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Abstract. In [DLR], Darmon, Lauder and Rotger formulated a p-adic elliptic Stark con-
jecture for the twist of an elliptic curve E/Q by the self-dual tensor product ρ1 ⊗ ρ2 of two
odd and two-dimensional Artin representations. The authors of loc. cit. provided abundant
numerical evidence and proved the conjecture in the special setting where p is a prime of
good reduction for E and ρ1 and ρ2 are induced from finite order characters ψg, ψh of the
same imaginary quadratic field. The key step in their proof is a factorization of one-variable
p-adic L-functions, where ψg varies in a p-adic family of Hecke characters.

The main goal of this article is to prove a new case of the conjecture, placing ourselves
in the setting where p is a prime of multiplicative reduction for E. In order to achieve our
theorem, we need to work with two-variable p-adic L-functions, where the weight 2 cusp
form associated with E also moves independently along a Hida family. Our main result then
follows from a factorization of p-adic L-series extending to two-variables the one obtained in
[DLR]. On the way we also generalize to our setting the results obtained in [CR].
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1. Introduction

Fix a prime number p ≥ 3 and three positive integers Nf , Ng, Nh such that p - NfNgNh.
Set N = lcm(Nf , Ng, Nh) and let χ : (Z/NZ)× → C× be a Dirichlet character. Let

f ∈ S2(pNf ), g ∈M1(Ng, χ̄), h ∈M1(Nh, χ)

be a triple of newforms of weights (2, 1, 1), levels (pNf , Ng, Nh) and nebentype characters
(1, χ̄, χ).

Assume for simplicity that the Fourier coefficients of f are rational and let E/Q be an
elliptic curve in the isogeny class associated with f by Eichler-Shimura. Let also %g, %h
denote the odd, two-dimensional Artin representations associated by Deligne-Serre to g and
h. This paper focuses on the arithmetic of the elliptic curve E twisted by the four-dimensional
Artin representation

%gh := %g ⊗ %h,
which is self-dual because the nebentype characters of g and h are inverse to each other.

Let L(E, %gh, s) denote the Hasse-Weil-Artin L-series associated with the compatible system
of Galois representations afforded by the twist of E by %gh. A direct consequence of the
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Eichler-Shimura and Deligne-Serre constructions is the identity

L(E, %gh, s) = L(f, g, h, s),

which recasts the L-function associated with the pair (E, %gh) as Garrett’s [Gar] triple-product
L-function attached to the triple of eigenforms (f, g, h).

Assuming that (pNf , NgNh) = 1, the global sign of the functional equation of L(E, %gh, s)
is +1. We refer e.g. to [Pr90] for a proof of this simple fact and for similar assertions under
more relaxed hypotheses.

Assume further that L(E, %gh, s) vanishes at the central critical point s = 1. It follows that
the order of vanishing of L(E, %gh, s) at s = 1 is even and hence at least 2.

In [DLR], Darmon, Lauder and one of the authors of this note introduced certain p-adic
iterated integrals attached to the triple (f, g, h), which they view as p-adic avatars of the
leading term of L(E, %gh, s) at s = 1. These iterated integrals are defined as linear forms

S2(Np)L[f ]×M1(Np, χ)∨L[gα]×M1(Np, χ)L[h] −→ Cp

(f̆ , γ̆, h̆) 7→
∫
γ̆ f̆ · h̆

on the space of triples of test vectors of level Np on which the good Hecke operators act with
the same system of eigenvalues as f , gα and h respectively. Here gα is a choice of (necessarily
ordinary) p-stabilization of g, on which Up acts with eigenvalue α.

Under our hypotheses and an additional assumption referred to as Hypothesis C in [DLR]
on the local geometry of the points corresponding to the ordinary stabilisations of g in the
eigencurve, the authors of loc. cit. propose a conjectural formula for these iterated integrals
which may be regarded as a p-adic avatar of a putative Gross-Zagier formula in rank 2.

More precisely, these iterated integrals are expected to vanish systematically when the
second derivative L′′(E, %gh, 1) vanishes; if instead L′′(E, %gh, 1) 6= 0, the main conjecture
of [DLR] predicts that the values of the iterated integrals attached to (f, g, h) encode the
logarithm of a suitable Gross-Stark unit and a 2 × 2 p-adic regulator involving the formal
group logarithms of certain Stark points in the Mordell-Weil group of E over the number field
cut out by %gh. This conjecture was christened in [DLR] as the elliptic Stark conjecture.

The main theorem of [DLR, Ch. 2 & 3] shows that the elliptic Stark conjecture holds when
p is a prime of good reduction for E, while g and h are binary theta series attached to a
common imaginary quadratic field K in which p splits. This is done by recasting both sides
of the conjectural formula, that is to say p-adic iterated integrals on one side and elliptic
units and Heegner points on the other, as values of various p-adic L-functions at points lying
outside their region of interpolation.

The first main theorem of this article extends the above result to the case where p is a
prime of multiplicative reduction of E. In order to state the result precisely, let us briefly
review the ingredients appearing in its formulation.

Fix throughout embeddings Q̄ ⊂ C and Q̄ ⊂ Cp so that every number field shall be regarded
without further mention as a subfield of both C and Cp.

Let K be an imaginary quadratic field of discriminant −DK and let us denote by χK the
quadratic Dirichlet character associated with the extension K/Q. Assume that p splits in K,
i.e.χK(p) = 1.

Let g and h be theta series associated with two finite order characters ψg, ψh : GK −→ L×

of K of conductors cg and ch ⊆ OK respectively, with values in a finite extension L of Q. They
are weight one forms of levels DKNK/Q(cg) and DKNK/Q(ch), having nebentype characters
χg and χh respectively.

