
RECOVERING 3D METRIC STRUCTURE AND MOTION FROM MULTIPLE
UNCALIBRATED CAMERAS

Miguel Sainz and Nader Bagherzadeh ∗

Dept. Electrical and Computer Engineering,
University of California Irvine.

e-mail: msainz,nader@ece.uci.edu

Antonio Susin †

Dept. Matematica Aplicada I,
Universitat Politecnica de Catalunya

e-mail: susin@ma1.upc.es

ABSTRACT
An optimized linear factorization method for recovering both
the 3D geometry of a scene and the camera parameters from
multiple uncalibrated images is presented. In a first step, we
recover a projective approximation using a well known iter-
ative approach. Then, we are able to upgrade from projec-
tive to Euclidean structure by computing the projective dis-
tortion matrix in a way that is analogous to estimating the
absolute quadric. Using the Singular Value Decomposition
(SVD) as a main tool, and from the study of the ranks of the
matrices involved in the process, we are able to enforce an
accurate Euclidean reconstruction. Moreover, in contrast to
other approaches our process is essentially a linear one and
does not require an initial estimation of the solution. Exam-
ples of synthetic and real data reconstructions are presented.

1. INTRODUCTION

We are facing the problem of extracting the shape of objects
and the way they have been recorded using a single uncali-
brated camera. This is known as the structure from motion
problem (SfM). More specifically, the goal of the problem is
to recover the 3D geometry of a scene from the 2D projec-
tions obtained from multiple view images, taking into ac-
count the motion of the camera. But, neither the camera
calibration (intrinsic parameters and pose) nor the geometry
of the scene are known.

Although the previous results on this subject come from
researchers in image processing and computer vision fields,
recent interest on the problem has been caused by the inter-
est in building 3D models for virtual reality, video confer-
ence or medical applications [8]. In the film and video pro-
duction industry, there has been a proliferation of demand
for computer-graphics based special effects. The essence
of such effects is the process of combining 2D digital im-
age sequences with 3D computer graphics in a realistic and
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metrically accurate way. During this process an accurate 3D
reconstruction (SfM) of the 2D source images is needed.

Two dominant approaches to the SfM problem can be
distinguished according to the number of points tracked along
the image sequence. The correspondence process between
points of different frames is assumed to be known in the
general SfM. We can have such a correspondence for a small
set of points or for all the pixels in the sequence which are
known as sparse or dense correspondence methods. This
paper follows the former method ([15],[7],[8],[4],[10]) for
the later we refer to [2].

Since we are working with uncalibrated cameras, we
choose an stratification approach to recover both camera pa-
rameters and structure of the scene. The idea is to upgrade
from projective to Euclidean structure. In [6] a good re-
view of different kind of methods is presented. The method
presented in this paper allows to recover an Euclidean re-
construction of the model without any initial guess which is
one of the drawbacks of most of the existing methods. An-
other important feature is that the whole process is based
on solving linear systems with SVD decomposition. The
knowledge of the geometric properties of different transfor-
mations represented by the process matrices provide us a
valid solution in terms of the rank of these matrices.

Our results demonstrate that with synthetic data a great
accuracy can be obtained, and when noise is added the pre-
cision is still acceptable. These results are maintained when
real data examples are used. We also present different num-
ber of views ranging from from 5 to 50, only the computa-
tion time is affected maintaining similar error rates.

2. PROJECTIVE RECONSTRUCTION

Next we will address the SfM problem using a small set of
points or features and we assume the 2D trajectories of these
features along the image sequence are known. The feature
locations in the images essentially depend on three causes:
(i) their coordinates in the 3D space, (ii) the relative motion
between the camera and the scene (extrinsic parameters),



(iii) and the camera’s internal geometry (intrinsic parame-
ters).

We assume no prior knowledge of these parameters and
we wish to recover this information only from the 2D mea-
surements corresponding to the set of features we are con-
sidering. Following [16], we use standard image coordi-
nates, that is, we scale image pixels to lie in [−1, 1]×[−1, 1]
which guarantees good numerical conditioning.

2.1. Factorization method

The projective factorization method ([15],[8], [4],[10]) is a
generalization of the factorization method which was first
developed in [14] and [11], for the ortographic projection
and the paraperspective models respectively. Because of
the restrictions in the application of the previous models,
projective factorization gives a more general framework to
recover 3D shape and motion from multiple view images.
Moreover, if no information is known about the camera in-
trinsic parameters, the motion and the object, only a recon-
struction up to an unknown projective transformation is pos-
sible to compute.

