
Real-time Rendering of Enhanced Shallow Water Fluid Simulations

Jesús Ojedaa, Antonio Susı́nb

aDept. LSI, Universitat Politècnica de Catalunya
bDept. MA1, Universitat Politècnica de Catalunya

Abstract

The visualization of simulated fluids is critical to understand their motion, with certain light effects restricted or with added com-
putational complexity in the implementation if real-time simulation is required. We propose some techniques that improve the
rendering quality of an enhanced shallow waters simulation. To improve the overall appeal of the fluid representation, lower scale
details are added to the fluid, coupling external non-physical simulations, and advecting generated surface foam. We simulate caus-
tics by raytracing photons in light and screen-space, and apply refraction and reflections also in screen-space, through a number of
render passes. Finally, it is shown how a reasonably sized fluid simulation is executed and rendered at interactive framerates with
consumer-level hardware.

Keywords: real-time reflections and refractions, real-time caustics, fluid rendering

1. Introduction1

Photorealistic rendering is still quite demanding for inter-2

active applications due to its computational complexity. Other-3

wise, given enough time, offline renderers can easily generate4

this kind of imagery, usually using some algorithm of the ray-5

tracing family.6

In the real-time field, however, GPUs are used which im-7

plement rasterization algorithms. These algorithms rely on high8

coherency for the operations executed, which impose some con-9

straints to simulate light as a raytracer could do, by simulating10

each separate light beam. For this reason, photorealistic ren-11

dering is achieved at interactive framerates by simplifying the12

algorithms used or even using tricks that are perceptually feasi-13

ble.14

This simulation of light behaviour is required if a realistic15

fluid visualization is pursued. Liquids, in their vast majority,16

exhibit reflection and refraction effects, which in turn may also17

result in caustics. Assuming a visualization over the fluid, for18

great volumes of water, as open sea scenes, the major visual19

effects one could expect may be the refraction of the underlying20

terrain with projected caustics, as well as reflected scenery from21

above the fluid.22

With present fluid simulations being performed in GPUs23

at interactive framerates, we also need realistic visualizations24

which reproduce these effects of the light. In our case, we start25

from a heightfield fluid simulation enhanced with particles for26

the simulation of splashes in breaking wave conditions, like the27

ones proposed in [1] or [2], which are also fully coupled with28

dynamic objects. From there, we aim to provide these expected,29

light-based effects, namely refractions, reflections and caustics.30

Email addresses: jojeda@lsi.upc.edu (Jesús Ojeda),
toni.susin@upc.edu (Antonio Susı́n)

As the fluid simulation mesh may have lower resolution than31

that expected for high quality results, it is also improved with32

other techniques as lower scale details and surface foam advec-33

tion which effectively increase the general appeal of the ren-34

dered scenes. The key contributions we propose are35

• An extension of the technique from [3] to screen-space,36

following an initial photon search in light-space, as well37

as some other modifications for the simulation of caus-38

tics.39

• A screen-space technique to simulate refractions and re-40

flections, based in raycasting through depth-maps.41

• Texture-based techniques for additional surface effects42

using FFT ocean simulation or Perlin noise, as well as the43

advection of surface foam generated at the splash parti-44

cles reintroduction.45

The result of these contributions is exemplified in Figure 1,46

and how they are interlaced as an overall algorithm can be seen47

in Figure 2.48

1.1. Related Work49

There are two common approaches to simulate fluids: eule-50

rian and laplacian. The first simulate the fluid inside a grid. In51

the second, the fluid is implicitly represented by a particle sys-52

tem. For a full 3D fluid simulation we can find many references53

of both approaches but for brevity reasons we refer the reader54

to [4], [5] and references therein for greater fluid overviews.55

In the specific case of eulerian fluid simulation, the fluid is56

usually represented as a scalar field and its visualization is done57

by raycasting the volume or by using mesh-extracting tech-58

niques like marching cubes for further use. Nevertheless, 3D59

full simulation can be still quite costly, so other solutions as60

Preprint submitted to Computers & Graphics June 13, 2013

Figure 1: Caustics on the underlying terrain can be seen through the
refractive surface of the fluid.