Define ψ′g : GK −→ L× to be the Gal (K/Q)-conjugate of the character ψg, namely the

character given by the rule ψ′g(σ) = ψg(τστ
−1) for any σ ∈ GK and any τ ∈ GQ \GK .
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We assume that g satisfies the classicality hypotheses of [DLR] at the prime p. As explained
in loc. cit, this is automatically satisfied

• when ψg/ψ
′
g = 1 (i.e. g is Eisenstein);

• when ψg/ψ
′
g 6= 1 (i.e. g is cuspidal), if we impose ψ(℘) 6= ψ′(℘) and that ρg is not

induced from a character of a real quadratic field in which p splits.

As above, we assume that χh = χ−1
g (= χ), which implies that the characters

ψ1 = ψgψh and ψ2 = ψgψ
′
h

are ring class characters of K, associated with orders Oc1 and Oc2 in OK of conductors c1

and c2 respectively. Let H denote the ring class field associated with the order Oc in K of
conductor c := lcm(c1, c2) of K, which contains the fields cut out by ψ1 and ψ2.

A simple exercise shows that the Artin representation %gh = %g ⊗ %h decomposes as

%gh = ρ1 ⊕ ρ2 = Vψ1 ⊕ Vψ2 ,

and the Artin formalism in turn implies that there is a factorisation of L-series

(1) L(E, %gh, s) = L(E, ρ1, s) · L(E, ρ2, s) = L(E/K,ψ1, s) · L(E/K,ψ2, s).

Recall that N = lcm(Nf , Ng, Nh) = lcm(Nf , DKNK/Q(cg), DKNK/Q(ch)). Assume in this
introduction that N is square-free, (NfDK , c) = 1 and the following assumption holds (which
is exactly the one imposed in [BDP13, §4.1]):

Heegner hypothesis: All prime divisors of Nf split or ramify in K, and the local signs at
primes dividing gcd(Nf , DK) of L(E, ρ1, s) and L(E, ρ2, s) are +1.

We refer to [Gro, §11 and 22] for more details about this hypothesis. As shown in loc. cit.,
this assumption automatically implies that the local signs of L(E, ρ1, s) and L(E, ρ2, s) are
+1 at all finite primes. Since the local sign at ∞ of L(E, ρi, s) is −1, this assumption implies
that the global signs of the functional equations satisfied by L(E/K,ψ1, s) and L(E/K,ψ2, s)
are −1, hence the analytic ranks ran(E, %ψ1) and ran(E, %ψ2) are both odd.

It also follows from (1) that L(E, %gh, 1) = 0 and thus Hypothesis B of [DLR] is satisfied.
Moreover, since the local sign at any place of L(E, %gh, s) is the product of the local signs of
L(E/K,ψ1, s) and of L(E/K,ψ2, s), it follows that Hypothesis A in [DLR] holds.

Finally, the Heegner hypothesis also implies that there exists an integral ideal N in OK
such that NK/Q(N) = Nf . We fix such an ideal for the remainder of the article.

Let X denote the modular curve associated in [LRdV, Theorem A] to the triple (E,K, c)
and let

πE : X → E

be a modular parametrization of E.
Under our assumptions we let X(H)c ⊂ X(H) denote the set of Heegner points attached

to the order Oc. After fixing a choice of P ∈ X(H)c, any ring class character ψ of conductor
c gives rise to a degree zero H-rational divisor on X by setting

(2) Dψ :=

{ ∑
σ∈G ψ

−1(σ)P σ, if ψ 6= 1,∑
σ∈G P

σ −#G · ∞ if ψ = 1,

where∞ is the cusp at infinity and G := Gal (H/K). The Heegner point attached to ψ is then
defined to be

Pψ := πE(Dψ) ∈ E(H)⊗ L.
Set ψ0 := ψg/ψ

′
g and note that this is again a ring class character of K. Fix an elliptic unit

u in the field Hg cut out by ψ0 as in [DLR, §3.1] and define

uψ0 =
∑
σ∈G

ψ−1
0 (σ)uσ ∈ (O×Hg)⊗ L.
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Let ωE denote the Néron differential 1-form of E. The pull-back of this form to X is a
non-zero rational multiple of ωf , the canonical differential 1-form on X associated with f .
Hence π∗E(ωE) = cE · ωf for some cE ∈ Q×, usually referred to as the Manin constant of the
modular parametrization. We refer to [ARS] for a survey of known results about the Manin
constant.

Fix embeddings of Hg ⊆ H into Q̄p ⊂ Cp and let Hp denote the closure of H in Cp. Let

logE,p : E(Hp) −→ Hp

denote the formal group logarithm associated with ωE . Let also

logp : O×Hp −→ OHp
denote the usual p-adic logarithm. The main theorem of this note is the following.

Theorem 1.1. If either L′(E/K,ψ1, 1) or L′(E/K,ψ2, 1) vanishes, the iterated integrals at-
tached to the triple (f, g, h) vanish identically.

Otherwise, there exists a finite extension L of Q(ψg, ψh), a scalar λ ∈ L× and test vectors

(f̆ , γ̆gα , h̆) ∈ S2(Np)L[f ]×M1(Np, χ)∨L[gα]×M1(Np, χ)L[h]

for which ∫
γ̆gα

f̆ · h̆ = λ ·
logE,p(Pψ1) logE,p(Pψ2)

logp(uψ0)
.

The second main result of this note is a precise formula for the value of λ appearing in the
above statement, in a particular setting.

