptic curve of conductor N := pM with p -M . Since E has multiplicative
reduction at p, the group E(Qp2) of local points over the quadratic unramified extension Qp2

of Qp is equipped with Tate’s p-adic uniformisation

ΦTate : Q×
p2/q

Z −→ E(Qp2).

Let f be the weight two newform attached to E via Wiles’ modularity theorem, which satisfies
the usual invariance properties under Hecke’s congruence group Γ0(N), and let

Γ :=

{(
a b
c d

)
∈ SL2(Z[1/p]), c ≡ 0 (mod M)

}
denote the associated p-arithmetic group, which acts by Möbius transformations both on the
complex upper-half plane H and on Drinfeld’s p-adic analogue Hp := P1(Cp) − P1(Qp). The
main construction of Sections 1-3 of [Dar] attaches to f a non-trivial indefinite multiplicative
integral

Hp × P1(Q)× P1(Q) −→ C×p /qZ, (τ, x, y) 7→ ×
∫ τ∫ y

x
ωf
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satisfying

(46) ×
∫ γτ∫ γy

γx
ωf = ×

∫ τ∫ y

x
ωf , for all γ ∈ Γ,

along with the requirement that

(47) ×
∫ τ∫ y

x
ωf =

(
×
∫ τ∫ x

y
ωf

)−1

, ×
∫ τ∫ y

x
ωf ××

∫ τ∫ z

y
ωf = ×

∫ τ∫ z

x
ωf .

This function is obtained, roughly speaking, by applying the Schneider-Teitelbaum p-adic
Poisson transform to a suitable harmonic cocycle constructed from the modular symbol at-
tached to f . It is important to note that there are in fact two distinct such modular symbols,
which depend on a choice of a sign w∞ = ±1 at ∞ and are referred to as the plus and
the minus modular symbols, and therefore two distinct multiplicative integral functions, with
different transformation properties under matrices of determinant −1 in GL2(Z[1/p]). More
precisely, the multiplicative integral associated to w∞ satisfies the further invariance property

×
∫ −τ∫ −y

−x
ωf =

(
×
∫ τ∫ y

x
ωf

)w∞
.

See sections 1-3 of loc. cit., and §3.3. in particular, for further details.
Let K be a real quadratic field of discriminant D > 0, whose associated Dirichlet character

χK satisfies the Heegner hypothesis

χK(p) = −1, χK(`) = 1 for all `|M.

It follows that D is a quadratic residue modulo M , and we may fix a δ ∈ (Z/MZ)× satisfying

δ2 = D (mod M). Let Kp ' Qp2 denote the completion of K at p, and let
√
D denote a

chosen square root of D in Kp.
Fix an order O of K, of conductor c relatively prime to DN . The narrow Picard group

GO := Pic(O) is in bijection with the set of SL2(Z)-equivalence classes of binary quadratic
forms of discriminant Dc2. A binary quadratic form F = Ax2+Bxy+Cy2 of this discriminant
is said to be a Heegner form relative to the pair (M, δ) if M divides A and B ≡ δc (mod M).
Every class in GO admits a representative which is a Heegner form, and all such representatives
are equivalent under the natural action of the group Γ0(M). In particular, we can write

GO = Γ0(M)\
{
Ax2 +Bxy + Cy2 with (A,B) ≡ (0, δc) (mod M)

}
.

For each class a := Ax2 +Bxy + Cy2 ∈ GO as above, let

τa :=
−B + c

√
D

2A
∈ Kp −Qp ⊂ Hp, γa :=

(
r −Bs −2Cs

2As r +Bs

)
,

where (r, s) is a primitive solution to the Pell equation x2 −Dc2y2 = 1. The matrix γa ∈ Γ
has τa as a fixed point for its action on Hp. This fact, combined with properties (46) and
(47), implies that the period

Ja := ×
∫ τa
∫ γax

x
ωf ∈ K×p /qZ

does not depend on the choice of x ∈ P1(Q) that was made to define it. Property (46) also
shows that Ja depends only on a and not on the choice of Heegner representative that was
made in order to define τa and γa. The local point

y(a) := ΦTate(Ja) ∈ E(Kp)

is called the Stark-Heegner point attached to the class a ∈ GO.
Let H denote the narrow ring class field of K attached to O, whose Galois group is canoni-

cally identified with GO via global class field theory. Because p is inert in K/Q and Gal (H/K)
is a generalised dihedral group, this prime splits completely in H/K. The set P of primes of
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H that lie above p has cardinality [H : K] and is endowed with a simply transitive action of
Gal (H/K) = GO, denoted (a, p) 7→ a ∗ p.

Set KPp := Hom(P, E(Kp)) ' K [H:K]
p . There is a canonical identification

(48) H ⊗Qp = KPp ,

sending x ∈ H ⊗ Qp to the function p 7→ x(p) := xp, where xp denotes the natural image of
x in Hp = Kp. The group Gal (H/K) acts compatibly on both sides of (48), acting on the
latter via the rule

(49) σx(p) = x(σ−1 ∗ p).

Our fixed embedding of H into Q̄p determines a prime p0 ∈ P. Conjecture 5.6 of [Dar]

asserts that the points y(a) are the images in E(Kp) of global points P ?
a ∈ E(H) under

this embedding, and Conjecture 5.9 of loc. cit. asserts that these points satisfy the Shimura
reciprocity law

P ?
ba = rec(b)−1P ?

a , for all b ∈ Pic(O),

where rec : Pic(O) −→ Gal (H/K) denotes the reciprocity map of global class field theory.
It is convenient to reformulate the conjectures of [Dar] as suggested in the introduction, by

parlaying the collection {y(a)} of local points in E(Kp) into a collection of semi-local points

Pa ∈ E(H ⊗Qp) = E(Kp)
P

indexed by a ∈ GO. This is done by letting Pa (viewed as an E(Kp)-valued function on the
set P) be the element of E(H ⊗Qp) given by

(Pa)(b ∗ p0) := y(ab),

so that, by definition

(50) Pba(p) = Pa(b ∗ p).

This point of view has the pleasant consequence that the Shimura reciprocity law becomes
a formal consequence of the definitions:

Lemma 2.1. The semi-local Stark-Heegner points Pa ∈ E(H ⊗Qp) satisfy the Shimura reci-
procity law

rec(b)−1(Pa) = Pba.

Proof. By (49),

rec(b)−1(Pa)(p) = Pa(rec(b) ∗ p) = Pa(b ∗ p), for all p ∈ P.

But on the other hand, by (50)

Pa(b ∗ p) = Pba(p).

The result follows from the two displayed identities. �

The modular form f is an eigenvector for the Atkin-Lehner involution WN acting on X0(N).
Let wN denote its associated eigenvalue. Note that this is the negative of the sign in the
functional equation for L(E, s) and hence that E(Q) is expected to have odd (resp. even)
rank if wN = 1 (resp. if wN = −1). Recall the prime p0 of H attached to the chosen
embedding of H into Q̄p. The frobenius element at p0 in Gal (H/Q) is a reflection in this
dihedral group, and is denoted by σp0 .

Proposition 2.2. For all a ∈ GO,

σp0Pa = wNPa−1 .
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Proof. Proposition 5.10 of [Dar] asserts that

σp0y(a) = wNy(ca)

for some c ∈ GO. The definition of c which occurs in equation (177) of loc.cit. directly implies
that

σp0y(1) = wNy(1), σp0y(a) = wNy(a−1),

and the result follows from this. �

Lemma 2.1 shows that the collection of Stark-Heegner points Pa is preserved under the
action of Gal (H/K), essentially by fiat. A corollary of the less formal Proposition 2.2 is the
following invariance of the Stark-Heegner points under the full action of Gal (H/Q):

Corollary 2.3. For all σ ∈ Gal (H/Q) and all a ∈ GO,

σPa = wδσN Pb, for some b ∈ GO,

where

δσ =

{
0 if σ ∈ Gal (H/K);
1 if σ /∈ Gal (H/K).

Proof. This follows from the fact that Gal (H/Q) is generated by Gal (H/K) together with
the reflection σp0 . �

To each p ∈ P we have associated an embedding jp : H −→ Kp and a frobenius element
σp ∈ Gal (H/Q). If p′ = σ ∗ p is another prime in P, then we observe that

(51) jp′ = jp ◦ σ−1, σp′ = σσpσ
−1, jp′ ◦ σp′ = jp ◦ σp ◦ σ−1.

Let ψ : Gal (H/K) −→ L× be a ring class character, let

eψ :=
1

#GO

∑
σ∈GO

ψ(σ)σ−1 ∈ L[GO]

be the associated idempotent in the group ring, and denote by

Pψ := eψP1 ∈ E(H ⊗Qp)⊗ L

the ψ-component of the Stark-Heegner point. Recall from the introduction the sign α ∈
{−1, 1} which is equal to 1 (resp. −1) if E has split (resp. non-split) multiplicative reduction
at the prime p. Following the notations of the introduction, write

Pαψ = (1 + ασp)Pψ.

Lemma 2.4. The local point jp(P
α
ψ ) is independent of the choice of prime p ∈ P that was

made to define it, up to multiplication by a scalar in ψ(GO) ⊂ L×.

Proof. Let p′ = σ ∗ p be any other element of P. Then by (51),

jp′(1 + ασp′)Pψ = jp ◦ σ−1(1 + ασσpσ
−1)eψP1 = jp ◦ (1 + ασp)σ

−1eψP1

= ψ(σ)−1jp ◦ (1 + ασp)Pψ.

The result follows. �
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2.2. Examples. This section describes a few numerical examples illustrating the scope and
applicability of the main results of this paper. By way of illustration, suppose that E is an
elliptic curve of prime conductor N = p, so that M = 1. In that special case the Atkin-Lehner
sign wN is related to the local sign α by

wN = −α.

The following proposition reveals that the analytic non-vanishing hypothesis fails in the setting
of the Stark-Heegner theorem for quadratic characters of [BD2] when ε = −1:

Proposition 2.5. Let ψ be a totally even quadratic ring class character of K of conductor
prime to N . Then Pαψ is trivial.

Proof. Let (χ1, χ2) = (χ, χχK) be the pair of even quadratic Dirichlet characters associated
to ψ, ordered in such a way that L(E,χ1, s) and L(E,χ2, s) have signs 1 and −1 respectively
in their functional equations. Writing sign(E,χ) ∈ {−1, 1} for the sign in the functional
equation of the twisted L-function L(E,χ, s), it is well-known that, if the conductor of χ is
relatively prime to N ,

sign(E,χ) = sign(E)χ(−N) = −wNχ(−1)χ(p) = αχ(p)χ(−1).

It follows that

αχ1(p) = 1, αχ2(p) = −1,

but equation (4) in the Stark-Heegner theorem for quadratic characters implies Pαψ = 0. �

The systematic vanishing of Pαψ for even quadratic ring class characters of K can be traced
to the failure of the analytic non-vanishing hypothesis of the introduction, which arises for
simple parity reasons. The failure is expected to occur essentially only when E has prime
conductor p, i.e., when M = 1, and never when M satisfies ordq(M) = 1 for some prime
q. Because of Proposition 2.5, the main theorem of [BD2] gives no information about the
Stark-Heegner point Pαψ attached to even quadratic ring class characters of conductor prime
to p, on an elliptic curve of conductor p.

On the other hand, in the setting of Theorem A of the introduction, where ψ has order > 2,
this phenomenon does not occur as the non-vanishing of Pαψ and P−αψ are equivalent to each

other, in light of the irreducibility of the induced representation Vψ. The numerical examples
below show many instances of non-vanishing Pαψ for ring class characters of both even and
odd parity.

Example. Let E : y2+y = x3−x be the elliptic curve of conductor p = 37, whose Mordell-Weil
group is generated by the point (0, 0) ∈ E(Q). Let K = Q(

√
5) be the real quadratic field of

smallest discriminant in which p is inert. It is readily checked that L(E/K, s) has a simple
zero at s = 1 and that E(K) also has Mordell-Weil rank one. The curve E has non-split
multiplicative reduction at p and hence α = −1 in this case. It is readily verified that the
pair of odd characters (χ1, χ2) attached to the quadratic imaginary fields of discriminant −4
and −20 satisfy the three conditions in (4), and hence the analytic non-vanishing hypothesis
is satisfied for the triple (E,K, ε = 1). In particular, Theorem A holds for E, K, and all even
ring class characters of K of conductor prime to 37.

Let O be an order of OK with class number 3, and let H be the corresponding cubic
extension of K. The prime p of H over p and a generator σ of Gal (H/K) can be chosen so
that the components

P1 := Pp, P2 := Pσp, P3 := Pσ2p

in E(Hp) = E(Kp) of the Stark-Heegner point in E(H ⊗Qp) satisfy

P 1 = P1, P 2 = P3, P 3 = P2.
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Letting ψ be the cubic character which sends σ to ζ := (1 +
√
−3)/2, we find that

jp(Pψ) = P1 + ζP2 + ζ2P3,

σp(jp(Pψ)) = P 1 + ζP 2 + ζ2P 3 = P1 + ζP3 + ζ2P2,

jp(P
α
ψ ) =

√
−3× (P2 − P3) =

√
−3× (P2 − P 2).

The following table lists the Stark-Heegner points P1, P2, and P2 − P 2 attached to the first
few orders O ⊂ OK of conductor c = c(O) and of class number three, calculated to a 37-adic
accuracy of 2 significant digits. (The numerical entries in the table below are thus to be
understood as elements of (Z/372Z)[

√
5].)

c(O) P1 P2 P2 − P 2

18 (−635,−256) (319 + 678
√

5,−481230
√

5) (−360, 684 + 27
√

5)

38 (−154, 447) (−588 + 1237
√

5, 367 + 386
√

5) (−437, 684 + 87
√

5)

46 (223, 12 · 37) (−112 + 629
√

5, (−6 + 34
√

5) · 37) ∞
47 (610,−229) (539 + 71

√
5, 10 + 439

√
5) (−293, 684 + 1132

√
5)

54 (533,−561) (679 + 984
√

5, 391 + 862
√

5) (93, 684 + 673
√

5)

Since the Mordell-Weil group of E(K) has rank one, the data in this table is enough to
conclude that the pro-37-Selmer groups of E over the ring class fields of K attached to the
orders of conductors 18, 38, 47 and 54 have rank at least 3. As for the order of conductor 46, a
calculation modulo 373 reveals that P2−P 2 is non-trivial, and hence the pro-37 Selmer group
has rank ≥ 3 over the ring class field of that conductor as well. Under the Stark-Heegner
conjecture, more is true: the Stark-Heegner points above are 37-adic approximations of global
points rather than mere Selmer classes. But recognising them as such (and thereby proving
that the Mordell-Weil ranks are ≥ 3) typically requires a calculations to higher accuracy,
depending on the eventual height of the Stark-Heegner point as an algebraic point, about
which nothing is known of course a priori, and which can behave somewhat erratically. For
example, the x-coordinates of the Stark-Heegner points attached to the order of conductor 47
appear to satisfy the cubic polynomial

x3 − 319x2 + 190x+ 420,

while those of the Stark-Heegner points for the order of conductor 46 appear to satisfy the
cubic polynomial

2352347001x3 − 34772698791x2 + 138835821427x− 136501565573

with much larger coefficients, whose recognition requires a calculation to at least 7 digits of
37-adic accuracy.

The table above produced many examples of non-vanishing Pαψ for ψ even, and in particular
it verifies the non-vanishing hypothesis for Stark-Heegner points stated in the introduction,
for the sign ε = −1. This means that Theorem A is also true for odd ring class characters of
K, even if the premise of (6) is never verified for odd quadratic characters of K.

2.3. p-adic L-functions associated to Hida families over real quadratic fields. Let

f =
∑
n≥1

an(f)qn ∈ Λf [[q]]

be the Hida family of tame level M and trivial tame character passing through f . Let x0 ∈ W◦f
denote the point of weight 2 such that fx0 = f . Note that fx0 ∈ S2(N) is new at p, while for
any x ∈ W◦f with wt(x) = k > 2, fx(q) = f◦x(q)− βf◦x(qp) is the ordinary p-stabilisation of an
eigenform f◦x of level M = N/p. We set f◦x0

= fx0 = f .
Let K be a real quadratic field in which p remains inert and all prime factors of M split,

and fix throughout a finite order anticyclotomic character ψ of K of conductor c coprime to
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DN , with values in a finite extension Lp/Qp. Note that ψ(p) = 1 as the prime ideal pOK is
principal.

Under our running assumptions, the sign of the functional equation satisfied by the Hasse-
Weil-Artin L-series L(E/K,ψ, s) = L(f, ψ, s) is

ε(E/K,ψ) = −1,

and in particular the order of vanishing of L(E/K,ψ, s) at s = 1 is odd. In contrast, at
every classical point x of even weight k > 2 the sign of the functional equation satisfied by
L(fx/K,ψ, s) is

ε(fx/K,ψ) = +1

and one expects generic non-vanishing of the central critical value L(fx/K,ψ, k/2).
In [BD2, Definition 3.4], a p-adic L-function

Lp(f/K,ψ) ∈ Λf

associated to the Hida family f , the ring class character ψ and a choice of collection of periods
was defined, by interpolating the algebraic part of (the square-root of) the critical values
L(fx/K,ψ, k/2) for x ∈ W◦f with wt(x) = k = k◦ + 2 ≥ 2. See also [LMY, §4.1] for a more
general treatment, encompassing the setting considered here.