Our goal is to recover 3D structure and motion from m
uncalibrated perspective images of a scene and n 3D ob-
ject points. Let Xj = (Xj , Yj , Zj , 1)T , j = 1, . . . , n,
be the unknown homogeneous 3D point vectors, Pi, i =
1, . . . ,m the unknown 3 × 4 image projections, and xij =
(uij , vij , 1) the measured homogeneous image point vec-
tors.

We call projective depths the non-zero scale factors λij

relating the world points and its projections

λijxij = PiXj i = 1, . . . ,m j = 1, . . . , n. (1)

Each object is defined only up to rescaling. With correctly
normalized points and projections the λ’s become true opti-
cal depths (see [15]).

We can state the problem in matrix form as

W =


 λ11x11 . . . λ1nx1n

. . . . . . . . .
λm1xm1 . . . λmnxmn




=


 P1

. . .
Pm


 (

X1 . . . Xn

)
(2)

or, using matrix notation, W = PX, where W is the
3m × n scaled measurement matrix, P is the 3m × 4 per-
spective matrix and X is the 4 × n shape matrix. As is
stated in [15], the projective depths depend on the 3D struc-
ture, which in turn derives from the depths. To recover the
values of λij an iterative projective algorithm is proposed,
based on Singular Value Decomposition (SVD). Matrix W
has to be a rank-4 matrix if it is the matrix associated to a

projection of a set of real points. Consequently, for points in
general positions, a rank-4 factorization of the scaled matrix
produces a projective reconstruction of the points.

Due to the unknown projective depths the solution can
not be reached directly, but an iterative approximation can
be constructed. There exists different approaches ([4],[7],
[8],[10],[15]) to construct an iterative algorithm that con-
verges to a rank-4 decomposition of the measurement ma-
trix.

Denoting by Wi = λijxij j = 1, . . . , n, the measure-
ments corresponding to frame i. From (2) we get the equal-
ity Wi = PiX, that can be thought as if each Wi belongs
to the subspace spanned by the rows of X ([1],[7]). It also
admits a column version considered in [4], [10].

For both approaches, this means that we have a linear
constraint that needs to be satisfied by any set of image pro-
jections that is assumed to be the projections of a 3D point.
If we assume that either X or Pi is known, Equation (2) can
be used to obtain an approximation of the projective coor-
dinates (homogeneous) and from that, recover the depths.
Conversely, if we know the projective depths, we can re-
cover X and P as a factorization of the measurement ma-
trix, W. But neither the projection matrix nor the depths
are known.

We follow [15] and [3] in building a convergent iterative
algorithm for approximating X and λij successively. The
algorithm can be stated as:

1. First set λ(0)
ij = 1, for i = 1, . . . ,m and j = 1, . . . , n

as initial conditions. This can be assumed because the depth
values (essentially for the first image) can not be determined
uniquely. In fact they can be chosen arbitrarily in the linear
subspace generated by the rows of X. As is stated in [10]
the final algorithm is robust w.r.t. initial conditions.

2. A first SVD factorization of W(k), with W(0) = W,
is computed. We use the standard notation (see [5]) W(k) =
UDV T , where U is a 3m × n matrix which their columns
are an orthogonal basis of the output (range) subspace of
W(k). D is a n× n diagonal matrix, their elements σi, are
known as the singular values of W(k), and finally, V is a
n×nmatrix containing an orthonormal basis corresponding
to the input (co-kernel) of W(k).

A first approximation P(k) = U4 is computed, whereU4

means the submatrix obtained from U using only the 4 first
columns (the ones associated to the 4 larger singular values).
Analogously, X(k) = D4V

T
4 and from that we compute the

following estimate W̃(k) = P(k)X(k). This choice guaran-
tees (see [5], pp. 72) that we get the best rank4 approxima-
tion of W(k), and the spectral distance (using ‖ ‖2) from
the subspace of the rank 4 is exactly σ5.

If the measurement matrix corresponds to a projection
of a 3D real points then, with the correct depth values, it
must be a rank4 matrix. Because the depths are unknown,
the matrix W(k) can be far from a rank4 matrix. The value



of σ5 can be used as a measure of this distance and it should
have zero limit if the iterative process is supposed to con-
verge to the solution.