Scene Heightfield Fluid Particles

Foam
advection

Lower
scale detail

effects

SS photon-
based

Caustics

SS Raycasted
Refraction

& Reflection

Composition

Framebuffer

F
lu

id
R

en
d

er

Particle
Refraction

Dynamic object coupling

Figure 2: Pipeline of the different parts involved in the rendering of en-
hanced shallow water simulation with particles, providing our screen
space photon-based caustics, screen-space raycasted refraction and re-
flection, as well as other surface effects as lower scale details and foam
advection.

heightfield representations are more commonly used in the in-61

dustry of real-time applications. Such simulations can come62

from procedural methods like the FFT ocean simulation [6],63

wave trains [7] or even physical frameworks as the Shallow Wa-64

ter equations [8, 2, 1]. Their result, can be easily represented as65

a triangle mesh, where vertex heights are provided by the own66

simulation.67

As these grid-based approaches have a fixed resolution, in68

order to increase the perceived level of detail, other techniques69

have been applied as the advection of additional textures to sim-70

ulate flow [9], coupled with normal mapping as in [2].71

To finally visualize the fluid, several light-induced effects72

have to be considered. One of these effects are caustics, which73

are a very distinguishable effect from any refractive or reflective74

surface. Starting from Kajiya’s work [10], caustics have been75

traditionally implemented with global illumination techniques76

like pathtracing, the metropolis light transport method [11] or77

photon mapping [12]. These techniques require a high count of78

rays or photons to achieve soft caustics, which relegate them to79

off-line rendering, although there are already GPU implemen-80

tations of some of them like, e.g., [13, 14].81

In the real-time domain, [15] was the first to explore caus-82

tics using synthetic texture maps; although inaccurate, they were83

visually compelling. Nevertheless, to achieve physically real-84

istic results, the more recent techniques are inspired in path-85

tracing methods and can be generally classified in two groups.86

In the first group, techniques like, e.g, [16, 17, 3, 18], render87

from light and create caustic maps, similar to photon maps, but88

used like shadow maps; reprojected in camera space in order to89

lit the visible pixels that receive caustics. In the second group,90

the caustics are traced back from the receiver object to the light91

through limited areas on the refractive surface as in [19, 20],92

which usually require the receiver to be planar as a simplifica-93

tion.94

Similarly, for the simulation of refractive or reflective ma-95

terials, the ground truth may be reached with the usual path-96

tracing techniques but in the real-time domain trick techniques,97

like [21] which apply a random offset to the refracted vector,98

are commonly used. [16] on the other hand relies on environ-99

ment maps as distance impostors to achieve approximate refrac-100

tion. However, for a more physically accurate approach, the101

more complete techniques involve tracing rays through depth102

maps. In this sense, [22] simulated refraction using front and103

back depth maps, while later [23] improved on the previous104

technique by repeating the search in between depth maps to105

simulate total internal refraction. [24] also worked upon [22],106

improving it with depth corrections, impostors and caustics.107

In contrast, we provide a full system for caustics, reflections108

and refractions as well as other effects to complete the fluid ren-109

dering. For the caustics, we improve upon [3], adding a second110

raycast phase in screen space (from the camera) to the first one111

used in light space. Furthermore, we simplify their approach112

by not generating a caustics map, but splatting the photons on113

the receiving geometry. In the reflection and refraction case,114

we specialize the refraction approach of [22, 23] to our fluid115

scenes: we render the geometry over and below the fluid sep-116

arately and apply the same raycast algorithm to both buffers,117

2

combining the results using Fresnel terms.118

2. Fluid simulation119

In our case, we use the fluid solver from [1], the simula-
tion algorithm is based on the the Lattice Boltzmann Method
(LBM) for Shallow Waters. The fluid is simulated in a grid
and the interactions between the fluid molecules (described as
distribution functions fi) are modeled as collisions. Using the
D2Q9 model, the LBM with the popular BGK collision opera-
tor [25] can be defined with the following equation:

