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Introduction

Some maps arising in mathematical physics are birational planar ones with a
rational first integral. This means that they preserve a foliation of the plane
given by algebraic curves. As a consequence of Hurwitz theorem if a planar
birational map is not globally periodic then each irreducible invariant curve is
of genus 0 or 1.

Theorem (Hurwitz)

The group of birational maps of a smooth algebraic curve of genus g ≥ 2
to itself is finite of order at most 84(g − 1).

In the case that the invariant foliation is given (generically) by genus 1 curves
(elliptic curves). Then the group structure of the elliptic foliation charac-
terizes the dynamics of any birational map preserving it.

Theorem ([3])

Any birational map F that leaves an elliptic curve E invariant can be
expressed in terms of the group law as either F : P 7→ P + Q or
F : P 7→ i(P ) + Q, where i is globally periodic of orders 2,3,4 or 6;
and + denotes the inner sum of E .

Recall the group law of an elliptic curve

Observe that F n(P ) = P + nQ, so E is full of p-periodic orbits iff pQ = 0,
that is, iff Q is in the torsion of (E ,+).

Example: The rotation number function of
2-periodic Lyness recurrences, [1]

We consider the 2-periodic Lyness’ equations

un+2 = an + un+1

un
where an =

a for n = 2` + 1,
b for n = 2`.

This equation can studied using the composition map:

Fb,a(x, y) := (Fb ◦ Fa)(x, y) =
(a + y

x
,
a + bx + y

xy

)
where Fa and Fb are the Lyness maps: Fα(x, y) =

(
y, α+y

x

)
, since

(u1, u2)
Fa−→ (u2, u3)

Fb−→ (u3, u4)
Fa−→ (u4, u5)

Fb−→ (u5, u6)
Fa−→ · · ·

Fb,a extends to CP 2 as F̃b,a ([x : y : t]) = [ayt + y2 : at2 + bxt + yt : xy] , and
it preserves the foliation given by

Ch = {(bx + at)(ay + bt)(ax + by + abt)− hxyt = 0}.

Some results

• For each h s.t. Ch is elliptic, then F̃b,a|Ch(P ) = P + H , where + is the
group law of Ch taking the infinite point V as the zero element.
• If a > 0 and b > 0, then for all h > hc = minQ+(V ), the curves Ch are
elliptic.
• The rotation number function θb,a(h) is analytic in [hc,+∞)
• If (a, b) 6= (1, 1), then ∃ p0(a, b) ∈ N, generically computable, s.t. for any
p > p0(a, b) ∃ at least an oval C+

h filled by p–periodic orbits.

Again F n(P ) = P + nH, so Ch is full of p-periodic orbits iff pH = V .

Following the guidelines of Bastien and Rogalski [2], to study the rotation
number function we look for a normal form for Ch instead of F̃ :

(Ch,+, V )
∼=−→ (EL,+, V )

F̃|Ch : P 7→ P + H → G|EL : P 7→ P + Ĥ

where EL is the Weierstrass Normal Form:
EL = {[x : y : t], y2t = 4x3 − g2 xt

2 − g3 t
3},

Because ∃ ω1 and ω2 depending on a, b and L and a lattice in C
Λ = {2nω1 + 2miω2 such that (n,m) ∈ Z2} ⊂ C,

such that the Weierstrass ℘ function relative to Λ gives a parametrization of
EL, given by

φ : T2 = C/Λ −→ EL

z −→
 [℘(z) : ℘′(z) : 1] if z /∈ Λ,

[0 : 1 : 0] = V if z ∈ Λ.
Hence ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3, since y2 = 4x3 − g2x− g3.
The oval C+

h corresponds with the bounded branch of EL; and [0, ω1] is projected
onto the unbounded semi-branch of EL with negative y–coordinates

Integrating the differential equation ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 on [0, u]:

u =
∫ +∞

℘(u)

ds√
4s3 − g2s− g3

=
∫ +∞

℘(u)

ds√
4(s− e1)(s− e2)(s− e3)

.

Since
G|EL : V 7→ V + Ĥ = Ĥ is a rotation of angle Θ(L) ∈

[
0, 1

2

]
,

and Ĥ has negative ordinate there is a parameter u = 2ω1Θ(L) such that
X(L) := ℘(2ω1Θ(L)), and using that e1 = ℘(ω1), we obtain

2Θ(L) =

∫ +∞

X(L)

ds√
(s− e1)(s− e2)(s− e3)∫ +∞

e1

ds√
(s− e1)(s− e2)(s− e3)

.

This expression gives the analyticity of the rotation number function and allows
to prove that if (a, b) 6= (1, 1), then the image of θb,a[hc,+∞) is an interval,
by studying its asymptotic behavior. 2
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