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Classical Heegner points

Let E,q be an elliptic curve and

f=1fe=>_ ang" € S(o(N)) with L(E,s) = L(f,s).

n>1
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Classical Heegner points

Let E,q be an elliptic curve and

f=1fe=>_ ang" € S(o(N)) with L(E,s) = L(f,s).

n>1

Then E(C)~C/Ar, Ar=27i [y x vz (2)02.
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Classical Heegner points

Let E,q be an elliptic curve and

f=1fe=>_ ang" € S(o(N)) with L(E,s) = L(f,s).

n>1
Then  E(C) ~C/Ar, Ar=2mi [y x vz F(2)02.

The modular parametrization is

p: Xo(N) — E
00 — 0

T —  Pr=2ni[] f(z)dz

_ an p2win-t
- Zn21 Wne
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Classical Heegner points

If r € P'(Q)isacusp: P, € E(Q)ors.
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Classical Heegner points

If - € P'(Q)isacusp: P, € E(Q)ors.

If - € H N K, where K is imaginary quadratic: P, € E(K2).
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Classical Heegner points

If 7 € P'(Q)isacusp: P, € E(Q)ors.
If - € H N K, where K is imaginary quadratic: P, € E(K2).

Put
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Classical Heegner points

If 7 € P'(Q)isacusp: P, € E(Q)ors.
If - € H N K, where K is imaginary quadratic: P, € E(K2).

Put
Or={v=(28):N|cv (7)=A(7)} € Mo(N) C Mx(Z).

O, is an order in K in which all p | N split or ramify, and
P. € E(Ho.),

where Gal(Hp, /K) ~ Pic(O,).
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Heegner hypothesis: all p | N splitin K.

= ordg—1L(E/K,s) is odd.
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Heegner hypothesis: all p | N splitin K.

= ordg—1L(E/K,s) is odd.

Theorem (Gross-Zagier)

L'(E/K,1)/Qe = height(Pk) where Py = W'HOT/K(PT).

Pk € E(K) has infinite order if and only if L'(E/K,1) # 0.
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Heegner hypothesis: all p | N splitin K.

= ordg—1L(E/K,s) is odd.

Theorem (Gross-Zagier)

L'(E/K,1)/Qe = height(Pk) where Py = W'HOT/K(PT).

Pk € E(K) has infinite order if and only if L'(E/K,1) # 0.

Theorem (+Kolyvagin)
If ran(E/K) = 1, BSD holds true for E/K.
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Heegner hypothesis: all p | N splitin K.

= ordg—1L(E/K,s) is odd.

Theorem (Gross-Zagier)

L'(E/K,1)/Qe = height(Pk) where Py = W'HOT/K(PT).

Pk € E(K) has infinite order if and only if L'(E/K,1) # 0.

Theorem (+Kolyvagin)
If ran(E/K) = 1, BSD holds true for E/K.

If ran(E/Q) < 1, BSD holds true for E/Q. I
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Heegner points on Shimura curves

What about BSD when ords_1L(E/K, s) is odd but K fails to
satisfy H.H.?
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Heegner points on Shimura curves

What about BSD when ords_1L(E/K, s) is odd but K fails to
satisfy H.H.?

Assume (Dk, N) = 1. Factor N = N* - N~ into split and inert
primes.
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Heegner points on Shimura curves

What about BSD when ords_1L(E/K, s) is odd but K fails to
satisfy H.H.?

Assume (Dk, N) = 1. Factor N = N* - N~ into split and inert
primes.

fN- = P1 .. s Por = ordg—q L(E/K, S) is odd.
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Heegner points on Shimura curves

What about BSD when ords_1L(E/K, s) is odd but K fails to
satisfy H.H.?

Assume (Dk, N) = 1. Factor N = N* - N~ into split and inert
primes.

fN- = P1 .. s Por = ordg—q L(E/K, S) is odd.