3. Once the rank4 approximation W̃(k) is computed, we
get an estimate of the 3D coordinates, X(k+1)

j of the points
(living in a rank4 space) based on the present depth value for
each point λ(k)

ij . As this value is not the correct one, for each
point we can improve the previous estimation of the depth
using the new 3D coordinates. To preserve the projection
of the real point (the measurements) xij , we only need to

scale λ(k)
ij along the visual line, the line from the center of

projection through xij . The new depth λ
(k+1)
ij is chosen

to coincide with the projection of X(k+1)
j into the visual

line. In this way we are forcing each depth to be as close
as possible to the ideal present rank4 decomposition. The
previous condition can be summarized with the following
depth update formula

λ
(k+1)
ij = λ

(k)
ij

W̃
(k)T
ij W

(k)
ij

W
(k)T
ij W

(k)
ij

(3)

4. After computing the new value of the depth matrix we
get an update measurement matrix W

(k+1)
i = xijλ

(k+1)
ij ,

j = 1, . . . , n and the process is repeated until the value of
the corresponding σ(k+1)

5 is either small enough or it is sta-
bilized. As we will show in the results only with synthetic
data we can obtain σ(k+1)

5 as small as we want. When noise

is added to the projections, the values of σ(k+1)
5 can reach

an small stable value but not zero.

2.2. Projective reconstruction results

In Table (1) we show some of the results we have obtained
with different set of data. The values, # V, # P and # iter,
stands for number of views, number of points and number of
iterations respectively. The value σ5/σ4 corresponds to the
final ratio obtained when iterations stop. This value gives
an idea of how far from rank4 is the reconstruction using
matrix norm. On the other hand, Max Err, is the reprojec-
tion error in pixels. The set of data we use corresponds to
a synthetic building model with different camera locations
(see Figure 5) (B.array,B.fly,B.walk) and different rows cor-
responds to the noise added which is zero, one and two ran-
dom pixels. The final rows corresponds to real images house
and monitor (see Figure 4 and 6). One can observe that the
number of iterations is much larger in the case of ideal data
because the method can reach a high accuracy level. The
process is always stopped when the value of σ5 becomes
stable. The point stability is more important than its final
value, therefore we stop the iterative process when the rel-
ative error of σ5 becomes less than 10−6. When noise is

Dataset # V # P # iter σ5/σ4 Max Err

B.array 9 22 814 1.1996e-9 5.4250e-8
B.array 9 22 200 1.2121e-2 0.6221
B.array 9 22 185 2.4143e-2 1.2492
B.fly 50 23 2864 3.0226e-9 7.0317e-8
B.fly 50 23 396 2.6318e-2 0.6405
B.fly 50 23 317 5.2370e-2 1.3786

B.walk 9 22 7427 2.9029e-9 6.9806e-8
B.walk 9 22 1436 2.9817e-2 0.6118
B.walk 9 22 1035 5.8113e-2 1.2223
house 5 38 174 3.3670e-2 2.8772

monitor 8 18 251 2.8810e-2 3.1301

Table 1. Projective recovery data

present the final value can be far from zero but it is always
convergent.

3. METRIC RECONSTRUCTION

The factorization of Equation (2) recovers the motion and
the shape up to a linear projective transformation H known
as the Projective Distortion Matrix (PDM)

W = P̂ X̂ = P̂HH−1X̂ = PX (4)

with P = P̂H and X = H−1X̂ . We need to impose met-
ric constraints to recover the correct Euclidean motion and
shape. This process is called normalization. Although dif-
ferent cases can be considered according to the unknown
intrinsic parameters of the camera (see Equation (9)), we
assume zero skews and center our study to the consider the
focal length f as the only unknown parameter. This means
that we consider the case where the aspect ratio is 1 and the
principal point is at the origin (see [8] for the other possibil-
ities).

3.1. Metric reconstruction and the absolute quadric

Before discussing the details of the proposed method for
recovering the metric structure from the projective approxi-
mation, we would like to relate our approach with the meth-
ods based on epipolar geometry for autocalibration [16], [3].

Most of the existing methods of autocalibration relies on
computing the intrinsic parameters of the camera from the
relation

ω = KKT (5)

where the 3 × 3 matrix ω is known as the dual absolute
image conic. If ω is known, then K can be easily obtained
from a Choleski decomposition of this matrix.