fi(x + ei∆t, t + ∆t) = fi(x, t) − ω(fi − f eq
i) + Fi, (1)

where ω is the relaxation parameter related to the viscosity of
the fluid, Fi are external forces and f eq

i is the equilibrium dis-
tribution function defined as

f eq
i (h,u) =

h
(
1 − 5

6 gh − 2
3 u2

)
, i = 0,

λih
(

gh
6 + ei·u

3 +
(ei·u)2

2 − u2

6

)
, i , 0,

(2)

where λi = 1 for i = 1..4 and λi = 1/4 for i = 5..8. g is120

the gravity and h and u are the fluid properties: height level121

from the underlying terrain and velocity, respectively. They are122

calculated as123

h(x, t) =
∑

i

fi, (3)

u(x, t) =
1
h

∑
i

ei fi. (4)

This basic model is enhanced by applying breaking wave124

conditions, an additional particle system and two-way object125

coupling similarly to [2]. Except the coupling with external ob-126

jects, simulated with the Bullet Physics library, the whole sim-127

ulation is executed in CUDA and achieves interactive timerates.128

We refer the reader to [1] for a full review on the simulated fluid129

system, the breaking wave example shown in Figure 3.130

As the fluid is provided as a heightfield, its basic visual-131

ization can be a triangle mesh representing the whole domain,132

being the vertices equally displaced in the xz plane and their133

y coordinate the value of the heightfield at that point. We use134

this representation, and apply some techniques that enable more135

complex visual effects as caustics and refraction, which aren’t136

restricted to this Shallow Waters simulation and may be applied137

to other refractive/reflective surfaces. These techniques are ex-138

plained in the next sections.139

For the particles, we render them as points, expanded to140

quadrilaterals and use depth and normal replacement, similarly141

to [26]. For refraction, methods like [21, 27] can be used. In142

our case we use the first one, where an arbitrary offset is ap-143

plied to the refracted vector from the particle surface normal144

and used to look up at the framebuffer; although the results of145

this arbitrary offset on the refracted vectors are not physically146

correct, they are perceptually feasible and simpler to implement147

than the latter one, for example.148

(a) FFT ocean simulation. (b) Noise, 4 octaves of a fractal
sum.

Figure 4: Adding lower scale details to the fluid surface by normal
mapping. Refraction and reflection are deactivated.

3. Additional surface detail149

The heightfield simulation has a fixed size resolution which150

imposes a limit on the detail scale that can be achieved. We can151

add other simulations that improve the details by changing the152

surface normals locally. Furthermore, other advected properties153

as, e.g., surface foam, can also be simulated and applied to the154

final visualization. This section will introduce how these effects155

are accomplished.156

3.1. Lower scale detail157

From the heightfield of the fluid surface we can extract ap-158

propriate normals although they are restricted to the simulation159

resolution. We can increase the detail of the fluid just using nor-160

mal mapping. For example, [2] applied a normal map texture161

generated from the FFT ocean simulation by [6] and advected162

it as in [9].163

The FFT ocean simulation from [6] is based on the com-164

putation of the Fourier amplitudes of a wave field. The final165

heightfield is obtained from the inverse FFT to those ampli-166

tudes. In our case, we compute the FFT each frame and obtain167

a normal map from its heightfield which is then applied to the168

fluid surface, as can be seen in Figure 4a.169

An alternative to the FFT approach is the use of noise tex-170

tures with the same goal at mind. We can use gradient noise,171

being Perlin noise [28] the more popular, to obtain heightfields172

and compute normal maps from them to apply to the fluid sur-173

face. With 3D noise, we can create the illusion of animation174

moving through one of the dimensions. However, noise tex-175

tures have some inherent problems: it is not clear how to create176

a good water-like function and if tiling is required, the pattern177

repetitions are quite obvious, as shown in Figure 4b.178

3.2. Surface Foam179

In the real life situation where splashes are generated, like180

in breaking waves, it is most probable that foam is generated181

when these splashes hit the fluid bulk again.182

In contrast to [2], where diffuse disks are generated and ad-183

vected with the fluid when particles fall into the surface fluid184

again, we simplify the idea. Using a floating-point single com-185

ponent texture mapped to the surface fluid, we detect where a186

3

Figure 3: Breaking wave example from [1].