In order to describe this p-adic L-function in more detail, let Φfx,C denote the classical
modular symbol associated to fx with values in the space Pk◦ (C) of homogeneous polynomials
of degree k◦ in two variables with coefficients in C. The space of modular symbols is naturally
endowed with an action of GL2(Q) and we let Φ+

fx,C and Φ−fx,C denote the plus and minus

eigencomponents of Φfx,C under the involution at infinity induced by w∞ =
(

1 0
0 −1

)
.

As proved in [KZ, §1.1] (with slightly different normalizations as for the powers of the
period 2πi that appear in the formulas, which we have taken into account accordingly), there
exists a pair of collections of complex periods

{Ω+
fx,C}x∈W◦f , {Ω−fx,C}x∈W◦f ⊂ C×

satisfying the following two conditions:

(i) the modular symbols

Φ+
fx

:=
Φ+
fx,C

Ω+
fx,C

, Φ−fx :=
Φ−fx,C

Ω−fx,C
take values in Q(fx) = Q({an(fx)}n≥1),

(ii) and Ω+
fx,C · Ω

−
fx,C = 4π2〈f◦x , f◦x〉.

Note that conditions (i) and (ii) above only characterize Ω±fx,C up to multiplication by

non-zero scalars in the number field Q(fx).
Fix an embedding Q̄ ↪→ Q̄p ⊂ Cp, through which we regard Φ±fx as Cp-valued modular

symbols. In [GS], Greenberg and Stevens introduced measure-valued modular symbols µ+
f

and µ−f interpolating the classical modular symbols Φ+
fx

and Φ−fx as x ranges over the classical
specializations of f .

More precisely, they show (cf. [GS, Theorem 5.13] and [BD1, Theorem 1.5]) that for every
x ∈ W◦f , there exist p-adic periods

(52) Ω+
fx,p

, Ω−fx,p ∈ Cp

such that the specialisation of µ+
f and µ−f at x satisfy

(53) x(µ+
f ) = Ω+

fx,p
· Φ+

fx
, x(µ−f ) = Ω−fx,p · Φ

−
fx
.

Since no natural choice of periods Ω±fx,C presents itself, the scalars Ω+
fx,p

and Ω−fx,p are not

expected to vary p-adically continuously. However, conditions (i) and (ii) above implies that
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the product Ω+
fx,p
·Ω−fx,p ∈ Cp is a more canonical quantity, as it may also be characterized by

the formula

(54) x(µ+
f ) · x(µ−f ) = Ω+

fx,p
Ω−fx,p ·

Φ+
fx,C · Φ

−
fx,C

4π2〈f◦x , f◦x〉
,

which is independent of any choices of periods.
This suggests that the map x 7→ Ω+

fx,p
Ω−fx,p may extend to a p-adic analytic function,

possibly after multiplying it by suitable Euler-like factors at p. And indeed, the following
statement was proved in [BD3, Theorem 3.4]:

Proposition 2.6. There exists a rigid-analytic function Lp(Sym2(f)) on a neighborhood Uf

of Wf around x0 such that for all classical points x ∈ Uf ∩W◦f of weight k ≥ 2:

(55) Lp(Sym2(f))(x) = E0(fx)E1(fx) · Ω+
fx,p

Ω−fx,p,

where E0(fx) and E1(fx) are the Euler factors introduced in (44).

Remark 2.7. The motivation for denoting Lp(Sym2(f)) the p-adic function appearing above
relies on the fact that Ω±fx,p are p-adic analogues of the complex periods Ω±fx,C. As is well-

known, the product Ω+
fx,C · Ω

−
fx,C = 4π2〈f◦x , f◦x〉 is essentially the near-central critical value of

the classical L-function associated to the symmetric square of f◦x . In addition to this, as M.
L. Hsieh remarked to us, it might not be difficult to show that Lp(Sym2(f)) is a generator of
Hida’s congruence ideal in the sense of [Hs, §1.4, p.4].

The result characterizing the p-adic L-function Lp(f/K,ψ) alluded to above is [BD2, The-
orem 3.5], which we recall below. Although [BD2, Theorem 3.5] is stated in loc. cit. only for
genus characters, the proof has been recently generalized to arbitrary (not necessarily qua-
dratic) ring class characters ψ of conductor c with (c,DN) = 1 by Longo, Martin and Yan in
[LMY, Theorem 4.2], by employing Gross-Prasad test vectors to extend Popa’s formula [Po,
Theorem 6.3.1] to this setting.

Let fc ∈ K× denote the explicit simple constant introduced at the first display of [LMY,
§3.2]. It only depends on the conductor c and its square lies in Q×.

Theorem 2.8. The p-adic L-function Lp(f/K,ψ) satisfies the following interpolation prop-
erty: for all x ∈ W◦f of weight wt(x) = k = k◦ + 2 ≥ 2, we have

Lp(f/K,ψ)(x) = ff ,ψ(x)× L(f◦x/K,ψ, k/2)1/2

where

ff ,ψ(x) = (1− α−2
fx
pk◦ ) ·

fc · (Dc2)
k◦+1

4 (k◦2 )!

(2πi)k◦/2
·

Ω
εψ
fx,p

Ω
εψ
fx,C

.

2.4. A p-adic Gross-Zagier formula for Stark-Heegner points. One of the main theo-
rems of [BD2] is a formula for the derivative of Lp(f/K,ψ) at the point x0, relating it to the
formal group logarithm of a Stark-Heegner point. This formula shall be crucial for relating
these points to generalized Kato classes and eventually proving our main results.

Theorem 2.9. The p-adic L-function Lp(f/K,ψ) vanishes at the point x0 of weight 2 and

(56)
d

dx
Lp(f/K,ψ)|x=x0

=
1

2
logp(P

α
ψ ).

Proof. The vanishing of Lp(f/K,ψ) at x = x0 is a direct consequence of the assumptions and
definitions, because x = x0 lies in the region of interpolation of the p-adic L-function and
therefore Lp(f/K,ψ)(x0) is a non-zero multiple of the central critical value L(f/K,ψ, 1). This
L-value vanishes as remarked at the beginning of this section.
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The formula for the derivative follows verbatim as in the proof of [BD2, Theorem 4.1]. See
also [LMY, Theorem 5.1] for the statement in the generality required here. Finally, we refer to
[LV] for a formulation and proof of this formula in the setting of quaternionic Stark-Heegner
points, under the general assumption of (2). �

3. Generalised Kato classes

3.1. A compatible collection of cycles. This section defines a collection of codimension
two cycles inX1(Mpr)3 indexed by elements of (Z/prZ)×3 and records some of their properties.

We retain the notations that were in force in Section 1.3 regarding the meanings of the
curves X = X1(M), Xr = X1(Mpr) and Xr,s. In addition, let

Y(pr) := Y ×X(1) Y (pr), X(pr) := X ×X(1) X(pr)

denote the (affine and projective, respectively) modular curve over Q(ζr) with full level pr

structure. The curve Y(pr) classifies triples (A,P,Q) in which A is an elliptic curve with
Γ1(M) level structure and (P,Q) is a basis for A[pr] satisfying 〈P,Q〉 = ζr, where 〈 , 〉 denotes
the Weil pairing and ζr is a fixed primitive pr-th root of unity. The curve X(pr) is geometrically
connected but does not descend to a curve over Q, as can be seen by noting that the description
of its moduli problem depends on the choice of ζr. The covering X(pr)/X is Galois with Galois
group SL2(Z/prZ), acting on the left by the rule

(57)

(
a b
c d

)
(A,P,Q) = (A, aP + bQ, cP + dQ).

Consider the natural projection map

(58) $r
1 ×$r

1 ×$r
1 : X3

r −→ X3

induced on triple products by the map $r
1 of (24). Write ∆ ⊂ X3 for the usual diagonal

cycle, namely the image of X under the diagonal embedding x 7→ (x, x, x). Let ∆r be the
fiber product ∆ ×X3 X3

r via the natural inclusion and the map of (58), which fits into the
cartesian diagram

∆r
� � //

����

X3
r

����
∆ �
� // X3.

An element of a Zp-module Ω is said to be primitive if it does not belong to pΩ, and the set
of such primitive elements is denoted Ω′. Let

Σr := ((Z/prZ× Z/prZ)′)3 ⊂ ((Z/prZ)2)3

be the set of triples of primitive row vectors of length 2 with entries in Z/prZ, equipped with
the action of GL2(Z/prZ) acting diagonally by right multiplication.

Lemma 3.1. The geometrically irreducible components of ∆r are defined over Q(ζr) and are
in canonical bijection with the set of left orbits

Σr/SL2(Z/prZ).

Proof. Each triple

(v1, v2, v3) = ((x1, y1), (x2, y2), (x3, y3)) ∈ Σr

determines a morphism

ϕ(v1,v2,v3) : X(pr) −→ ∆r ⊂ X3
r

of curves over Q(ζr), defined in terms of the moduli descriptions on Y(pr) by

(A,P,Q) 7→ ( (A, x1P + y1Q), (A, x2P + y2Q), (A, x3P + y3Q) ).
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It is easy to see that if two elements (v1, v2, v3) and (v′1, v
′
2, v
′
3) ∈ Σr satisfy

(v′1, v
′
2, v
′
3) = (v1, v2, v3)γ, with γ ∈ SL2(Z/prZ),

then

ϕ(v′1,v
′
2,v
′
3) = ϕ(v1,v2,v3) ◦ γ,

where γ is being viewed as an automorphism of X(pr) as in (57). It follows that the geomet-
rically irreducible cycle

∆r(v1, v2, v3) := ϕ(v1,v2,v3)∗(X(pr))

depends only on the SL2(Z/prZ)-orbit of (v1, v2, v3).
Since SL2(Z/prZ) acts transitively on (Z/prZ × Z/prZ)′, one further checks that the col-

lection of cycles ∆r(v1, v2, v3) for (v1, v2, v3) ∈ Σr/SL2(Z/prZ) do not overlap on Y 3
r and

cover ∆r. Hence the irreducible components of ∆r are precisely ∆r(v1, v2, v3) for (v1, v2, v3) ∈
Σr/SL2(Z/prZ). �

The quotient Σr/SL2(Z/prZ) is equipped with a natural determinant map

D : Σr/SL2(Z/prZ) −→ (Z/prZ)3

defined by

D ((x1y1), (x2, y2), (x3, y3)) :=

(∣∣∣∣ x2 y2

x3 y3

∣∣∣∣ , ∣∣∣∣ x3 y3

x1 y1

∣∣∣∣ , ∣∣∣∣ x1 y1

x2 y2

∣∣∣∣) .
For each [d1, d2, d3] ∈ (Z/prZ)3, we can then write

Σr[d1, d2, d3] := {(v1, v2, v3) ∈ Σr with D(v1, v2, v3) = (d1, d2, d3)} .

The group SL2(Z/prZ) operates simply transitively on Σr[d1, d2, d3] if (and only if)

(59) [d1, d2, d3] ∈ Ir := (Z/prZ)×3.

In particular, if (v1, v2, v3) belongs to Σr[d1, d2, d3], then the cycle ∆r(v1, v2, v3) depends only
on [d1, d2, d3] ∈ Ir and will henceforth be denoted

∆r[d1, d2, d3] ∈ CH2(X3
r ).

A somewhat more intrinsic definition of ∆r[d1, d2, d3] as a curve embedded in X3
r is that it

corresponds to the schematic closure of the locus of points ((A,P1), (A,P2), (A,P3)) satisfying

(60) 〈P2, P3〉 = ζd1
r , 〈P3, P1〉 = ζd2

r , 〈P1, P2〉 = ζd3
r .

This description also makes it apparent that the cycle ∆r[d1, d2, d3] is defined over Q(ζr) but
not over Q. Let σm ∈ Gal (Q(ζr)/Q) be the automorphism associated to m ∈ (Z/prZ)×,
sending ζr to ζmr . The threefold X3

r is also equipped with an action of the group

(61) G̃r := ((Z/prZ)×)3 = {〈a1, a2, a3〉, a1, a2, a3 ∈ (Z/prZ)×}

of diamond operators, where the automorphism associated to a triple (〈a1〉, 〈a2〉, 〈a3〉) has
simply been denoted 〈a1, a2, a3〉.

Lemma 3.2. For all diamond operators 〈a1, a2, a3〉 ∈ G̃r and all [d1, d2, d3] ∈ Ir,

(62) 〈a1, a2, a3〉∆r[d1, d2, d3] = ∆r[a2a3 · d1, a1a3 · d2, a1a2 · d3].

For all σm ∈ Gal (Q(ζr)/Q),

(63) σm∆r[d1, d2, d3] = ∆r[m · d1,m · d2,m · d3].
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Proof. Equation (62) follows directly from the identity

D(a1v1, a2v2, a3v3) = [a2a3, a1a3, a1a2]D(v1, v2, v3).

The first equality in (63) is most readily seen from the equation (60) defining the cycle
∆r[d1, d2, d3], since applying the automorphism σm ∈ Gal (Q(ζr)/Q) has the effect of replacing
ζr by ζmr . �

Remark 3.3. Assume m is a quadratic residue in (Z/prZ)×, which is the case, for instance,
when σm belongs to Gal (Q(ζr)/Q(ζ1)). Then it follows from (62) and (63) that

(64) σm∆r[d1, d2, d3] = 〈m,m,m〉1/2∆r[d1, d2, d3].

Let us now turn to the compatibility properties of the cycles ∆r[d1, d2, d3] as the level r
varies. Recall the modular curve Xr,r+1 classifying generalised elliptic curves together with a
distinguished cyclic subgroup of order pr+1 and a point of order pr in it. The maps µ, $1, π1,
$2 and π2 of (25) induce similar maps on the triple products:

(65) X3
r+1

µ3

��

$3
1

""
X3
r,r+1

π3
1

// X3
r ,

X3
r+1

µ3

��

$3
2

""
X3
r,r+1

π3
2

// X3
r .

A finite morphism j : V1 −→ V2 of varieties induces maps

j∗ : CHj(V1) −→ CHj(V2), j∗ : CHj(V2) −→ CHj(V1)

between Chow groups, and j∗j
∗ agrees with the multiplication by deg(j) on CHj(V2). If j is

a Galois cover with Galois group G,

(66) j∗j∗(∆) =
∑
σ∈G

σ∆.

By abuse of notation we will denote the associated maps on cycles (rather than just on cycle
classes) by the same symbols.

Lemma 3.4. For all r ≥ 1 and all [d′1, d
′
2, d
′
3] ∈ Ir+1 whose image in Ir is [d1, d2, d3],

($3
1)∗∆r+1[d′1, d

′
2, d
′
3] = p3∆r[d1, d2, d3], ($3

2)∗∆r+1[d′1, d
′
2, d
′
3] = (Up)

⊗3∆r[d1, d2, d3].

The cycles ∆r[d1, d2, d3] also satisfy the distribution relations∑
[d′1,d

′
2,d
′
3]

∆r+1[d′1, d
′
2, d
′
3] = ($3

1)∗∆r[d1, d2, d3],

where the sum is taken over all triples [d′1, d
′
2, d
′
3] ∈ Ir+1 which map to [d1, d2, d3] in Ir.

Proof. A direct verification based on the definitions shows that the morphisms µ3 and π3
1 of

(65) induce morphisms

∆r+1[d′1d
′
2, d
′
3]

µ3

// µ3
∗∆r+1[d′1, d

′
2, d
′
3]

π3
1 // ∆r[d1, d2, d3],

of degrees 1 and p3 respectively. Hence the restriction of $3
1 to ∆r+1[d′1, d

′
2, d
′
3] induces a map

of degree p3 from ∆r+1[d′1, d
′
2, d
′
3] to ∆r[d1, d2, d3], which implies the first assertion. It also

follows from this that

(67) µ3
∗∆r+1[d′1, d

′
2, d
′
3] = (π3

1)∗∆r[d1, d2, d3].

Applying (π3
2)∗ to this identity implies that

($3
2)∗∆r+1[d′1, d

′
2, d
′
3] = (Up)

⊗3∆r[d1, d2, d3].
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The second compatibility relation follows. To prove the distribution relation, observe that the
sum that occurs in it is taken over the p3 translates of a fixed ∆r+1[d′1, d

′
2, d
′
3] for the action

of the Galois group of X3
r+1 over X3

r,r+1, and hence, by (66), that∑
[d′1,d

′
2,d
′
3]

∆r+1[d′1, d
′
2, d
′
3] = (µ∗)3µ3

∗∆r+1[d′1, d
′
2, d
′
3].

The result then follows from (67). �

3.2. Galois cohomology classes. The goal of this section is to parlay the cycles ∆r[d1, d2, d3]
into Galois cohomology classes with values inH1

et(X̄r,Zp)⊗3(2), essentially by considering their
images under the p-adic étale Abel-Jacobi map:

(68) AJet : CH2(X3
r )0 −→ H1(Q, H3

et(X̄
3
r ,Zp(2))),

where

CH2(X3
r )0 := ker

(
CH2(X3

r ) −→ H4
et(X̄

3
r ,Zp(2))

)
denotes the kernel of the étale cycle class map, i.e., the group of null-homologous algebraic
cycles defined over Q. There are two issues that need to be dealt with. Firstly, the cycles
∆r[d1, d2, d2] need not be null-homologous and have to be suitably modified so that they lie
in the domain of the Abel Jacobi map. Secondly, these cycles are defined over Q(ζr) and not
over Q, and it is desirable to descend the field of definition of the associated extension classes.

To deal with the first issue, let q be any prime not dividing Mp, and let Tq denote the Hecke
operator attached to this prime. It can be used to construct an algebraic correspondence on
X3
r by setting

θq := (Tq − (q + 1))⊗3.

Lemma 3.5. The element θq annihilates the target H4
et(X̄

3
r ,Zp) of the étale cycle class map

on CH2(X3
r ).