Theorem 1.2. Assume Nf = DK and g = h = Eis(1, χK) are the Eisenstein series associated

with the pair of Dirichlet characters (1, χK). Let hK = |Pic(OK)| and gK = |Pic(OK)/Pic2(OK)|
denote the class number and genus number of K. Then

λ =
(p− ap(f)ψ(℘))2

p · c2
E

· λ0

hKgK

where:

λ0 =

{
1
p−1 if ψ2 = 1, that is to say, if g is Eisenstein

12
p−(p+1)ψ2(℘̄)+ψ4(℘̄)

if ψ2 6= 1, that is to say, if g is cuspidal.

The proof of these results is not a straight-forward generalization of [DLR] and [CR] re-
spectively, mainly due to the following reasons:

I. One of the main ingredients in the proof of Theorems 1.1 and 1.2 is the main result
of Bertolini, Darmon and Prasanna in [BDP13], which is proved in loc. cit. under the
assumption that p is a prime of good (although not necessarily ordinary) reduction.

II. Another crucial ingredient in our proofs is the use of various p-adic L-functions, like
Garrett-Hida’s p-adic L-function constructed in [DR1], [DLR, Ch. 2] and Bertolini-
Darmon-Prasanna’s p-adic L-function described in [BDP13, §5]. In the interpolation
formulae relating these functions to critical values of classical L-series there appear
certain auxiliary constants as for instance the ones denoted Cv in [DLR, Proposition
2.1] and also the one denoted ω(f, ψ) in [BDP13, (5.1.11)]. When p is a prime of
bad reduction, it is a rather subtle problem to analyze the p-adic valuation of these
constants and its variation along Hida families of modular forms.

III. In order to find an explicit formula for the scalar λ appearing in [DLR, Theorem 3.3],
it was crucial in [CR] to assume that the levels of the three modular forms f , g and
h were all equal, as otherwise the computations became too daunting. In the setting
under study here, this assumption is not feasible because p divides the level of f but
not the levels of g and h.
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In order to overcome these difficulties we add an extra p-adic variable to the computations
of [DLR, Ch. 2] by allowing the modular form f to vary in a Hida family. While in loc. cit. f
was fixed throughout the article, here we adopt the strategy of regarding it as a member of a
Hida family f because the higher weight specialisations fk, k > 2, are (as opposite to f itself)
old at p. This allows us to work essentially in a setting where p is a prime that behaves ”as
if it does not divide the level” and thus the necessary computations can then be performed
more easily.

In the process of our proof, we prove in Theorem 6.1 a factorisation formula of two-variable
p-adic L-functions involving Castellà’s recent generalisation of [BDP13] that the reader may
find of independent interest. Just as the analogous one-variable formula proved in [DLR,
Theorem 3.9] has found recently striking applications to the arithmetic of elliptic curves, we
expect that our two-variable formula shall be also useful in this direction: cf. the forthcoming
work of Bertolini and Darmon on Perrin-Riou’s conjecture [PR93] for elliptic curves and
Castellà’s work in progress on the Iwasawa theory of elliptic curves over imaginary quadratic
fields.
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first author acknowledges financial support by Spanish Ministry of Economy and Competitiveness,
through the Severo Ochoa programme for Centres of Excellence in R&D (SEV-2015-0554). The second
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acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through
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2. Garrett-Hida p-adic L-function

The starting point in the proof of Theorem 1.1 is the interpolation formula satisfied by the
Garrett-Hida p-adic L-function associated with a triple of Hida families passing through f , g
and h, that we now recall.

Fix a rational prime p ≥ 3 and set Γ = 1 + pZp and let Λ = Zp[[Γ]] denote the Iwasawa
algebra associated with Γ.

Define the formal scheme of weights as X = XΛ := Spf(Λ). For any complete Zp-algebra
R, the set of R-valued points of X may be identified with

X (R) = Homcont(Λ, R) ' Hom(Γ, R×).

As usual, the set Z≥2 can be embedded in X (Zp) by identifying an integer k with the

character νk : Γ −→ Z×p sending z to zk. We let X cl denote the set of such classical points.

Given a finite flat extension Λ̃ of Λ, there is a natural projection XΛ̃ → X induced by the

inclusion Λ ↪→ Λ̃ and we define X cl
Λ̃

as the pull-back of X cl under this map. The set X cl
Λ̃

is

called set of arithmetic primes of Λ̃. By definition, any ν ∈ X cl
Λ̃

lies above νk ∈ X cl for some

k = k(ν) ≥ 2, which we refer to as the weight of ν.

Definition 2.1. Let Nf ≥ 1 be an arbitrary integer not divisible by p and χ be a Dirichlet
character modulo Nf . A Hida family of tame level Nf and tame character χ is a quadruple

(Λf ,Uf ,Ucl
f , f) where

• Λf is a finite flat extension of Λ,
• Uf ⊂ XΛf is a rigid-analytic open subvariety,

• Ucl
f ⊂ Uf (Cp) is a dense subset for the rigid analytic topology, and
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• f =
∑

anq
n ∈ Λf [[q]] is a formal q-series such that for all ν ∈ Ucl

f of weight k = k(ν),

ν(f) =
∑
n≥1

ν(an)qn ∈ Sk(pNf , χω
k0−k)

is the q-expansion of an ordinary eigenform of weight k, level pNf and nebentype

χωk0−k, for some k0 ∈ {0, . . . , p− 2}.

Here ω : (Z/pZ)× → µp−1 stands for the Teichmüller character of conductor p.

Remark 2.2. In the literature one often allows a richer plethora of classical specializations,
including twists by characters of p-power conductor of Γ. For our purposes it suffices to
restrict to the case in which this character is trivial. Given an arithmetic prime ν ∈ Ucl

f over
the classical point νk ∈ X , it will often be harmless to abuse notation and write fk instead of
ν(f).