Figure 5: Foam is generated at particle-surface hit points and advected
in successive frames using the fluid’s velocity.

particle has fallen and initialize that texel to a certain maximum187

time-to-live (TTL) for the foam. This texture is then advected188

using the fluid’s velocity field, tracing back as in [29]. Each189

frame, the values of the texture are decreased ∆t until they be-190

come 0. These values are then multiplied with the desired foam191

color and mapped to the fluid mesh, resulting in the blended192

foam.193

Using a texture for the foam introduces a constraint, how-194

ever: its resolution should be dictated by the size of the particles195

as, it could happen that more than one texel should be initial-196

ized, depending on the particle to texel size ratio or, conversely,197

that the texels are too big for the particle size.198

Overall, as seen in Figure 5, the results are convincing and199

the computations are faster due to the limited requirements,200

which make it ideal in real-time applications.201

4. Photon-based Caustics202

In order to add caustics to our real-time fluid simulation,203

we follow the same path of [3] and extend their work. They204

raycast a grid of photons, as points, through the scene in an205

orthographic space defined at the light source, which also al-206

lows them to easily add shadow mapping. One restriction they207

have is that the depth map used in the raycast phase should be208

continuous or, at least, with no great jumps. Other limitations209

this technique has are the same as image-based rendering: the210

results depend on the resolution of the textures used, which in211

this case restricts where the photons can end within the scene.212

Our contributions to their algorithm imply extending the213

raycast of photons out of the light space to screen space, splat-214

ting them oriented with the surface of the receiving mesh. In215

contrast to [3], we do not generate a caustics map; the splats are216

blended with the scene, varying their intensity depending on217

the orientations of the caustic generating fluid position, as well218

as the distance the photon has travelled inside the fluid. As our219

fluid simulation is represented just by its surface, we restrict our220

approach to refracted photons which will fall in the underlying221

terrain and ignore reflected ones.222

The multipass algorithm can be summarized in the follow-223

ing steps:224

1. Render the objects of the scene (excluding the fluid) from225

the camera and store depth and normal maps.226

2. Render the objects of the scene (excluding the fluid) from227

light with an orthographic projection and store the depth228

map.229

3. Render the fluid from light with the same orthographic230

projection as before and store the world positions and re-231

fracted directions at each pixel.232

4. Render the grid of photons. The primitives used are points233

which will be expanded to quadrilaterals when a final po-234

sition is found.235

This grid of points has the same resolution as the ortho-236

graphic projection used previously in Step 2. In a vertex shader,237

the vertices will be raycast first in light space using the depth238

map from Step 2. If there is no intersection found, i.e., the pho-239

ton exited through a wall of the frustum, the raycasting will be240

repeated in camera space. If there is not an intersection yet, the241

point is discarded (rendered out of frustum). Otherwise, if an242

intersection is found at light space, it is transformed to camera243

space and checked for correctness:244

• If the point is occluded in camera space, it is discarded.245

• Else, if the point is not occluded and the depth does not246

match between light and camera spaces, the raycasting247

continues from the actual point position in camera space.248

• Else, the point is correct, that is, the depths match be-249

tween light and camera spaces, thus the point is final.250

When a final point is found, from the previous condition251

or from the camera raycasting, the normal is looked up in the252

normal map from Step 1. In a geometry shader, the points are253

expanded to quads oriented with their associated normal. Fi-254

nally, in the fragment shader, the photons are textured with a255

4

Gaussian splat, and their intensity is regulated depending on256

how they are facing the light and the distance they have trav-257

elled through the fluid until finally hit the receiving surface. At258

last, they are blended to the contents of the framebuffer.259

We have not implemented shadows to keep the algorithm260

simple but, as suggested in [3], shadow mapping is easily added261

as the depth map from light is already stored for the raycasting.262

As can be seen in Figure 6, the visual results are good enough263

for real-time rendering and the photons are not restricted to the264

light space. For a full physically-based render, the precise radi-265

ance of the photons should be computed. In order to make the266

