On Poncelet type maps

Anna Cima¹, Armengol Gasull¹, Víctor Mañosa²

¹Departament de Matemàtiques Universitat Autònoma de Barcelona

²Departament de Matemàtica Aplicada III Control, Dynamics and Applications Group (CoDALab) Universitat Politècnica de Catalunya.

9th International Conference on Difference Equations and Applications. October 19th–23th, 2009, Estoril, Portugal.

PONCELET'S PORISM

Poncelet's Porism

Given one ellipse inside another, if there exists one n-gon simultaneously inscribed in the outer and circumscribed on the inner, then any point on the boundary of the outer ellipse is the vertex of some n-gon.

A star 13-gon

Another 13–gon.

All points have the same property

PONCELET TYPE MAPS

Set Γ and γ two C^r -closed curves such that $\gamma \subset \operatorname{Int}(\Gamma)$.

Given $p \in \Gamma$ there are two points q_1, q_2 in γ such that $\overline{pq_1}, \overline{pq_2}$ are tangent to γ .

The *Poncelet map*, $P: \Gamma \to \Gamma$, associated to γ , Γ is

$$P_{\Gamma,\gamma}(p) = \overline{pq_1} \cap \Gamma,$$

where $\overline{pq_1} \cap \Gamma$ is the first point in $\{\overline{pq_1} \cap \Gamma, \overline{pq_2} \cap \Gamma\}$ starting from p, following Γ counterclockwise

PONCELET'S PORISM IN THE DISCRETE DYNAMICAL SYSTEM SETTING

By construction P can be seen as a C^r diffeomorphism of the topological circle and has associated a *rotation number*

$$\rho = \rho(P_{\Gamma,\gamma}) \in (0,1/2).$$

Notice that if $\rho \in \mathbb{R} \setminus \mathbb{Q}$ then it is well known (from the DDS theory) that $P_{\Gamma,\gamma}$ is conjugated to an irrational rotation.

With the above notation Poncelet's Porism asserts that

Poncelet's Porism

If γ and Γ are ellipses and $\rho \in \mathbb{Q}$ then the Poncelet map $P_{\Gamma,\gamma}$ is conjugated to a the rational rotation of angle $2\pi\rho$ in \mathbb{S}^1 . \Rightarrow Each orbit is periodic.

Example 1:

A 13-periodic orbit

Another 13-periodic orbit.

All points are PERIODIC because $P_{\Gamma,\gamma}$ is conjugated to a rational rotation

with rotation number
$$\rho(P_{\Gamma,\gamma}) = \frac{2}{13}$$
.

Example 2:

35 iterates of $P_{\Gamma,\gamma}$

150 iterates of $P_{\Gamma,\gamma}$

In this case the map $P_{\Gamma,\gamma}$ is an irrational rotation Each orbit fills densely Γ .

IS THE PONCELET PROPERTY TRUE FOR OTHER ALGEBRAIC OVALS?

NO

Theorem 1

Fix $\gamma = \{x^2 + y^2 = 1\}$. Then for any $m \in \mathbb{N}$, m > 2, there is an algebraic curve of degree m, containing a convex oval Γ , such that the Poncelet's map associated to γ and Γ has a RATIONAL rotation number and it is NOT conjugated to a rotation.

This result is consequence of

Proposition 2

Consider

$$\gamma = \{x^{2n} + y^{2n} = 1\}$$
 and $\Gamma = \{x^{2m} + y^{2m} = 2\}$ with $n, m \in \mathbb{N}$,

and let *P* be the Poncelet's map associated to them. Then $\rho_{n,m}(P) = 1/4$. Moreover, the map is conjugated a rotation if and only if n = m = 1.

Proof of Proposition 2: For any n and m, the Poncelet map P has the periodic orbit of period 4, given by

$$\mathcal{O} = \{(1,1), (-1,1), (-1,-1), (1,-1)\}.$$

Hence $\rho_{n,m}(P) = 1/4$.

The rest of the proof follows by straightforward computations imposing that $p_1 = (0, \sqrt{2m}) \in \Gamma$ must be a 4–periodic point.

Proof of Theorem 1: If *m* is even is a corollary of the Proposition 2.

If
$$m \ge 3$$
 is odd, notice that the sets $\{x^{2m} + y^{2m} - 2 = 0\}$ and $\{(x+10)(x^{2m} + y^{2m} - 2) = 0\}$ coincide in $\{x > -10\}$

So in both cases the Poncelet's maps coincide.

WHICH KIND OF DYNAMICS CAN APPEAR? AN EXAMPLE

Proposition 3

Consider

$$\gamma = \{x^2 + y^2 = 1\}$$
 and $\Gamma = \{x^{2m} + y^{2m} = 2\}$ with $m \in \mathbb{N}, m > 1$.

and let P be the Poncelet map associated to them. Then

- $\mathcal{O} = \{(1,1), (-1,1), (-1,-1), (1,-1)\}$ is a 4-periodic orbit of P
- $\rho(P) = 1/4$, and
- \mathcal{O} is the α and ω limit set of all the orbits of P.

Proof of Proposition 3:

Recall that:

•
$$\gamma = \{x^2 + y^2 = 1\}$$
 and

•
$$\Gamma = \{x^{2m} + y^{2m} = 2\}.$$

• Set
$$\tilde{\Gamma} = \{x^2 + y^2 = 2\}$$

• Let $\tilde{P}=\tilde{P}_{\tilde{\Gamma},\gamma}$ and $P=P_{\Gamma,\gamma}$ be the associated Poncelet maps.

