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We study the set of periods of the 2-periodic Lyness’ equations

an—+ Uy
Unio = M, (1)
Un
where
[ a for n=20+1,
fis = { b for n=2¢, @)
and being (ui, ) € Q7; ¢ € Nand a> 0,b > 0.
v
This can be done using the composition map:
o _(a+y a+bx+y
Foa(x,y) = (Foo Fa)(xy) = (55 507, ®)
where F, and F, are the Lyness maps: F.(x, y) = (y, %2) . Indeed:
(ur, Us) 22 (U, us) 2, (Us, Us) 22 (U, s) 2, (s, Ug) 22 -
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The map Fp 4
e Is a QRT map whose first integral is (Quispel, Roberts, Thompson; 1989):
(bx + a)(ay + b)(ax + by + ab)

Vb,a(X, y) = Xy k)

see also (Janowski, Kulenovi¢, Nurkanovi¢; 2007) and (Feuer, Janowski, Ladas; 1996).
e Has a unique fixed point (xc, yc) € Q, which is the unique global minimum of Vj, 5 in Q*.

o Setting he := V}, a(Xc, ye), for h > he the level sets {V}, , = h} N O are the closed curves.

Ci == {(bx + a)(ay + b)(ax + by + ab) — hxy = 0} N Q7 for h > he.

The dynamics of Fp, , restricted to C;'" is
conjugate to a rotation with associated

rotation number 0p, 4(h).
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Theorem A
Consider the family Fp o with a,b > 0.

(i) If(a,b) #(1,1), then3 po(a, b) € N s.t. forany p > po(a, b), 3 at least an oval
C, filled by p—periodic orbits.

(ii) The set of periods arising in the family {Fy 2, @ > 0, b > 0} restricted to Q"
contains all prime periods except 2, 3, 4, 6, 10.

Corollary.

Consider the 2—periodic Lyness’ recurrence for a, b > 0 and positive initial conditions uy and us.

(i) If(a,b) #(1,1), then3d po(a, b) € N, s.t. for any p > py(a, b) 3 continua of initial
conditions giving 2p—periodic sequences.

(i) The set of prime periods arising when (a, b) € (0, c0)? and positive initial conditions are
considered contains all the even numbers except 4, 6, 8, 12, 20.

If a # b, then it does not appear any odd period, except 1.

The value py(a, b) is computable for an open and dense set in the parameter space.
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To compute the allowed periods, the main issues to take into account are:
 The fact that the rotation number function 6, 4(h) is continuous in [h¢, +o0).

e The fact that generically 0, 5(hc) # h lim 0y 5(h) = 3 I(a, b), a rotation interval.
) o b

Ita,b)

Proposition B.

1

1 1 2
lim 6, h) = o(a, b) := — arccos [ — | —2 , and lim 6 h)= =.
 Ob,alh) = ala, ) == 5 arcoos (5 [-2+ —]) JJm 04 =

h—hg Xe Ye
v
Corollary
Set I(a, b) = <cr(a, b), §> .
elfo(a,b) #2/5V6 € I(a, b), 3 an oval C;r s.t. Fb,a(C;) is conjugate to a rotation, with a rotation number 6, 5(h) = 6.
e In particular, V irreducible q/p € I(a, b), 3 periodic orbits of Fp, 5 of prime period p. )
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The periods of the family Fp a.

Using the previous results with the family a = b? we found that:

U I(b?,b) = (%,%) C U I(a,b) C U Image (0p,a (he, +00)) -

b>0 a>0,b>0 a>0,b>0

Proposition.

e Foreachin(1/3,1/2) 3a,b > 0 and an oval C;\, s.t. Fp o(C}) is conjugate to a
rotation with rotation number 6, 5(h) = 6.

e In particular, V' irreducible q/p € (1/3,1/2), 3 p-periodic orbits of Fp, 4

We'll know some periods of {Fp 4, a,b > 0}
=3
We know which are the irreducible fractions in (1/3,1/2)
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Lemma (Cima, Gasull, M; 2007)

Given (c,d); Letpy =2,p> = 3,p3, ..., Pn, - .. be all the prime numbers.
e Let py 1 be the smallest prime number satisfying that py.4 > max(3/(d — ¢), 2),
e Given any prime number pp, 1 < n < m, let s, be the smallest natural number such that p,s,” > 4/(d —c).

® Setpy = pf1 71p§271 .

sm—1

© Pm
Then, for any p > po 3 an irreducible fraction q/p s.t. q/p € (c, d).

