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Abstract

In this paper , we enhance existing techniques for
simulating flexible volumetric objects. The idea is to
use a mixed model of Finite Element and Mesh Free
Methods. From this approach we will be able to build a
3D deformable model which can be included in a gene-
ral application of virtual reality for a medical surgery
simulator. The final model will be the heart of a patient
builded from their actual SPECT data. The mixed ap-
proach allow us to construct a multiresolution model
that can be used to obtain real time response when an
extern user interacts with the model.

1 Introduction

Simulating and animating 3D deformable objects in
real time is essential to many interactive applications
such as surgery simulators. One of the main charac-
teristics of these simulations is the dynamic interac-
tion between the deformable model and the possible
external forces acting on it. The dynamic behavior of
our volumetric 3D deformable model is based on linear
elastic mechanics. It is essentially based on techniques
presented in computer graphics and mechanical engi-
neering literature [RD89] , [Y.F65] and [D.T86].

From the work developed by J. O’Brien and J. Hod-
gins [JJ99] and G. Debunne [GMMA01] we can state
the formulation of the problem in terms of Finite Ele-
ments (FEM). Although [JJ99] is focused on the study
of fractures in almost rigid materials, the elastic model
can be used for simulating more deformable objects.
In particular, [GMMA01] build a model for the human
liver with the same finite element formulation.

When the final goal of one application is a Virtual
Reality environment, topics like precision and speed
need to be properly balanced. To combine both cha-
racteristics the usual solution is to build a multiresolu-
tion model [GMMA01]. The structure of such a model

is organized in different layers from a coarse to a fi-
ner mesh. The computational accuracy is related to
the number and size of the elements. When an exter-
nal force is applied to the model in a delimited zone,
the finer mesh is activated. The other resolutions are
used to animate the model according to the distance
from the force location. The different multiresolution
models differs in how are related two consecutive mesh
levels. They can be obtained from a refinement of the
previous level mesh or completely independent (just
meshing the same volume). This relation is critical in
the transition zone where the two different meshes have
to be activated.

In any case, we are forced to work with many mes-
hes with the resulting increase in the difficulty of the
data structure of the problem. One possibility to avoid
this problem is to use only one mesh (i.e. a coarser
mesh) and apply another multiresolution approach to
the deformable model. The idea is to refine the zone
where the forces are applied with particles and to use
a Mesh Free Method (MFM) for computing the elastic
reaction of the model ([L.L77],[JCCW96],[WYS+96],
[AS00],[S.F01]). In this way, our idea is to build a
mixed model with FME and MFM that simplify the
data structure and uses the multiresoltion approach.
A transition zone is defined in order to achieve this
goal.

2 Finite Element Formulation

The usual modelization is based on continuum me-
chanics [Fung]. Regarding our simulation, the first as-
sumption in the continuum approach defines the scale
effects is significantly greater than the scale of the ma-
terial’s composition. Therefore, the behavior of the
molecules or particles that compose of the material can
be modeled as continuous media.

We begin the description of the continuous model
by defining material coordinates that parameterize the
volume of space occupied by the object being modeled.



In the rest of this section, we will follow [JJ99] and
[GMMA01] to formulate our FEM approach.

Let u = (u1, u2, u3)T ∈ R
3 be a vector in R

3 that
denotes a location in the material coordinate frame as
figure 1 shows. The deformation of the material is de-
fined by the function x(u) = (x, y, z) that maps loca-
tions in the material coordinate frame to locations in
world coordinates. In areas where material exists, x is
continuous. In areas where there is not material, x is
undefined.

We make use of Green’s strain tensor ε, to mea-
sure the local deformation of the material [Y.F65], as
is pointed out in [GMMA01]. This tensor is the most
appropriated for multiresolution models. The strain
tensor is formulated as a symmetric matrix

εij =
(

∂x
∂ui

· ∂x
∂uj

)
− δij . (1)

Here δij is the Kronecker’s delta. This strain metric
only measures deformations, it is invariant with respect
to rigid body transformations applied to x and vanis-
hed when the material is not deformed. Both systems,
material coordinate and world coordinate, match when
the object is not deformed, resulting in a null strain
tensor. The material coordinate of a points of mass
are fixed, but his position in space will vary over time.

The theory of linear elasticity assumes that stress
and strain are linearly linked. In this way we assume
that the material is isotropic and with symmetric con-
siderations state that only two independent coefficients
describe the material behavior. In this case, the elastic
stress is

σ
(ε)
ij =

3∑
k=1

λεkk + 2µεij , (2)

µ and λ are the Lamé coefficients, µ represents the
rigidity of the material while λ measures its ability to
preserve volume.