Replace Xo(N) by Shimura curve X}’ (N*+) made from the
quaternion algebra ramified at N—.
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Heegner points on Shimura curves

What about BSD when ords_1L(E/K, s) is odd but K fails to
satisfy H.H.?

Assume (Dk, N) = 1. Factor N = N* - N~ into split and inert
primes.

fN- = P1 .. s Por = ordg—q L(E/K, S) is odd.

Replace Xo(N) by Shimura curve X}’ (N*+) made from the
quaternion algebra ramified at N—.

We still have ¢ : XY (N*) --» E, [7] — P, € E(Hp.). All works
nicely thanks to Zhang.
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Heegner points on Shimura curves

The theory of Heegner points provides a good approach for
constructing points on E q, rational over abelian extensions H
of imaginary quadratic fields K.
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Heegner points on Shimura curves

The theory of Heegner points provides a good approach for
constructing points on E q, rational over abelian extensions H
of imaginary quadratic fields K.

This method allows to prove BSD for the base change of E g to
subfields of H provided the analytic rank is morally 0 or 1.
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Heegner points on Shimura curves

The theory of Heegner points provides a good approach for
constructing points on E q, rational over abelian extensions H
of imaginary quadratic fields K.

This method allows to prove BSD for the base change of E g to
subfields of H provided the analytic rank is morally 0 or 1.

And generalizes well to modular elliptic curves E,r over a
totally real number field F and totally imaginary quadratic K/F
provided [F : Q] is odd or Jgp || M.
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Heegner points on Shimura curves

The theory of Heegner points provides a good approach for
constructing points on E q, rational over abelian extensions H
of imaginary quadratic fields K.

This method allows to prove BSD for the base change of E g to
subfields of H provided the analytic rank is morally 0 or 1.

And generalizes well to modular elliptic curves E,r over a
totally real number field F and totally imaginary quadratic K/F
provided [F : Q] is odd or Jgp || M.

What can we say if any of these fails? How do we construct
points on E over other fields?
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Heegner points as divisors on the curve

The jacobian of X is Pico(X) = Divg(X)/ ~at-
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Heegner points as divisors on the curve

The jacobian of X is Pico(X) = Divg(X)/ ~at-

The Abel-Jacobi map is

AJ
E(C) = Pico(E)(C) — C/Ag

P — fop wE,
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Heegner points as divisors on the curve

The jacobian of X is Pico(X) = Divg(X)/ ~at-

The Abel-Jacobi map is

AJ
E(C) = Pico(E)(C) — C/Ag

P = fonEv
and
AJ
Pico(X)(C) > (H'0)/Hy(X,Z) =~ CI/A
D = o = (pwt, s Jpwg)

H'O .= HO(Xc, Q).
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Heegner points as divisors on the curve

For X = Xp(N) the modular parametrization factors as:
o: X <& PigX) 3 E
P = (D)=(P-o0) = m(D)=¢(P)
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Heegner points as divisors on the curve

For X = Xp(N) the modular parametrization factors as:
o: X <& PigX) 3 E
P = (D)=(P-o0) = m(D)=¢(P)

Over the complex numbers, via AJ, this looks

po i To(NVHS & (HYO)Y/H,(X,2) e/
[] JLfD, s [L 69—~ [Zf(q)dg/q
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Heegner points as divisors on the curve

For X = Xp(N) the modular parametrization factors as:
o: X <& PigX) 3 E
P = (D)=(P-o0) = m(D)=¢(P)

Over the complex numbers, via AJ, this looks

po i To(NVHS & (HYO)Y/H,(X,2) e/
[] JLfD, s [L 69—~ [Zf(q)dg/q

For non-split Shimura curves X~ (N*) there is no choice of a
base point co € X(Q) and it is more natural to simply consider

Tf

Pico(X) — E.
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Cohomology in higher dimension

Replace Shimura curve X by a variety Vg, char(F) = 0, of
dimension d > 1.
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Cohomology in higher dimension

Replace Shimura curve X by a variety Vg, char(F) = 0, of
dimension d > 1.