Remark 2.3. In order to simplify further the notations, we shall always restrict to those
k ∈ Z≥1 for which k ≡ k0 (mod p− 1), so that the nebentype character of fk will be exactly
χ. Under this condition, the specialisation fk of the Hida family f at a point of weight k > 2
is a classical eigenform which is always old at p (cf. e.g. [Ho07, Lemma 2.1.5]) and there exists
an eigenform fk of level N such that fk(q) = fk(q)− βfkfk(qp) is the ordinary p-stabilization

of fk. Here βfk is the single non-unit root of the Hecke polynomial T 2 − ap(fk)T + χ(p)pk−1.
The Hecke operator Up acts on fk with eigenvalue αfk , the single p-adic unit root of the above
polynomial.

If k = 2, then f2 is a classical eigenform that may either be old or new p. In the former case
there exists as above an eigenform f2 of level N such that f2 is the ordinary p-stabilisation of
f2. In the latter case we simply set f2 = f2 and αf2 = ap(f2), βf2 = 0.

If k = 1, the p-adic modular form f1 may be classical or not: see [DG] for a discussion of
this phenomenon.

Recall now the three classical eigenforms

f ∈ S2(pNf ), g ∈M1(Ng, χ̄), h ∈M1(Nh, χ)

introduced at the beginning of this note. Choose eigenforms

f̆ ∈ S2(Np)[f ], ğ ∈M1(N, χ̄)[g], h̆ ∈M1(N,χ)L[h]

with respect to the good Hecke operators, having the same eigenvalues as f , g and h respec-
tively.

Since g and h have weight 1, the roots of the Hecke polynomials

T 2 − ap(g)T + χ̄(p) = (T − αg)(T − βg), T 2 − ap(h)T + χ(p) = (T − αh)(T − βh)

are all roots of unity. Fix arbitrary orderings (αg, βg), (αh, βh) of these roots and set

gα(q) := g(q)− βgg(qp), hα(q) := h(q)− βhh(qp),

ğα(q) := ğ(q)− βg ğ(qp), h̆α(q) := h̆(q)− βhh̆(qp).

Theorems of Hida [Hi86] and Wiles [Wi88] ensure that there exist Hida families f̆ , ğ, h̆ of
tame level N such that, for suitable arithmetic primes of weights 2, 1 and 1 we have

f̆2(q) = f̆(q), ğ1(q) = ğα(q), h̆1(q) = h̆α(q).

Define a dense subset of Uf × Ug × Uh as follows:

Ucl
fgh := {(k, `,m) ∈ Ucl

f × Ucl
g × Ucl

h | ` ≥ k +m}.
In [DR1], the authors constructed a three-variable p-adic L-function on Uf ×Ug×Uh which is

determined by an interpolation formula relating the values at points in Ucl
fgh to central critical

values of classical L-series: we refer to [DLR, prop. 2.3] for full-fledged details.
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For our purposes it suffices to restrict the above p-adic L-function to Ufg := Uf × Ug,
regarded as a rigid-analytic sub-variety of Uf ×Ug×Uh by setting the third variable to be the

fixed point of weight one giving rise to h̆α. Set also Ucl
fg := {(k, `) ∈ Ucl

f × Ucl
g , ` ≥ k + 1}.

With these notations, the constructions of [DR1] and [DLR, Ch. 2] give rise to a two-variable
p-adic L-function

Lp
g(f̆ , ğ, h̆) : Ufg −→ Cp

satisfying the following interpolation property for all (k, `) ∈ Ucl
fg:

Lp
g(f̆ , ğ, h̆) ·Lp

g(f̆∗, ğ∗, h̆∗)(k, `) = eGH(k, `)2 · aGH(k, `) · fGH(k, `)·

×
∏
v|N∞

Cv(f̆k, ğ`, h̆) · L(fk ⊗ g` ⊗ h, (k + `− 1)/2)

〈g∗` , g∗` 〉2
(3)

where:

• For any modular form or Hida family φ of character χ, we set φ∗ = φ⊗ χ̄;

• L(fk,⊗g` ⊗ h, s) is Garrett’s triple-product complex L-function;

• aGH(k, `) = ( `+k−3
2 )!2( `−k−1

2 )!2 · π−2`;

• eGH(k, `) = E(g`, fk, h)/E0(g`)E1(g`) = E(g∗` , f
∗
k , h

∗)/E0(g∗` )E1(g∗` ) is the Euler factor
introduced in [DR1, Theorem 1.3];

• fGH(k, `) = A · 2B where A = A(N) ∈ Q× and B = B(k, `) is linear in k, `;

• Cv(f̆k, ğ`, h̆) is a constant in the field generated by the fourier coefficients of f̆k, ğ` and

h̆; thanks to the work of Watson and Woodbury [Wo1], when the three levels of the

modular forms are square-free there exists a choice of test vectors (f̆k, ğ`, h̆) such that
the constants

(4) Wv := Cv(f̆k, ğ`, h̆)

satisfy that Wv lies in Q× for all v | N and only depends on N and v but not on the
weights (k, `) (see [DLR, remark 2.2 and remark 2.4]).

When we evaluate this function at the point (2, 1) ∈ Ufg, which lies outside the region of
classical interpolation, [DLR, proposition 2.6] asserts that:

(5) Lp
g(f̆ , ğ, h̆)(2, 1) =

∫
γ̆α

f̆2 · h̆

for a suitable choice of linear functional γ̆α : S1(Np, χ)L[ğ∗α]→ L, with L = Q(f2, g1, h).