Proof. The correspondence Tq acts as multiplication by (q+1) on H2
et(X̄r,Zp) and θq therefore

annihilates all the terms in the Künneth decomposition of H4
et(X̄r,Zp). �

The modified diagonal cycles in CH2(X3
r ) are defined by the rule

(69) ∆◦r [d1, d2, d3] := θq∆r[d1, d2, d3].

Lemma 3.5 shows that they are null-homologous and defined over Q(ζr). Define

κr[d1, d2, d3] := AJet(∆
◦
r [d1, d2, d3]) ∈ H1(Q(ζr), H

1
et(X̄r,Zp)⊗3(2)).

To deal with the circumstance that the cycles ∆◦r [d1, d2, d3] are only defined over Q(ζr), and
hence that the associated cohomology classes κr[d1, d2, d3] need not (and in fact, do not) extend

to GQ, it is necessary to replace the Zp[G̃r][GQ]-module H1
et(X̄r,Zp)⊗3(2) by an appropriate

twist over Q(ζr). Let Gr denote the Sylow p-subgroup of the group G̃r of (61), and let
G∞ := lim←−Gr. Let

Λ(Gr) := Zp[Gr], Λ(G∞) = Zp[[G∞]]

be the finite group ring attached to Gr and the associated Iwasawa algebra, respectively.

Let Λ(Gr)( 2

1
) denote the Galois module which is isomorphic to Λ(Gr) as a Λ(Gr)-module,

and on which the Galois group GQ(ζ1) is made to act via its quotient Gal (Q(ζr)/Q(ζ1)) =

1+pZ/prZ, the element σm acting as multiplication by the group-like element 〈m,m,m〉−1/2.

Let Λ(G∞)(
2

1
) denote the projective limit of the Λ(Gr)( 2

1
). It follows from the definitions

that if

νk◦ , ◦̀ ,m◦ : Λ(Gr) −→ Z/prZ, or νk◦ , ◦̀ ,m◦ : Λ(G∞) −→ Zp
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is the homomorphism sending 〈a1, a2, a3〉 to a
k◦
1 a

◦̀
2 a

m◦
3 , then

(70) Λ(Gr)( 2

1
)⊗νk◦ , ◦̀ ,m◦ Z/p

rZ = (Z/prZ)(ε−(k◦+ ◦̀+m◦ )/2
cyc ),

where the tensor product is taken over Λ(Gr), and similarly for G∞. In particular if k◦ + ◦̀ +
m◦ = 2t is an even integer,

(71) Λ(G∞)(
2

1
)⊗νk◦ , ◦̀ ,m◦ Zp = Zp(−t)(ωt)

as GQ-modules. More generally, if Ω is any Λ(G∞) module, write

Ω(
2

1
) := Ω⊗Λ(G∞) Λ(G∞)(

2

1
), Ω(

2

−1
) := Ω⊗Λ(G∞) Λ(G∞)(

2

−1
),

for the relevant twists of Ω, which are isomorphic to Ω as a Λ(G∞)[GQ(µp∞ )]-module but are
endowed with different actions of GQ.

There is a canonical Galois-equivariant Λ(Gr)-hermitian bilinear, Λ(Gr)-valued pairing

(72) 〈〈 , 〉〉r : H1
et(X̄r,Zp)⊗3(2)(

2

1
) × H1

et(X̄r,Zp)⊗3(1)(
2

1
) −→ Λ(Gr),

given by the formula

〈〈a, b〉〉r :=
∑

σ=〈d1,d2,d3〉∈Gr

〈aσ, b〉Xr · 〈d1, d2, d3〉,

where

〈 , 〉Xr : H1
et(X̄r,Zp)⊗3(2)×H1

et(X̄r,Zp)⊗3(1) −→ H2
et(X̄r,Zp(1))⊗3 = Zp

arises from the Poincaré duality between H3
et(X̄

3
r ,Zp)(2) and H3

et(X̄
3
r ,Zp)(1). This pairing

enjoys the following properties:

• For all λ ∈ Λ(Gr),

〈〈λa, b〉〉r = λ∗〈〈a, b〉〉r, 〈〈a, λb〉〉r = λ〈〈a, b〉〉r,
where λ∗ ∈ Λ(Gr) is obtained from λ by applying the involution on the group ring
which sends every group-like element to its inverse. In particular, the pairing of (72)
can and will also be viewed as a Λ(Gr)-valued ∗-hermitian pairing

〈〈 , 〉〉r : H1
et(X̄r,Zp)⊗3(2)×H1

et(X̄r,Zp)⊗3(1) −→ Λ(Gr).

• For all σ ∈ GQ(ζ1), we have 〈〈σa, σb〉〉r = 〈〈a, b〉〉r.
• The Up and U∗p operators are adjoint to each other under this pairing, giving rise to a

duality (denoted by the same symbol, by an abuse of notation)

〈〈 , 〉〉r : e∗H1
et(X̄r,Zp)⊗3(2)(

2

1
) × eH1

et(X̄r,Zp)⊗3(1)(
2

1
) −→ Λ(Gr).

Define

H111(Xr) := HomΛ(Gr)(H
1
et(X̄r,Zp)⊗3(1)(

2

1
),Λ(Gr)) ' H1

et(X̄r,Zp)⊗3(2)(
2

1
),

H111
ord(Xr) := HomΛ(Gr)(eH

1
et(X̄r,Zp)⊗3(1)(

2

1
),Λ(Gr)) ' e∗H1

et(X̄r,Zp)⊗3(2)(
2

1
).

The above identifications of Zp[GQ(ζ1)]-modules follow from the pairing (72).
To descend the field of definition of the classes κr[d1, d2, d3], we package them together into

elements

κr[a, b, c] ∈ H1(Q(ζr),H111(Xr))

indexed by triples

(73) [a, b, c] ∈ I1 = (Z/pZ)×3 = µp−1(Zp)3 ⊂ (Z×p )3.

The class κr[a, b, c] is defined by setting, for all σ ∈ GQ(ζr) and all γr ∈ H1
et(X̄r,Zp)⊗3(1),

(74) κr[a, b, c](σ)(γr) = 〈〈κr[a, b, c](σ), γr〉〉r,
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where the elements a, b, c ∈ (Z/pZ)× are viewed as elements of (Z/prZ)× via the Teichmuller
lift alluded to in (73). Note that there is a natural identification

H1(Q(ζr),H111(Xr)) = Ext1
Λ(Gr)[GQ(ζr)]

(H1
et(X̄r,Zp)⊗3(1),Λ(Gr),

because H1
et(X̄r,Zp)⊗3(1) = H1

et(X̄r,Zp)⊗3(1)(
2

1
) as GQ(ζr)-modules and the Λ(Gr)-dual of

the latter is H111(Xr). With these definitions we have

Lemma 3.6. The class κr[a, b, c] is the restriction to GQ(ζr) of a class

κr[a, b, c] ∈ H1(Q(ζ1),H111(Xr)) = Ext1
Λ(Gr)[GQ(ζ1)]

(H1
et(X̄r,Zp)⊗3(1)(

2

1
),Λ(Gr)).

Furthermore, for all m ∈ µp−1(Zp),

σm κr[a, b, c] = κr[ma,mb,mc].

Proof. We will prove this by giving a more conceptual description of the cohomology class
κr[a, b, c]. Let |∆| denote the support of an algebraic cycle ∆, and let

(75) ∆◦r [[a, b, c]] := |∆◦1[a, b, c]| ×X3
1
X3
r

denote the inverse image in X3
r of |∆◦1[a, b, c]|, which fits into the cartesian diagram

∆◦r [[a, b, c]]
� � //

����

X3
r

($r−1
1 )3

����
|∆◦1[a, b, c]| �

� // X3
1 .

As in the proof of Lemma 3.1, observe that

∆◦r [[a, b, c]] =
⊔

[d1,d2,d3]∈I1
r

|∆◦r [ad1, bd2, cd3]|

where I1
r denotes the p-Sylow subgroup of Ir. Consider now the commutative diagram of

Λ(Gr)[GQ(ζ1)]-modules with exact rows:

(76) Λ(Gr)( 2

−1
)

� _

j

��
H3

et(X̄
3
r ,Zp)(2) �

� //

p
����

H3
et(X̄

3
r−∆◦r [[a, b, c]],Zp)(2) // // H0

et(∆̄
◦
r [[a, b, c]],Zp)0

H1
et(X̄r,Zp)⊗3(2),

where

• the map j is the inclusion defined on group-like elements by

j (〈d1, d2, d3〉) = cl(∆◦r [ad2d3, bd1d3, cd1d2]),

which is GQ(ζ1)-equivariant by Lemma 3.2;
• the middle row arises from the excision exact sequence in étale cohomology (cf. [Ja,

(3.6)] and [Mi, p. 108]);
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• the subscript of 0 appearing in the rightmost term in the exact sequence denotes the
kernel of the cycle class map, i.e.,

H0
et(∆̄

◦
r [[a, b, c]],Zp)0 := ker

(
H0

et(∆̄
◦
r [[a, b, c]],Zp)0 −→ H4

et(X̄
3
r ,Zp(2))

)
,

and the fact that the image of j is contained in H0
et(∆̄

◦
r [[a, b, c]],Zp)0 follows from

Lemma 3.5;
• the projection p is the one arising from the Künneth decomposition.

Taking the pushout and pullback of the extension in (76) via the maps p and j yields an exact
sequence of Λ(Gr)[GQ(ζ1)]-modules

(77) 0 // H1
et(X̄r,Zp)⊗3(2) // Er // Λ(Gr)( 2

−1
) // 0.

Taking the Λ(Gr)-dual of this exact sequence, we obtain

0 // Λ(Gr)( 2

1
) // Ěr // H1

et(X̄r,Zp)⊗3(1)∗ // 0.

where M∗ means the Λ(Gr)-module obtained from M by letting act Λ(Gr) on it by composing

with the involution λ 7→ λ∗. Twisting this sequence by (
2

−1
) and noting that M∗(

2

−1
) '

M(
2

1
)∗ yields an extension

(78) 0 // Λ(Gr) // E′r // H1
et(X̄r,Zp)⊗3(1)(

2

1
)∗ // 0.

Since

H1
et(X̄r,Zp)⊗3(1)(

2

1
)∗ = HomΛ(Gr)(H

1
et(X̄r,Zp)⊗3(2)(

2

1
),Λ(Gr)),

it follows that the cohomology class realizing the extension E′r is an element of

H1(Q(ζ1),HomΛ(Gr)(H
1
et(X̄r,Zp)⊗3(1)(

2

1
),Λ(Gr))) = H1(Q(ζ1),H111(Xr)),

because the duality afforded by 〈〈 , 〉〉r is hermitian (and not Λ-linear). When restricted to
GQ(ζr), this class coincides with κr[a, b, c], and the first assertion follows.

The second assertion is an immediate consequence of the definitions, using the Galois
equivariance properties of the cycles ∆r[d1, d2, d3] given in the first assertion of Lemma 3.2. �

Remark 3.7. The extension E′r of (78) can also be realised as a subquotient of the étale
cohomology group H3

c (X̄3
r−∆◦r [[a, b, c]],Zp)(1) with compact supports, in light of the Poincaré

duality

H3
et(X̄

3
r−∆◦r [[a, b, c]],Zp)(2) × H3

c (X̄3
r−∆◦r [[a, b, c]],Zp)(1) −→ Zp.

3.3. Λ-adic cohomology classes. Thanks to Lemma 3.6, we now dispose, for each [a, b, c] ∈
µp−1(Zp)3, of a system

(79) κr[a, b, c] ∈ H1(Q(ζ1),H111(Xr)), e∗κr[a, b, c] ∈ H1(Q(ζ1),H111
ord(Xr))

of cohomology classes indexed by the integers r ≥ 1. Let

pr+1,r : Λ(Gr+1) −→ Λ(Gr)

be the projection on finite group rings induced from the natural homomorphism Gr+1 −→ Gr.

Lemma 3.8. Let γr+1 ∈ H1
et(X̄r+1,Zp)⊗3(1) and γr ∈ H1

et(X̄r,Zp)⊗3(1) be elements that
are compatible under the pushforward by $3

1, i.e., that satisfy ($3
1)∗(γr+1) = γr. For all

σ ∈ GQ(ζ1),

pr+1,r (κr+1[a, b, c](σ)(γr+1)) = κr[a, b, c](σ)(γr).
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Proof. This amounts to the statement that

pr+1,r(〈〈κr+1[a, b, c], γr+1〉〉r+1) = 〈〈κr[a, b, c], γr〉〉r.
But

pr+1,r(〈〈κr+1[a, b, c], γr+1〉〉r+1) =
∑
Gr

〈(µ3)∗(µ3)∗κr+1[ad′2d
′
3, bd

′
1d
′
3, cd

′
1d
′
2], γr+1〉Xr+1 ·〈d1, d2, d3〉,

where the sum runs over 〈d1, d2, d3〉 ∈ Gr and 〈d′1, d′2, d′3〉 denotes an (arbitrary) lift of
〈d1, d2, d3〉 to Gr+1. The third assertion in Lemma 3.4 allows us to rewrite the right-hand side
as

pr+1,r(〈〈κr+1[a, b, c], γr+1〉〉r+1) =
∑
Gr

〈($3
1)∗κr[ad2d3, bd1d3, cd1d2], γr+1〉Xr+1 · 〈d1, d2, d3〉

=
∑
Gr

〈κr[ad2d3, bd1d3, cd1d2], ($3
1)∗γr+1〉Xr · 〈d1, d2, d3〉

=
∑
Gr

〈κr[ad2d3, bd1d3, cd1d2], γr〉Xr · 〈d1, d2, d3〉

= 〈〈κr[a, b, c], γr〉〉r,
and the result follows. �

Define

H111(X∗∞) := HomΛ(G∞)(H
1
et(X̄

∗
∞,Zp)⊗3(1)(

2

1
),Λ(G∞))(80)

= HomΛ(G∞)(H
1
et(X̄1,L∗∞)⊗3(1)(

2

1
),Λ(G∞)),

where the identification follows from (29).
Thanks to Lemma 3.8, the classes κr[a, b, c] can be packaged into a compatible collection

(81) κ∞[a, b, c] := (κr[a, b, c])r≥1 ∈ H
1(Q(ζ1),H111(X∗∞)).

It will also be useful to replace the classes κ∞[a, b, c] by elements that are essentially indexed
by triples

(ω1, ω2, ω3) : (Z/pZ×)3 −→ Z×p
of tame characters of G̃r/Gr. Assume that the product ω1ω2ω3 is an even character. This
assumption is equivalent to requiring that

ω1ω2ω3 = δ2, for some δ : (Z/pZ)× −→ Z×p .
Note that for a given (ω1, ω2, ω3), there are in fact two characters δ as above, which differ by
the unique quadratic character of conductor p. With the choices of ω1, ω2, ω3 and δ in hand,
we set

(82) κ∞(ω1, ω2, ω3; δ) :=
p3

(p− 1)3
·
∑

[a,b,c]

δ−1(abc) · ω1(a)ω2(b)ω3(c) · κ∞[bc, ac, ab],

where the sum is taken over the triples [a, b, c] of (p− 1)st roots of unity in Z×p . The classes
κ∞(ω1, ω2, ω3; δ) satisfy the following properties.

Lemma 3.9. For all σm ∈ Gal (Q(ζ∞)/Q),

σmκ∞(ω1, ω2, ω3; δ) = δ(m)κ∞(ω1, ω2, ω3; δ).

For all diamond operators 〈a1, a2, a3〉 ∈ µp−1(Zp)3

〈a1, a2, a3〉κ∞(ω1, ω2, ω3; δ) = ω123(a1, a2, a3) · κ∞(ω1, ω2, ω3; δ).

Proof. This follows from a direct calculation based on the definitions, using the compatibilities
of Lemma 3.2 satisfied by the cycles ∆r[d1, d2, d3]. �
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The classes κ∞[a, b, c] and κ∞(ω1, ω2, ω3; δ) are called the Λ-adic cohomology classes at-
tached to the triple [a, b, c] ∈ µp−1(Zp)3 or the quadruple (ω1, ω2, ω3; δ). As will be explained
in the next section, they are three variable families of cohomology classes parametrised by
points in the triple product W ×W ×W of weight spaces, and taking values in the three-
parameter family of self-dual Tate twists of the Galois representations attached to the different
specialisations of a triple of Hida families.

Remark 3.10. It is instructive to compare the construction of κ∞[a, b, c] to the approach taken
in [DR2], which associated to a triple (f,g,h) consisting of a fixed newform f and a pair (g,h)
of Hida families a one-variable family of cohomology classes instead of the two-variable family
that one might have felt entitled to a priori. This shortcoming of the earlier approach can be
understood by noting that the space of embeddings of X(pr) into X × Xr × Xr as above in
which the projection to the first factor is fixed is naturally parametrized by the coset space
M2(Z/prZ)′/SL2(Z/prZ), where M2(Z/prZ)′ denotes the set of 2× 2 matrices whose rows are
not divisible by p. The analogue of the cycles ∆r[d1, d2, d3] above are therefore parametrised
by the coset space GL2(Z/prZ)/SL2(Z/prZ) = (Z/prZ)×, whose inverse limit with r is the
one dimensional p-adic space Z×p rather than a two-dimensional one.

3.4. Higher weight balanced specialisations. For every integer k◦ ≥ 0 define

W
k◦
1 := H1

et(X̄1,Hk◦ )
and recall from the combination of (29), (31) and (32) the specialisation map

(83) sp∗k◦ : H1
et(X̄

∗
∞,Zp) = H1

et(X̄1,L∗∞) −→W
k◦
1 .