The algebraic de Rham cohomology groups
His(V), 0<n<2d

are F-vector spaces of finite dimension with:
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Cohomology in higher dimension

Replace Shimura curve X by a variety Vg, char(F) = 0, of
dimension d > 1.

The algebraic de Rham cohomology groups
His(V), 0<n<2d

are F-vector spaces of finite dimension with:

o The Hodge filtration, Fil® = Hi(V) 2 Fil' 2 ... D FilV = {0}.
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Cohomology in higher dimension

Replace Shimura curve X by a variety Vg, char(F) = 0, of
dimension d > 1.

The algebraic de Rham cohomology groups
His(V), 0<n<2d

are F-vector spaces of finite dimension with:
» The Hodge filtration, Fil° = H75(V) 2 Fil' O ... D FilV = {0}.

« The alternate Poincaré pairing, {,) : Hia(V) x H33""(V) — F.
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Cohomology in higher dimension

Replace Shimura curve X by a variety Vg, char(F) = 0, of
dimension d > 1.

The algebraic de Rham cohomology groups
His(V), 0<n<2d
are F-vector spaces of finite dimension with:
» The Hodge filtration, Fil° = H75(V) 2 Fil' O ... D FilV = {0}.
« The alternate Poincaré pairing, {,) : Hia(V) x H33""(V) — F.

For curves: Fil® = Hl5(X) = Q"(X)/dF(X) > Fil' = Q'(X).
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Comparison theorems

For any prime p, the p-adic étale cohomology groups
Hgt(vl_-'7@l3)? 0<n<ad,

are finite dim’l Qp-vector spaces with an action of Gal(F/F).
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Comparison theorems

For any prime p, the p-adic étale cohomology groups
are finite dim’l Qp-vector spaces with an action of Gal(F/F).

F=Qp: IfV/Qphas good reduction,

Deris(Her (Vg @) = (He( Vg, Qp) © Baris) % = Hi(V/Qp).
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Comparison theorems

For any prime p, the p-adic étale cohomology groups
are finite dim’l Qp-vector spaces with an action of Gal(F/F).

F=Qp: IfV/Qphas good reduction,

Deris(Her (Vg @) = (He( Vg, Qp) © Baris) % = Hi(V/Qp).

F=C: HI(V/C)=HE(V(C),Z) ® C ~ @, j_nH"(V/C)

(wi,w2) = WIV(@)UM N wa.
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Cycles in higher dimension

Replace Picg(X) = CH'(X)o by the Chow group CH®(V)g
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Cycles in higher dimension

Replace Picg(X) = CH'(X)o by the Chow group CH®(V)g

CHC(V) = {Algebraic Cycles A of codimension c on V}/ ~ gt
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Cycles in higher dimension

Replace Picg(X) = CH'(X)o by the Chow group CH®(V)g

CHC(V) = {Algebraic Cycles A of codimension c on V}/ ~ gt

0— CHE(V)o— CHE(V) S Hag_oe(V(C),C) ~ HZ(Ve),
A — [A].
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Cycles in higher dimension

Replace Picg(X) = CH'(X)o by the Chow group CH®(V)g

CHC(V) = {Algebraic Cycles A of codimension ¢ on V}/ ~ a4

0— CHE(V)o— CHE(V) S Hag_oe(V(C),C) ~ HZ(Ve),
A — [A].

Q® CHO(Ve) & HoS(Ve) N H2(V(C), Q).
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Cycles in higher dimension

Replace Picg(X) = CH'(X)o by the Chow group CH®(V)g

CHC(V) = {Algebraic Cycles A of codimension ¢ on V}/ ~ a4

0— CHE(V)o— CHE(V) S Hag_oe(V(C),C) ~ HZ(Ve),
A — [A].