In this work we also use damping forces which are
very important if we want to improve realism. The
strain rate tensor ν ,measures the rate at which the
strain is changing and is the time derivative of ε

νij =
(

∂x
∂ui

· ∂ẋ
∂uj

)
+

(
∂ẋ
∂ui

· ∂x
∂uj

)
, (3)

where ẋ =
∂x
∂t

is the velocity of a point. The viscous
stress is

σ
(ν)
ij =

3∑
k=1

φνkk + 2ψνij , (4)

where φ and ψ control how fast the material looses or
dissipate kinetic energy.

The total stress tensor is obtained adding both the
elastic stress and the viscous stress σ = σ(ε) + σ(ν)

For our FEM implementation we will use tetrahedral
linear elements. We denote by Ni the linear interpola-
tion function associated to each vertex xi,

Ni(x, y, z) = βi1x + βi2y + βi3z + βi4. (5)

The matrix β = (βij) is defined from the material coor-
dinates of the vertex. It is always a nonsingular matrix
unless the associated tetrahedron is degenerated. Nu-
merical instabilities are associated to near degenerated
configurations.

Position and velocity of each point can be interpo-
lated from the respective vertex values

x(u) = Uβ

[
u
1

]
, ẋ(u) = Vβ

[
u
1

]
, (6)

where the matrices U and V are defined as
U = [u1,u2,u3,u4], V = [v1,v2,v3,v4], being ui,vi

the position and velocity vectors respectively of each
vertex.

From (6) we can also compute the derivatives that
we will need to compute the strain and strain rate ten-
sor from (1), (3) respectively,

∂x
∂ui

= Uβδi,
∂ẋ
∂ui

= Vβδi (7)

where δi = [δi1, δi2, δi3, 0]T . These partial derivatives
are constant because we are using linear basis functions
at each element.

The internal force is computed for each element and
is applied at their vertices

f
(el)
i =

vol(el)

2

4∑
j=1

xj

3∑
k=1

3∑
l=1

βjlβikσkl, (8)

where vol(el) is the element volume.
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Figure 1. Material coordinate system. One example of
a wall FME decomposition.



3 Dynamical Time evolution

Once internal forces of the model are calculated, we
can applied other possible external forces and compute
the time evolution of our system. Essentially a Newto-
nian classical dynamics are considered

ẋ = v, v̇ =
f
m

. (9)

Here, x, v and f are considered for each of the nodes
of the FME model.

The Courant condition states that time increments
have and upper maximum value to ensure stability,

�t < h

√
ρ

2λ + µ
, (10)

where h is the minimum of the distances between a
node and its neighbors and ρ is the material’s rest den-
sity.

A simple Euler’s explicit scheme can be used to inte-
grate (9) giving acceptable results in terms of speed and
accuracy. To increase time steps, we follow [GMMA01]
establishing a semi-implicit scheme that improves sta-
bility.

A first approximation of the force applied at a node
when it moves is given by J = ∂f

∂x , the force Jacobian
matrix associated at each node. We can precompute
this matrix in the object’s rest position, assuming that
its neighbors are fixed, and consider that it is constant
during the simulation. The semi-implicit scheme can
be stated as

ṽn+1 = vn + f
m�t,

vn+1 =
(
I3 − (�t)2

m J
)−1

ṽn+1,

xn+1 = xn + vn+1�t.

(11)

The update step for the velocities acts as a filter
at the only cost of a product by a constant matrix.
An implicit method would update the Jacobian matrix
J at each time step. The semi-implicit approach is
only a simplification, but because of the increase in
the stability, the time step can be almost doubled.

4 Results

We have implemented the above FME method for
different types of geometries. Although this can be a
general modelization, our final goal is to obtain a de-
formable model for the human heart. One of the main
problems will be to get the tetrahedra volume decom-
position for this model. Moreover, the total amount

of elements we need has to be as low as possible to
get real-time simulation rates. The problem is that if
only a coarse approximation of the model is used, then
the accuracy on the computed deformation will be low.
This will force us, as a future work, to improve our mo-
del with a multiresolution strategy.

With figure 2, we show a first model corresponding
to a deformable column and a deformable wall. We
can build different number of columns and use these
models to test the different parameters of the model.

