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1. INTRODUCTION

We study the set of periods of the 2-periodic Lyness’ equations

an + Unt1
Upyz = "7”7 (1)
Un

where

[ a for n=20+1,
a"_{b for n=2¢, @)

and being (u1, ) € Q" £ € Nand a> 0,b > 0.

This can be done using the composition map:

)

Foalxy) i= (Foo Fa)(x.y) = (22, 2E05EY), @

where F, and F, are the Lyness maps: F.(x, y) = (y, %2Y) . Indeed:

F. F F. F F.
(Us, Uz) =25 (Up, Us) 2 (Us, Us) 2 (Ua, Us) —2 (Us, Ug) —2 -- -
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The map Fp 4
e Is a QRT map whose first integral is (Quispel, Roberts, Thompson; 1989):
(bx + a)(ay + b)(ax + by + ab)

Vb,a(xv y) = Xy )

see also (Janowski, Kulenovi¢, Nurkanovi¢; 2007) and (Feuer, Janowski, Ladas; 1996).
e Has a unique fixed point (xc, yc) € Q, which is the unique global minimum of Vj, 5 in Qt.

o Setting he := V} a(Xc, ye), for h > he the level sets {V}, , = h} N QT are the closed curves.

Cif = {(bx + a)(ay + b)(ax + by + ab) — hxy = 0} N Q7 for h > he.

The dynamics of Fp, , restricted to C; is
conjugate to a rotation with associated

rotation number 6, 5(h).
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Theorem A
Consider the family Fp 4 with a,b > 0.

(i) If(a,b) #(1,1), then 3 po(a, b) € N, generically computable, s.t. for any
p > po(a, b) 3 at least an oval C;; filled by p—periodic orbits.

(ii) The set of periods arising in the family {Fy 2, @ > 0, b > 0} restricted to O
contains all prime periods except 2, 3, 4, 6, 10.

Corollary.

Consider the 2—periodic Lyness’ recurrence for a, b > 0 and positive initial conditions uy and us.

(i) If(a,b) # (1,1), then3 py(a, b) € N, generically computable, s.t. for any p > po(a, b) 3
continua of initial conditions giving 2p—periodic sequences.

(i) The set of prime periods arising when (a, b) € (0, c0)? and positive initial conditions are
considered contains all the even numbers except 4, 6, 8, 12, 20.

If a # b, then it does not appear any odd period, except 1.
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Digression: why to focus on the 2-periodic case?

Because of computational issues, and because is one of the few integrable ones. For each k, the
composition maps are
Fii := Fay,....ap,ay = Fag 0 -+ 0 Fay 0 Fa (4)

where
Fa(x,y) = (y, #) and ay, a», . .., a, are a k-cycle.

The fiaure summarizes the situation.

All k k=5 k¢ {1,2,8,5,6,10}(")

P
The cases 1,2,3 and 6 have first integrals given by V(x,y) = % (Cima, Gasull, M; 2012b).

(*) This phase portraits are the ones of the DDS associated with the recurrence obtained after the change z, = log(up).
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2. THE STRATEGY: analysis of the asymptotic behavior of 0y, 4(h).

Ifa,b)

The main issues that allow us to compute the allowed periods are:

@ The fact that the rotation number function 0p,a(h) is continuous in [hg, 4+-00).
e The fact that generically 6y, 5(hc) # . Iinl 0p,a(h) = 3 (a, b), a rotation interval.
—>+00

Vo € I(a, b), 3 at least an oval C; s.t. Fp , restricted to the this oval is conjugate to a rotation,
with a rotation number 6, 5(h) = 0

In particular, for all the irreducible g/p € I(a, b), 3 periodic orbits of F, 5 of prime period p.
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Proof of Theorem A (i).

Proposition B.

2
li 0p a(h) = =
h—!Too b,a( ) 5

1 1 E
i h) = =2 2| '
erf;,c 0p,a(h) = o(a, b) o 2ISCOS (2 |: + Xc ,Vc])

Theorem C.

Set I(a, b) := <o(a, b), §> .
Ifo(a,b) # 2/5, for any fixed a,b > 0, and any 0 € I(a, b), 3 at least an oval C,J; s.t. Fb,a(c,f) is
conjugate to a rotation, with a rotation number 6, 5(h) = 6.