algorithm more approachable, we just regulate the photons con-267

tributions with their orientation and user parameters as they are268

just blended with the framebuffer, which allow the technique to269

be faster in comparison, because we don’t need the expensive270

operations for gathering the photons.271

5. Screen-space Refraction and reflection272

Similarly to the caustics approach, we implement refraction273

and reflection raycasting through depth maps, in the same way274

of [23].275

For simplicity, we want to be able to use the same raycasting276

algorithm for both refractions and reflections, so we improve277

upon previous works by rendering in separate buffers what is278

above and below the fluid. This allows to, using the same code,279

just look for ray-depth intersection in the appropriate buffer to280

obtain the result and do a final composition with both refrac-281

tions and reflection as needed.282

In this case, rays are cast from camera and reflected or re-283

fracted (or both) when they hit the fluid, as shown in Figure 7.284

Here, we also use a multipass algorithm that can be ex-285

plained in the following steps, always rendering from camera:286

1. Render the fluid mesh and store the depth buffer.287

2. Using two render targets (RT) named ‘over’ and ‘below’,288

which will store color and depth, we render the objects289

of the scene (dynamic objects and ground in this case)290

and compare the depth with the previously stored. If the291

depth is greater, the fragment is stored in the ‘below’ RT,292

otherwise in the ‘over’ one. This pass can be thought as293

a stencil test, which separates what is above o below the294

fluid surface.295

3. Render the fluid again, using the RTs. For each fragment296

of the fluid two rays are cast: one for refraction (using297

RT ‘below’), one for reflection (using RT ‘over’). As298

the rays start from the camera, if the reflected/refracted299

rays should come back, they are discarded. The results300

of both raycasts are combined using Schlick’s approxi-301

mation [30] to Fresnel terms for simplicity.302

4. Finally, to avoid the repeated render of the other objects303

of the scene, we just use a screen-sized quadrilateral tex-304

tured with the color buffer from the ‘over’ RT.305

To reduce somewhat the need of the double raycasting, we
can compute the Fresnel term from [30] prior to the raycastings
at Step 3 as

F = F0 + (1 − F0)(1 − θ)5, (5)

Figure 6: Caustics in the ground below the fluid surface with planar
(boat) and noisy (buoy) terrain.

5

Reflections Refractions

+

Fresnel composition

Figure 7: Reflections and refractions are found from the raycasting two different depth maps and finally composed using Fresnel for the final
rendering.

being θ half the angle between the ingoing and outgoing light306

directions and F0 the known value of F when θ = 0, the re-307

flectance at normal incidence. As we use the value F for a308

linear interpolation between the refracted and reflected colors,309

we can impose a threshold ε such as:310

• If F < ε, only the refraction raycasting is executed.311

• If 1 − F < ε, only the reflection raycasting is done.312

• Otherwise, both raycastings are done.313

Additionally, for zones where the fluid height is quite low,314

controlled by an user parameter, we get the color from the di-315

rect view ray and interpolate from it to the combined color ob-316

tained from the previous algorithm, using the depth difference317

between the fluid and the ground below it. This alleviates some318

visible artifacts caused by the triangular mesh used for the fluid319

rendering, as shown in Figure 8.320

Everything is done in screen-space, so there may be zones321

where there is not enough information, i.e., a ray should hit a322

point in space not visible; in those cases we detect the jump in323

the depth map and make use of the last pixel with information324

in the texture. Although this is really a problem due to lack325

of information, it may remain greatly unnoticed with the ani-326

mated lower scale detail techniques of Section 3.1 and the own327

movement of the fluid surface.328

6. Results and Discussion329

We have tested the previous algorithms on an Intel Core2Duo330

E8400 with 4GB of RAM and a Nvidia GTX280 running Ubuntu331

11.10. The resulting averaged timings of the caustics and re-332

fraction/reflection algorithms are shown in Table 1, as these are333

the ones that tax more on the GPU by the use of raycasting.334

An improvement to the normal mapping for lower scale de-335

tail technique could be provided by also applying the technique336

from [9], in which multiple sets of texture coordinates are used337

and advected, already exploited in [2].338

Figure 8: Artifacts from the fluid’s triangular mesh on the left, alle-
viated on the right by interpolating the color value between the fluid’s
color and the ground color depending on the view distance from sur-
face to ground.