Figure 3 shows an example of two concentric ellip-
soids. The inside ellipsoid is empty and only the vo-
lume between them is decomposed in tetrahedra ele-
ments. This is a rough approximation of our final mo-
del but we used it as a test model both for elasticity
parameters and time rates.

Finally, the table 1 shows the elasticity parameter
values, time step and geometry values used in each of
the examples.

Figure 2. Example of wall FME simulation. A wire
and a polygonal representation is shown

Figure 3. Example of two concentric ellipsoids



column wall ellipsoids heart

λ 5.0 250.0 5.0 0.04
µ 2.0 100.0 2.0 1.6e-3
Φ 9.0e-5 0.0 9.0e-5 1.0e-4
Ψ 9.0e-5 0.1 9.0e-5 1.0e-4
�t 7.5e-3 0.01 0.04 9.0e-3
# nodes 43 20 40 353
# elements 118 24 72 1352

Table 1. Model parameters and geometry values

5 Future work: Multiresolution with
Mesh Free Method

As we explain in the previous sections, a multire-
solution model is preferred to our final implementa-
tion. The approach we have chosen is to add dif-
ferent particle points on our FEM model. This is
still a work in progress but the idea is taken from
[L.L77],[JCCW96],[WYS+96] and the recent works of
[AS00] and [S.F01].

The first Mesh Free Method (MFM) is the Smooth
Particle Hydrodynamic (SPH) [L.L77]. It is based in a
simple property of Dirac’s delta function, δ(x), which
is

u(x) =
∫

δ(x − y)u(y)dy.

Figure 4. An actual heart recovered geometry

Here, u(x) is the function to be interpolated and the
basic idea is to approximate this equation as

u(x) ≈ ũρ(x) =
∫

Cρφ(
x − y

ρ
)u(y)dy, (12)

where φ is known as weight function which is an even
positive function with compact support.ρ is the expan-
sion parameter related with the function’s support of φ
and Cρ is the normalization constant chosen to satisfy∫

Cρφ(
x

ρ
) = 1.

A discrete interpolation is computed by integrating
(12) numerically,

u(x) ≈ ũρ(x) ≈ uρ =
∑

i

Cρφ(
x − xi

ρ
)u(xi)ωi. (13)

Here xi and ωi are points and weights used in the
numerical integration scheme. Usually these points are
called particles. The interpolation for the SPH method
can be expressed as

u(x) ≈ uρ(x) =
∑

i

Niu(xi),

with the interpolation function basis

Ni(x) = Cρφ(
x − xi

ρ
)ωi.

This definition cause that uρ(xi) �= u(xi) = ui, it
means that, in general, the basis functions do not sa-
tisfy the Kronecker’s delta condition Nj(xi) �= δij .

In the context of continuous interpolation for the
equation (12), a basis function φ can be modified for
exactly reproduce the real polynomial space P, that is

p(x) =
∫

Cρφ(
x − y

ρ
)p(y)dy, ∀p ∈ P.

From this polynomial approximation context, we
can stated our idea of multiresolution approach. It
is based on a mixed method of FEM and MFM that
uses FEM with a coarse mesh and uses particles with
a MFM to enrich the number of points used for com-
putation in the parts of the model where an external
force is applied.

For that approach we will use a variant of the MFM,
the Free Galerkin Method [S.F01] with two different
approaches shown in figures 5 and 6 respectively. In
the first case, we will study a mixed model with two
different zones computed with only FEM or MFM and
with a transition zone between the two methods. The
second approach will consist on using mainly FEM and
a mixed zone with both FEM and MFM just to improve
precision in the external zones where occasionally an
external force will be applied.
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Figure 5. Three different areas with FEM, MFM and
a central mixed transition zone
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Figure 6. Two areas in the model with FEM and a
mixed zone

6 Conclusions

We have presented an in progress work where a mul-
tiresolution deformable 3D model is aimed. By the mo-
ment, a Finite Element Method has been implemented
and it works properly. This work is included in a more
general frame where a complete medical tool is being
constructed. The final goal is to be able to recons-
truct the shape of the left ventricle (LV) of an actual
patient from its SPECT data capture. A surface re-
construction will be the first step its final output will
be two meshed surfaces corresponding to the external
and internal walls of the LV. From these two meshes a
tetrahedralization of the inside volume will be obtained
with an advance front method relying on the external
and internal meshes. This tetrahedral mesh will be the
input of our model, which is planed to work in an Vir-
tual Reality environment as a training tool for medical
surgery. In this paper we have introduced the formu-
lation of the model and the idea to implement a mixed
model with FEM and MFM methods.
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