Which are the periods of a particular Fp, ,? < Which are the irreducible fractions in /(a, b)?

e If o(a, b) # 2/5, it is possible to obtain constructively a value py s.t. for any r > pg 3 an
irreducible fraction gq/r € I(a, b).

e A finite checking determines which values of p < pg are s.t. 3 g/p € I(a, b).

o Still the forbidden periods must be detected. Since /(a, b) C Image (6p, 4 (hc, +00)).

v

Bastien, Mafiosa & Rogalski (Paris 6-UPC) 2-periodic Lyness’ equations 18th ICDEA 7/20



Generically?
Set P :={(a,b), a,b > 0}:

o(ab)>2/5

o(ab)<2/5

The curve o(a, b) = 2/5 for a, b > 0 is given by

t37¢2 ¢47t3

r::{o(a,b):2/5,a,b>0}:{(a,b):( g >,te(¢%,¢%)}c

Of course P \ T is open and dense in P

P.
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3. The periods of the family F, 5. Proof of Theorem A (ii)

Using the previous results with the family a = b? we found that:

U I(b?,b) = (%,%) C U I(a,b) C U Image (0p,a (he, +00)) -

b>0 a>0,b>0 a>0,b>0

Proposition D.

Foreach 6 in(1/3,1/2) 3 a,b > 0 and at least an oval C;", s.t. F 2(C}") is conjugate
to a rotation with rotation number 6, ,(h) = 6.

In particular, ¥ irreducible q/p € (1/3,1/2), 3 periodic orbits of Fy 5 of prime period p.

We'll know some periods of {Fp 4, a,b > 0}
=3
We know which are the irreducible fractions in (1/3,1/2)
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Lemma (Cima, Gasull, M; 2007)
Given (c,d); Letpy =2,pp = 3,p3, ..., Pn, . . . be all the prime numbers.
Q et Pm+1 be the smallest prime number satisfying that py,41 > max(3/(d — ¢), 2),
@ Given any prime number p,, 1 < n < m, let s, be the smallest natural number such that p,s,” > 4/(d —c).

51 —1 sp—1
@ Setpy = (L

Sm—1

* Pm

Then, for any p > po 3 an irreducible fraction q/p s.t. q/p € (c, d).

Proof of Theorem A (ii):
o We apply the above result to (1/3,1/2). Vp € N, s.t. p > pp

po:=2%.33.5.7.11.13.17 = 12252240,

3 an irreducible fraction q/p € (1/3,1/2).

o A finite checking determines which values of p < py € (1/3,1/2), resulting that there appear
irreducible fractions with all the denominators except 2, 3,4, 6 and 10.

e Proposition C = 3 a, b > 0 s.t. 3 an oval with rotation number 6, 5(h) = g/p, thus giving rise
to p—periodic orbits of F, 5 for all allowed p.
o Still it must be proved that 2, 3, 4, 6 and 10 are forbidden, since

I(a, b) C Image (Gb,a (he, +00)) [ |
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4. Back to the rotation number: an algebraic-geometric approach.
The curves Cp, in homogeneous coordinates [x : y : t] € CP?, are

Ch = {(bx + at)(ay + bt)(ax + by + abt) — hxyt = 0}.

The points H=[1:0:0]; V=[0:1:0]; D=[b: —a: 0] are common to all curves

Vv
D
<
Proposition
Ifa> 0and b> 0, and for all h > he, the curves Cp, are elliptic. J
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Fp.a extends to CP2 as Fy o ([x : y : ]) = [ayt + y2 : at? + bxt + yt : xy] .
Lemma. Relation between the dynamics of Fp, 4 and the group structure of Cp, (*)

For each hs.t. Cp, is elliptic, B
Fb,awgh(P) =P+ H

Where -+ is the addition of the group law of Cj, taking the infinite point V as the zero element.

1%
Observe that
P*H P H
F(P) = P+ nH,
so Cp, is full of p-periodic orbits iff
pH =V
(P*H)*V=P+H i.e. His a torsion point of Cp,
F(P)

(*) Birational maps preserving elliptic curves can be explained using its group structure (Jogia, Roberts, Vivaldi; 2006).
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How to prove that limy_,o. 0y a(h) = 2/57

Instead of looking to a normal form for F we look for a normal form for C~,,.
(5h7 +7 V) E_) (gLy +7 /\7)

A

F.:PsP+H — G, P—P+H
¢ L

Where §L is the Weierstrass Normal Form:

E={lx:y 1], Yt=4x>—gxt®? — g t°},

WHY?