Q® CHO(Ve) & HoS(Ve) N H2(V(C), Q).

Hodge conjecture: cl is surjective.
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Higher dimension

The complex Abel-Jacobi map
AlJc : CH'(X)g — (H'©)Y/Hy(X,Z), DH/
D

generalizes:
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Higher dimension

The complex Abel-Jacobi map
AlJc : CH'(X)g — (H'©)Y/Hy(X,Z), DH/
D

generalizes:

Fich20—1 Vi)V . _ i
J(V) = T S FICHRE (Vo) = @isc HH(V).
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Higher dimension

The complex Abel-Jacobi map
AlJc : CH'(X)g — (H'°)Y/Hy (X, Z), DH/
D

generalizes:

Fich20—1 Vi)V . _ i
J(V) = T S FICHRE (Vo) = @isc HH(V).

AJe i CHO(V)o(C) — Jo(V), A [yia.
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Higher dimension

The complex Abel-Jacobi map

AJe : CH'(X)o — (H'0)Y/Hy (X, 2), DH/D
generalizes:
Jo(v) = Tt (VO piien2e (Vo) = @y HI(V).
AJc : CHE(V)o(C) — J°(V), A [y

A =0""Aisa2(d — c) + 1-differentiable chain on the real
manifold V(C) with boundary A.
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What do we need from V/q in order to construct a point on an elliptic curve?
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What do we need from V/q in order to construct a point on an elliptic curve?

Want that for some ¢ > 1 :

Gal(Q/Q) _
Vo(E) = HY(Eg, Qp)(1) = 7 HE72°T(Viy, Qp)(d +1—c).
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What do we need from V/q in order to construct a point on an elliptic curve?

Want that for some ¢ > 1 :

Gal(Q/Q) _
Vo(E) = HY(Eg, Qp)(1) = 7 HE72°T(Viy, Qp)(d +1—c).

Tate: there is M7 € CHY'~¢(V x E)(Q) inducing

CHY(V)o(C) 25 Jo(v)
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What do we need from V/q in order to construct a point on an elliptic curve?

Want that for some ¢ > 1 :

Gal(Q/Q) _
Vo(E) = HY(Eg, Qp)(1) = 7 HE72°T(Viy, Qp)(d +1—c).

Tate: there is M7 € CHY'~¢(V x E)(Q) inducing

CHY(V)o(C) 25 Jo(v)

A e CHC( V)o
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What do we need from V/q in order to construct a point on an elliptic curve?

Want that for some ¢ > 1 :

Gal(Q/Q) _
Vo(E) = HY(Eg, Qp)(1) = 7 HE72°T(Viy, Qp)(d +1—c).

Tate: there is M7 € CHY'~¢(V x E)(Q) inducing

CHY(V)o(C) 25 Jo(v)

A € CH(V)o — 7y A
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What do we need from V/q in order to construct a point on an elliptic curve?

Want that for some ¢ > 1 :

Gal(Q/Q) _
Vo(E) = HY(Eg, Qp)(1) = 7 HE72°T(Viy, Qp)(d +1—c).

Tate: there is M7 € CHY'~¢(V x E)(Q) inducing

CHY(V)o(C) 25 Jo(v)

A€ CHO(V)g — 7y s myA - T
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What do we need from V/q in order to construct a point on an elliptic curve?

Want that for some ¢ > 1:

Gal(Q
Vo(E) = Hiy(Eqn @p)(1) &9 pza-2e1 (v gp)(d+1-c).
Tate: there is M7 € CHY'~¢(V x E)(Q) inducing

CHY(V)o(C) 25 Jo(v)

5
T I mc
Alc

E(C) = C/Ag,

A € CHO(V)g — myA v AT v Pp = mg . (nyA-N°) € E
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Chow-Heegner points

Thus also want "non-trivial looking" null-homologous cycles
A € CH(V)o(K)

over our favorite number field.
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Chow-Heegner points

Thus also want "non-trivial looking" null-homologous cycles
A € CH(V)o(K)

over our favorite number field.