3. Castellà’s two-variable p-adic L-function

Consider the Hida family f as in the previous section. For any weight κ ∈ Ucl
f such that

κ ≡ 2 (mod p − 1) let fκ denote the modular form of weight κ whose p-stabilization equals
the weight κ specialization of f , as in Remark 2.3.

Let K = Q(
√
−DK), DK ≥ 7, be an imaginary quadratic field. We keep the same assump-

tions as in the introduction, so in particular we assume the Heegner hypothesis and we let
p = ℘℘̄ be an odd prime that splits in K.

A Hecke character ψ of K of infinity type (κ1, κ2) ∈ Z× Z is a continuous homomorphism

ψ : A×K −→ C×

satisfying ψ(α · x · z∞) = ψ(x)zκ1∞ z̄
κ2
∞ for every α ∈ K×, x ∈ A×K and z∞ ∈ K×∞ = C×.

With this convention, the Hecke character NK induced by the norm from K to Q has infinity
type (1, 1). A Hecke character ψ of infinity type (κ1, κ2) is called anticyclotomic if its central
character satisfies ψ|A×Q

= Nκ1+κ2
K .
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Let c ⊆ OK be an integral ideal and set N = lcm(Nf , DKNK/Q(c)). Let Σcc denote the set
of anticyclotomic Hecke characters of K of conductor dividing N . For any Hecke character
ψ ∈ Σcc of infinity type (κ1, κ2) such that κ = κ1 + κ2 ∈ Ucl

f , let L(fκ, ψ, s) denote the L-
function associated with the twist of fκ by ψ, i.e. the L-function attached to the compatible
system of Galois representations afforded by the tensor product %fκ|GK ⊗ψ of the (restriction
to GK of) the Galois representations attached to fκ and the character ψ.

As usual, L(fκ, ψ, s) =
∏
q L

(q)(q−s) is defined as a product of Euler factors ranging over

the set of prime numbers. The Euler factors at the primes q such that q - N are the same as
that of the Rankin L-series L(θψ⊗fκ, s), but may differ at the primes q such that q | N . Since
ψ is anticyclotomic, s = 0 is the central critical point of the functional equation satisfied by
L(fκ, ψ

−1, s).
For a given κ ∈ Ucl

f , let Σκ,cc ⊂ Σcc be the subset of anticyclotomic Hecke characters in Σcc

of infinity type (κ1, κ2) with κ1 + κ2 = κ. This set is naturally the disjoint union of the three
subsets

Σ(1)
κ,cc = {ψ ∈ Σκ,cc of infinity type (1, 1)},

Σ(2)
κ,cc = {ψ ∈ Σκ,cc of infinity type (κ+ λ,−λ), λ ∈ Z≥0}

and

Σ(2′)
κ,cc = {ψ ∈ Σκ,cc of infinity type (−λ, λ+ κ), λ ∈ Z≥0}.

Each of the three sets Σ
(1)
κ,cc, Σ

(2)
κ,cc and Σ

(2′)
κ,cc is dense in the completion Σ̂κ,cc of Σκ,cc with

respect to the p-adic compact open topology as explained in [BDP13, §5.2]. In loc. cit. the

authors construct a p-adic L-function on Σ̂κ,cc, denoted Lp(fκ/K), interpolating the algebraic

parts of the central critical values of L(fκ, ψ
−1, s) at characters ψ in Σ

(2)
κ,cc.

In [Ca1, §1], Castellà constructs a two-variable p-adic L-function Lp(f/K)(κ, ψ) on the com-

pletion Σ̂cc of Σcc, lifting the one-variable p-adic L-function of Bertolini-Darmon-Prasanna.
To state this more precisely, note that Σ̂cc is naturally fibered over Uf and the fiber at a given

point κ ∈ Ucl
f is Σ̂κ,cc. Then for any κ ∈ Ucl

f we have

Lp(f/K)(κ,−)2 = Lp(fκ/K).

Castellà’s p-adic L-function is characterized by the following interpolation property: let

κ ∈ Uf and let ψ ∈ Σ
(2)
κ,cc be a character of infinity type (κ+λ,−λ). Then [Ca1, Theorem 1.4]

asserts that

(6) Lp(f/K)(κ, ψ)2 = aBDP(ψ) · eBDP(κ, ψ)2 · fBDP(κ, ψ) ·
Ω2κ+4λ
p

Ω2κ+4λ
· L(fκ, ψ

−1, 0),

where

• aBDP(ψ) = λ!(κ+ λ− 1)!πκ+2λ−1

• eBDP(κ, ψ) = (1− αfκψ−1(℘̄))(1− βfκψ−1(℘̄)),

• fBDP(κ, ψ) =
(

2
c
√
DK

)κ+2λ−1
· 2]{q|(DK ,NE)} · ω(fκ, ψ)−1

with ω(fκ, ψ) as defined in [BDP13, (5.1.11)].
If ψ is a finite order anticyclotomic character of conductor c | c, then ψ−1NK is a character

of infinity type (1, 1) and hence lies outside the region of interpolation. The main theorems
of [BDP13] and [Ca2, Theorem 2.10] assert that for such ψ the following formula holds:

(7) Lp(f/K)(2, ψNK) = ±fp(f, ψ) · logωf (Dψ)

where fp(f, ψ) = (1−αf2ψ−1(℘̄)p−1)(1− βf2ψ−1(℘̄)p−1) and Dψ is the class in Jac(X) of the
divisor introduced in (2).
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Since π∗E(ωE) = cE · ωf and Pψ = πE(Dψ), it follows that

logωf (Dψ) =
1

cE
logπ∗E(ωE)(Dψ) =

1

cE
logE,p(Pψ),

and hence

(8) Lp(f/K)(2, ψNK) = ±fp(f, ψ) · 1

cE
logE,p(Pψ).