By definition, the dual absolute conic is the projection
of the absolute quadric Ω, that is,

ω = PΩPT . (6)

It turns out that estimating the absolute quadric is equiva-
lent to an autocalibration process, because from Ω (with the
projective matrix) one can compute ω and finally K. As we
will show, recovering the PDM, is equivalent to estimating
the absolute quadric.

Let us express the PDM as the following 4× 4 matrix

H =
(

H1 b1
hT

1 1

)
. (7)

The point corresponding to the Euclidean origin is com-
puted by H(0, 0, 0, 1)T , which is (b1, 1)T , then b1 are the
coordinates corresponding to the origin. Without loss of
generality, we can assume b1 = (0, 0, 0)T (projective and
Euclidean space share the same origin).

Now, for each frame i, the projective 3 × 4 matrix Pi

can be decomposed into

PiH = µiKi (Ri|Ti) i = 1, . . . ,m. (8)

where

Ki =


 fi βi u0i

0 αifi v0i

0 0 1


 ,

Ri =


 iTi

jTi
kT

i


 , Ti =


 Txi

Tyi

Tzi


 , i = 1, . . . ,m.

(9)
Where µi is a scale factor, the calibration matrixKi encodes
the intrinsic parameters of the camera, (u0i, v0i) is the prin-
cipal point, αi is the aspect ratio, βi is the skew and fi is the
focal length. Ri and Ti are the ith rotation 3×3matrix and
translation vector of the camera for each frame.

If we consider the first three columns of Pi =
(
P̃i, pi

)
,

the product PiH = µiKi (Ri|Ti) can be written with two
column equations

(
P̃i, pi

)(
H1

hT
1

)
= µiKiRi, (10)

(
P̃i, pi

)(
0
1

)
= µiKiTi. (11)

The relationship with ω can be obtained from (10) and
(5)

ω = KKT = KRRTKT =
1
µ2

i

Pi

(
H1

hT
1

)(
HT

1 , h1

)
PT

i = PiΩ∗PT
i . (12)

If we have a non-critical motion, bothΩ andΩ∗ have the
same images in all the views and must be the same. In the

next section we will estimate directly the absolute quadric
from (12) for the case when only focal lengths are the un-
known intrinsic parameters of the cameras. This assumption
can be safely used with standard zooming/focusing cameras
[12].

3.2. Normalization algorithm

We will give now a description of the normalization algo-
rithm as is stated in [8] and also the improvements we add
in order to obtain a more robust one. The main problem is
that we recover the absolute quadric as a 4 × 4 matrix and
from that we need to recover the PDM. Indeed, only the part
corresponding to

(
HT

1 |h1

)
is recovered. As we will show

below, the method presented in [8] does not guarantee to ob-
tain good results by just applying a rank 3 decomposition.

Combining Equation (8) for all the frames, we can get
the global matrix P = (M |T ), where Mi = KiRi, and
Ti = KiTi.. We express the 4× 4 matrix PDM H as

H = (A|B) (13)

where A =
(

H1

hT
1

)
is 4 × 3 and B is 4 × 1. Since from

(4) we have P = P̂H , then

(M |T ) = P̂ (A|B) . (14)

At this moment, we decouple the computation of the trans-
lation from the rotation one. This way, we will be able to
compute the Euclidean reconstruction using essentially lin-
ear algorithms, instead of the nonlinear ones related with
Kruppa’s equations [6].

Taken into account that the shape matrix X is related to
the geometry of the object and therefore, independent of the
frame, we can express each point in local object coordinates

Xj =




τjsxj

τjsyj

τjszj

τj


 , j = 1, . . . , n. (15)

where sj = (sxj , syj , szj) are the local coordinates. We
can also consider the origin of the world coordinate system
placed at the center of mass of the scaled object points, then
we get

n∑
j=1

τjsj = 0. (16)

Now, if we look at the sum of the first coordinates of the
projected points,

n∑
j=1

λijuij =
n∑

j=1

(Mxi · τjsj + τjTxi)



=Mxi ·
n∑

j=1

τjsj + Txi

n∑
j=1

τj

using (16), we finally obtain
n∑

j=1

λijuij = Txi

n∑
j=1

τj . (17)

Analogously, a similar expression can be obtained for the
other coordinates

n∑
j=1

λijvij = Tyi

n∑
j=1

τj ,
n∑

j=1

λij = Tzi

n∑
j=1

τj (18)

Next, we can use the translation terms to compute B
solving a linear least square problem. For that, we consider
(14) to get

Txi = P̂xiB, Tyi = P̂yiB, Tzi = P̂ziB. (19)

¿From (17) and (18) we obtain the quotient

Txi

Tzi
=

∑n
j=1 λijuij∑n

j=1 λij
,

Tyi

Tzi
=

∑n
j=1 λijvij∑n

j=1 λij
(20)

Finally, from (19) and (20) we can set up an homogeneous
system of 2n linear equations for the 4 unknowns elements
of B. The kernel of the system gives us the elements of B.