Like Heegner divisors D = ([7] — o0) € CH'(Xo(N))o(Ho. ).
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Chow-Heegner points

Thus also want "non-trivial looking" null-homologous cycles
A € CH(V)o(K)

over our favorite number field.
Like Heegner divisors D = ([7] — o0) € CH'(Xo(N))o(Ho. ).

Shimura varieties associated to a reductive group G,q host
special cycles.
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Example 1: modular and Shimura curves

E o of conductor N and V = Xo(N) or X§'" (N*).
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Example 1: modular and Shimura curves

E o of conductor N and V = Xo(N) or X§'" (N*).

Gal(Q/Q)
Forc =1, Vp(E) ~ Vi — Vp(Jo(N)) =~ H;t(V@, Qp)(1).
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Example 1: modular and Shimura curves

E o of conductor N and V = Xo(N) or X§'" (N*).

Gal(Q/Q)
Forc=1, Vo(E) = Vs Vp(do(N)) = HL(Vig, Qo)(1).

Tate proved by Faltings: there is a Hecke correspondence
Ne CH'(V x E)(Q) inducing
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Example 1: modular and Shimura curves

E o of conductor N and V = Xo(N) or X§'" (N*).

Gal(Q/Q)
Forc=1, Vo(E) = Vs Vp(do(N)) = HL(Vig, Qo)(1).

Tate proved by Faltings: there is a Hecke correspondence
Ne CH'(V x E)(Q) inducing

CH'(V)o(C) ¥ Jac(V)
Tl e
AJ(C

E(C) = C/Ng,

D= ([r] —o0) € CH'(V)g— Pp € E.
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Example 2: Kuga-Sato varieties

The universal elliptic curve is
™ V1 - X1(N)

with generic fiber 7*(x) = Ex, an elliptic curve with a N-torsion
point ty.
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Example 2: Kuga-Sato varieties

The universal elliptic curve is
™ V1 - X1(N)

with generic fiber 7*(x) = Ex, an elliptic curve with a N-torsion
point ty.

Vi(C) = Z2 x T1(N)\C x H*
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Example 2: Kuga-Sato varieties

The universal elliptic curve is
™ V1 - X1(N)

with generic fiber 7*(x) = Ex, an elliptic curve with a N-torsion
point ty.

Vi(C) = Z2 x T1(N)\C x H* = {(P, (E, 1))}, where P € E(C).
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Example 2: Kuga-Sato varieties

The universal elliptic curve is
™ V1 - X1(N)

with generic fiber 7*(x) = Ex, an elliptic curve with a N-torsion
point ty.

V4(C) = 72 x T1(N)\C x H* = {(P,(E, 1))}, where P ¢ E(C).
Forr > 1,

V,(C) = Z2" x T1(N)\C" x H*
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Example 2: Kuga-Sato varieties

The universal elliptic curve is
™ V1 - X1(N)

with generic fiber 7*(x) = Ex, an elliptic curve with a N-torsion
point ty.

V4(C) = 72 x T1(N)\C x H* = {(P,(E, 1))}, where P ¢ E(C).
Forr > 1,

Vi (C) = Z2 x T{(N)\C" x H* = {(P4, ..., Pr, (E, 1))}.

Henri Darmon and Victor Rotger Stark-Heegner points Arizona Winter School 2011



Example 2: Kuga-Sato varieties
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Example 2: Kuga-Sato varieties

The approach of M. Bertolini, H. Darmon and K. Prasanna:

Sri2(T1(N)) =~ eHA 2 (Ve),  1(q) — f(q)dz1...dzrdq/q.