6

Viewport Caustics Caustics Refraction &
Size Resolution Reflection

5122

1282 1.0058 2.74639
2562 2.35144 2.79409
5122 7.92134 3.01034
10242 51.3408 3.17178

10242

1282 1.2585 5.79334
2562 3.33537 5.98238
5122 12.8643 6.21948
10242 70.9195 6.53224

Table 1: Averaged timings in milliseconds for frame for the caustics
and refraction/reflection algorithms. The Viewport column indicates
the viewport resolution. Similarly, the Caustics Resolution column
indicates the size of the viewport used for the orthographic camera,
and thus, the number of photons traced.

The foam simulation from [2] could solve the fixed-size tex-339

ture restrictions of our current solution, as they simulate foam340

directly with advected diffuse disks on the fluid surface, al-341

though this comes at the additional cost of generating and main-342

taining these disks on the fly. An alternative we believe would343

help our foam simulation is the use of a pyramidal texture ap-344

proach; when particles fall to the fluid they initialize the correct345

level of the pyramid, being the other levels initialized extrapo-346

lating from that one.347

Nevertheless, the timing results for both these techniques348

combined, the lower scale detail and the foam advection, never349

exceed the 2ms mark.350

For the caustics, as shown in Table 1 and concluded in [3],351

the performance of the caustics algorithm depends primarily352

on the size of the grid of photons, but in our case also on the353

direction of the light, which can cause more photons to miss354

the light space raycast and use the second camera space one,355

thus increasing the number of computations and texture fetches356

needed to try to find a final position for them. Also, as the357

raycasting is done in the vertex shader it is further slowed down358

because of the increased penalty of texture fetches in that shader359

stage. Although a direct comparison with [3] is difficult because360

of the different hardware used, they reported to achieve about361

200fps with a 1282 photon grid, which is the same that saying362

that each frame costs 5ms to compute. With newer hardware363

but the dual light and camera space raycasts we propose, the364

cost of computing caustics is, in our case, below 2ms for the365

same configuration.366

As the number of photons is limited, there may be zones367

over or undersampled; a hierarchical solution could help to solve368

this problem as shown in [18, 31], but we would require that it369

remains highly dynamic, as we are adressing the visualization370

of a moving fluid. Another thing worth researching would be to371

extend these caustics, if possible, to volumetric ones as those in372

[32].373

The performance of the refraction/reflection algorithm is374

quite variable, it depends on the size of the viewport as well as375

the coverage of the fluid in screen: the more visible pixels, the376

more rays are cast. For fair comparison, the results in Table 1377

were captured with the fluid covering the whole viewport, and378

even in this case, the whole algorithm does not cost more than379

10ms for a reasonably sized viewport. In perspective, [23] made380

total internal refraction available although without surface re-381

flection which, in the best case, reported 138fps, i.e., 7.24ms382

per frame on a Nvidia 8800 GTX, using only one bounce for383

internal refraction on a viewport of 5122. Although our GPU384

is newer than theirs, in a similar scenario, we achieve less than385

half their time with both refraction and reflection.386

Evidently, the restriction of the refraction/reflection algo-387

rithm being a screen-space technique limits how much infor-388

mation is available for such refractions and reflections. The389

simplest solution to this would be the use of environment maps,390

but, as the height of the fluid can be quite different across the391

domain, the position where the environment maps were gen-392

erated would constraint, and even clip, possible geometry for393

correct refractions or reflections. Other alternatives should be394

considered to solve this limitation.395

Both algorithms, caustics and refraction, may also suffer396

other performance penalties depending on the tessellation of397

the objects of the scene in question. This is due to the mul-398

tipass character of the algorithms and the requirement of the399

rendering of the scene to obtain the depth maps for later ray-400

casting. Although we have not encountered this problem in our401

tests due to low polygonal complexity, it should be worth hav-402

ing in mind. As a note, the boat model has 300 triangles, the403

buoy has 11k, the dolphin has 4k and the fluid and the ground404

have 32k triangles each.405

Finally, the particles have just been rendered as billboards406

using depth and normal replacement with a sphere model. As407

they represent splashes, we want to maintain their crisp repre-408

sentation so, to improve their appeal, some additional tweaking409

could be done as applying some noise to their normals or de-410

forming them in the direction they are moving to simulate some411

motion blur.412

Finally, we have only taken into account the visualization413

of the surface of the fluid, as shown in Figure 9, in the future414

it should be also a key point to research water rendering as in,415

e.g., [33], in order to provide a full featured visualization.416

7. Conclusions417

In this paper we have presented a full pipeline of different418

algorithms for the rendering of heightfield-based fluid simula-419

tions coupled with particles, although the different parts can be420

applied to other situations as well.421

The complex light-related effects like caustics, refractions422

and reflections have been adressed using raycasting techniques423

which ensure a more realistic simulation and the constraint of424

the algorithms to be in screen-space keeps the quantity of mem-425

ory used low enough.426

Additionally we have applied foam and lower-scale detail427

by applying textures to the fluid mesh; techniques which are428

very low demanding in comparison to the previous ones and429

really help to enhance the final result.430

7

Figure 9: A dolphin underwater. Caustics are generated and projected
on the dolphin and the terrain, visible from the surface.