On the other hand, we have to compute the matrix A
to complete the desired distortion matrix. The information
embedded in A is the orientation of the PDM. To express
that in a compressible way, first from (8) and (14) we obtain

Mxi = µifiii + µiu0iki,

Myi = µiαifiji + µiv0iki, Mzi = µiki. (21)

Using that the rotation axis are orthogonal we get the metric
relations

|Mxi|2 = µ2
i f

2
i + µ2

iu
2
0i

|Myi|2 = µ2
iα

2
i f

2
i + µ2

i v
2
0i

|Mzi|2 = µ2
i

Mxi ·Myi = µ2
iu0iv0i

Mxi ·Mzi = µ2
iu0i

Myi ·Mzi = µ2
i v0i

(22)

In the case we are considering αi = 1, u0i = v0i = 0, so
the above relations can be summarized as

|Mxi|2 = |Myi|2, |Mzi|2 = µ2
i ,

Mxi ·Myi =Mxi ·Mzi =Myi ·Mzi = 0 (23)

From (23), the metric constraints can be written as linear
constraints using (14)

MMT = P̂AAT P̂T = P̂QP̂T . (24)

obtaining a set of 4m linear equations for the 10 unknowns
ofQ. As we will show in the next section the solutionQ that
we can obtain is related to the rank of the system (24) and
we find that this is essential for getting acceptable results in
general cases.

3.3. Recovering the absolute quadric

As we explain in Section 3.1, the distortion matrix is closely
related with the absolute quadric. The matrix Q is essen-
tially Ω and from the homogeneous overdetermined system
(24) we can get a (non-unique) solution. In [8] they solved
the problem adding a new non-homogeneous metric equa-
tion (based on the scale factors on (8)) fixing the first factor
to one, µ1 = 1, and adding the equation

|Mz1|2 = 1 (25)

to (24). After obtaining the least square solution they make
a rank 3 decomposition of Q to get the matrix A and this
way completing the projective distortion matrix. As we
have observed this is not in general a robust method of so-
lution because the essential condition (see [16]) rank(Ω)=3
is not imposed to the solution Q obtained from (24).

In the general case the homogeneous system (24) turns
to be of rank 8. This is because, as we show in Section 3.1,
the unknowns involved in the system (24) are essentially the
components of Ω and ω. From [16] we know that there is an
additional constraint that forces the angles between visual
planes measured usingΩ to agree with those measured from
the corresponding image lines using ω. When projected to
epipolar planes this constraint gives the Kruppa linear con-
straint. Therefore, we have one extra degree of freedom for
the solution which can be used to force the final matrix Q
to be rank 3. Indeed, we consider a linear combination of
the vectors associated to the zero singular values and we
impose det(Q) = 0. This gives us an four order polyno-
mial, using the linear combination coefficients quotient as
unique variable, and we choose the best root that gives us a
rank 3 matrix Q. After that, we obtain matrix A as a rank 3
approximation of Q using again the SVD decomposition.

In the next section we will show some results using both
synthetic and real data. We also consider different level of
noise for the tracked points and show the results.

4. EXPERIMENTS AND RESULTS

Several tests have been performed with both real and syn-
thetic datasets. For the real imagery we have used pre-
viously tracked sequences of a computer monitor (8 im-
ages and 18 points) and of a model house (5 images and
38 points). The synthetic datasets and their tracking infor-
mation have been generated using an in-house tool. The first
and second synthetic sets (Figure 5 and 8) have 9 cameras
and 22 tracked points. The third set is a sequence (Figure 7)
of 50 frames and 23 tracked points.

We have applied three different methods, mainly to com-
pare the results obtained using the method in [8] with our
improvement based on the rank of the matrix Q.