Henri Darmon and Victor Rotger Stark-Heegner points Arizona Winter School 2011



Example 2: Kuga-Sato varieties

The approach of M. Bertolini, H. Darmon and K. Prasanna:

Sri2(T1(N)) =~ eHA 2 (Ve),  1(q) — f(q)dz1...dzrdq/q.

Let E/Q be an elliptic curve with CM by K = Q(v/—D).
Say D =11,19,43,67,163,50 Q ® E(Q) = Q - Pr.
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Example 2: Kuga-Sato varieties

The approach of M. Bertolini, H. Darmon and K. Prasanna:

Sri2(T1(N)) =~ eHA 2 (Ve),  1(q) — f(q)dz1...dzrdq/q.

Let E/Q be an elliptic curve with CM by K = Q(v/—D).
Say D =11,19,43,67,163,50 Q ® E(Q) = Q - Pr.

There is a projector € € Corr(E™") = CH/1(E™*1 x EM1):
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Example 2: Kuga-Sato varieties

The approach of M. Bertolini, H. Darmon and K. Prasanna:

Sri2(T1(N)) =~ eHA 2 (Ve),  1(q) — f(q)dz1...dzrdq/q.

Let E/Q be an elliptic curve with CM by K = Q(v/—D).
Say D =11,19,43,67,163,50 Q ® E(Q) = Q - Pr.

There is a projector € € Corr(E™") = CH/1(E™*1 x EM1):

G
eHg (EST)(r +1) S eH (Vo g)(r +1)
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Example 2: Kuga-Sato varieties

The approach of M. Bertolini, H. Darmon and K. Prasanna:

Sri2(T1(N)) =~ eHA 2 (Ve),  1(q) — f(q)dz1...dzrdq/q.

Let E/Q be an elliptic curve with CM by K = Q(v/—D).
Say D =11,19,43,67,163,50 Q ® E(Q) = Q - Pr.

There is a projector € € Corr(E™") = CH/1(E™*1 x EM1):
G
eHy (EET)(r+1) S eHL (Vo g)(r + 1)

Tale? 7 ¢ cHAH(EHT x V,)(K)
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Example 2: Kuga-Sato varieties

Xr = Er>< Vr
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Example 2: Kuga-Sato varieties

Xr = Ef X Vr,

N’ e CHH'(E™' x V,)(K)
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Example 2: Kuga-Sato varieties

Xr = Ef X Vr,

N’ e CH(E™ x V,)(K) = CH™(E x X;)(K);
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Example 2: Kuga-Sato varieties

Xr = Ef X Vr,

N’ e CH(E™ x V,)(K) = CH™(E x X;)(K);

CHr—H (Xr)o((c) Al Jr+1 (Xr)
| I mc
E =CH'(E)o(C) 25 C/Ae.

Henri Darmon and Victor Rotger Stark-Heegner points Arizona Winter School 2011



Example 2: Kuga-Sato varieties

Xr = Ef X Vr,

N’ e CH(E™ x V,)(K) = CH™(E x X;)(K);

CHr—H (Xr)o((c) Al Jr+1 (Xr)
| I mc
E =CH'(E)o(C) 25 C/Ae.

X: has dimension 2r 4+ 1 and hosts Heegner cycles of
codimension r + 1.
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Example 2: Kuga-Sato varieties

Like A, = diag(E") C E" x E" C E" x V.
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Example 2: Kuga-Sato varieties

Like A, = diag(E") C E" x E" C E" x V.

P! .= x'(Ay) é E(K), the Chow-Heegner point.
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Example 2: Kuga-Sato varieties

Like A, = diag(E") C E" x E" C E" x V.

P! .= x'(Ay) é E(K), the Chow-Heegner point.

PI',(C = 7T(C AJ(C(Ar)
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Example 2: Kuga-Sato varieties

Like A, = diag(E") C E" x E" C E" x V.

P! .= x'(Ay) é E(K), the Chow-Heegner point.