4. Katz p-adic L-function

Keep the notations and assumptions of the previous section. Denote by ΣK the set of Hecke
characters of K of conductor dividing c and define

Σ
(1)
K = {ψ ∈ Σ of infinity type (κ1, κ2), κ1 ≤ 0, κ2 ≥ 1},

Σ
(2)
K = {ψ ∈ Σ of infinity type (κ1, κ2), κ1 ≥ 1, κ2 ≤ 0}.

For all ψ ∈ Σ
(2)
K , s = 0 is a critical point for the Hecke L-function L(ψ−1, s), and Katz’s

p-adic L-function is constructed by interpolating the (suitably normalized) values L(ψ−1, 0)

as ψ ranges over Σ
(2)
K .

More precisely, let Σ̂K denote the completion of Σ
(2)
K with respect to the compact open

topology on the space of functions on a certain subset of A×K , as described in [BDP13, §5.2].
By the work of Katz [Ka76], there exists a p-adic analytic function

Lp(K) : Σ̂K −→ Cp

which is characterized by the following interpolation property: for all ψ ∈ Σ
(2)
K of infinity type

(κ1, κ2),

(9) Lp(K)(ψ) = aK(ψ) · eK(ψ) · fK(ψ)
Ωκ1−κ2
p

Ωκ1−κ2Lc(ψ
−1, 0)

where

• Lc(ψ
−1, s) is Hecke’s L-function associated with ψ−1 with the Euler factors at primes

dividing c removed,
• Ωp ∈ C×p is a p-adic period attached to K, as defined in [BDP13, (140)],

• Ω ∈ C× is the complex period associated with K as defined in [BDP13, (137)],

• aK(ψ) = (κ1−1)!
πκ2

• eK(ψ) = (1− ψ(℘)
p )(1− ψ−1(℘̄))

• fK(ψ) =
(√

DK
2

)κ2
.

The following result is commonly known as Katz’s Kronecker p-adic limit formula. It
computes the value of Lp(K) at a finite order character ψ of GK , which lies outside the
region of interpolation (cf. [Ka76, §10.4, 10.5]):

(10) Lp(K)(ψ) = fp(ψ) · logp(uψ),

where

(11) fp(ψ) =

{
1
2(1
p − 1) if ψ = 1

−1
24c(1− ψ(℘̄))(1− ψ(℘̄)

p ) if ψ 6= 1.

Here c > 0 is the smallest positive integer in the conductor ideal of ψ.
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5. Proof of Theorem 1.1

Let

f ∈ S2(pNf ), g = θψg ∈M1(DKN(cg), χ), h = θψh ∈M1(DKN(ch), χ)

be the three modular forms considered in the introduction, and we keep the assumptions as
therein. Remember that p = ℘℘ is a prime that splits in OK and does not divide cNf .

Let f and g be cuspidal Hida families passing through f and gα, that is to say, satisfying
f2 = f and g1 = gα. The Hida family f is unique thanks to the classical work of Hida
[Hi86]. The Hida family g is also unique thanks to the classicality hypothesis assumed in
the introduction, by a recent result of Bellaiche and Dimitrov [BeDi]. This family is in fact
CM and its higher weight classical specializations admit an explicit description that we now
review.

Take a Hecke character λ with image in Z×p of infinity type (0, 1) and conductor ℘̄. Following
[Hi93, p. 235-236], with a slight modification, we define the Hecke characters ψg,`−1, of
conductor cg, as follows:

ψg,`−1(q) := ψg(q)〈λ〉`−1(q), for q 6= ℘̄

ψg,`−1(℘̄) := χ(p)
p`−1

ψg,`−1(℘)
.

For every ` ∈ Ucl
g one then has that g` is the ordinary p-stabilisation of g` := θψg,`−1

. Using
the notations introduced above, note that we have

αg` = ψg,`−1(℘), βg` = ψg,`−1(℘̄).

Recall the three ring class characters ψ0, ψ1, ψ2 defined in the introduction. Recall also
that NK stands for the Hecke character of infinity type (1, 1) induced by the norm from K
to Q. Associated with them there are three additional families of characters which play a key
role in the proof:

Φg(`) := (ψ2
g,`−1χ)−1N`

K , for which Φg(1) = ψ′0NK(12)

Ψgh(k, `) := (ψg,`−1ψh)−1N
k+`−1

2
K , for which Ψgh(2, 1) = ψ′1NK(13)

Ψgh′(k, `) := (ψg,`−1ψ
′
h)−1N

k+`−1
2

K , for which Ψgh(2, 1) = ψ′2NK .(14)

Notice that Φg(`) is of infinity type (κ1, κ2) = (`,−`+ 2), while Ψgh(k, `) and Ψgh′(k, `) are
of infinity type (κ+ λ,−λ) with κ = k and λ = (`− k − 1)/2 ≥ 0 because ` ≥ k + 1.

Definition 5.1. Let L be a number field. A function

f : Ucl
g → Q

is L-admissible if it extends to a meromorphic Iwasawa function on Ug having no pole at 1
and satisfying f(1) ∈ L×. Similarly, a function

f : Ucl
fg → Q

is L-admissible if it extends to a meromorphic Iwasawa function on Ufg having no pole at
(2, 1) and satisfying f(2, 1) ∈ L×.