Fix throughout this section a triple

k = k◦ + 2, ` = ◦̀ + 2, m = m◦ + 2

of integers ≥ 2 for which k◦ + ◦̀ +m◦ = 2t is even. Let

Hk◦ , ◦̀ ,m◦ := Hk◦ �H ◦̀ �Hm◦

viewed as a sheaf on X3
1 , and

W
k◦ , ◦̀ ,m◦
1 := W

k◦
1 ⊗W ◦̀

1 ⊗W
m◦
1 (2− t).

As one readily checks, the p-adic Galois representation W
k◦ , ◦̀ ,m◦
1 is Kummer self-dual, i.e.,

there is an isomorphism of GQ-modules

HomGQ(W
k◦ , ◦̀ ,m◦
1 ,Zp(1)) 'W k◦ , ◦̀ ,m◦

1 .

The specialisation maps give rise, in light of (71), to the triple product specialisation map

(84) sp∗k◦ , ◦̀ ,m◦ := sp∗k◦ ⊗ sp∗
◦̀
⊗ sp∗m◦ : H111(X∗∞) −→W

k◦ , ◦̀ ,m◦
1

and to the associated collection of specialised classes

(85) κ1(k◦ , ◦̀ ,m◦)[a, b, c] := spk◦ , ◦̀ ,m◦ (κ∞[a, b, c]) ∈ H1(Q(ζ1),W
k◦ , ◦̀ ,m◦
1 ).

Note that for (k◦ , ◦̀ ,m◦) = (0, 0, 0), it follows from the definitions (cf. e.g. the proof of
Lemma 3.6) that the class κ1(k◦ , ◦̀ ,m◦)[a, b, c] is simply the image under the étale Abel-Jacobi
map of the cycle ∆◦1[a, b, c].

The main goal of this section is to offer a similar geometric description for the above classes
also when (k, `,m) is balanced and k◦ , ◦̀ ,m◦ > 0, which we assume henceforth for the remainder
of this section.

In order to do this, it shall be useful to dispose of an alternate description of the extension
(77) in terms of the étale cohomology of the (open) three-fold X3

1 − |∆◦1[a, b, c]| with values in
appropriate sheaves.
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Lemma 3.11. Let L∗�3
r denote the exterior tensor product of L∗r, over the triple product X3

1 .
There is a commutative diagram

0 // H3
et(X

3
r ,Zp)(2) // H3

et(X
3
r −∆◦r [[a, b, c]],Zp)(2) // H0

et(∆
◦
r [[a, b, c]],Zp)

0 // H3
et(X̄

3
1 ,L∗�3

r )(2) // H3
et(X̄

3
1 − |∆◦1[a, b, c]|,L∗�3

r )(2) // H0
et(|∆◦1[a, b, c]|,L∗⊗3

r )),

in which the horizontal sequences are exact.

Proof. Recall from (27) that

L∗�3
r = ($r−1

1 ×$r−1
1 ×$r−1

1 )∗Zp,
where

$r−1
1 ×$r−1

1 ×$r−1
1 : X3

r −→ X3
1

is defined as in (58). The vertical isomorphisms then follow from Shapiro’s lemma and the def-
inition of ∆◦r [[a, b, c]] in (75). The horizontal sequence arises from the excision exact sequence
in étale cohomology of [Ja, (3.6)] and [Mi, p. 108]. �

Lemma 3.12. For all [a, b, c] ∈ I1,

H0
et(∆̄1[a, b, c],Hk◦ , ◦̀ ,m◦ ) = Zp(t).

Proof. The Clebsch-Gordan formula asserts that the space of tri-homogenous polynomials in
6 = 2 + 2 + 2 variables of tridegree (k◦ , ◦̀ ,m◦) has a unique SL2-invariant element, namely,
the polynomial

Pk◦ , ◦̀ ,m◦ (x1, y1, x2, y2, x3, y3) =

∣∣∣∣ x2 y2

x3 y3

∣∣∣∣k◦ ′ ∣∣∣∣ x3 y3

x1 y1

∣∣∣∣ ◦̀ ′ ∣∣∣∣ x1 y1

x2 y2

∣∣∣∣m◦ ′ ,
where

k◦
′ =
−k◦ + ◦̀ +m◦

2
, ◦̀

′ =
k◦ − ◦̀ +m◦

2
m◦
′ =

k◦ + ◦̀ −m◦
2

.

Since the triplet of weights is balanced, it follows that k◦
′, ◦̀
′,m◦

′ ≥ 0. From the Clebsch-
Gordan formula it follows that H0

et(∆̄1[a, b, c],Hk◦ , ◦̀ ,m◦ ) is spanned by the global section whose
stalk at a point ((A,P1), (A,P2), (A,P3)) ∈ ∆1[a, b, c] as in (60) is given by

(X2 ⊗ Y3 − Y2 ⊗X3)⊗k◦
′
⊗ (X1 ⊗ Y3 − Y1 ⊗X3)⊗ ◦̀

′
⊗ (X1 ⊗ Y2 − Y1 ⊗X2)⊗m◦

′
,

where (Xi, Yi), i = 1, 2, 3, is a basis of the stalk of H at the point (A,Pi) in X1. The Galois
action is given by the t-th power of the cyclotomic character because the Weil pairing takes
values in Zp(1) and k◦

′ + ◦̀
′ +m◦

′ = t. �

Write clk◦ , ◦̀ ,m◦ (∆1[a, b, c]) ∈ H0
et(|∆̄◦1[a, b, c]|,Hk◦ , ◦̀ ,m◦ ) for the standard generator given by

Lemma 3.12. Define

(86) AJk◦ , ◦̀ ,m◦ (∆1[a, b, c]) ∈ H1(Q(ζ1),W
k◦ , ◦̀ ,m◦
1 )

to be the extension class constructed by pulling back by j and pushing forward by p in the
exact sequence of the middle row of the following diagram:

(87) Zp(t)� _
j
��

H3
et(X̄

3
1 ,Hk◦ , ◦̀ ,m◦ )(2) �

� //

p
����

H3
et(X̄

3
1−∆̄,Hk◦ , ◦̀ ,m◦ )(2) // // H0

et(∆̄,Hk◦ , ◦̀ ,m◦ )

W
k◦ , ◦̀ ,m◦
1 (t),
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where

• ∆ = ∆1[a, b, c];
• the map j is the GQ(ζ1)-equivariant inclusion defined by j(1) = clk◦ , ◦̀ ,m◦ (∆);
• the surjectivity of the right-most horizontal row follows from the vanishing of the

group H4
et(X̄

3
1 ,Hk◦ , ◦̀ ,m◦ ), which in turn is a consequence of the Künneth formula and

the vanishing of the terms H2
et(X̄1,Hk◦ ) when k◦ > 0 (cf. [BDP1, Lemmas 2.1, 2.2]).

In particular the image of j lies in the image of the right-most horizontal row and this holds
regardless whether the cycle is null-homologous or not. The reader may compare this con-
struction with (76), where the cycle ∆◦r [[a, b, c]] is null-homologous and this property was
crucially exploited.

Theorem 3.13. Set AJk◦ , ◦̀ ,m◦ (∆
◦
1[a, b, c]) = θqAJk◦ , ◦̀ ,m◦ (∆1[a, b, c]). Then the identity

κ1(k◦ , ◦̀ ,m◦)[a, b, c] = AJk◦ , ◦̀ ,m◦ (∆
◦
1[a, b, c])

holds in H1(Q(ζ1),W
k◦ , ◦̀ ,m◦
1 ).

Proof. Set ∆ := ∆◦1[a, b, c] in order to alleviate notations. Thanks to Lemma 3.11, the diagram
in (76) used to construct the extension Er realising the class κr[a, b, c] is the same as the
diagram

(88) Λ(Gr)( 2

−1
)

� _

j

��
0 // H3

et(X̄
3
1 ,L∗�3

r )(2) //

p
����

H3
et(X̄

3
1 − |∆̄|,L∗�3

r )(2) // H0
et(|∆̄|,L∗⊗3

r )

H1
et(X̄1,L∗r)⊗3(2).

Let

νk◦ , ◦̀ ,m◦ : Λ(Gr) −→ Z/prZ

be the algebra homomorphism sending the group like element 〈d1, d2, d3〉 to d
k◦
1 d

◦̀
2 d

m◦
3 , and

observe that the moment maps of (30) allow us to identify

L∗�3
r ⊗νk◦ , ◦̀ ,m◦ (Z/prZ) = Hk◦ , ◦̀ ,m◦r .

Tensoring (88) over Λ(Gr) with Z/prZ via the map νk◦ , ◦̀ ,m◦ : Λ(Gr) −→ Z/prZ, yields
the specialised diagram which coincides exactly with the mod pr reduction of (87), with
∆ = ∆◦1[a, b, c]. The result follows by passing to the limit with r. �

Corollary 3.14. Let

(89) ∆◦1(ω1, ω2, ω3; δ) :=
p3

(p− 1)3
·
∑

[a,b,c]∈I1

δ−1(abc)ω1(a)ω2(b)ω3(c)∆◦1[a, b, c].

Then

sp∗k◦ , ◦̀ ,m◦ (κ∞(ω1, ω2, ω3; δ) = AJk◦ , ◦̀ ,m◦ (∆
◦
1(ω1, ω2, ω3; δ)).

Proof. This follows directly from the definitions. �
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3.5. Cristalline specialisations. Let f , g, h be three arbitrary primitive, residually irre-
ducible p-adic Hida families of tame levels Mf , Mg, Mh and tame characters χf , χg, χh,
respectively, with associated weight space Wf × Wg × Wg. Assume χfχgχh = 1 and set
M = lcm(Mf ,Mg,Mh). Let (x, y, z) ∈ Wf ×Wg×Wh be a point lying above a classical triple
(νk◦ ,ε1 , ν ◦̀ ,ε2 , νm◦ ,ε3) ∈ W3 of weight space. As in Definition 1.2, the point (x, y, z) is said to be
tamely ramified if the three characters ε1, ε2 and ε3 are tamely ramified, i.e., factor through
the quotient (Z/pZ)× of Z×p , and is said to be cristalline if ε1ω

−k◦ = ε2ω
− ◦̀ = ε3ω

−m◦ = 1.
Fix such a cristalline point (x, y, z) of balanced weight (k, `,m) = (k◦ + 2, ◦̀ + 2,m◦ + 2),

and let (fx,gy,hz) be the specialisations of (f ,g,h) at (x, y, z). The ordinariness hypothesis
implies that, for all but finitely many exceptions, these eigenforms are the p-stabilisations of
newforms of level dividing M , denoted f , g and h respectively:

fx(q) = f(q)− βff(qp), gy = g(q)− βgg(qp), hz(q) = h(q)− βhh(qp).

Since the point (x, y, z) is fixed throughout this section, the dependency of (f, g, h) on (x, y, z)
has been suppressed from the notations, and we also write (fα, gα, hα) := (fx,gy,hz) for the
ordinary p-stabilisations of f , g and h.

Recall the quotient X01 of X1, having Γ0(p)-level structure at p, and the projection map
µ : X1 −→ X01 introduced in (25). By an abuse of notation, the symbol Hk◦ is also used to
denote the étale sheaves appearing in (14) over any quotient of X1, such as X01. Let

W1 := H1
et(X̄1,Hk◦ )⊗H1

et(X̄1,H ◦̀ )⊗H1
et(X̄1,Hm◦ )(2− t),

W01 := H1
et(X̄01,Hk◦ )⊗H1

et(X̄01,H ◦̀ )⊗H1
et(X̄01,Hm◦ )(2− t),

be the Galois representations arising from the cohomology of X1 and X01 with values in these
sheaves. They are endowed with a natural action of the triple tensor product of the Hecke
algebras of weight k◦ , ◦̀ , m◦ and level Mp.

Let W1[fα, gα, hα] denote the (fα, gα, hα)-isotypic component of W1 on which the Hecke
operators act with the same eigenvalues as on fα⊗gα⊗hα. Let πfα,gα,hα : W1 →W1[fα, gα, hα]
denote the associated projection. Use similar notations for W01.

Recall the family

(90) κ∞(ε1ω
−k◦ , ε2ω

− ◦̀ , ε3ω
−m◦ ; 1) = κ∞(1, 1, 1; 1)

that was introduced in (82). By Lemma 3.9, this class lies in H1(Q,H111(X∗∞)).
Recall the choice of auxiliary prime q made in the definition of the modified diagonal cycle

(69). We assume now that q is chosen so that Cq := (aq(f)−q−1)(aq(g)−q−1)(aq(h)−q−1)
is a p-adic unit. Note that this is possible because the Galois representations %f , %g and %h
were assumed to be residually irreducible and hence f , g and h are non-Eisenstein mod p. Let

(91) κ1(fα, gα, hα) :=
1

Cq
· πfα,gα,hα sp∗x,y,z κ∞(1, 1, 1; 1)) ∈ H1(Q,W1[fα, gα, hα])

be the specialisation at the cristalline point (x, y, z) of (90), after projecting it to the (fα, gα, hα)-
isotypic component of W1 via πfα,gα,hα . We normalize the class by multiplying it by the above
constant in order to remove the dependency on the choice of q.

The main goal of this section is to relate this class to the generalised Gross-Schoen diagonal
cycles that were studied in [DR1], arising from cycles in Kuga-Sato varieties which are fibered
over X3 and have good reduction at p.

The fact that (x, y, z) is a cristalline point implies that the diamond operators in Gal (X1/X01)
act trivially on the (fα, gα, hα)-eigencomponents, and hence the Hecke-equivariant projection
µ3
∗ : W1 −→W01 induces an isomorphism

µ3
∗ : W1[fα, gα, hα] −→W01[fα, gα, hα].
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Our first aim is to give a geometric description of the class

κ01(fα, gα, hα) := µ3
∗κ1(fα, gα, hα)

in terms of appropriate algebraic cycles. To this end, recall the cycles ∆1[a, b, c] ∈ CH2(X3
1 )

introduced before, and let p∗ := ±p be such that Q(
√
p∗) is the quadratic subfield of Q(ζ1).

Lemma 3.15. The cycle µ3
∗∆1[a, b, c] depends only on the quadratic residue symbol (abcp )

attached to abc ∈ (Z/pZ)×. The cycles

∆+
01 := µ3

∗∆1[a, b, c] for any a, b, c with

(
abc

p

)
= 1,

∆−01 := µ3
∗∆1[a, b, c] for any a, b, c with

(
abc

p

)
= −1,

belong to CH2(X3
01/Q(

√
p∗)) and are interchanged by the non-trivial automorphism of Q(

√
p∗).

Proof. Arguing as in Lemma 3.2,

〈d1, d2, d3〉∆1[a, b, c] = ∆1[d2d3a, d1d3b, d1d2c], for all (d1, d2, d3) ∈ I1 = (Z/pZ)×3.

The orbit of the triple [a, b, c] under the action of I1 is precisely the set of triples [a′, b′, c′]

for which (a
′b′c′

p ) = (abcp ). Since X01 is the quotient of X1 by the group I1, it follows that

µ3
∗∆1[a, b, c] depends only on this quadratic residue symbol, and hence that the classes ∆+

01

and ∆−01 in the statement of Lemma 3.15 are well-defined. Furthermore, Lemma 3.6 implies
that, for all m ∈ (Z/pZ)×, the Galois automorphism σm fixes ∆+

01 and ∆−01 if m is a square
modulo p, and interchanges these two cycle classes otherwise. It follows that they are invariant
under the Galois group Gal (Q(ζ1)/Q(

√
p∗)) and hence descend to a pair of conjugate cycles

∆±01 defined over Q(
√
p∗), as claimed. �

It follows from this lemma that the algebraic cycle

(92) ∆01 := ∆+
01 + ∆−01 ∈ CH2(X3

01/Q).

is defined over Q. To describe it concretely, note that a triple (C1, C2, C3) of distinct cyclic
subgroups of order p in an elliptic curve A admits a somewhat subtle discrete invariant in
(µ⊗3
p − {1}) modulo the action of (Z/pZ)×2, denoted o(C1, C2, C3) and called the orientation

of (C1, C2, C3). This orientation is defined by choosing generators P1, P2, P3 of C1, C2 and C3

respectively and setting

o(C1, C2, C3) := 〈P2, P3〉 ⊗ 〈P3, P1〉 ⊗ 〈P1, P2〉 ∈ µ⊗3
p − {1}.

