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Abstract

In this paper , we enhance existing techniques for
simulating flexible volumetric objects. The idea is to
use a mixed model of Finite Element and Mesh Free
Methods. From this approach we will be able to build
a 3D deformable model which can be included in a
general application of virtual reality for a medical surgery
simulator. The final model will be the heart of a patient
builded from their actual SPECT data. The mixed approach
allow us to construct a multiresolution model that can be
used to obtain real time response when an external user
interacts with the model.

1. Introduction

Simulating and animating 3D deformable objects in real
time is essential to many interactive applications such as
surgery simulators. One of the main characteristics of
these simulations is the dynamic interaction between the
deformable model and the possible external forces acting on
it. The dynamic behavior of our volumetric 3D deformable
model is based on linear elastic mechanics. It is essentially
based on techniques presented in computer graphics and
mechanical engineering literature [7] , [1] and [2].

From the work developed by J. O’Brien and J. Hodgins
[3] and G. Debunne [4] we can state the formulation of
the problem in terms of Finite Elements (FEM). Although
[3] is focused on the study of fractures in almost rigid
materials, the elastic model can be used for simulating more
deformable objects. In particular, [4] build a model for the
human liver with the same finite element formulation.

When the final goal of one application is a Virtual Reality
environment, topics like precision and speed need to be
properly balanced. To combine both characteristics the
usual solution is to build a multiresolution model [4]. The
structure of such a model is organized in different layers
from a coarse to a finer mesh. The computational accuracy
is related to the number and size of the elements. When an
external force is applied to the model in a delimited zone,
the finer mesh is activated. The other resolutions are used
to animate the model according to the distance from the

force location. The different multiresolution models differs
in how are related two consecutive mesh levels. They can
be obtained from a refinement of the previous level mesh or
completely independent (just meshing the same volume).
This relation is critical in the transition zone where the two
different meshes have to be activated.

In any case, we are forced to work with many meshes
with the resulting increase in the difficulty of the data
structure of the problem. One possibility to avoid this
problem is to use only one mesh (i.e. a coarser mesh) and
apply another multiresolution approach to the deformable
model. The idea is to refine the zone where the forces
are applied with particles and to use a Mesh Free Method
(MFM) for computing the elastic reaction of the model
([5],[6],[8],[9]). In this way, our idea is to build a mixed
model with FME and MFM that simplify the data structure
and uses the multiresoltion approach. A transition zone is
defined in order to achieve this goal.

2. Finite element formulation

The usual modelization is based on continuum mechanics,
[1]. Regarding our simulation, the first assumption in the
continuum approach defines the scale effects is significantly
greater than the scale of the material’s composition.
Therefore, the behavior of the molecules or particles that
compose the material can be modeled as continuous media.

We begin the description of the continuous model by
defining material coordinates that parameterize the volume
of space occupied by the object being modeled. In the rest
of this section, we will follow [3] and [4] to formulate our
FEM approach.

Let ��� � ���	�
���
������������� � � be a vector in � ���
that denotes a location in the material coordinate frame
as is shown in figure 1. The deformation of the material
is defined by the function � � ����� � �������� !� that maps
locations in the material coordinate frame to locations in
world coordinates. In areas where material exists, x is
continuous. In areas where there is not material, x is
undefined.

We make use of Green’s strain tensor " , to measure the
local deformation of the material [1], as is pointed out in
[4]. This tensor is the most appropriated for multiresolution



models. The strain tensor is formulated as a symmetric
matrix "$#&%'� (*) �),+ #.- ) �),+ %
/1032 #&%�4 (1)

Here 2 #&% is the Kronecker’s delta. This strain metric only
measures deformations, it is invariant with respect to rigid
body transformations applied to x and vanished when the
material is not deformed. Both systems, material coordinate
and world coordinate, are matching up when the object is
not deformed, resulting in a null strain tensor. The material
coordinate of a points of mass are fixed, but his position in
space will vary over time.