Set aPet(`) = (`−1)!
π`

. By [DLR, Lemma 3.7 and (53)] there exists a Q(ψg, ψh)-admissible
function fPet such that

(15) 〈g∗` , g∗` 〉 = aPet(`) · fPet(`) · L(Φg(`)
−1, 0).
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Lemma 5.2. The following formulae hold true:

Φg(`)(℘) =
β2
g`
χ(p)

p`−2
, Φg(`)(℘̄) =

p`

β2
g`
χ(p)

,

Ψgh(k, `)(℘̄) =
p
`+k−1

2

βg`βh
, Ψgh′(k, `)(℘̄) =

p
`+k−1

2

βg`αh
.

Proof. This follows from a straight-forward computation. �

Lemma 5.3. The following equalities hold true:

eK(Φg(`))
2 · eGH(k, `)2 = eBDP(k,Ψgh(k, `))2eBDP(k,Ψgh′(k, `))

2,

aGH(k, `) · aK(Φg(`))
2 = aBDP (Ψgh(k, `)) · aBDP (Ψgh′(k, `)) · aPet(`)

2.

Proof. This again follows from a straight-forward computation using Lemma 5.2 for the first
equality. �

Recall the factor ω(f,Ψ) appearing in (6) and defined in [BDP13, equation (5.1.11)]. Recall
also from the remarks around the Heegner hypothesis in the introduction the integral ideal N
of OK such that NK/Q(N) = Nf .

Lemma 5.4. The following identities hold true:

ω(f,Ψgh(k, `)) = (−1)
`−1
2
ψg,`−1(N)ψh(N)

N
`−1
2

f

, ω(f,Ψgh(k, `)) = (−1)
`−1
2
ψg,`−1(N)ψ′h(N)

N
`−1
2

f

.

In particular we have

ω(f,Ψgh(2, 1)) = ψ1(N) and ω(f,Ψgh(2, 1)) = ψ2(N).

Proof. We limit ourselves to compute ω(f,Ψgh(k, `)), as the other case is very similar. For
simplicity, call Ψ := Ψgh(k, `) the Hecke character of infinity type (κ + λ,−λ), where κ = k
and λ = (`− k − 1)/2. Define

Ψλ := ΨNλ
K .

Choose an ideal b ⊂ Oc relatively prime to Nfc and an element bN ∈ Oc such that bN = (bN ).
Since ωf = 1 and εf = 1 in our case, [BDP13, equation (5.1.11)] shows that

(16) ω(f,Ψ) = Ψλ(b) · (−1)κ/2+λNκ/2+λb−κ−2λ
N .

By [BDP13, equation (5.1.2)] it then follows that

Ψλ(b)Ψλ(N) = Ψλ((bN )) = bκ+2λ
N .

Substituting into (16) we find:

ω(f,Ψ) = (−1)κ/2+λ
N
κ/2+λ
f

Ψλ(N)
= (−1)κ/2+λ

N
κ/2
f

Ψ(N)
.

Using now the definition of Ψgh(k, `) and the fact that κ+ 2λ = `− 1 we find

ω(f,Ψ) = (−1)
`−1
2 ·

ψg,`−1(N)ψh(N)N
k/2
f

N
`+k−1

2
f

= (−1)
`−1
2 ·

ψg,`−1(N)ψh(N)

N
`−1
2

f

,

as claimed. �
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Let

L0 = K(ψg, ψh, τ(χ),
√
Ng,

√
Nh)

denote the extension of Q generated by the values of the Hecke characters ψg and ψh, the
Gauss sum associated with the Dirichlet character χ and the square-roots of Ng and Nh.

Fix test vectors f̆ , ğ and h̆ as in §2, giving rise to the p-adic L-function Lp
g(f̆ , ğ, h̆) satisfying

the good properties discussed around (4).

Theorem 5.5. There exist a quadratic extension L/L0 and a L-admissible function f on Ufg
such that the following factorization of two-variable p-adic L-functions holds:

Lp
g(f̆ , ğ, h̆)(k, `) ·Lp(K)(Ψg(`)) =

f(k, l) ·Lp(f/K)(k,Ψgh(k, `)) · Lp(f/K)(k,Ψgh′(k, `)).

Proof. We have a decomposition of classical L-functions given by

(17) L
(
fk ⊗ g` ⊗ h,

k + `− 1

2

)
= EulN (k, `) · L(fk,Ψgh(k, `)−1, 0) · L(fk,Ψgh′(k, `)

−1, 0).

Since p - N , the Euler factor in EulN (k, `) interpolates p-adically and gives rise to a two-
variable L0-admissible function. Combine equations (15) and (17) with the interpolation
formula (3). Then use equations (6) and (9) to replace the classical L-functions with their
respective p-adic avatar. An easy check shows that the periods simplify.

Define

ω(k, `) := I(ğ∗` , f̆
∗
k , h

∗)/I(ğ`, f̆k, h̆)

as in [DLR, (25)]. Recall also the local constants Wv for v | N∞ introduced in (4).
Thanks to Lemma 5.3 one obtains the following equality, true for every (k, `) ∈ Ucl

fg:

Lp
g(f̆ , ğ, h̆)(k, l)2 ·Lp(K)(Φg(`))

2 =(18)

f0(k, `) ·Lp(f/K)(k,Ψgh(k, `))2 ·Lp(f/K)(k,Ψgh′(k, `))
2

where

f0(k, `) =
EulN (k, `)

fPet(`)
2
· fGH(`, k, 1) · fK(Φg(`))

2

fBDP (Ψgh(k, `)) · fBDP (Ψgh′(k, `))
·
∏
v|N∞Wv

ω(k, `)
.

Let us show that f0 is L0-admissible. First of all, it is immediate to verify that the powers
or π appearing in the various fudge factors cancel out. Notice also that almost all terms
appearing in the numerator and denominator of the definition of f0(k, `) are L0-admissible
for obvious reasons, following directly from the definitions. This is the case except for the
constants Wv, ω(fk,Ψgh)ω(fk,Ψgh′) and ω(k, `), which need to be considered in more detail.