It is easy to check that the value of o(C1, C2, C3) in µ⊗3
p −{1} only depends on the choices of

generators P1, P2 and P3, up to multiplication by a non-zero square in (Z/pZ)×. In view of
(60), we then have

∆+
01 =

{
((A,C1), (A,C2), (A,C3)) with o(C1, C2, C3) = aζ⊗3

1 , a ∈ (Z/pZ)×2
}
,

∆−01 =
{

((A,C1), (A,C2), (A,C3)) with o(C1, C2, C3) = aζ⊗3
1 , a /∈ (Z/pZ)×2

}
,

∆01 = {((A,C1), (A,C2), (A,C3)) with C1 6= C2 6= C3}.(93)

Recall the natural projections

π1, π2 : X01 −→ X, $1, $2 : X1 −→ X

to the curve X = X0(M) of prime to p level, and set

W0 := H1
et(X̄0,Hk◦ )⊗H1

et(X̄0,H ◦̀ )⊗H1
et(X̄0,Hm◦ )(2− t),

The Galois representation W0 is endowed with a natural action of the triple tensor product
of the Hecke algebras of weight k◦ , ◦̀ , m◦ and level M . Let W0[f, g, h] denote the (f, g, h)-
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isotypic component of W0, on which the Hecke operators act with the same eigenvalues as
on f ⊗ g ⊗ h. Note that the U∗p operator does not act naturally on W0 and hence one
cannot speak of the (fα, gα, hα)-eigenspace of this Hecke module. One can, however, denote
by W1[f, g, h] and W01[f, g, h] the (f, g, h)-isotypic component of these Galois representations,
in which the action of the U∗p operators on the three factors are not taken into account. Thus,
W01[fα, gα, hα] is the image of W01[f, g, h] under the ordinary projection, and likewise for W1.
In other words, denoting by πf,g,h the projection to the (f, g, h)-isotypic component on any
of these modules, one has

πfα,gα,hα = e∗πf,g,h

whenever the left-hand projection is defined.
The projection maps

(π1, π1, π1) : X3
01 −→ X3, ($1, $1, $1) : X3

1 −→ X3

induces push-forward maps

(π1, π1, π1)∗ : W01[fα, gα, hα] −→W0[f, g, h], ($1, $1, $1)∗ : W1[fα, gα, hα] −→W0[f, g, h]

on cohomology, as well as maps on the associated Galois cohomology groups.
Our goal is now to relate the class

(94) ($1, $1, $1)∗(κ1(fα, gα, hα)) = (π1, π1, π1)∗(κ01(fα, gα, hα))

to those arising from the diagonal cycles on the curve X0 = X, whose level is prime to p.
To do this, it is key to understand how the maps π1∗ and (π1, π1, π1)∗ interact with the

Hecke operators, especially with the ordinary and anti-ordinary projectors e and e∗, which do
not act naturally on the target of π1∗. Consider the map

(π1, π2) : W
k◦
01 := H1

et(X̄01,Hk◦ ) −→W
k◦
0 := H1

et(X̄0,Hk◦ ).

It is compatible in the obvious way with the good Hecke operators arising from primes ` -Mp,
and therefore induces a map

(95) (π1, π2) : W
k◦
01 [f ] −→W

k◦
0 [f ]⊕W k◦

0 [f ]

on the f -isotypic components for this Hecke action. As before, note that W
k◦
01 [f ] is a priori

larger than W
k◦
01 [fα], which is its ordinary quotient.

Let ξf := χf (p)pk−1 be the determinant of the frobenius at p acting on the two-dimensional
Galois representation attached to f , and likewise for g and h.

Lemma 3.16. For the map (π1, π2) as in (95),(
π1

π2

)
◦ Up =

(
ap(f) −1
ξf 0

)(
π1

π2

)
,

(
π1

π2

)
◦ U∗p =

(
0 p

−ξfp−1 ap(f)

)(
π1

π2

)
.

Proof. The definitions π1 and π2 imply that, viewing Up and U∗p (resp. Tp) as correspondences
on a Kuga-Sato variety fibered over X01 (resp. over X0), we have

π1Up = Tpπ1 − π2, π1U
∗
p = pπ2

π2Up = p[p]π1 π2U
∗
p = −[p]π1 + Tpπ2,

where [p] is the correspondence induced by the multiplication by p on the fibers and on the
prime-to-p part of the level structure. The result follows by passing to the f -isotypic parts,
using the fact that [p] induces multiplication by ξfp

−1 on this isotypic part. �

For the next calculations, it shall be notationally convenient to introduce the notations

δf = αf − βf , δg = αg − βg, δh = αh − βh, δfgh = δfδgδh.
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Lemma 3.17. For (π1, π2) as in Lemma 3.16,

π1 ◦ e =
αfπ1 − π2

δf
, π2 ◦ e =

ξfπ1 − βfπ2

δf
= βf · (π1 ◦ e),

π1 ◦ e∗ =
−βfπ1 + pπ2

δf
, π2 ◦ e∗ =

−ξfp−1π1 + αfπ2

δf
= pα−1

f · (π1 ◦ e∗).

Proof. The matrix identities(
ap(f) −1
ξf 0

)
=

(
1 1
βf αf

)
×
(
αf 0
0 βf

)
×
(

1 1
βf αf

)−1

,(
0 p

−ξfp−1 ap(f)

)
=

(
βf αf

ξfp
−1 ξfp

−1

)
×
(
αf 0
0 βf

)
×
(

βf αf
ξfp
−1 ξf (p)p−1

)−1

,

show that

lim

(
ap(f) −1
ξf 0

)n!

=

(
1 1
βf αf

)(
1 0
0 0

)(
1 1
βf αf

)−1

= δ−1
f

(
αf −1
ξf −βf

)
,

lim

(
0 p

−ξfp−1 ap(f)

)n!

= δ−1
f

(
−βf p
−ξfp−1 αf

)
,

and the result now follows from Lemma 3.16. �

Lemma 3.18. Let κ ∈ H1(Q,W01[f, g, h]) be any cohomology class with values in the (f, g, h)-
isotypic subspace of W01, and let e, e∗ : H1(Q,W01[fgh]) −→ H1(Q,W01[fα, gα, hα]) denote
the ordinary and anti-ordinary projections. Then

(π1, π1, π1)∗(eκ) = δ−1
fgh ×

{
αfαgαh(π1, π1, π1)∗

−αgαh(π2, π1, π1)∗ − αfαh(π1, π2, π1)∗ − αfαg(π1, π1, π2)∗

+αf (π1, π2, π2)∗ + αg(π2, π1, π2)∗ + αh · (π2, π2, π1)∗

−(π2, π2, π2)∗

}
(κ).

(π1, π1, π1)∗(e
∗κ) = δ−1

fgh ×
{
− βfβgβh(π1, π1, π1)∗

+pβgβh(π2, π1, π1)∗ + pβfβh(π1, π2, π1)∗ + pβfβg(π1, π1, π2)∗

−p2βf (π1, π2, π2)∗ − p2βg(π2, π1, π2)∗ − p2βh(π2, π2, π1)∗

+p3(π2, π2, π2)∗

}
(κ),

where we recall that δfgh := ((αf − βf )(αg − βg)(αh − βh)).

Proof. This follows directly from Lemma 3.17. �

Recall the notations

k◦ := k − 2, ◦̀ = `− 2, m◦ := m− 2, r := (k◦ + ◦̀ +m◦)/2.

Let A denote the Kuga-Sato variety over X as introduced in 1.2. In [DR1, Definitions
3.1,3.2 and 3.3], a generalized diagonal cycle

∆k◦ , ◦̀ ,m◦ = ∆
k◦ , ◦̀ ,m◦
0 ∈ CHr+2(Ak◦ ×A ◦̀ ×Am◦ ,Q)

is associated to the triple (k◦ , ◦̀ ,m◦).
When k◦ , ◦̀ ,m◦ > 0, ∆k◦ , ◦̀ ,m◦ is obtained by choosing subsets A, B and C of the set

{1, . . . , r} which satisfy:

#A = k◦ , #B = ◦̀ , #C = m◦ , A ∩B ∩ C = ∅,
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#(B ∩ C) = r − k◦ , #(A ∩ C) = r − ◦̀ , #(A ∩B) = r −m◦ .
The cycle ∆k◦ , ◦̀ ,m◦ is defined as the image of the embedding Ar into Ak◦ ×A ◦̀ ×Am◦ given by
sending (E, (P1, . . . , Pr)) to ((E,PA), (E,PB), (E,PC)), where for instance PA is a shorthand
for the k◦-tuple of points Pj with j ∈ A.

Let also ∆
k◦ , ◦̀ ,m◦
01 ∈ CHr+2(Ak◦ ×A ◦̀ ×Am◦ ) denote the generalised diagonal cycle in the

product of the three Kuga-Sato varieties of weights (k, `,m) fibered over X01, defined in a
similar way as in (93) and along the same lines as recalled above.

More precisely, ∆
k◦ , ◦̀ ,m◦
01 is defined as the schematic closure in Ak◦ ×A ◦̀ ×Am◦ of the set of

tuples ((E,C1, PA), (E,C2, PB), (E,C3, PC)) where PA, PB, PC are as above, and C1, C2, C3 is
a triple of pairwise distinct subgroups of order p in the elliptic curve E.

Since the triple (k◦ , ◦̀ ,m◦) is fixed throughout this section, in order to alleviate notations

in the statements below we shall simply denote ∆] and ∆]
01 for ∆k◦ , ◦̀ ,m◦ and ∆

k◦ , ◦̀ ,m◦
01 respec-

tively.

Lemma 3.19. The following identities hold in CHr+2(Ak◦ ×A ◦̀ ×Am◦ ):

(π1, π1, π1)∗(∆
]
01) = (p+ 1)p(p− 1)(∆]),

(π2, π1, π1)∗(∆
]
01) = p(p− 1)× (Tp, 1, 1)(∆]),

(π1, π2, π1)∗(∆
]
01) = p(p− 1)× (1, Tp, 1)(∆]),

(π1, π1, π2)∗(∆
]
01) = p(p− 1)× (1, 1, Tp)(∆

]),

(π1, π2, π2)∗(∆
]
01) = (p− 1)× ((1, Tp, Tp)(∆

])− pr−k◦D1)

(π2, π1, π2)∗(∆
]
01) = (p− 1)× ((Tp, 1, Tp)(∆

])− pr− ◦̀D2)

(π2, π2, π1)∗(∆
]
01) = (p− 1)× ((Tp, Tp, 1)(∆])− pr−m◦D3)

(π2, π2, π2)∗(∆
]
01) = (Tp, Tp, Tp)(∆

])− pr−k◦E1 − pr− ◦̀E2 − pr−m◦E3 − pr(p+ 1)∆],

where the cycles D1, D2 and D3 satisfy

([p], 1, 1)∗(D1) = pk◦ (Tp, 1, 1)∗(∆
]), (1, [p], 1)∗(D2) = p ◦̀ (1, Tp, 1)∗(∆

]),

(1, 1, [p])∗(D3) = pm◦ (1, 1, Tp)(∆
]),

and the cycles E1, E2 and E3 satisfy

([p], 1, 1)∗(E1) = pk◦ (Tp2 , 1, 1)(∆]), (1, [p], 1)∗(E2) = p ◦̀ (1, Tp2 , 1)(∆]),

(1, 1, [p])∗(E3) = pm◦ (1, 1, Tp2)(∆]),

and Tp2 := T 2
p − (p+ 1)[p].

Proof. The first four identities are straightforward: the map π1 × π1 × π1 induces a finite

map from ∆]
01 to ∆] of degree (p+ 1)p(p− 1), which is the number of possible choices of an

ordered triple of distinct subgroups of order p on an elliptic curve, and likewise π2 × π1 × π1

induces a map of degree p(p − 1) from ∆]
01 to (Tp, 1, 1)∆]. The remaining identities follow

from combinatorial reasonings based on the explicit description of the cycles ∆]
01 and ∆].

For the 5th identity, observe that (π1, π2, π2)∗ induces a degree (p− 1) map from ∆]
01 to the

variety X parametrising triples ((E,PA), (E′, P ′B), (E′′, P ′′C)) for which there are distinct cyclic
p-isogenies ϕ′ : E −→ E′ and ϕ′ : E −→ E′′, the system of points P ′B ⊂ E′ and P ′′C ⊂ E′′

indexed by the sets B and C satisfy

ϕ′(PA∩B) = P ′A∩B, ϕ′′(PA∩C) = P ′′A∩C ,

and for which there exists points QB∩C ⊂ E indexed by B ∩ C satisfying

ϕ′(QB∩C) = P ′B∩C , ϕ′′(QB∩C) = P ′′B∩C .
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On the other hand, (1, Tp, Tp) parametrises triples of the same type, in which E′ and E′′ need
not be distinct. It follows that

(96) (1, Tp, Tp)(∆
]) = X + pr−k◦D1,

where the closed points of D1 correspond to triples of the form ((E,PA), (E′, P ′B), (E′, P ′C))
for which there is a cyclic p-isogeny ϕ′ : E −→ E′ satisfying

ϕ′(PA∩B) = P ′A∩B, ϕ′(PA∩C) = P ′A∩C .

The coefficient of pr−k◦ in (96) arises because each closed point of D1 comes from p#(B∩C)

distinct closed points on (1, Tp, Tp)(∆
]), obtained by translating the points Pj ∈ PB∩C with

j ∈ B ∩ C by arbitrary elements of ker(ϕ). The fifth identity now follows after noting that
the map ([p], 1, 1]) induces a map of degree pk◦ from D1 to (Tp, 1, 1)∗∆

]. The 6th and 7th
identity can be treated with an identical reasoning by interchanging the three factors in
W k◦ ×W ◦̀ ×Wm◦ . As for the last identity, the map (π2, π2, π2) induces a map of degree 1
to the variety Y consisting of triples (E′, E′′, E′′′) of elliptic curves which are p-isogenous to
a common elliptic curve E and distinct. But it is not hard to see that

(Tp, Tp, Tp)(∆
]) = Y + pr−k◦E1 + pr− ◦̀E2 + pr−m◦E3 + pr(p+ 1)∆]

where the additional terms on the right hand side account for triples (E′, E′′, E′′′) where
E′ 6= E′′ = E′′′, where E′′ 6= E′ = E′′′, where E′′′ 6= E′ = E′′, and where E′ = E′′ = E′′′

respectively. �

Assume for the remainder of the section that k◦ , ◦̀ ,m◦ > 0. Recall the projectors εk◦ of

(15). It was shown in [DR1, §3.1] that (εk◦ , ε ◦̀ , εm◦ )∆
k◦ , ◦̀ ,m◦ is a null-homologous cycle and

we may define

(97) κ(f, g, h) := πf,g,h AJet((εk◦ , ε ◦̀ , εm◦ )∆
k◦ , ◦̀ ,m◦ ) ∈ H1(Q,W0[f, g, h])

as the image of this cycle under the p-adic étale Abel-Jacobi map, followed by the natural

projection from H2c−1
et (Āk◦ × Ā ◦̀ × Ām◦ ,Qp(c)) to W

k◦ , ◦̀ ,m◦
0 induced by the Künneth decom-

position and the projection πf,g,h.

It follows from [DR1, (66)], (15) and the vanishing of the terms H i
et(X̄1,Hk◦ ) for i 6= 1

when k◦ > 0, that the class κ(f, g, h) is realized by the (f, g, h)-isotypic component of the
same extension class as in (87), after replacing X1 by the curve X = X0 and ∆ = ∆0,0,0 is
taken to be the usual diagonal cycle in X3. In the notations of (86), this amounts to

(98) κ(f, g, h) = πf,g,hAJk◦ , ◦̀ ,m◦ (∆).

Similar statements holds over the curve X01. Namely, we also have the following:

Proposition 3.20. The cycle (εk◦ , ε ◦̀ , εm◦ )∆
k◦ , ◦̀ ,m◦
01 is null-homologous and the following

equality of classes holds in H1(Q,W01[fα, gα, hα]):

(99) κ01(fα, gα, hα) = p3 · πfα,gα,hα AJet((εk◦ , ε ◦̀ , εm◦ )∆
k◦ , ◦̀ ,m◦
01 ).

Proof. Corollary 3.14 together with (91) imply that

κ1(fα, gα, hα) =
1

Cq
· πfα,gα,hα AJk◦ , ◦̀ ,m◦ (∆

◦
1(1, 1, 1; δ)),

in which δ = 1 is the trivial character of (Z/pZ)×. Since µ3 induces a finite map of degree
(p − 1)3 from the support of ∆1(1, 1, 1; δ) to ∆01, it follows from the convention adopted in
(89) that

κ01(fα, gα, hα) := µ3
∗ κ1(fα, gα, hα) =

p3

Cq
· πfα,gα,hα AJk◦ , ◦̀ ,m◦ (∆

◦
01),
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where AJk◦ , ◦̀ ,m◦ (∆
◦
01) is defined to be the class realized by the same extension class as in (87),

after replacing X1 by the curve X01 and replacing ∆ by the cycle ∆◦01 arising from (93). Since

∆
k◦ , ◦̀ ,m◦
01 is fibered over ∆01, the same argument as in (98) then shows that

AJk◦ , ◦̀ ,m◦ (∆01) = AJet((εk◦ , ε ◦̀ , εm◦ )∆
k◦ , ◦̀ ,m◦
01 ).

Since πfα,gα,hα(∆01) = 1
Cq
πfα,gα,hα(∆◦01), the proposition follows. �

Theorem 3.21. With notations as before, letting c = r + 2, we have

($1, $1, $1)∗ κ1(fα, gα, hα) =
Ebal(fα, gα, hα)

E(fα)E(gα)E(hα)
× κ(f, g, h),

where

Ebal(fα, gα, hα) = (1− αfβgβhp−c)(1− βfαgβhp−c)(1− βfβgαhp−c)(1− βfβgβhp−c),
and

E(fα) = 1− χ−1
f (p)β2

fp
1−k, E(gα) = 1− χ−1

g (p)β2
gp

1−`, E(hα) = 1− χ−1
h (p)β2

hp
1−m.

Proof. In view of (94), (97) and (99), it suffices to prove the claim for the cycles ∆k◦ , ◦̀ ,m◦ and

(π1, π1, π1)∗ e
∗∆

k◦ , ◦̀ ,m◦
01 . Since k◦ , ◦̀ ,m◦ are fixed throughout the discussion, we again denote

∆] = ∆k◦ , ◦̀ ,m◦ and ∆]
01 = ∆

k◦ , ◦̀ ,m◦
01 to lighten notations.