AME AME1 nAME

σ8 3.4595e-1 3.4595e-1 3.4595e-1
σ9 2.0818e-1 2.0818e-1 9.7575e-3
σ10 2.3501e-3 2.3501e-3 2.2559e-3
Q rank 4 3 3
A error 3.5798e-1 1.6120e-9 2.2567e-7
2D Error 19.7051 3.7062442 3.7062632

AME AME1 nAME

σ8 2.2910e-1 2.2910e-1 2.2908e-1
σ9 1.3015e-1 1.3015e-1 3.0854e-1
σ10 3.8748e-3 3.8748e-3 3.0592e-3
Q rank 4 3 3
A error 5.6874e-1 2.6810e-8 6.1630e-16
2D Error 3.206778 3.3317073 3.331754

Table 2. Metric recovery results for the real datasets

The first one uses an additional metric equation (AME)
as it is proposed in [8], the second one uses the same equa-
tion plus the rank3 condition discussed in section 3.3 (AME1),
and the third one does not use the additional metric equa-
tion (nAME) but enforces the rank3 condition. These three
methods have been tested with the initial datasets and also
with four levels of uniform distributed noise (0.5, 1.0, 1.5
and 2.0 pixels).

The results of the three methods are shown in Figure
1 where we represent, for two of the datasets, the relative
mean error (RME) of the 3D reconstructed points, the re-
covered camera positions and the focal length estimation,
for the different noise levels.

We have found that the AME method works fine for
some of the sets but when the amount of noise increases, the
RME increases too. One of the reasons for this is the arbi-
trariness of the additional metric condition. We have 3m dif-
ferent equations to choose from, and due to noise in the data,
is difficult to decide which is the best candidate to generate
a rank3 Q matrix. Our first solution, the AME1 method en-
forces this condition for Q and it improves considerably the
accuracy of the reconstruction under noisy data. With the
nAME method no additional metric condition is necessary,
and by enforcing the proper rank to the system we are able
to extract the right solution.

As it could be expected there is a tight coupling between
the camera location in space and the recovered focal length,
and this translates in larger errors than in the 3D point esti-
mation. This problem can be avoided if further knowledge
of camera motion of focal length is added.

Due to the lack of ground true data for the real imagery,
we have been able to perform a numerical verification of the
reconstructed set. A 2D reprojection error analysis (Table 2)
plus a visual quality check show that the proposed method
works well under real data.

Finally, some snapshots of the reconstructions are shown
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Fig. 1. Error of the 3D recovered points
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Fig. 2. Error of the 3D camera locations

in the figures, where a wireframe model of the reconstructed
points has been built. The small camera icons have been
located at their recovered location with appropriate orienta-
tion.

Most of the computation time is used in the iterative pro-
jective depth recovery. This becomes very noticeable in the
synthetic datasets, specially for the long sequences, where
due to the high accuracy of the data, the iterative method
takes a long time to converge to a very accurate solution.
However with the presence of noise or with the real data,
the convergence is very fast (but less accurate). On the
other hand the metric reconstruction takes an nonsignificant
amount of time compared to the iterative part. We run our
tests in a PC P4 at 1.4GHz and the real datasets take around
0.5s to 1s to complete and for the synthetic data the time
ranges between 2s up to 78s for the longest sequence (50
frames) with zero noise.

5. CONCLUSIONS

A new improvement for solving the SfM problem has been
presented. The approach is based on an iterative projective
reconstruction and a linear solution (up to the zeros of a
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Fig. 3. Error of the camera focal lengths

four degree polynomial) for the metric normalization pro-
cess. The proper analysis of the ranks of the matrices in-
volved in the process plus a rank enforcement step leads to
very accurate solutions.

One of the advantages of the proposed method is that
it does not need any initial solution or arbitrary additional
constraints to compute the final result. Another advantage
is that the method is linear in the unknowns therefore com-
putationally faster than other nonlinear approaches.

We have tested the method under noisy conditions and
both multiple views and long image sequences. In all cases,
excellent reconstructions have been obtained. Moreover,
the proposed method is computationally fast in standard PC
computers, making it a very attractive solution.

As a future work, we plan to extend this method to han-
dle the more general case of the intrinsic parameter un-
knowns. This will allow us to improve the accuracy in
the reconstructions of some specific camera configurations
were these extra parameter could be significative.
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Fig. 4. A fully recovery of a well known set of images. 5
images were used.

Fig. 5. A set of 9 images of the synthetic building and two
snapshots of the recovered data.

Fig. 6. A real set of 8 views of a computer monitor are fully
recovered

Fig. 7. A 50 frames recovered sequence of a spiral fly
around our building model

Fig. 8. A 9 frames recovered sequence of a planar motion
around our building model


