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PONCELET’S PORISM

Poncelet’s Porism

Given one ellipse inside another, if there exists one n-gon simultaneously inscribed in
the outer and circumscribed on the inner, then any point on the boundary of the outer
ellipse is the vertex of some n-gon.

A star 13–gon Another 13–gon.
All points have the same property
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PONCELET TYPE MAPS

Set Γ and γ two Cr –closed curves such that γ ⊂ Int(Γ).
Given p ∈ Γ there are two points q1, q2 in γ such that pq1, pq2 are tangent to γ.

The Poncelet map, P : Γ→ Γ, associated to γ, Γ is

PΓ,γ(p) = pq1 ∩ Γ,

where pq1 ∩ Γ is the first point in {pq1 ∩ Γ, pq2 ∩ Γ} starting from p, following Γ

counterclockwise
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PONCELET’S PORISM IN THE DISCRETE DYNAMICAL SYSTEM SETTING

By construction P can be seen as a Cr diffeomorphism of the topological circle and
has associated a rotation number

ρ = ρ(PΓ,γ) ∈ (0, 1/2).

Notice that if ρ ∈ R \Q then it is well known (from the DDS theory) that PΓ,γ is
conjugated to an irrational rotation.

With the above notation Poncelet’s Porism asserts that

Poncelet’s Porism

If γ and Γ are ellipses and ρ ∈ Q then the Poncelet map PΓ,γ is conjugated to a the
rational rotation of angle 2πρ in S1.⇒ Each orbit is periodic.
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Example 1:

A 13–periodic orbit Another 13–periodic orbit.

All points are PERIODIC because PΓ,γ is conjugated to a rational
rotation

with rotation number ρ(PΓ,γ) =
2

13
.
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Example 2:

35 iterates of PΓ,γ 150 iterates of PΓ,γ

In this case the map PΓ,γ is an irrational rotation

Each orbit fills densely Γ.
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IS THE PONCELET PROPERTY TRUE FOR OTHER ALGEBRAIC OVALS?

NO
Theorem 1

Fix γ = {x2 + y2 = 1}. Then for any m ∈ N, m > 2, there is an algebraic curve of
degree m, containing a convex oval Γ, such that the Poncelet’s map associated to γ
and Γ has a RATIONAL rotation number and it is NOT conjugated to a rotation.

This result is consequence of

Proposition 2

Consider

γ = {x2n + y2n = 1} and Γ = {x2m + y2m = 2} with n,m ∈ N,

and let P be the Poncelet’s map associated to them. Then ρn,m(P) = 1/4. Moreover,
the map is conjugated a rotation if and only if n = m = 1.
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Proof of Proposition 2: For any n and m, the Poncelet map P has the periodic orbit of
period 4, given by

O = {(1, 1), (−1, 1), (−1,−1), (1,−1)}.
Hence ρn,m(P) = 1/4.

The rest of the proof follows by straightforward computations imposing that
p1 = (0,

√
2m) ∈ Γ must be a 4–periodic point.

—————————————————————

Proof of Theorem 1: If m is even is a corollary of the Proposition 2.

If m ≥ 3 is odd, notice that the sets {x2m + y2m − 2 = 0} and
{(x + 10)

(
x2m + y2m − 2

)
= 0} coincide in {x > −10}

So in both cases the Poncelet’s maps coincide.
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WHICH KIND OF DYNAMICS CAN APPEAR? AN EXAMPLE

Proposition 3

Consider

γ = {x2 + y2 = 1} and Γ = {x2m + y2m = 2} with m ∈ N,m > 1.

and let P be the Poncelet map associated to them. Then

• O = {(1, 1), (−1, 1), (−1,−1), (1,−1)} is a 4-periodic orbit of P

• ρ(P) = 1/4, and

• O is the α and ω limit set of all the orbits of P.
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Proof of Proposition 3:

Recall that:
• γ = {x2 + y2 = 1} and

• Γ = {x2m + y2m = 2}.

• Set Γ̃ = {x2 + y2 = 2}

• Let P̃ = P̃Γ̃,γ and P = PΓ,γ be
the associated Poncelet maps.

• φ(p1) is a bijection between Γ and Γ̃.

• Notice that arg(q2) > arg(φ(p2)). That is arg(P̃(q1)) > arg(φ(P(p1)))

This can be understood as a “delay” of P with respect to P̃ which propagates.

Cima, Gasull, Mañosa (UAB-UPC) On Poncelet maps ICDEA 2009 10 / 15



PONCELET MAPS AS INTEGRABLE MAPS OF A SET OF R2

Recall that V is a FIRST INTEGRAL of F in a set of R2 if

V (F (p)) = V (p), for all p in U .

This means that the orbits of F lie in the level sets of V .

In this talk a planar map is called INTEGRABLE if it has a first integral

Given two closed regular curves γ and
Γk0 = {V (x , y) = k0}, we can extend the
construction of PΓk0

,γ to the curves

Γk = {V (x , y) = k}

So we can consider PLANAR Poncelet type maps which are INTEGRABLE
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Theorem 4

Let F : U → U be a diffeo. defined on an open set U ⊂ R2 s.t.

(a) It has a smooth first integral V : U → R, having its level sets
Γk =: {p ∈ U : V (p) = k} as simple closed curves,

(b) There exists a smooth function µ : U → R+ such that for any p ∈ U ,

µ(F (p)) = det(DF (p))µ(p). (1)

Then the map F restricted to each Γk is conjugated to a rotationa

aThis is because F is the stroboscopic map of the flow of ṗ = µ(p)
(
− ∂V (p)

∂p2
, ∂V (p)
∂p1

)
.

It provides a way to check whether integrable planar maps F of the circle are
conjugated to rotations or not, by studying the existence of solutions µ of (1)
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A new proof (yet another) of Poncelet’s Porism:

• Outer ellipse Γ = {x2 + y2 = 1} (this assumption is not restrictive).
• Inner ellipse γ = {Ax2 + Bxy + Cy2 + Dx + Ey + F = 0}.

The PLANAR Poncelet map is defined in the open set of R2, and it has the form

P(x , y) =

(
−N1N2 − 4N3

√
∆

M
,
−N1N3 + 4N2

√
∆

M

)

Where N1,N2,N3,M and ∆ are polynomials in A,B,C,D,E ,F , x and y .

P is integrable with invariant V (x , y) = x2 + y2, and

µ(x , y) =
√

(x2 + y2)(Ax2 + Bxy + Cy2 + Dx + Ey + F )

is a solution of µ(F (p)) = det(DP(p))µ(p)⇒ (by Theorem 4) P is conjugated to a
rotation.
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How to find µ? The existence µ for a map F is related with the existence of an invariant
measure absolutely continuous with respect to the Lebesgue one m(B) =

∫
B ν

m is an invariant measure of F if and only if m(F−1(B)) = m(B) (*)

By using the change of variables formula (*) can be rewritten as,

m(F−1(B)) =

∫
F−1(B)

ν =

∫
B
ν = m(B)⇔

∫
B
ν(F )det(DF ) =

∫
B
ν (∗∗)

If µ(F ) = det(DF )µ, setting ν =
1
µ
⇒ m(B) =

∫
B

1
µ

is an invariant measure of F .

From King, 1994 we learned an invariant arclenght measure for the Poncelet maps in
the cases of ellipses but it is not a planar measure.

By tuning king’s arclenght measure we obtained a PLANAR measure and then we
obtained µ.
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