- $\phi(p_1)$ is a bijection between Γ and $\tilde{\Gamma}$.
- Notice that $arg(q_2) > arg(\phi(p_2))$. That is $arg(\tilde{P}(q_1)) > arg(\phi(P(p_1)))$

This can be understood as a "delay" of P with respect to \tilde{P} which propagates.

PONCELET MAPS AS INTEGRABLE MAPS OF A SET OF \mathbb{R}^2

Recall that V is a FIRST INTEGRAL of F in a set of \mathbb{R}^2 if

$$V(F(p)) = V(p)$$
, for all p in \mathcal{U} .

This means that the orbits of *F* lie in the level sets of *V*.

In this talk a planar map is called INTEGRABLE if it has a first integral

Given two closed regular curves γ and $\Gamma_{k_0} = \{V(x,y) = k_0\}$, we can extend the construction of $P_{\Gamma_{k_0},\gamma}$ to the curves

$$\Gamma_k = \{V(x, y) = k\}$$

So we can consider PLANAR Poncelet type maps which are INTEGRABLE

Theorem 4

Let $F: \mathcal{U} \to \mathcal{U}$ be a diffeo. defined on an open set $\mathcal{U} \subset \mathbb{R}^2$ s.t.

- (a) It has a smooth first integral $V : \mathcal{U} \to \mathbb{R}$, having its level sets $\Gamma_k =: \{ p \in \mathcal{U} : V(p) = k \}$ as simple closed curves,
- (b) There exists a smooth function $\mu: \mathcal{U} \to \mathbb{R}^+$ such that for any $p \in \mathcal{U}$,

$$\mu(F(p)) = \det(DF(p))\,\mu(p). \tag{1}$$

Then the map F restricted to each Γ_k is conjugated to a rotation^a

^aThis is because F is the stroboscopic map of the flow of $\dot{p} = \mu(p) \left(-\frac{\partial V(p)}{\partial p_2}, \frac{\partial V(p)}{\partial p_1} \right)$.

It provides a way to check whether integrable planar maps F of the circle are conjugated to rotations or not, by studying the existence of solutions μ of (1)

A new proof (yet another) of Poncelet's Porism:

- Outer ellipse $\Gamma = \{x^2 + y^2 = 1\}$ (this assumption is not restrictive).
- Inner ellipse $\gamma = \{Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0\}.$

The PLANAR Poncelet map is defined in the open set of \mathbb{R}^2 , and it has the form

$$P(x,y) = \left(\frac{-N_1N_2 - 4N_3\sqrt{\Delta}}{M}, \frac{-N_1N_3 + 4N_2\sqrt{\Delta}}{M}\right)$$

Where N_1, N_2, N_3, M and Δ are polynomials in A, B, C, D, E, F, x and y.

P is integrable with invariant $V(x, y) = x^2 + y^2$, and

$$\mu(x,y) = \sqrt{(x^2 + y^2)(Ax^2 + Bxy + Cy^2 + Dx + Ey + F)}$$

is a solution of $\mu(F(p)) = \det(DP(p)) \mu(p) \Rightarrow$ (by Theorem 4) P is conjugated to a rotation.

How to find μ ? The existence μ for a map F is related with the existence of an invariant measure absolutely continuous with respect to the Lebesgue one $m(B) = \int_B \nu$

m is an invariant measure of F if and only if
$$m(F^{-1}(B)) = m(B)$$
 (*)

By using the change of variables formula (*) can be rewritten as,

$$m(F^{-1}(B)) = \int_{F^{-1}(B)} \nu = \int_{B} \nu = m(B) \Leftrightarrow \int_{B} \nu(F) \det(DF) = \int_{B} \nu \quad (**)$$

If
$$\mu(F) = \det(DF)\mu$$
, setting $\nu = \frac{1}{\mu} \Rightarrow m(B) = \int_{B} \frac{1}{\mu}$ is an invariant measure of F .

From King, 1994 we learned an invariant arclenght measure for the Poncelet maps in the cases of ellipses but it is not a planar measure.

By tuning king's arclenght measure we obtained a PLANAR measure and then we obtained μ .

BIBLIOGRAPHY

- Cima, Gasull, Mañosa. Studying discrete dynamical systems through differential equations, J. Differential Equations 244 (2008), 630–648.
- Cima, Gasull, Mañosa. *On Poncelet's maps*, Preprint 2009 arXiv 0812.2588v1 [Math.DS]
- King. *Three problems in search of a measure*, Amer. Math. Monthly 101, 609–628 (1994).
- Flatto. "Poncelet's Theorem", AMS, Providence R.I., 2009.
- Griffiths, Harris. *On Cayley's explicit solution to Poncelet's porism*, Enseign. Math. 24 (1978), 31–40.
- Schoenberg. "Mathematical time exposures." Mathematical Association of America, Washington, DC, 1982. 270 pp.
- Tabachnikov. "Billiards." Panor. Synth. No. 1. Edited by the Société Mathématique de France. (1995), 142 pp.
- Weisstein. "Poncelet's Porism." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/PonceletsPorism.html

THANK YOU FOR YOUR ATTENTION!