The theory of linear elasticity assumes that stress and
strain are linearly linked. In this way we assume that
the material is isotropic and with symmetric considerations
state that only two independent coefficients describe the
material behavior. In this case, the elastic stress is5�687:9#&% � �;<>=@?
A " <B<.CEDGF "$#H%�� (2)F and A are the Lamé coefficients, F represents the rigidity
of the material while A measures its ability to preserve
volume.

In this work we also use damping forces which are very
important if we want to improve realism. The strain rate
tensor I ,measures the rate at which the strain is changing
and is the time derivative of "IG#&%J� ( ) �),+ # - )LK�),+ % / C ( )MK�),+ # - ) �),+ % / � (3)

where
K�N� ) �),O is the velocity of a point. The viscous stress

is 5 6QPB9#H% � �;<>=�?SR I <B< CEDGT I #&% � (4)

where R and T control how fast the material looses or
dissipate kinetic energy.

The total stress tensor is obtained adding both the elastic
stress and the viscous stress 5 � 5 687:9 C 5 68PB9

For our FEM implementation we will use tetrahedral
linear elements. We denote by U # the linear interpolation
function associated to each vertex �WV ,UX# �:Y ��Z,�
[!���]\^# ? Y C \,#`_aZ C \^# � [ C \^#`b!4 (5)

The matrix \ � � \,#&%c� is defined from the material
coordinates of the vertex. It is always a nonsingular
matrix unless the associated tetrahedron is degenerated.
Numerical instabilities are associated to near degenerated
configurations.

Position and velocity of each point can be interpolated
from the respective vertex values� � ���d�1ef\1g � hji � K� � �����]kl\1g � hji � (6)

where the matrices e and k are defined asem�on � � ��� � �
� � �
�Wp�q , kr�on s � ��s � �ts � �tsup�q , being ��V , svV
the position and velocity vectors respectively of each vertex.

From (6) we can also compute the derivatives that we will
need to compute the strain and strain rate tensor from (1),
(3) respectively,) �),+ # �1ef\ 2 V � )MK�) ��V �1kl\ 2 V (7)

where 2 # �wn 2 # ? � 2 #8_ � 2 # � �
xGqzy . These partial derivatives are
constant because we are using linear basis functions at each
element.

The internal force is computed for each element and is
applied at their vertices{ 6Q|~}�9# ���	�G� 68|�}�9D b;% =@? �	� �;��= � �; � = � \�� � \ V � 5 � � � (8)

where �	�G� 68|~}�9 is the element volume.
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Figure 1. Material coordinate system. One example of a
wall FME decomposition.

3. Dynamical time evolution

Once internal forces of the model are calculated, we can
applied other possible external forces and compute the time
evolution of our system. Essentially a Newtonian classical
dynamics are consideredK���1s�� Ks����� 4 (9)

Here, � , s and � are considered for each of the nodes of the
FME model.

The Courant condition states that time increments have
and upper maximum value to ensure stability,�f�d���W� �D A C�F � (10)



where
�

is the minimum of the distances between a node
and its neighbors and � is the material’s rest density.

A simple Euler’s explicit scheme can be used to integrate
(9) giving acceptable results in terms of speed and accuracy.
To increase time steps, we follow [4] establishing a semi-
implicit scheme that improves stability.

A first approximation of the force applied at a node when
it moves is given by ���������� , the force Jacobian matrix
associated at each node. We can precompute this matrix in
the object’s rest position, assuming that its neighbors are
fixed, and consider that it is constant during the simulation.
The semi-implicit scheme can be stated as�sv���@�M�]sv� C �� � O �sv���@�M�w �¡B� 0 6Q¢d£�9:¤� �v¥�¦ � �sv�§�@�	�� ���@� �]� � C s �§�@� � O 4 (11)

The update step for the velocities acts as a filter at the
only cost of a product by a constant matrix. An implicit
method would update the Jacobian matrix � at each time
step. The semi-implicit approach is only a simplification,
but because of the increase in the stability, the time step can
be almost doubled.