@ Because we can parameterize it using the Weierstrass e function...
@ ...that gives an integral expression for the rotation number function.

© The asympitotics of this integral expression can be studied.

This scheme was used in (Bastien, Rogalski; 2004).
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Proof of Proposition B.

The Weierstrass normal form of Cy, is
SL = {.y2 :4X3 792(a357L)X7g3(a7ﬁ7L)}
where
1 8 3 1 R 11 4 ;
%= 15 <L +Zp,(a B)L> and gg = T ( L +i§q,(a,ﬁ)L ,
being
pr(a,b) = —4(a+pB+1),
ps(ab) = 2 (3(a— B2 +2a+p)+3),
ps(a,b) = —4(a+p8—1)(a®—4pa+p? 1),
pa(a,b) = (a+p8—1)*.
and
qi1(a, b) = 6 oz+,3+1
Gio(a, b) = —502 + 2a5 — 582 — 6o — 63 — 5)
qe(a, b) = 5a® — 120%8 — 1206% + 56% + 30% — 308 + 362 + 30 + 36 +5)
as(a, b) = —50% 4+ 16a%8 — 300232 + 16a8% — 58* + 4a°

12028 — 12082 + 488 + 202 780¢B+252+4a+4675)
qr(a, b) = 6(a274a6+6271)(a+571)3
g(ab)= —(a+p—1°

where o = a/b® and b/a® and L — 4o0 <> h — 4o0.
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Step 1: parametrization.
& ={y=4x-gx—-g}
3 wy and w2 depending on «, 8 and L and a lattice in C

A = {2nwy + 2miwy such that (n, m) € Z°} c C,

such that the Weierstrass g function relative to A

o=zt = |atap )

AeA\{0}

gives a parametrization of £;. This is because the map

¢: T>=C/N — &
[o(2) : ¢/(2) : 1] iz ¢ A,
‘ - { 0:1:0]=V if zeA,
is an holomorphic homeomorphism, and therefore

©'(2)° = 4p(2)° — gp(2) —
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e The oval C, corresponds with the bounded branch of &;.
e The parametrization is s.t. [0, w1] is projected onto the real unbounded semi-branch
of & with negative y—coordinates: so p(w1) = ey and Iim0 p(U) = +oo:

u—

20, A €,

L . o(u)

Integrating the differential equation ¢'(2)? = 4p(2)* — g2p(2) — gs on [0, u]:

+oo +oo ds
/@(u \/433 025 — gg W \/4(s—er)(s— e)(s — &)
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Step 2: towards an integral expression.
Since

G‘EL : Vs V 4+ H=H isarotation of rot. num. ©(L) € {O, %),

and since H has negative ordinate, it corresponds with a parameter u such that
u=2wO(L).
The abscissa of H is then given by

X(L) = p(210(L)).

20, C/A €,

MR f_\ N X
N4

20,0(L) @, 20,
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Since

X(L) = p(2w10(L)), )
using the integral expression (5):
Hoo ds too ds
— 20.)1@ L -
O ey ey o e R ey =y o ey

hence, since e; = p(w1), using again (5):

/*“’ ds
xw) /(s — e1)(s — e)(s — es)
e ds

e V(s—er)(s—e)(s— &)

20(L) =
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Step 4: asymptotic analysis.

€1—€3
/\/ v du
= 2 2 2
Using { s=e;+1/r2 and so(l) = 1.0 VO F+ ) Few?)

rvei—e=u Foo du
0o V(1 +u3)( +eu?)

Studying the asymptotics of ey — e3, v := X(L) — ey, and ¢ := (1 — e2)/(e1 — e3), the main

computational obstruction, we can apply...

Lemma (Bastien, Rogalski; 2004)

Let X, e, v be positive numbers. For any map ¢(<) such that Iim0 ¢(e) = 0,and X\ + ¢(e) > 0, set
E—>

Ato(e)

atele) du 400
N(e, A, v) = T andD(e) =
o /0 (14 u?)(1 + eu?) : /0

du
V(4 e+ 5u2).

Then D(g) ~ (1/2)In(1/¢), and if v < 1/2 we have N(e, A, v) ~ ~In(1/<), where ~ denotes the equivalence with the

leading term of the asymptotic development at zero.

...obtaining

N(e,A2/5) Zin(1/e) 4

20(L) = = lim o) =2/ |

D(e) in(1/e) 5
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