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Universitat Autònoma de Barcelona

2Departament de Matemàtica Aplicada III
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1. DEFINITION AND FIRST DYNAMICAL INTERPRETATION

Through all the talk F : U ⊂ Rn → U , will be a diffeomorphism

A vector field X is said to be a Lie symmetry of F if it satisfies

X (F (x)) = (DF (x)) X (x) for all x ∈ U . (1)

Which means that ẋ = X (x) is invariant under the change of variables
given by F ,or in other words

The dynamics of X and F are related in in the following sense:
F maps any orbit of the ẋ = X (x), to another orbit of this system.
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Theorem 1 (Translation–like dynamics).
Let X be a Lie Symmetry of a diffeo F : U → U .

Let γ be an orbit of X invariant under F . Then,

F|γ is the τ−time map of the flow of X , that is

F (p) = ϕ(τ, p).

(a) If γ ∼= {p} (isolated) then p is a fixed point of F .

(b) If γ ∼= S1, then F|γ is conjugated to a rotation,with rotation number
ρ = τ/T , where T is the period of γ.

(c) If γ ∼= R, then F|γ is conjugated to a translation of the line.
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Example: Consider the Gumovski–Mira map:

F (x , y) =

(
y ,−x +

α + βy
1 + y2

)
It has the first integral

V (x , y) = x2y2 + (x2 + y2)− βxy − α(x + y)

For α = 0 and β > 2, its level sets are

X = V ·
(
−Vy

∂
∂x + Vx

∂
∂y

)
is a Lie Symmetry of F .
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2. THE INTEGRABLE CASE.

A diffeo F : U ⊂ Rn → U is INTEGRABLE if there exist n − 1
functionally independent first integrals V1, . . . , Vn−1.

In the integrable case, natural candidates to be Lie Symmetries
have the form

Xµ(x) = µ(x)
(
−∂V1(x)

∂x2
, ∂V1(x)

∂x1

)
if n = 2, and

Xµ(x) = µ(x) (∇V1(x)×∇V2(x)× · · · × ∇Vn−1(x)) if n > 2.

where × means the cross product in Rn.

which condition must satisfy µ(x)?
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A. Cima, A. Gasull & V. Mañosa (UAB-UPC) Lie Symmetries and DDS BVP’s Conference 5 / 24



Theorem 2.
Let F : U → U be an integrable diffeo, the vector fields

Xµ(x) = µ(x)

(
−∂V1(x)

∂x2
,
∂V1(x)

∂x1

)
if n = 2, and

Xµ(x) = µ(x) (∇V1(x)×∇V2(x)× · · · × ∇Vn−1(x)) if n > 2

are Lie Symmetries of F if and only if

µ(F(p)) = −det(DF(p))µ(p) ⇔ X (F ) = DF · X .

Moreover, set V = (V1, . . . , Vn−1).If the number of connected
components of Vp := {x |V (x) = V (p)} is finite then

For each regular orbit of X , γp ⊂ Vp of X , there exist m such that γp is
invariant by F m,and the dynamics of F m restricted to γp is
translation-like.
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Corollary 3 (integrable area preserving maps).
Let F : U ⊂ Rn → U , be an integrable area preserving map, i.e.
det(DF (x)) ≡ 1.
The vector field Xµ, with µ(x) = Φ(V1(x), V2(x), . . . , Vn−1(x)), is a Lie
symmetry for any any smooth function Φ : Rn−1 → R,

Corollary 4 (a class of integrable rational difference equations)

Consider F (x1, x2, . . . , xn) =
(

x2, x3, . . . , xn,
R(x2,x3,...,xn)

x1

)
, Integrable.

The vector field Xµ, with µ(x) = x1x2 · · · xn is a Lie symmetry.

This result has been the key to study the dynamics of some difference
equations of the form xn+k =

R(xn+1,xn+2,...,xn+k−1)
xn

for n = 2 and 3.
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3. THE LYNESS’ MAPS

The difference equations, and their associated maps:

yn+2 = a+yn+1
yn

with associated map F2(x , y) =
(
y , a+y

x

)
,

yn+3 = a+yn+1+yn+2
yn

with associated map F3(x , y , z) =
(
y , z, a+y+z

x

)
for a > 0, are paradigmatic examples of integrable DDS, like the Mc.
Millan or the QRT maps...
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The Lyness’ map F2(x , y) =
(
y , a+y

x

)
, has a first integral

V (x , y) =
(x + 1)(y + 1)(a + x + y)

xy
.