Acknowledgements431

We would like to thank Pere-Pau Vàzquez for his kind com-432

ments on the preparation of this work. With the support of the433

Research Project TIN2010-20590-C02-01 of the Spanish Gov-434

ernment.435

[1] Ojeda J, Susı́n A. Hybrid Particle Lattice Boltzmann Shallow Water for436

interactive fluid simulations. In: 8th International Conference on Com-437

puter Graphics Theory and Applications. GRAPP’13; 2013, p. 217–26.438

[2] Chentanez N, Müller M. Real-time simulation of large bodies of water439

with small scale details. In: Proc. ACM SIGGRAPH/Eurographics Sym-440

posium on Computer Animation (SCA). 2010, p. 197–206.441

[3] Shah MA, Konttinen J, Pattanaik S. Caustics mapping: An image-space442

technique for real-time caustics. IEEE Transactions on Visualization and443

Computer Graphics 2007;13(2):272–80.444

[4] Bridson R. Fluid Simulation for Computer Graphics. AK Peters; 2008.445

[5] Solenthaler B, Pajarola R. Predictive-corrective incompressible sph.446

ACM Trans Graph 2009;28(3).447

[6] Tessendorf J. Simulating ocean water. In: SIGGRAPH 2001 Course448

Notes. 2001,.449

[7] Yuksel C, House DH, Keyser J. Wave particles. ACM Trans Graph450

2007;26(3).451

[8] Layton AT, van de Panne M. A numerically efficient and stable algorithm452

for animating water waves. The Visual Computer 2002;18(1):41–53.453

[9] Max N, Becker B. Flow Visualization Using Moving Textures. In: Pro-454

ceedings of the ICAS/LaRC Symposium on Visualizing Time-Varying455

Data. 1996, p. 77–87.456

[10] Kajiya JT. The rendering equation. In: Proceedings of the 13th an-457

nual conference on Computer graphics and interactive techniques. SIG-458

GRAPH ’86; 1986, p. 143–50.459

[11] Veach E, Guibas LJ. Metropolis light transport. In: Proceedings of the460

24th annual conference on Computer graphics and interactive techniques.461

SIGGRAPH ’97; 1997, p. 65–76.462

[12] Jensen HW, Christensen PH, Kato T, Suykens F. A practical guide to463

global illumination using photon mapping. In: SIGGRAPH 2002 Course464

Notes. 2002,.465

[13] Purcell TJ, Buck I, Mark WR, Hanrahan P. Ray tracing on programmable466

graphics hardware. In: Proceedings of the 29th annual conference on467

Computer graphics and interactive techniques. SIGGRAPH ’02; 2002, p.468

703–12.469

[14] Nvidia . NVIDIA OptiX Application Acceleration Engine.470

http://www.nvidia.com/object/optix.html; 2012. [Online471

as of June-2013].472

[15] Stam J. Random caustics: natural textures and wave theory revisited. In:473

ACM SIGGRAPH 96 Visual Proceedings: The art and interdisciplinary474

programs of SIGGRAPH ’96. SIGGRAPH ’96; 1996,.475

[16] Szirmay-Kalos L, Aszódi B, Lazányi I, Premecz M. Approximate ray-476