4. Results

We have implemented the above FME method for
different types of geometries. Although this can be
a general modelization, our final goal is to obtain a
deformable model for the human heart. One of the
main problems will be to get the tetrahedra volume
decomposition for this model. Moreover, the total amount
of elements we need has to be as low as possible to get real-
time simulation rates. The problem is that if only a coarse
approximation of the model is used, then the accuracy on
the computed deformation will be low. This will force us, as
a future work, to improve our model with a multiresolution
strategy.

With figure 2, we show a first model corresponding
to a deformable column. We can build different number
of columns and use these models to test the different
parameters of the model.

Figure 3 shows an example of two concentric ellipsoids.
The inside ellipsoid is empty and only the volume between
them is decomposed in tetrahedra elements. This is a rough
approximation of our final model but we used it as a test
model both for elasticity parameters and time rates.

Finally, table 1 shows the elasticity parameter values,
time step and geometry values used in each of the examples.

Figure 2. Example of column FME simulation. A wire and
a polygonal representation is shown

Figure 3. Example of two concentric ellipsoids

5. Future work: multiresolution with
mesh free method

As we explain in the previous sections, a multiresolution
model is preferred for our final implementation. The
approach we have chosen is to add different particle points
on the FEM model. This is still a work in progress but the
idea is taken from [5],[6],[8] and the recent work of [9].

The first Mesh Free Method (MFM) is the Smooth
Particle Hydrodynamic (SPH) [5]. It is based in a simple
property of Dirac’s delta function, 2 �:Y � , which is+ �¨Y ���ª© 2 �:Y 0 Z«� + � Z
��¬§Z,4

Here,
+ �:Y � is the function to be interpolated and the basic

idea is to approximate this equation as+ �¨Y ��­¯®+±° �¨Y �²�³©�´ ° R � Y 0 Z� � + � Z
�t¬�Z±� (12)

where R is known as weight function which is an even
positive function with compact support. � is the expansion
parameter related with the function’s support of R and ´ ° is
the normalization constant chosen to satisfy©µ´ ° R � Y � ��� h 4

A discrete interpolation is computed by integrating (12)
numerically,+ �:Y �d­]®+,° �¨Y �d­ +±° � ; # ´ ° R � Y 0 Y #� � + �:Y #��~¶�#�4 (13)



Figure 4. An actual heart recovered geometry· ¸ ¹ º »�¼
# elements

column 250.0 100.0 0.0 0.1 0.001 24
ellipsoids 5.0 2.0 9.0e-5 9.0e-5 9.0e-3 74
heart 0.04 1.6e-3 1.0e-4 1.0e-4 7.5e-3 1352

Table 1. Model parameters and geometry values

Here
Y # and ¶�# are points and weights used in the

numerical integration scheme. Usually these points are
called particles. The interpolation for the SPH method can
be expressed as+ �:Y ��­ + ° �¨Y �d� ; # U # + �¨Y # �>�
with the interpolation function basisU½# �¨Y �²�¯´ ° R � Y 0 Y #� �~¶�#t4

For our approach we will use a variant of the MFM,
the Free Galerkin Method [9], shown in figure 5. This
approach will consist on using mainly FEM and a mixed
zone with both FEM and MFM just to improve precision in
the external zones where occasionally an external force will
be applied.

Figure 5. Two areas in the model with FEM and a mixed
zone

6. Conclusions

We have presented an in progress work where a
multiresolution deformable 3D model is aimed. By the
moment, a Finite Element Method has been implemented
and it works properly. This work is included in a more
general frame where a complete medical tool is being
constructed. The final goal is to be able to reconstruct the
shape of the left ventricle (LV) of an actual patient from
its SPECT data capture. A surface reconstruction will be
the first step its final output will be two meshed surfaces

corresponding to the external and internal walls of the LV.
From these two meshes a tetrahedralization of the inside
volume will be obtained with an advance front method
relying on the external and internal meshes. This tetrahedral
mesh will be the input of our model, which is planed to
work in an Virtual Reality environment as a training tool
for medical surgery. In this paper we have introduced the
formulation of the model and the idea to implement a mixed
model with FEM and MFM methods.
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