When combined with Lemma 3.18, Lemma 3.19 equips us with a completely explicit formula

for comparing (π1, π1, π1)∗e
∗(∆]

01) with the generalised diagonal cycle ∆]. Namely, since
the correspondences ([p], 1, 1), (1, [p], 1) and (1, 1, [p]) induce multiplication by pk◦ , p ◦̀ and
pm◦ respectively on the (f, g, h)-isotypic parts, while (Tp, 1, 1), (1, Tp, 1), and (1, 1, Tp) induce
multiplication by ap(f), ap(g), and ap(h) respectively, it follows that, with notations as in the
proof of Lemma 3.19,

πf,g,h(D1) = ap(f)πf,g,h(∆]), πf,g,h(D2) = ap(g)πf,g,h(∆]), πf,g,h(D3) = ap(h)πf,g,h(∆]),

and that

πf,g,h(E1) = (a2
p(f)− (p+ 1)pk◦ )πf,g,h(∆]),

πf,g,h(E2) = (a2
p(g)− (p+ 1)p ◦̀ )πf,g,h(∆]),

πf,g,h(E3) = (a2
p(h)− (p+ 1)pm◦ )πf,g,h(∆]).

By projecting to the (f, g, h)-isotypic component the various formulae for (π1, π2, π1)∗(∆
]
01)

that are given in Lemma 3.19 and substituting them into Lemma 3.18, one obtains a expression

for ef,g,h(π1, π1, π1)∗e
∗(∆]

01) as a multiple of πf,g,h(∆]) by an explicit factor, which is a rational
function in αf , αg and αh. This explicit factor is somewhat tedious to calculate by hand, but
the identity asserted in Theorem 3.21 is readily checked with the help of a symbolic algebra
package. �

3.6. Triple product p-adic L-functions. Let (f ,g,h) be a triple of p-adic Hida families
of tame levels Mf , Mg, Mh and tame characters χf , χg, χh as in the previous section. Let
also (f∗,g∗,h∗) = (f ⊗ χ̄f ,g ⊗ χ̄g,h⊗ χ̄h) denote the conjugate triple. As before, we assume
χfχgχh = 1 and set M = lcm(Mf ,Mg,Mh).

Let Λf , Λg and Λh be the finite flat extensions of Λ generated by the coefficients of the
Hida families f , g and h, and set Λfgh = Λf ⊗̂ZpΛg⊗̂ZpΛh. Let also Qf denote the fraction
field of Λf and define

Qf ,gh := Qf ⊗̂Λg⊗̂Λh.

Let W◦fgh := W◦f ×W◦g ×W◦h ⊂ Wfgh = Spf(Λfgh) denote the set of triples of cristalline
classical points, at which the three Hida families specialize to modular forms with trivial
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nebentype at p (and may be either old or new at p). This set admits a natural partition,
namely

W◦fgh =Wf
fgh t W

g
fgh t W

h
fgh t Wbal

fgh

where

• Wf
fgh denotes the set of points (x, y, z) ∈ W◦fgh of weights (k, `,m) such that k ≥ `+m.

• Wg
fgh and Wh

fgh are defined similarly, replacing the role of f with g (resp. h).

• Wbal
fgh is the set of balanced triples, consisting of points (x, y, z) of weights (k, `,m) such

that each of the weights is strictly smaller than the sum of the other two.

Each of the four subsets appearing in the above partition is dense in Wfgh for the rigid-
analytic topology.

Recall from (42) the spaces of Λ-adic test vectors Sord
Λ (M,χf )[f ]. For any choice of a triple

(f̆ , ğ, h̆) ∈ Sord
Λ (M,χf )[f ]× Sord

Λ (M,χg)[g]× Sord
Λ (M,χh)[h]

of Λ-adic test vectors of tame level M , in [DR1, Lemma 2.19 and Definition 4.4] we constructed

a p-adic L-function Lp
f (f̆ , ğ, h̆) in Qf ⊗̂Λg⊗̂Λh, giving rise to a meromorphic rigid-analytic

function

(100) Lp
f (f̆ , ğ, h̆) :Wfgh −→ Cp.

As shown in [DR1, §4], this p-adic L-function is characterized by an interpolation property

relating its values at classical points (x, y, z) ∈ Wf
fgh to the central critical value of Gar-

rett’s triple-product complex L-function L(fx,gy,hz, s) associated to the triple of classical
eigenforms (fx,gy,hz). The fudge factors appearing in the interpolation property depend
heavily on the choice of test vectors: cf. [DR1, §4] and [DLR, §2] for more details. In a recent
preprint, Hsieh [Hs] has found an explicit choice of test vectors, which yields a very optimal
interpolation formula which shall be very useful for our purposes. We describe it below:

Proposition 3.22. (Hsieh) Fix test vectors (f̆ , ğ, h̆) as in [Hs, §3]. Then Lp
f (f̆ , ğ, h̆) lies in

Λfgh and for every (x, y, z) ∈ Wf
fgh of weights (k, `,m) we have

(101) Lp
f (f̆ , ğ, h̆)2(x, y, z) =

a(k, `,m)

〈f◦x , f◦x〉2
· e2(x, y, z)× L(f◦x ,g

◦
y,h
◦
z, c)

where

i) c = k+`+m−2
2 ,

ii) a(k, `,m) = (2πi)−2k · (k+`+m−4
2 )! · (k+`−m−2

2 )! · (k−`+m−2
2 )! · (k−`−m2 )!,

iii) e(x, y, z) = E(x, y, z)/E0(x)E1(x) with

E0(x) := 1− χ−1
f (p)β2

fxp
1−k,

E1(x) := 1− χf (p)α−2
fx
pk◦ ,

E(x, y, z) :=
(

1− χf (p)α−1
fx
αgyαhzp

k−`−m
2

)
×
(

1− χf (p)α−1
fx
αgyβhzp

k−`−m
2

)
×
(

1− χf (p)α−1
fx
βgyαhzp

k−`−m
2

)
×
(

1− χf (p)α−1
fx
βgyβhzp

k−`−m
2

)
.

Proof. This follows from [Hs, Theorem A], after spelling out explicitly the definitions involved
in Hsieh’s formulation.

Let us remark that throughout the whole article [DR1], it was implicitly assumed that fx,
g` and hm are all old at p, and note that the definition we have given here of the terms E0(x),
E1(x) and E(x, y, z) is exactly the same as in [DR1] in such cases, because βfx = χf (p)α−1

fx
pk−1

when fx is old at p.
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In contrast with loc. cit., in the above proposition we also allow any of the eigenforms fx,
g` and hm to be new at p (which can only occur when the weight is 2); in such case, recall
the usual convention adopted in §1.2 to set βφ = 0 when p divides the primitive level of an
eigenform φ. With these notations, the current formulation of E(x, y, z), E0(x) and E1(x) is
the correct one, as one can readily verify by rewriting the proof of [DR1, Lemma 4.10] in this
setting.

�

3.7. Perrin-Riou’s regulator and the triple product p-adic L-function. Recall the
Λ-adic cyclotomic character εcyc and the unramified characters Ψf , Ψg, Ψh of GQp introduced

in Theorem 1.3. As a piece of notation, let εf : GQp −→ Λ×f denote the composition of εcyc

and the natural inclusion Λ× ⊂ Λ×f , and likewise for εg and εh. Expressions like ΨfΨgΨh

or εfεgεh are a short-hand notation for the Λ×fgh-valued character of GQp given by the tensor

product of the three characters.
Let Vf , Vg and Vh be the Galois representations associated to f , g and h in Theorem 1.3.
The purpose of this section is describing in precise terms the close connection between the

Euler system of diagonal cycles constructed above and the three-variable triple-product p-adic
L-function. In order to do that, let us introduce the Λfgh-modules

(102) V†fgh := Vf ⊗ Vg ⊗ Vh(−1)(
2

1
) = Vf ⊗ Vg ⊗ Vh(ε−1

cycε
−1/2
f ε

−1/2
g ε

−1/2
h ).

and

(103) V†fgh(M) := Vf (M)⊗ Vg(M)⊗ Vh(M)(−1)(
2

1
).

As explained in the paragraphs following (34), V†fgh(M) is isomorphic to the direct sum of

several copies of V†fgh and there are canonical projections $f , $g, $h which assemble into a
GQ-equivariant map

$f ,g,h : H111(X∗∞) −→ V†fgh(M).

Recall the three-variable Λ-adic global cohomology class

κ∞(ε1ω
−k◦ , ε2ω

− ◦̀ , ε3ω
−m◦ ; 1) = κ∞(1, 1, 1; 1) ∈ H1(Q,H111(X∗∞))

introduced in (90).
Set Cq(f ,g,h) := (aq(f) − q − 1)(aq(g) − q − 1)(aq(h) − q − 1). Note that Cq(f ,g,h) is a

unit in Λfgh, because its classical specializations are p-adic units (cf. (91)). Define

(104) κ(f ,g,h) :=
1

Cq(f ,g,h)
· $f ,g,h∗(κ∞(ε1ω

−k◦ , ε2ω
− ◦̀ , ε3ω

−m◦ ; 1)) ∈ H1(Q,V†fgh(M))

to be the projection of the above class to the (f ,g,h)-isotypical component. We normalize
it by the above constant so that the classical specializations of κ(f ,g,h) at classical points
coincide with the classes κ1(fα, gα, hα) introduced in (91).

Let

resp : H1(Q,V†fgh(M))→ H1(Qp,V†fgh(M))

denote the restriction map to the local cohomology at p and set

κp(f ,g,h) := resp(κ(f ,g,h)) ∈ H1(Qp,V†fgh(M)).

The main result of this section asserts that the p-adic L-function Lp
f (f̆ , ğ, h̆) introduced in

§3.6 can be recast as the image of the Λ-adic class κp(f ,g,h) under a suitable three-variable
Perrin-Riou regulator map whose formulation relies on a choice of families of periods which
depends on the test vectors f̆ , ğ, h̆.
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The recipe we are about to describe depends solely only on the projection of κp(f ,g,h)

to a suitable sub-quotient of V†fgh which is free of rank one over Λfgh, and whose definition

requires the following lemma.

Lemma 3.23. The Galois representation V†fgh is endowed with a four-step filtration

0 ⊂ V++
fgh ⊂ V+

fgh ⊂ V−fgh ⊂ V†fgh

by GQp-stable Λfgh-submodules of ranks 0, 1, 4, 7 and 8 respectively.
The group GQp acts on the successive quotients for this filtration (which are free over Λfgh

of ranks 1, 3, 3 and 1 respectively) as a direct sum of one dimensional characters,

V++
fgh = ηfgh,

V+
fgh

V++
fgh

= ηghf ⊕ η
fh
g ⊕ η

fg
h ,

V−fgh
V+
fgh

= ηfgh ⊕ η
g
fh ⊕ η

h
fg,

V†fgh
V−fgh

= ηfgh,

where

ηfgh = (ΨfΨgΨh × ε2
cyc(εfεgεh)1/2, ηfgh = ΨfΨgΨh × ε−1

cyc(εfεgεh)−1/2,

ηghf = χ−1
f ΨfΨ

−1
g Ψ−1

h × εcyc(ε
−1
f εgεh)1/2, ηfgh = χfΨ−1

f ΨgΨh × (εfε
−1
g ε−1

h )1/2,

ηfhg = χ−1
g ΨgΨ−1

f Ψ−1
h × εcyc(εfε

−1
g εh)1/2, ηgfh = χgΨfΨhΨ−1

g × (ε−1
f εgε

−1
h )1/2,

ηfgh = χ−1
h ΨhΨ−1

f Ψ−1
g × εcyc(εfεgε

−1
h )1/2, ηhfg = χhΨfΨgΨ−1

h × (ε−1
f ε−1

g εh)1/2.

Proof. Let φ be a Hida family of tame character χ as in §1.3. Let ψφ denote the unramified
character of GQp sending a Frobenius element Frp to ap(φ) and recall from (22) that the
restriction of Vφ to GQp admits a filtration

0 → V+
φ → Vφ → V−φ → 0 with V+

φ ' Λφ(ψ−1
φ χε−1

cycεcyc) and V−φ ' Λφ(ψφ).

Set

V++
fgh = V+

f ⊗ V+
g ⊗ V+

h (ε−1
cycε

−1/2
f ε

−1/2
g ε

−1/2
h )

V+
fgh =

(
Vf ⊗ V+

g ⊗ V+
h + V+

f ⊗ Vg ⊗ V+
h + V+

f ⊗ V+
g ⊗ Vh

)
(ε−1

cycε
−1/2
f ε

−1/2
g ε

−1/2
h )

V−fgh =
(
Vf ⊗ Vg ⊗ V+

h + Vf ⊗ V+
g ⊗ Vh + V+

f ⊗ Vg ⊗ Vh

)
(ε−1

cycε
−1/2
f ε

−1/2
g ε

−1/2
h )

It follows from the definitions that these three representations are Λfgh[GQp ]-submodules

of V†fgh of ranks 1, 4, 7 as claimed. Moreover, since χfχgχh = 1, the rest of the lemma follows

from (22). �

A one-dimensional character η : GQp −→ C×p is said to be of Hodge-Tate weight −j if it
is equal to a finite order character times the j-th power of the cyclotomic character. The
following is an immediate corollary of Lemma 3.23.

Corollary 3.24. Let (x, y, z) ∈ W◦fgh be a triple of classical points of weights (k, `,m). The

Galois representation V †fx,gy ,hz is endowed with a four-step GQp-stable filtration

0 ⊂ V ++
fx,gy ,hz

⊂ V +
fx,gy ,hz

⊂ V −fx,gy ,hz ⊂ V
†
fx,gy ,hz

,

and the Hodge-Tate weights of its successive quotients are:
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Subquotient Hodge-Tate weights

V ++
fx,gy ,hz

−k−`−m
2 + 1

V +
fx,gy ,hz

/V ++
fx,gy ,hz

k−`−m
2 , −k+`−m

2 , −k−`+m2

V −fx,gy ,hz/V
+
fx,gy ,hz

−k+`+m
2 − 1, k−`+m2 − 1, k+`−m

2 − 1

Vfx,gy ,hz/V
−
fx,gy ,hz

k+`+m
2 − 2

Corollary 3.25. The Hodge-Tate weights of V +
fx,gy ,hz

are all strictly negative if and only if

(k, `,m) is balanced.

Let Vgh
f and Vgh

f (M) be the subquotient of V†fgh (resp. of V†fgh(M)) on which GQp acts via

(several copies of) the character

(105) ηghf := Ψgh
f ×Θgh

f

where

• Ψgh
f is the unramified character of GQp sending Frp to χ−1

f (p)ap(f)ap(g)−1ap(h)−1,

and
• Θgh

f is the Λfgh-adic cyclotomic character whose specialization at a point of weight
(k, `,m) is εtcyc with t := (−k + `+m)/2.

The classical specializations of Vgh
f are

(106) V
gyhz
fx

:= V −fx ⊗ V
+
gy ⊗ V

+
hz

(
−k − `−m+ 4

2
) ' Lp

(
χ−1
f ψfxψ

−1
gy ψ

−1
hz

)
(t),

where the coefficient field is Lp = Qp(fx,gy,hz). Note that t > 0 when (x, y, z) ∈ Wbal
fgh, while

t ≤ 0 when (x, y, z) ∈ Wf
fgh.

Recall now from §1.4 the Dieudonné module D(V
gyhz
fx

(Mp)) associated to (106). As it

follows from loc. cit., every triple (η1, ω2, ω3) ∈ D(V +
f∗x

(Mp)) × D(V −g∗y(Mp)) × D(V −h∗z
(Mp))

gives rise to a linear functional η1 ⊗ ω2 ⊗ ω3 : D(V
gyhz
fx

(Mp)) −→ Lp.

In order to deal with the p-adic variation of these Dieudonné modules, write Vgh
f (M) as

Vgh
f (M) = U(Θgh

f )

where U is the unramified Λfgh-adic representation of GQp given by (several copies of) the

character Ψgh
f .

As in §1.4, define the Λ-adic Dieudonné module

D(U) := (U⊗̂Ẑnr
p )GQp .

In view of (38), for every (x, y, z) ∈ W◦fgh there is a natural specialisation map

νx,y,z : D(U) −→ D(U
gyhz
fx

)

where U
gyhz
fx

:= U⊗Λfgh
Qp(fx,gy,hz) ' V

gyhz
fx

(Mp)(−t).

Proposition 3.26. For any triple of test vectors

(f̆ , ğ, h̆) ∈ Sord
Λ (M,χf )[f ]× Sord

Λ (M,χg)[g]× Sord
Λ (M,χh)[h],

there exists a homomorphism of Λfgh-modules

〈 , ηf̆∗ ⊗ ωğ∗ ⊗ ωh̆∗〉 : D(U) −→ Qf ,gh
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such that for all λ ∈ D(U) and all (x, y, z) ∈ Wbal
fgh such that fx is the ordinary stabilization

of an eigenform f◦x of level M :

νx,y,z
(
〈λ, ηf̆∗ ⊗ ωğ∗ ⊗ ωh̆∗〉

)
=

1

E0(f◦x)E1(f◦x)
× 〈νx,y,z(λ), ηf̆∗x

⊗ ωğ∗y ⊗ ωh̆∗z
〉.

Recall from (44) that

E0(f◦x) = 1− χ−1(p)β2
f◦x
p1−k, E1(f◦x) = 1− χ(p)α−2

f◦x
pk−2.

Proof. Since U is isomorphic to the unramified twist of V−f ⊗ V+
g ⊗ V+

h , this follows from
Proposition 1.7 because E0(f◦x) = E0(f◦∗x ) and E1(f◦x) = E1(f◦∗x ). �

It follows from Example 1.6 (a) and (b) that the Bloch-Kato logarithm and dual exponential
maps yield isomorphisms

logBK : H1(Qp, V
gyhz
fx

)
∼−→ D(V

gyhz
fx

), if t > 0,

exp∗BK : H1(Qp, V
gyhz
fx

)
∼−→ D(V

gyhz
fx

), if t ≤ 0.