tracing on the gpu with distance impostors. Computer Graphics Forum477

2005;24(3):695–704.478

[17] Wyman C, Davis S. Interactive image-space techniques for approximat-479

ing caustics. In: Proceedings of the 2006 symposium on Interactive 3D480

graphics and games. I3D ’06; 2006, p. 153–60.481

[18] Wyman C. Hierarchical caustic maps. In: Proceedings of the 2008 sym-482

posium on Interactive 3D graphics and games. I3D ’08; 2008, p. 163–71.483

[19] Guardado J, Sánchez-Crespo D. Rendering water caustics. In: GPU484

Gems. Addison-Wesley; 2004, p. 31–44.485

[20] Yuksel C, Keyser J. Fast Real-time Caustics from Height Fields. The486

Visual Computer (Proceedings of CGI 2009) 2009;25(5-7):559–64.487

[21] Sousa T. Generic refraction simulation. In: GPU Gems 2. Addison-488

Wesley; 2005, p. 295–305.489

[22] Wyman C. An approximate image-space approach for interactive refrac-490

tion. In: ACM SIGGRAPH 2005 Papers. SIGGRAPH ’05; 2005, p.491

1050–3.492

[23] Davis ST, Wyman C. Interactive refractions with total internal reflection.493

In: Proceedings of Graphics Interface 2007. GI ’07; 2007, p. 185–90.494

[24] Hu W, Qin K. Interactive approximate rendering of reflections, refrac-495

tions, and caustics. IEEE Transactions on Visualization and Computer496

Graphics 2007;13(1):46–57.497

[25] Salmon R. The lattice boltzmann method as a basis for ocean circulation498

modeling. Journal of Marine Research 1999;57(3):503–35.499

8

[26] Schaufler G. Nailboards: A rendering primitive for image caching in500

dynamic scenes. In: Proceedings of the Eurographics Workshop on Ren-501

dering Techniques ’97. 1997, p. 151–62.502

[27] van der Laan WJ, Green S, Sainz M. Screen space fluid rendering with503

curvature flow. In: Proceedings of the 2009 symposium on Interactive 3D504

graphics and games. I3D ’09; 2009, p. 91–8.505

[28] Perlin K. Improving noise. In: Proceedings of the 29th annual conference506

on Computer graphics and interactive techniques. SIGGRAPH ’02; 2002,507

p. 681–2.508

[29] Stam J. Stable fluids. In: Proceedings of the 26th annual conference on509

Computer graphics and interactive techniques. SIGGRAPH ’99; 1999, p.510

121–8.511

[30] Schlick C. An Inexpensive BRDF Model for Physically-based Rendering.512

Computer Graphics Forum 1994;13(3):233–46.513

[31] Wyman C, Nichols G. Adaptive caustic maps using deferred shading.514

Computer Graphics Forum 2009;28(2):309–18.515

[32] Liktor G, Dachsbacher C. Real-time volume caustics with adaptive beam516

tracing. In: Symposium on Interactive 3D Graphics and Games. I3D ’11;517

2011, p. 47–54.518

[33] Gutierrez D, Seron FJ, Munoz A, Anson O. Visualizing underwater ocean519

optics. Computer Graphics Forum 2008;27(2):547–56.520

9