As for the local constants Wv is concerned, we already argued in §2 that for v | N the
test vectors can be chosen in such a way that Wv lies in Q× and do not depend on (k, `).
Moreover, the recent results of [Wo2] guarantee that in this setting W∞ = 1 for all (k, `).

As for the global constant ω(fk,Ψgh)ω(fk,Ψgh′), using lemma 5.4 one derives that:

ω(fk,Ψgh)ω(fk,Ψgh′) =
ψg,`−1(N)2ψh(N)ψ′h(N)

N l−1
f

.

Since p - Nf , it follows that the function ω(f,Ψgh)ω(f,Ψgh′) is L0-admissible (in fact it is
K(ψg, ψh)-admissible).

The L0-admissibility of the function ω(k, l) follows by the same argument as in the last
part of the proof of [DLR, Theorem 3.9]. Hence we have proved that f0 is L0-admissible and
the theorem follows after taking the square-roots on both sides of (18). �
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Corollary 5.6 (Elliptic Stark conjecture). There exists a scalar λ ∈ L× such that:∫
γ̆gα

f̆ · ğ = λ ·
logE,p(Pψ′1) logE,p(Pψ′2)

logp(uψ′0)
.

Proof. Notice that we have

Φg(1) = ψ′g/ψg = ψ′0, Ψgh(2, 1) = ψ′1 and Ψgh′(2, 1) = ψ′2.

Using Theorem 5.5 and equations (5), (8) and (10) one obtains the desired result. �

6. An explicit formula

Let us assume now that ψ = ψg is a ring class character of conductor c ∈ Z≥1 and ψh = 1
is the trivial character. This implies that h = θψh = E1,χK is the Eisenstein series associated
with the pair of Dirichlet characters (1, χK). In this setting the characters defined in equations
(13) and (14) coincide, i.e. Ψgh = Ψgh′ , and thus we simply denote this character Ψg.

In this section we exploit the results obtained previously to prove an explicit formula for the
scalar λ that makes its appearance in Theorem 1.1, in the particular scenario considered here.
In order to do so we invoke yet another p-adic L-function in addition to the ones introduced
so far. Namely, the Hida-Rankin p-adic L-function associated by Hida in Chapter 10 of [Hi93]
to the convolution of two Hida families f , g of cusp forms.

We follow the conventions and notations employed in [BDR1, §2] and [CR, §3], where Hida-
Rankin’s p-adic L-function Lp

g(f ,g) is described as a function on Ufg and is characterized by

the following interpolation property: for every (k, `) ∈ Ucl
fg such that ` ≥ k + 1, it holds that

(19) Lp
g(f ,g)(k, `) = eHR(k, `) · aHR(k, `) · fHR(k, `) · L(fk ⊗ g`, (`+ k − 1)/2)

〈g`,g`〉N
where

• eHR(k, `) = eGH(k, `, 1);
• aHR(k, `) = N/

√
DK

• fHR(k, `) = (−1)
`−k−1

2 ·
(
`−k−1

2

)
!
(
`−k−3

2

)
! · 2−2`+1π−`.

Moreover, by [CR, Proposition 3.2] we dispose of the following formula for the value of
Lp

g(f ,g) at the point (k, `) = (2, 1) lying outside the region of interpolation. Keeping the
notations of the introduction and section 2, we have:

(20) Lp
g(f ,g)(2, 1) =

∫
γ̆gα

f̆ · h̆.

Recall the number field appearing in the statement of Theorem 5.5.

Proposition 6.1. There exists a two-variable L-admissible function f(k, `) such that the
following factorization of p-adic L-functions holds:

Lp
g(f ,g)(k, `) ·Lp(K)(Φg(`)) = f(k, `) ·Lp(f/K)(Ψgh(k, `))2.

Proof. After setting Ψ := Ψgh(k, `), it is easy to verify that

L(ğ` ⊗ f̆k, (`+ k − 1)/2) = EulN (k, `) · L(fk,Ψ, 0)

where EulN (k, `) stands for a product of Euler factors at primes dividing N . The function
EulN (k, `) gives rise to an admidsible function as shown in [CR, Lemma 4.1]. From this, the
proof proceeds along very similar lines as in the proof of Theorem 5.5 and [CR, Theorem 4.4],
replacing the interpolation formula of the Garrett-Hida triple-product L-function by the one
provided above.
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We content here to record an explicit expression for the admissible function appearing in
the above statement, namely

(21) f(k, `) = EulN (k, `) · (−1)
k
2
=(DKc

2)

=(N)

N · 2−]{q|(DK ,Nf )}

hc ·DK

ψ`−1(N)

c`+1N
`−1
2

f

where for any integer M ≥ 1 we set =(M) := [SL2(Z) : Γ0(M)] =
∏
qnq ||M qnq−1(q + 1). �

Corollary 6.2. Assume Nf = DK and g = h = Eis1(1, χK). Then∫
γgα

f · h = λ ·
log2

E,p(Pψ′)

logp(uψ′2)

with

λ =
(p− ap(f)ψ(℘))2

p · c2
E

· λ0

hKgK
where:

λ0 =

{
1
p−1 if ψ2 = 1, that is to say, if g is Eisenstein

12
p−(p+1)ψ2(℘̄)+ψ4(℘̄)

if ψ2 6= 1, that is to say, if g is cuspidal.

Proof. The value of the admissible function f appearing in (21) at the point (k, `) = (2, 1) is

f(2, 1) = −2ψ(N)

hKgK
.

The result now follows upon combining this with formulae (8), (10) and (20). �
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