Prc = me Ado(A) = QF L [T (2 — 7Y fe(2)dz € C/Ag

(m—7)"
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Example 2: Kuga-Sato varieties

Like A, = diag(E") C E" x E" C E" x V.

P! .= x'(Ay) é E(K), the Chow-Heegner point.

wi) T —
Prc = mc Ale(By) = Q"B [T (2 — 7)'fe(2)dz € C/Ae

o

Numerically found that for odd r:

2rl(2
PI’,C:V_D'mr‘PEa m? ;27:_1\_/1_) ( 2r+1 r+1)€Z
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Example 2: Kuga-Sato varieties

Like A, =diag(E") C E" x E" C E" x V.

P! .= x'(Ay) é E(K), the Chow-Heegner point.

wi) T —
Prc = mc Ale(By) = Q"B [T (2 — 7)'fe(2)dz € C/Ae

o

Numerically found that for odd r:

> 2ri(2rvVD)’

PI’,C:V_D'mr‘PEa m, = QZF-H ( 2r+1 r+1)€Z

And proved a p-adic étale version of this.
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Example 3: triple products

Let E /g be an arbitrary elliptic curve, of conductor N.
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Example 3: triple products

Let E /g be an arbitrary elliptic curve, of conductor N.

Let Vig =V, x Vs x X, X = Xp(N) or XV~ (N*).
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Example 3: triple products

Let E /g be an arbitrary elliptic curve, of conductor N.
Let Vig =V, x V, x X, X = Xp(N) or X3 (NH).

N = diag(V,) x diag(X) € CH™2(V? x X2) = CH2(V x X).
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Example 3: triple products

Let E /g be an arbitrary elliptic curve, of conductor N.
Let Vig =V, x V, x X, X = Xp(N) or X3 (NH).

N = diag(V,) x diag(X) € CH™2(V? x X2) = CH2(V x X).

It yields
7 :CH™*2(V)y — Picg(X) LA
A — Pa = Xippropea Q)
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Example 3: triple products

dim(V) = 2r + 3 and there are several natural choices for

A € CH™2(V),.
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Example 3: triple products

dim(V) = 2r + 3 and there are several natural choices for

A € CH™2(V),.

For r = 0, the most natural one is Gross-Kudla-Schoen’s
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Example 3: triple products

dim(V) = 2r + 3 and there are several natural choices for

A € CH™2(V),.

For r = 0, the most natural one is Gross-Kudla-Schoen’s

A= Apz — Ao — Doz — Aqg + Aq + Ap + Ag € CHZ(X3)g
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Example 3: triple products

dim(V) = 2r + 3 and there are several natural choices for

A € CH™2(V),.

For r = 0, the most natural one is Gross-Kudla-Schoen’s
A= Apz — Ao — Doz — Aqg + Aq + Ap + Ag € CHZ(X3)g

Forr>1,Ar:=(e,6,1d)(Aqp1 23y — Af12}) € CH™3(V)o
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Example 3: triple products

Theorem (Darmon-R-Sols) P, := P,, € E(Q) satisfies
Pr=nPy, nre€Z,

with Py = 7 .(Kx), where Kx € Pic(X) is the canonical divisor.
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Example 3: triple products

Theorem (Darmon-R-Sols) P, := P,, € E(Q) satisfies
Pr=nPy, nre€Z,

with Py = 7 .(Kx), where Kx € Pic(X) is the canonical divisor.

In addition,
Po=>_ Py

where g runs through the set of eigenforms on X.
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Example 3: triple products

Theorem (Darmon-R-Sols) P, := P,, € E(Q) satisfies
Pr=nPy, nrelZ,

with Py = 7 .(Kx), where Kx € Pic(X) is the canonical divisor.

In addition,
Po=>_ Py

where g runs through the set of eigenforms on X.
Theorem (Yuan-Zhang-Zhang) P; # 0in Q ® E(Q) &

ords_1L(E,s) =1 and L(E ® sym?(g),2) # 0.
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