Define

(107) EPR(x, y, z) =
1− p

k−`−m
2 α−1

fx
αgyαhz

1− p
`+m−k−2

2 αfxα
−1
gy α

−1
hz

=
1− p−cβfxαgyαhz

1− p−cαfxβgyβhz
.

The following is a three-variable version of Perrin-Riou’s regulator map constructed in [PR]
and [LZ14].

Proposition 3.27. There is a homomorphism

Lf ,gh : H1(Qp,Vgh
f (M)) −→ D(U)

such that for all κp ∈ H1(Qp,Vgh
f (M)) the image Lf ,gh(κp) satisfies the following interpolation

properties:

(i) For all balanced points (x, y, z) ∈ Wbal
fgh,

νx,y,z
(
Lf ,gh(κp)

)
=

(−1)t

t!
· EPR(x, y, z) · logBK(νx,y,z(κp)),

(ii) For all points (x, y, z) ∈ Wf
fgh,

νx,y,z
(
Lf ,gh(κp)

)
= (−1)t · (1− t)! · EPR(x, y, z) · exp∗BK(νx,y,z(κp)).

Proof. This follows by standard methods as in [KLZ, Theorem 8.2.8], [LZ14, Appendix B],
[DR2, §5.1]. �

Proposition 3.28. The class κp(f ,g,h) belongs to the image of H1(Qp,V+
fgh(M)) in

H1(Qp,V†fgh(M)) under the map induced from the inclusion V+
fgh(M) ↪→ V†fgh(M).

Proof. Let (x, y, z) ∈ W◦fgh be a triple of classical points of weights (k, `,m). By the results

proved in §3.5, the cohomology class κp(fx,gy,hz) is proportional to the image under the p-adic
étale Abel-Jacobi map of the cycles appearing in (97), that were introduced in [DR1, §3]. The
purity conjecture for the monodromy filtration is known to hold for the variety Ak◦×A ◦̀×Am◦
by the work of Saito (cf. [Sa97], [Ne98, (3.2)]). By Theorem 3.1 of loc.cit., it follows that the

extension κp(fx,gy,hz) is cristalline. Hence κp(fx,gy,hz) belongs to H1
f (Qp, V

†
fx,gy ,hz

(Mp)) ⊂
H1(Qp, V

†
fx,gy ,hz

(Mp)).

Since (k, `,m) is balanced, Corollary 3.25 implies that V +
fx,gy ,hz

is the subrepresentation of

V †fx,gy ,hz on which the Hodge-Tate weights are all strictly negative. As is well-known (cf. [Fl90,
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Lemma 2, p. 125], [LZ16, §3.3] for similar results), the finite Bloch-Kato local Selmer group
of our ordinary representation can be recast à la Greenberg [Gr89] as

H1
f (Qp, V

†
fx,gy ,hz

) = ker
(
H1(Qp, V

†
fx,gy ,hz

) −→ H1(Ip, V
†
fx,gy ,hz

/V +
fx,gy ,hz

)
)
,

where Ip denotes the inertia group at p.
Since the set of balanced classical points is dense in Wfgh for the rigid-analytic topology,

it follows that the Λ-adic class κp(f ,g,h) belongs to the kernel of the natural map

H1(Qp,V†fgh(M)) −→ H1(Ip,V†fgh(M)/V+
fgh(M)).

Since the kernel of the restriction map

H1(Qp,V†fgh(M)/V+
fgh(M)) −→ H1(Ip,V†fgh(M)/V+

fgh(M))

is trivial by Lemma 3.23, the result follows. �

Thanks to Lemma 3.23 and Proposition 3.28, we are entitled to define

κfp(f ,g,h)− ∈ H1(Qp,Vgh
f (M))(108)

as the projection of the local class κp(f ,g,h) to Vgh
f (M).

Theorem 3.29. For any triple of Λ-adic test vectors (f̆ , ğ, h̆), the following equality holds in
the ring Qf ,gh:

〈Lf ,gh(κfp(f ,g,h)− ), ηf̆∗ ⊗ ωğ∗ ⊗ ωh̆∗ 〉 = Lp
f (f̆ , ğ, h̆).

Proof. It is enough to prove this equality for a subset of classical points that is dense for
the rigid-analytic topology, and we shall do so for all balanced triple of cristalline classical
points (x, y, z) ∈ Wbal

fgh such that fx, g` and hm are respectively the ordinary stabilization of
an eigenform f := f◦x , g := g◦y and h := h◦z of level M .

Set κ−p := κfp(f ,g,h)− and L = 〈Lf ,gh(κ−p ), ηf̆∗ ⊗ ωğ∗ ⊗ ωh̆∗〉 for notational simplicity.
Proposition 3.26 asserts that the following identity holds in Lp:

νx,y,z(L) =
1

E0(f)E1(f)
〈νx,y,z(Lf ,gh(κ−p )), ηf̆∗x

⊗ ωğ∗y ⊗ ωh̆∗z
〉.

Recall also from Remark 1.8 that

ηf̆∗x
= (1− βf/αf )$∗1(ηf̆∗), ωğ∗y = (1− βg/αg)$∗1(ωğ∗), ωh̆∗z

= (1− βh/αh)$∗1(ωh̆∗)

and

νx,y,z(Lf ,gh(κ−p )) =
(−1)t

t!
· EPR(x, y, z) logBK(νx,y,z(κ

−
p ))

by Proposition 3.27.
Recall the class κ(f, g, h) = κ(f◦x ,g

◦
y,h
◦
z) introduced in (97) arising from the generalized

diagonal cycles of [DR1]. As in (108), we may define κfp(f, g, h)− ∈ H1(Qp,Vghf (M)) as the

projection to V gh
f (M) of the restriction at p of the global class κ(f, g, h).

It follows from Theorem 3.21 that

($1, $1, $1)∗νx,y,z(κ
−
p ) =

Ebal(x, y, z)

(1− βf/αf )(1− βg/αg)(1− βh/αh)
× κfp(f, g, h)−

where

Ebal(x, y, z) = (1− αfβgβhp−c)(1− βfαgβhp−c)(1− βfβgαhp−c)(1− βfβgβhp−c).
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The combination of the above identities shows that the value of L at the balanced triple
(x, y, z) is

νx,y,z(L) =
(−1)t · Ebal(x, y, z)EPR(x, y, z)

t! · E0(f)E1(f)
× 〈logBK(κfp(f, g, h)), ηf̆∗ ⊗ ωğ∗ ⊗ ωh̆∗〉

Besides, since the syntomic Abel-Jacobi map appearing in [DR1] is the composition of the
étale Abel-Jacobi map and the Bloch-Kato logarithm, the main theorem of loc. cit. asserts in
our notations that

νx,y,z
(
Lp

f (f̆ , ğ, h̆)
)

=
(−1)t

t!

E f(x, y, z)

E0(f)E1(f)
〈logBK(κfp(f, g, h)−), ηf̆∗ ⊗ ωğ∗y ⊗ ωh̆∗〉

where

E f(x, y, z) =
(
1− βfαgαhp−c

) (
1− βfαgβhp−c

) (
1− βfβgαhp−c

) (
1− βfβgβhp−c

)
.

Since
E f(x, y, z) = Ebal(x, y, z)× EPR(x, y, z)

and the sign and factorial terms also cancel, we have

νx,y,z(L) = νx,y,z
(
Lp

f (f̆ , ğ, h̆)
)
,

as we wanted to show. The theorem follows. �

4. The main results

We are finally in position to prove the main theorems of this article. Let E/Q be an elliptic
curve having multiplicative reduction at a prime p and set α = ap(E) = ±1. Let

ψ : Gal (H/K) −→ L×

be an anticyclotomic character of a real quadratic field K satisfying the hypotheses stated in
the introduction.

In particular we assume that a prime ideal p above p in H has been fixed and either of
the non-vanishing hypothesis stated in loc. cit. holds; as explained in Step 1 of the strategy
of proof of Theorem A in the introduction, these hypotheses give rise to a character ξ of K
that we fix for the remainder of this note, satisfying that the local Stark-Heegner point Pαξ,p
is non-zero.

As shown in [DR2, Lemma 6.9], there exists a (non-necessarily anti-cyclotomic) character
ψ0 of finite order of K and conductor prime to DNE such that

(109) ψ0/ψ
′
0 = ξ/ψ.

Since by hypothesis ξ/ψ is totally odd, it follows that ψ0 has mixed signature (+,−) with
respect to the two real embeddings of K.

Let c ⊂ OK denote the conductor of ψ0 and let χ denote the odd central Dirichlet character
of ψ0. Let χK also denote the quadratic Dirichlet character associated to K/Q.

Let f ∈ S2(pMf ) denote the modular form associated to E by modularity. Likewise, set

Mg = Dc2 ·NK/Q(c) and Mh = D ·NK/Q(c)

and define the eigenforms

g = θ(ψ0ψ) ∈ S1(Mg, χχK) and h = θ(ψ−1
0 ) ∈ S1(Mh, χ

−1χK)

to be the theta series associated to the characters ψ0ψ and ψ−1
0 , respectively.

Recall from the introduction that E[p] is assumed to be irreducible as a GQ-module implies
that the mod p residual Galois representation attached to f is irreducible, and thus also non-
Eisenstein mod p. The same claim holds for g and h because ψ and ξ have opposite signs and
p is odd, hence ξ 6≡ ψ±1 (mod p).
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Note that p - MfMgMh. As in previous sections, we let M denote the least common
multiple of Mf , Mg and Mh. The Artin representations Vg and Vh associated to g and h are
both odd and unramified at the prime p. Since p remains inert in K, the arithmetic frobenius
Frp acts on Vg and Vh with eigenvalues

{αg, βg} = {ζ, −ζ}, {αh, βh} = {ζ−1,−ζ−1},

where ζ is a root of unity satisfying χ(p) = −ζ2.
In light of (109) we have ψ0ψ/ψ0 = ψ and ψ0ψ/ψ

′
0 = ξ, hence the tensor product of Vg and

Vh decomposes as

(110) Vgh = Vg ⊗ Vh ' IndQ
K(ψ)⊕ IndQ

K(ξ) as GQ-modules

and

Vg = V
αg
g ⊕ V βg

g , Vh = V αh
h ⊕ V βh

h , Vgh =
⊕
(a,b)

V ab
gh as GQp-modules

where (a, b) ranges through the four pairs (αg, αh), (αg, βh), (βg, αh), (βg, βh). Here V
αg
g , say, is

the GQp-submodule of Vg on which Frp acts with eigenvalue αg, and similarly for the remaining
terms.

4.1. Selmer groups. Let Wp be an arbitrary self-dual Artin representation with coefficients
in Lp and factoring through the Galois group of a finite extension H of Q. Assume Wp is
unramified at p. There is a canonical isomorphism

H1(Q, Vp(E)⊗Wp) ' (H1(H,Vp(E))⊗Wp)
Gal (H/Q)(111)

= HomGal (H/Q)(Wp, H
1(H,Vp(E))),

where the the second equality follows from the self-duality of Wp. Kummer theory gives rise
to a homomorphism

(112) δ : E(H)Wp := HomGal (H/Q)(Wp, E(H)⊗ Lp) −→ H1(Q, Vp(E)⊗Wp).

For each rational prime `, the maps (111) and (112) admit local counterparts

H1(Q`, Vp(E)⊗Wp) ' HomGal (H/Q)(Wp,⊕λ|`H1(Hλ, Vp(E))),

δ` :
(
⊕λ|`E(Hλ)

)Wp −→ H1(Q`, Vp(E)⊗Wp),

for which the following diagram commutes:

(113) E(H)Wp
δ //

res`
��

H1(Q, Vp(E)⊗Wp)

res`

��(
⊕λ|`E(Hλ)

)Wp δ` // H1(Q`, Vp(E)⊗Wp).

For primes ` 6= p, it follows from [Ne98, (2.5) and (3.2)] that H1(Q`, Vp(E)⊗Wp) = 0. (We
warn however that if we were working with integral coefficients, these cohomology groups
may contain non-trivial torsion.) For ` = p, the Bloch-Kato submodule H1

f (Qp, Vp(E)⊗Wp)
is the subgroup of H1(Qp, Vp(E) ⊗Wp) formed by classes of cristalline extensions of Galois
representations of Vp(E) ⊗Wp by Qp. It may also be identified with the image of the local
connecting homomorphism δp.

Lemma 4.1. There is a natural isomorphism of Lp-vector spaces

H1
f (Qp, Vp(E)⊗Wp) = H1(Qp, V

+
f ⊗W

Frp 6=α
p )⊕H1

f (Qp, V
+
f ⊗W

Frp=α
p ),

where recall α = ap(E) = ±1.
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Proof. We firstly observe that H1
f (Qp, Vp(E)⊗Wp) = H1

g (Qp, Vp(E)⊗Wp) by e.g. [Bel, Prop.
2.0 and Ex. 2.20], because Vp(E)⊗Wp contains no unramified submodule. As shown in [Fl90,
Lemma , p.125], it follows that

H1
f (Qp, Vp(E)⊗Wp) = Ker

(
H1(Qp, Vp(E)⊗Wp) −→ H1(Ip, V

−
p (E)⊗Wp)

)
is the kernel of the composition of the homomorphism in cohomology induced by the natural
projection Vp(E) −→ V −p (E) and restriction to the inertia subgroup Ip ⊂ GQp .

The long exact sequence in Galois cohomology arising from (18) shows that the ker-
nel of the map H1(Qp, Vp(E) ⊗ Wp) −→ H1(Qp, V

−
p (E) ⊗ Wp) is naturally identified with

H1(Qp, V
+
p (E)⊗Wp). We have H1(Ip,Qp(ψεcyc)) = 0 for any nontrivial unramified character

ψ. Besides, it follows from Example 1.6 that H1
f (Qp,Qp(εcyc)) = ker

(
H1(Qp,Qp(εcyc)) →

H1(Ip,Qp(εcyc))
)

is a line in the two-dimensional space H1(Qp,Qp(εcyc)), which Kummer

theory identifies with Z×p ⊗̂ZpQp sitting inside Q×p ⊗̂ZpQp.

Recall from (18) that V +
p (E) = Lp(ψfεcyc) and V −p (E) ' Lp(ψf ) where ψf is the unramified

quadratic character of GQp sending Frp to α. The lemma follows. �

The Selmer group Selp(E,Wp) is defined as

Selp(E,Wp) := {λ ∈ H1(Q, Vp(E)⊗Wp) : resp(λ) ∈ H1
f (Qp, Vp(E)⊗Wp)}.

Here resp stands for the natural map in cohomology induced by restriction from GQ to GQp .

4.2. Factorisation of p-adic L-series. The goal of this section is proving a factorisation
formula of p-adic L-functions which shall be crucial in the proof of our main theorem.

Recall the sign α := ap(f) ∈ {±1} associated to E. Let gζ and hαζ−1 denote the ordinary
p-stabilizations of g and h on which the Hecke operator Up acts with eigenvalue

(114) αg := ζ and αh := αζ−1,

respectively.
Let f , g and h be the Hida families of tame levels Mf , Mg, Mh and tame characters 1,

χχK , χ−1χK passing respectively through f , gζ and hαζ−1 . The existence of these families
is a theorem of Wiles [W88], and their uniqueness follows from a recent result of Belläıche
and Dimitrov [BeDi] (note that the main theorem of loc. cit. indeed applies because αg 6= βg,
αh 6= βh and p does not split in K). Let x0, y0, z0 denote the classical points in Wf , Wg and
Wh respectively such that fx0 = f , gy0 = gζ and hz0 = hαζ−1 .

Let

f̆ ∈ Sord
Λf

(M)[f ], ğ ∈ Sord
Λg

(M,χχK)[g], h̆ ∈ Sord
Λh

(M,χ−1χK)[h]

be Hsieh’s choice of Λ-adic test vectors of tame level M as in Proposition 3.22. Associated to
it there is the three-variable p-adic L-function Lp

f (f̆ , ğ, h̆) introduced in (100), and we define

(115) Lp
f (f̆ , ğζ , h̆αζ−1) ∈ Λf

to be the one-variable p-adic L-function arising as the restriction of Lp
f (f̆ , ğ, h̆) to the rigid

analytic curve Wf × {y0, z0}.
In addition to it, recall the p-adic L-functions described in §2.3 associated to the twist of

E/K by an anticyclotomic character of K, and set fO(k◦) := (Dc2)
1−k

2 /f2c , where fc is the
simple constant invoked in that section. Note that the rule k 7→ fO(k◦) extends to an Iwasawa
function, that we continue to denote fO, because p does not divide Dc2. Recall also the
rigid-analytic function Lp(Sym2(f)) in a neighborhood Uf ⊂ Wf of x0 introduced in (55).

Theorem 4.2. The following factorization of p-adic L-functions holds in Λf :

Lp(Sym2(f))×Lp
f (f̆ , ğζ , h̆αζ−1) = fO ·Lp(f/K,ψ)×Lp(f/K, ξ).
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Proof. Write

a(k) = a(k, 1, 1), e(x) = e(x, y0, z0)

for the factors appearing in the interpolation formula satisfied by Lp
f (f̃ , g̃ζ , h̃αζ−1) described

in Proposition 3.22.
Recall we set k = k◦ + 2. It directly follows from our definitions and running assumptions

that

a(k) = (2πi)−2k · (k◦
2

!)4

and

e(x) =
(1− α−1

fx
p
k◦
2 )2 · (1 + α−1

fx
p
k◦
2 )2

(1− β2
fx
p1−k)(1− α−2

fx
pk◦ )

=
1− α−2

fx
pk◦

1− β2
fx
p1−k .