El Corollary 4 gives us the Lie Symmetry

X2 =

(
(x + 1)(a + x − y2)

y

)
∂

∂x
−
(

(y + 1)(a + y − x2)

x

)
∂

∂y
,
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Zeeman (1996, unpublished) and also Bastien and Rogalski
(2004) proved (using algebraic geometry) that the dynamics on
each closed curve is conjugated to a rotation.

Beukers and Cushman (1998) From Lie Symmetry

X2 =

(
(x + 1)(a + x − y2)

y

)
∂

∂x
−
(

(y + 1)(a + y − x2)

x

)
∂

∂y
,

but using the abelian integrals technique, proved that the rotation
number is a monotonic function of the energy.

After Zeeman (1996) and Bastien and Rogalski (2004), the
periods that can appear are well known.

A. Cima, A. Gasull & V. Mañosa (UAB-UPC) Lie Symmetries and DDS BVP’s Conference 10 / 24



Zeeman (1996, unpublished) and also Bastien and Rogalski
(2004) proved (using algebraic geometry) that the dynamics on
each closed curve is conjugated to a rotation.

Beukers and Cushman (1998) From Lie Symmetry

X2 =

(
(x + 1)(a + x − y2)

y

)
∂

∂x
−
(

(y + 1)(a + y − x2)

x

)
∂

∂y
,

but using the abelian integrals technique, proved that the rotation
number is a monotonic function of the energy.

After Zeeman (1996) and Bastien and Rogalski (2004), the
periods that can appear are well known.
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The third order Lynes–type equation

yn+3 =
a + yn+1 + yn+2

yn
,

is a paradigmatic example of integrable third order difference equations.

It belongs to the list given by Hirota et al. (2001).

The map

F3(x , y , z) =
�

y , z,
a + y + z

x

�

has two functionally independent first integrals:

V1(x , y , z) =
(x + 1) (y + 1) (z + 1) (a + x + y + z)

xyz
,

V2(x , y , z) =
(1 + y + z)(1 + x + y)(a + x + y + z + xz)

xyz
.

and Lie symmetry

X3 = (x+1)(1+y+z)(a+x+y−yz)
yz

∂
∂x + (y+1)(x−z)(a+x+y+z+xz)

xz
∂
∂y + (z+1)(1+x+y)(xy−y−a−z)

xy
∂
∂x .
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Generic intersection of two energy levels of F3

We will denote Ik ,h = {V1 = k} ∩ {V2 = h}.
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Invariant sets of F3 and F 2
3

G := {(x , y , z) ∈ O+ such that G(x , y , z) = 0}, and
L := {(x , (x + a)/(x − 1), x) ∈ R3 such that x > 1}
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Orbits of the map F 2
3

Observe a 15–periodic orbit in G.
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From Corollary 4, F3 has the following Lie Symmetry

X3 = µ · (∇V1 ×∇V2)

where

µ(x , y , z) = xyz

X3 = (x+1)(1+y+z)(a+x+y−yz)
yz

∂
∂x + (y+1)(x−z)(a+x+y+z+xz)

xz
∂
∂y +

(z+1)(1+x+y)(xy−y−a−z)
xy

∂
∂x .
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Using the Lie Symmetry X3, we have obtained the following results (among
others)

Theorem A
Except at the fixed point, and a curve L, filled of 2-periodic points of F , we
have:

The restriction of F 2 on Ik,h ∩ {G > 0} or on Ik,h ∩ {G < 0} is conjugated
to a rotation on the circle.

The restriction of F on Ik,h ∩ {G = 0} is conjugated to a rotation on the
circle. If there exists a periodic orbit in O+ of odd period, it must be
contained in {G = 0}.

Theorem B

Set ρa := 1
2π arccos

(
(1−a)

√
1+a

2(1+
√

1+a)(a+1+
√

1+a)

)
a > 0. For each a 6= 1 there are

initial conditions outside G.
ρF 2(p) ∈

( 1
4 , ρa

)
, if a > 1, and ρF 2(p) ∈

(
ρa,

1
4

)
, if 0 < a < 1.

At this point it is possible to determine the possible periods applying a finite algorithm.
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HIGHER DIMENSIONAL CASES

Fk (x1, . . . , xk ) =

(
x2, . . . , xk ,

a +
∑k

i=2 xi

x1

)
, with a ≥ 0.

It has the following functionally independent first integrals

V1(x) =

(
a +

k∑
i=1

xi

)(
k∏

i=1

(xi + 1)

)
/(x1 · · · xk )

and

V2(x) =

(
a +

k∑
i=1

xi + x1xk

)(
k−1∏
i=1

(1 + xi + xi+1)

)
/(x1 · · · xk ).