Proof of Theorem A (ii):
e We apply the above result to (1/3,1/2). Vp € N, s.t. p > py

po:=2%.33.5.7.11.13.17 = 12252240,

3 an irreducible fraction q/p € (1/3,1/2).

e A finite checking determines which values of p < pg s.t. g/p € (1/3,1/2), resulting that there
appear irreducible fractions with all the denominators except 2, 3,4, 6 and 10.

® Proposition C = 3 a, b > 0 s.t. 3 an oval with rotation number 6, 5(h) = g/p, thus giving rise
to p—periodic orbits of £, , for all allowed p.

o Still it must be proved that 2, 3, 4, 6 and 10 are forbidden, since
I(a, b) C Image (eb,a (he, +oo)) l
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Continuity and asymptotic behavior of 0, 4(h).
The curves Cp, in homogeneous coordinates [x : y : t] € CP?, are

Ch = {(bx + at)(ay + bt)(ax + by + abt) — hxyt = 0}.
The points H=1[1:0:0]; V=[0:1:0]; D=[b: —a: 0] are common to all curves

Vv
D
<
Proposition
Ifa>0andb >0, and for all h > he, the curves Cy, are elliptic. J
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Fp.a extends to CP2 as Fy o ([x : y : ]) = [ayt + y2 : at? + bxt + yt : xy] .
Lemma. Relation between the dynamics of Fp, 4 and the group structure of Cp, (*)

For each hs.t. Cp, is elliptic, B
Fb,a\gh(P) =P+ H

Where -+ is the addition of the group law of Cj, taking the infinite point V as the zero element.

14
Observe that
P*H P H
F"(P)= P + nH,
(o) (7,, is full of p-periodic orbits <
pH =V
(PHH)*V=P+H] i.e. His a torsion point of Cp,.
F(P)

(*) Birational maps preserving elliptic curves can be explained using its group structure (Jogia, Roberts, Vivaldi; 2006).
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Instead of looking to a normal form for F we look for a normal form for Ch.

(5,,,+,V) = (§L,+,V)
?Igh:P’_’PJFH — é|£L:Pr—>P+I:I

Where E‘L is the Weierstrass Normal Form which in the affine plane is:
S={y=4x-gx—g}
with g; := gi(a, b, h).
WHY?
@ Because we can parameterize it using the Weierstrass e function...

@ ...that gives an integral expression for the rotation number function.

/+oo dS
X(L)\/4S® — S — 03
20(L) = Ob,a(h) ~ O(L)

where
+oo dS

e, VA4SB —go5—0s

© The asympitotics of this integral expression can be studied.

This scheme was used in (Bastien, Rogalski; 2004).
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The Weierstrass normal form of Cy, is
E={yP=4x-gpx-g}

where
71L87- ) and gs— L‘zn» U
92—@ +;P:(avﬁ) al 93—@ - +iz:;5q,(a’ﬂ) s
being
pr(ab)=  —4(a+pB+1),
pe(a,b) = 2(3(c— B2 +2(a+B8)+3),
ps(ab)= —4(a+B—1)(a? —4Ba+p2—1),
pa(a,b) = (a+B8—1)*.
and

qii(a,b)= 6(a+p+1),

aby= 3 75a2+2aﬂ756276a76B75)

a,b)= 4(50% — 12023 — 12082 + 53 + 302 — 30 + 362 + 3a +35+5)

gs(a,b) = 3(—5a*+ 16038 — 300232 + 16a8° — 58 + 4a°
—12a2,3—12a,32+453+2a2—8aﬁ+252+4a+45—5)

a(ab)= 6(a®—4ap+p?—1)(a+p-1)°

g(a,b)= —(a+p8—1P°

where a = a/b? and b/a? and L — +o00 < h — +oo.
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Since §L = T2 = C/A, the Weierstrass g function relative to a lattice A gives the parametrization of §L.

¢: T2=C/N — &
z — { @@ itandzg A [0:1:0/=TVitzen,

Hence g)’(z)2 = 4p(z)3 — gop(2) — g3 since y2=4x® — 92 X — g3, and integrating on [0, u]:

() u /+oo ds
* = e
oW /453 — gps — g

20, C/A €

. . i

20,0(L) @, 20,

. E‘SL is a rotation with ©(L) € [0, %) ,and G‘SL(AV) —V+H=H

e H has negative ordinate = is given by u = 2w, ©O(L) and its abscissa is X(L) = ©(2w©(L)). Hence from (*):

(1) /+oo ds

ey = p(wq o

e ds B \/453 —J25—03 4

201O(L) = / s = 20(L) = —— - ~ 2
X \/433 — 05— 03 / 2

e \/453—ggs—g3
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