By Proposition 3.22, it follows that Lp
f (f̆ , ğζ , h̆αζ−1) satisfies the following interpolation

property for all x ∈ W◦f of weight k ≥ 2:

Lp
f (f̆ , ğζ , h̆αζ−1)(x) = (2πi)−k · (k◦

2
!)2 ·

1− α−2
fx
pk◦

1− β2
fx
p1−k ·

L(f◦x , g, h,
k
2 )1/2

〈f◦x , f◦x〉
.

Besides, it follows from Theorem 2.8 that the product of Lp(f/K,ψ) and Lp(f/K, ξ) sat-
isfies that for all x ∈ W◦f of weight k ≥ 2:

Lp(f/K,ψ)Lp(f/K, ξ)(x) = ff ,ψ(x) · ff ,ξ(x)× L(f◦x/K,ψ, k/2)1/2 · L(f◦x/K, ξ, k/2)1/2

where

ff ,ψ(x) · fξ(x) = (1− α−2
fx
pk◦ )2 ·

f2c · (Dc2)
k◦+1

2 · (k◦2 )!2

(2πi)k◦
·

Ω+
fx,p

Ω−fx,p

Ω+
fx,CΩ−fx,C

.

A direct inspection to the Euler factors shows that for all x ∈ W◦f of weight k ≥ 2:

(116) L(f◦x , g, h, k/2) = L(f◦x/K,ψ, k/2) · L(f◦x/K, ξ, k/2).

Recall finally that the value of the function Lp(Sym2(f)) at a classical point x ∈ Uf ∩W◦f
is

Lp(Sym2(f))(x) = (1− β2
fxp

1−k)(1− α−2
fx
pk◦ )Ω+

fx,p
Ω−fx,p.

Combining the above formulae together with the equality

Ω+
fx,C · Ω

−
fx,C = 4π2〈f◦x , f◦x〉,

described in §2.3, it follows that the following formula holds for all x ∈ W◦f of weight k ≥ 2:

(117) Lp(Sym2(f))(x)×Lp
f (f̆ , ğζ , h̆αζ−1)(x) = λO(k◦) ·Lp(f/K,ψ)(x)×Lp(f/K, ξ)(x).

Since W◦f is dense in Wf for the rigid-analytic topology, the factorization formula claimed
in the theorem follows. �

In Theorem 2.8 we showed that Lp(f/K,ψ) and Lp(f/K, ξ) both vanish at x0 and

(118)
d

dx
Lp(f/K,ψ)|x=x0

=
1

2
· logp(P

α
ψ ),

d

dx
Lp(f/K, ξ)|x=x0

=
1

2
· logp(P

α
ξ ).

As remarked e.g. in the remarks preceding [BD3, Theorem 3.4], the function Lp(Sym2(f))
does not vanish at x0 and takes an algebraic value in L×. It thus follows from Theorem 4.2

that the order of vanishing of Lfp(f̆∨, ğζ , h̆αζ−1) at x = x0 is at least two and

(119)
d2

dx2
Lfp(f̆∨, ğζ , h̆αζ−1)|x=x0

= C1 · logp(P
α
ψ ) · logp(P

α
ξ ),

where C1 ∈ L× is a non-zero simple algebraic constant.
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As recalled at the beginning of this chapter, Pαξ,p is non-zero. We can also suppose that

Pαψ,p is non-zero, as otherwise there is nothing to prove. Hence (119) shows that the order of

vanishing of Lfp(f̆∨, ğζ , h̆αζ−1) at x = x0 is exactly two.

4.3. Proof of Theorems A and B. Let

κ(f ,g,h) ∈ H1(Q,V†fgh(M))

be the Λ-adic global cohomology class introduced in (104).

Define V†fgh(M) as the Λf [GQ]-module obtained by specialising the Λfgh[GQ]-module V†fgh(M)

at (y0, z0). Let

(120) κ(f , gζ , hαζ−1) := νy0,z0κ(f ,g,h) ∈ H1(Q,V†fgh(M))

denote the specialisation of κ(f ,g,h) at (y0, z0), and

κ(f, gζ , hαζ−1) ∈ H1(Q, Vfgh(M))

denote the class obtained by specializing (120) further at x0.
The goal of this section is proving that κ(f, gζ , hαζ−1) belongs to the Selmer group, and

computing its logarithm along a suitable direction, showing that it factors as the product of
logarithms of two Stark-Heegner points. This will allow us to prove Theorem C, from which
Theorems A and B also follow.

To this end, define the Λf [GQp ]-modules

W := Vf (M)(ε
−1/2
f )⊗ V βgβh

gh (M), W− := V−f (M)(ε
−1/2
f )⊗ V βgβh

gh (M).

It follows from (114) that V ββ
gh = Lp(α) is the one-dimensional representation afforded by

character of Gal (Kp/Qp) sending Frp to α = ap(E).

Hence W− is the sub-quotient of V†fgh(M) that is isomorphic to several copies of Λf (Ψ
gh
f ε
−1/2
f ),

where as in (105), Ψgh
f denotes the unramified character of GQp satisfying

Ψgh
f (Frp) = ap(f)a−1

p (g1)a−1
p (h1) = α · ap(f).

Let

(121) κfp(f , gζ , hαζ−1) ∈ H1(Qp,W), κfp(f , gζ , hαζ−1)− ∈ H1(Qp,W−)

denote the image of the restriction at p of κ(f , gζ , hαζ−1) under the map induced by the

projection V+
fgh(M)→W, and further to W− respectively.

Equivalently and in consonance with our notations, κfp(f , gζ , hαζ−1)− is the specialization

at (y0, z0) of the local class κfp(f ,g,h)− introduced in (108) and invoked in Theorem 3.29.
Hence this theorem applies, and asserts that the following identity holds in Λf for any triple
(f̆ , ğ, h̆) of Λ-adic test vectors:

(122) 〈Lf ,gh(κfp(f , gζ , hαζ−1)−), ηf̆∗ ⊗ ωğ∗ζ ⊗ ωh̆∗
αζ−1
〉 = Lp

f (f̆∨, ğζ , h̆αζ−1).

Let now κfp(f, gζ , hαζ−1) and κfp(f, gζ , hαζ−1)− denote the specializations at x0 of the classes
in (121). Since ap(f) = α ∈ {±1} and εf (x0) = 1, it follows from the above description of W
and the character Ψgh

f that, as GQp-modules,

W(x0) ' Vp(E+)(M), W−(x0) ' Lp(M),

where E+ is the (trivial or quadratic) twist of E given by α, and Lp stands for the trivial
representation.
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Hence

κfp(f, gζ , hαζ−1) ∈ H1(Qp, Vp(E+)(M)) and κfp(f, gζ , hαζ−1)− ∈ H1(Qp, Lp(M)).

The Bloch-Kato dual exponential and logarithm maps associated to the p-adic representa-
tion Vp(E+)(M) take values in a space Lp(M) consisting of several copies of the base field Lp.
The choice of test vectors gives rise to a projection Lp(M) −→ Lp. Since the test vectors are
fixed throughout, we shall denote by a slight abuse of notation

exp∗BK : H1(Qp, Vp(E+)(M)) −→ Lp, logBK : H1
f (Qp, Vp(E+)(M)) −→ Lp

the composition of Bloch-Kato dual exponential and logarithm maps, respectively, with the
aforementioned projection to Lp

Venerucci [Ve] has recently proved a variant of a conjecture of Perrin-Riou for elliptic curves
A having split multiplicative reduction at a prime p, exploiting the fact due to Kato and Ochiai
that the two-variable Mazur-Kitagawa p-adic L-function associated to A can be recast as the
image under the Perrin-Riou Λ-adic regulator of Kato’s Euler system of Siegel modular units
on the K2-group of a tower of modular curves. Although Kato’s original setting is different
from ours, some of the results that Venerucci proves in the technical core of his article are
purely local, and can be applied to arbitrary local Λ-adic classes satisfying suitable conditions
that are also met in the present scenario. Using them we can prove the following result:

Theorem 4.3. The class κfp(f, gζ , hαζ−1) belongs to H1
f (Qp, Vp(E+)(M)). In addition we

have

(123)
d2

dx2
Lp

f (f̆∨, ğζ , h̆αζ−1)|x=x0
= C2 · logBK(κfp(f, gζ , hαζ−1))

for some nonzero rational number C2 ∈ Q×.

Proof. Let f+ = f⊗α denote the (trivial or quadratic) twist of f over K such that ap(f+) = 1,
and f+ be the Hida family passing through f+. Then W is isomorphic to several copies of

Vf+(ε
−1/2
f+

) and thus we are placed in the setting covered by Theorem 3.1 of [Ve].

To be more precise, [Ve, Theorem 3.1] can be applied to any local two-variable Λ-adic class
in H1

Iw(Qp,∞,Vf+) := H1(Qp,Vf+ ⊗Λ(εcyc)); the two variables in play are the weight k of the
Hida family f+ (or rather the points x in the finite flat cover Wf+ of weight space) and the
cyclotomic variable s, although the notations for the variables employed in loc. cit. differ from
ours here.

For our purposes it will suffice to apply loc. cit. restricted to the central critical line

s− 1 = −k(x)/2,

which is the one characterized by the fact that all classical specializations of Vf+ ⊗ Λ(εcyc)

at points on this line are Kummer self-dual. Moreover, the restriction of V−f+ ⊗ Λ(εcyc) to

this line is precisely the Λf [GQp ]-module V−f+(ε
−1/2
f+

) invoked above, whose specialization at a

point x of weight k is V −f+,x(k/2).

Now that we have clarified the notational passage from [Ve] to our setting, the restriction
to the central critical line of [Ve, Theorem 3.1] applies, and combining it with (122) asserts
that

(1− 1

p
)
d

dx
Lp

f (f̆∨, ğζ , h̆αζ−1)|x=x0
= Lp(E+) exp∗BK(κfp(f, gζ , hαζ−1)).

Since we concluded at the end of §4.2 that Lp
f (f̆∨, ğζ , h̆αζ−1) vanishes at x = x0 with order

exatly two, and the L-invariant of E+ is non-zero, it follows that Bloch-Kato’s dual exponential

vanishes at κfp(f, gζ , hαζ−1) for all choices of test vectors, and hence this class belongs to

H1
f (Qp, Vp(E+)(M)), as claimed.
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We are hence in position to apply the second part of Theorem 5.1 of [Ve], which in combi-
nation with the displayed equation (6) of loc. cit. states that

log(κfp(f, gζ , hαζ−1))× d2

dx2
Lp

f (f̆∨, ğζ , h̆αζ−1)|x=x0
= log2(κfp(f, gζ , hαζ−1))

up to a nonzero rational number. The argument of [Ve, Lemma 6.1] applies in this setting

and hence log(κfp(f, gζ , hαζ−1)) 6= 0. The theorem follows. �

Corollary 4.4. The global class κ(f, gζ , hαζ−1) lies in the Selmer group Selp(E, Vgh(M)).

Proof. Write κp(f, gζ , hαζ−1) ∈ H1(Qp, Vf ⊗ Vgh(M)) for the restriction of κ(f, gζ , hαζ−1)) at

p and κ−p (f, gζ , hαζ−1) ∈ H1(Qp, V
−
f ⊗ Vgh(M)) for its projection to V −f ⊗ Vgh(M).

After setting V ab
gh = V a

g ⊗ V b
h , we find that there is a natural decomposition

(124) H1(Qp, Vp(E)⊗ Vgh) =
⊕
(a,b)

H1(Qp, Vp(E)⊗ V ab
gh )

where (a, b) ranges through the four pairs (αg, αh), (αg, βh), (βg, αh), (βg, βh). There are sim-
ilar decompositions of course for H1

f (Qp, Vp(E)⊗ Vgh) and H1(Qp, V
+
p (E)⊗ Vgh).

Note that

(125) αgαh = βgβh = α, αgβh = βgαh = −α.

Hence, according to Lemma 4.1 and the discussion preceding it, in order to prove the statement
we must show that κp(f, gζ , hαζ−1) lies in H1(Qp, V

+
p (E) ⊗ Vgh(M)) and its (αg, αh) and

(βg, βh)-components lie in the finite Bloch-Kato submodule.
By Proposition 3.28, the local class κp(f, gζ , hαζ−1) is the specialization at (x0, y0, z0) of

a Λ-adic cohomology class with values in the Λ-adic representation V+
fgh(M), which recall

is defined as the span in V†fgh(M) of (suitably twisted) triple tensor products of the form

V±f ⊗ V±g ⊗ V±h , with at least two +’s in the exponents.

Since V
βg
g = V +

g and V
αg
g = V −g , and similarly for Vh, it follows from the very definition

of V+
fgh(M) that the (αg, αh)-component of κp(f, gζ , hαζ−1) in H1(Qp, Vf ⊗ V

αgαh
gh (M)) van-

ishes, and the (αg, βh) and (βg, αh)-components of κ−p (f, gζ , hαζ−1) in H1(Qp, V
−
f ⊗V

αgαh
gh (M))

vanish. In addition to that, Theorem 4.3 amounts to saying that the (βg, βh)-component of

κp(f, gζ , hαζ−1) lies in H1
f (Qp, Vf ⊗ V

βgβh
gh (M)), and hence its projection to V −f ⊗ V

βgβh
gh (M)

also vanishes. Putting it together, the corollary follows. �

We are finally in position to prove the main theorems stated in the introduction. We
start with Theorem C. In order to recall its statement, recall from (110) that Vgh = Vψ ⊕ Vξ
decomposes as the direct sum of the induced representations of ψ and ξ. Write

(126) κψ(f, gζ , hαζ−1) ∈ H1
f (Q, Vp(E)⊗ Vψ(M)), κξ(f, gζ , hαζ−1) ∈ H1

f (Q, Vp(E)⊗ Vξ(M))

for the projections of the class appearing in Corollary 4.4 to the corresponding quotients. We
denote as in the introduction

καψ(f, gζ , hαζ−1) = (1 + ασp)κψ(f, gζ , hαζ−1) ∈ H1
f (H,Vp(E)(M))ψ⊕ψ̄

the component of κψ(f, gζ , hαζ−1) on which σp acts with eigenvalue α, and likewise with ψ
replaced by the auxiliary character ξ.

Lemma 4.5. We have

logE,p κ
α
ψ(f, gζ , hαζ−1) = logE,p κ

α
ξ (f, gζ , hαζ−1).
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Proof. We may decompose the local class

κp := κp(f, gζ , hαζ−1) = (κ
αgαh
p , κ

αgβh
p , κ

βgαh
p , κ

βgβh
p )

in H1(Qp, Vf ⊗V
αgαh
gh (M)) as the sum of four contributions with respect to the decomposition

(124) afforded by the eigenspaces for the action of σp. In addition to that, κp also decomposes
as

κp = (κψ,p, κξ,p) ∈ H1
f (Qp, Vp(E)⊗ Vψ(M))⊕H1

f (Qp, Vp(E)⊗ Vξ(M)),

where κψ,p, κξ,p are the local components at p of the classes in (126). An easy exercise in
linear algebra shows that

(127) κ
αgαh
p = καψ,p − καξ,p, κ

βgβh
p = καψ,p + καξ,p.

It was shown in the proof of the previous corollary that κ
αgαh
p = 0. Hence the above display

implies that καψ,p = καξ,p are the same element in H1
f (Qp, Vf+(M)). The lemma follows. �

Let

logβgβh : H1
f (Qp, Vf ⊗ Vgh(M))

prβgβh−→ H1
f (Qp, Vf ⊗ V

βgβh
gh (M))

logBK−→ Lp

denote the composition of the natural projection to the (βg, βh)-component with the Bloch-

Kato logarithm map associated to the p-adic representation Vf⊗V
βgβh
gh (M) ' Vf+(M) and the

choice of test vectors. Note that H1
f (Qp, Vf+) = H1

f (Qp,Qp(1)), which as recalled in Example
1.6 (c) is naturally identified with the completion of Z×p , and the Bloch-Kato logarithm is

nothing but the usual p-adic logarithm on Z×p under this identification. Lemma 4.5 together
with the second identity in (127) imply that

(i) logE,p κ
α
ψ(f, gζ , hαζ−1) = logβgβh(κp(f, gζ , hαζ−1)).

Theorem 4.3 shows that

(ii) logβgβh(κp(f, gζ , hαζ−1)) =
d2

dx2
Lp

f (f̆∨, ğζ , h̆αζ−1)|x=x0
(mod L×).

Finally, fix (f̆ , ğ, h̆) to be Hsieh’s choice of Λ-adic test vectors satisfying the properties
stated in Theorem 4.2. Recall from (119) that, with this choice, we have

(iii)
d2

dx2
Lfp(f̆∨, ğζ , h̆αζ−1)|x=x0

= logp(P
α
ψ ) · logp(P

α
ξ ) (mod L×).

Putting together (i)-(ii)-(iii) it follows that

logE,p κ
α
ψ(f, gζ , hαζ−1) = logE,p(P

α
ψ )× logE,p(P

α
ξ ) (mod L×).

This is precisely the content of Theorem C, which we just proved.
Theorem A is now a direct consequence of Theorem C, if we take

κψ := logE,p(P
α
ξ )−1 × καψ(f, gα, hα).

Theorem B also follows, because the non-vanishing of the first derivative d
dxLp(f/K,ψ)|x=x0

implies that Pαψ,p 6= 0. Theorem A then implies that the class κψ ∈ H1
f (H,Vp(E)(M))ψ⊕ψ̄ is

non-trivial.
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