Gao et al. (2004) have given a third functionally independent first
integral for k ≥ 5, but

for k > 3, Fk seems to be not–integrable anymore
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Theorem 5 (Lie Symmetry in the general case).

For k ≥ 3, the vector field Xk =
∑k

i=i Xi
∂

∂xi
, is a Lie symmetry for the

k -dimensional Lyness’ map, where

X1(x) =
(x1 + 1)

hQk−1
i=2 (1 + xi + xi+1)

i
(a +

Pk−1
i=1 xi − x2xk )Qk

i=2 xi
,

Xm(x) =
(xm + 1)

hQk−1
i=1,i 6=m−1,m(1 + xi + xi+1)

i
(a +

Pk
i=1 xi + x1xk )(xm−1 − xm+1)Qk

i=1,i 6=m xi
,

for all 2 ≤ m ≤ k − 1, and

Xk (x) = −
(xk + 1)

hQk−2
i=1 (1 + xi + xi+1)

i
(a +

Pk
i=2 xi − x1xk−1)Qk−1

i=1 xi
.
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Remember that for k > 3, Fk seems to be not–integrable anymore

Conjecture 1 (Number of first integrals), GKI–CGM

Both Fk and their associated Lie Symmetries Xk have exactly E(k+1
2 )

first integrals.

Conjecture 2 (Topology and Dynamics), CGM-BR
For k = 2`, most of the orbits lie on invariant manifolds which are
diffeomorphic to `–dimensional tori, S1 ×

`)
· · · × S1.

For k = 2` + 1, most of the orbits lie on two diffeomorphic
`–dimensional tori S1 ×

`)

· · · × S1, separated by the invariant set G.
Moreover these orbits jump from one of these tori to the other one
and viceversa.

In the above cases F (resp F 2), are conjugated to

R(z1, . . . , z`) =
(

z1e2πiρ1 , . . . , z`e2πiρ`

)
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Construction of the Lie symmetry

Xk (Fk ) = DFk · Xk

writes as
X1(F )
X2(F )

...
Xk (F )

 =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

−a+
Pk

i=2 xi
x2

1

1
x1

· · · 1
x1




X1
X2
...

Xk

 .

Hence it is necessary that

Xi+1 = Xi(F ), for i = 1, . . . , k − 1,

and the “compatibility condition”:

Xk (F ) = −

(
a +

∑k
i=2 xi

x2
1

)
X1 +

1
x1

[
k∑

i=2

Xi

]
.
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If we assume that both first integrals intersect transversally on Ch,k , a
connected component of Ih,k ,(*) then Ch,k is diffeomorphic to a torus.

(*) But we have failed to proof that this happens.

Projections into R3 of the flow of the Lie symmetry X4, and the orbit of the Lyness’
map, F4.

Numerics evidence that we cannot apply Theorem 1.
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From Bastien & Rogalski (2008) each connected component of Ih,k (namely Ch,k )
is compact.

If {V1 = h} and {V2 = k} intersect transversally on Ch,k , then for all points

Rank
�

(V1)x (V1)y (V1)z (V1)t

(V2)x (V2)y (V2)z (V2)t

�
= 2.

This fact implies that the dual 2–form associated to the 2–field ∇V1 ∧∇V2 is
nonzero at every point of Ch,k ,and therefore it is orientable.

The unique equilibrium point of X4 in Q+ is the fixed point of F .

Hence X4|Ch,k has no equilibrium points, and therefore the Poincaré–Hopf
formula gives:

0 = i(X4|Ch,k ) = χ(Ch,k ) = 2− 2g ⇒ g = 1.

An orientable, compact, connected surface of genus one is a TORUS, as we
wanted to prove.
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formula gives:

0 = i(X4|Ch,k ) = χ(Ch,k ) = 2− 2g ⇒ g = 1.

An orientable, compact, connected surface of genus one is a TORUS, as we
wanted to prove.
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formula gives:

0 = i(X4|Ch,k ) = χ(Ch,k ) = 2− 2g ⇒ g = 1.

An orientable, compact, connected surface of genus one is a TORUS, as we
wanted to prove.
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Para k = 5 existe una nueva integral primera V3.

If we assume that the three first integrals intersect transversally on
Ch,k ,`, a connected component of Ih,k ,`, then Ch,k ,` is diffeomorphic to
a (two–dimensional) torus.

Projections into R3 of and orbit F5, giving rise to two orbits of F 2
5 .
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