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ABSTRACT

A general automatic method for recovering a 3D volumet-
ric representation of a scene and the camera parameters
from multiple uncalibrated images is presented. Using au-
tomatically tracked 2D features a first projective approxi-
mation is calculated and upgraded to an Euclidean struc-
ture by computing the projective distortion matrix in a way
that is analogous to estimate the absolute quadric. With
the Singular Value Decomposition (SVD) as a main tool,
and a careful study of the rank of the matrices involved in
the process we are able to get excellent results. Moreover,
in contrast to other approaches our process is essentially
a linear one. After the camera autocalibration process, an
improved voxel carving algorithm is used to recover the ex-
ternal surface of the objects in the scene. This carving al-
gorithm uses optimized data structures for speed purposes
and the information from the calibration process, such as
the 3D coordinates of the tracked points, to select automat-
ically the internal threshold used when carving.
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1 Introduction

In recent years Image Based Rendering has shown the im-
portance of using real imagery to highly improve the qual-
ity of final renders. New rendering algorithms have been
presented([20],[3],[6]) that reach a photorealistic quality
and interactive speeds when rendering 3D models by us-
ing images of real objects and some geometric information
(i.e. a geometric proxy). However, while these methods
have emphasized the rendering speed and quality, most of
them need a tremendous preprocessing effort in order to ob-
tain well calibrated images and geometric approximations
of the objects. Moreover, most of these algorithms abuse of
user interaction for the camera calibration and image regis-
tration part or need the use of expensive equipment such as
calibrated gantries and 3D scanners.

In this paper we present a method for extracting a 3D
volumetric representation of an object from different views
of it taken with a still camera or handheld video camera.
More specifically, the goal of the problem is to recover the
3D geometry of a scene from the 2D projections obtained
from multiple view images, taking into account the motion
of the camera. But, neither the camera calibration (intrin-
sic parameters and pose) nor the geometry of the scene are
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known.

The first part of the problem is to calibrate the cam-
eras in the scene. This is known as the structure from
motion problem (SfM). Since we are working with uncal-
ibrated cameras, we use an stratification approach to re-
cover both camera parameters and structure of the scene
([18],[81.[91.[4]1.[12]). The idea is to first obtain a projec-
tive reconstruction and then upgrade it to Euclidean struc-
ture. For a good review of different methods we suggest
[71.

One of the advantages of the method proposed in this
paper is that it allows to recover an Euclidean reconstruc-
tion of the model without any initial guess, which is one
of the drawbacks of most of the existing methods. An-
other important feature is that the entire process is based
on solving linear systems using the SVD decomposition.
The knowledge of the geometric and rank properties of the
different transformations represented by the matrices of the
process allows us to obtain a valid Euclidean reconstruc-
tion. As shown in [14] high accuracy can be obtained when
synthetic is used, and when noise is added the precision is
still acceptable. The accuracy of these results is maintained
when real data examples are used.

Once after the autocalibration process, the second part
of the problem is to extract the 3D geometry of the objects
in the scene, based on the camera locations and the im-
ages. Different approaches have faced this problem using,
for example, photogrammetry, stereo vision, contour and
shadow analysis techniques . Recently a set of volumetric
techniques based on voxel algorithms ([11], [1], [2], [5])
have been used for reconstructing complex shape objects
with good results. We have improved the space carving
algorithm based on voxel coloring [15] by using an auto-
matic threshold selection and a statistical color consistency
criterion.

2 Structurereconstruction and Calibration

Next we will address the SfM problem using a small set
of points or features and we assume the 2D trajectories
of these features along the image sequence are known.
We assume no prior knowledge of their coordinates in the
3D space, the relative motion between the camera and the
scene (extrinsic parameters), and the camera’s internal ge-
ometry (intrinsic parameters) and we wish to recover this
information only from the 2D measurements correspond-
ing to the set of features we are considering. Following



[19], we use standard image coordinates, that is, we scale
image pixels to lie in [—1,1] x [—1,1] which guarantees
good numerical conditioning.

2.1 Projectivefactorization method

The projective factorization method ([18],[9], [4],[12]) is a
generalization of the factorization method which was first
developed in [17] and [13], for the orthographic projection
and the paraperspective models respectively. Because of
the restrictions in the application of the previous models,
projective factorization gives a more general framework to
recover 3D shape and motion from multiple view images.
Moreover, if no information is known about the camera in-
trinsic parameters, the motion and the object, only a re-
construction up to an unknown projective transformation is
possible to compute.

Our goal is to recover 3D structure and motion from
m uncalibrated perspective images of a scene and n 3D ob-
ject points. Let X; = (X;,Y;,Z;, )T, j=1,...,n,
be the unknown homogeneous 3D point vectors, P;, i =
1,...,mthe unknown 3 x 4 image projections, and x;; =
(us,v;5,1) the measured homogeneous image point vec-
tors.

We call projective depths the non-zero scale factors
A;; relating the world points and its projections

Ainij:Pin i:l,...,m ]:1,,71 (1)

Each object is defined only up to re-scaling. With correctly
normalized points and projections the A’s become true op-
tical depths.

We can state the problem using matrix notation as
W = PX, where W is the 3m x n scaled measurement
matrix, P is the 3m x 4 perspective matrix and X is the
4 x n shape matrix. As is stated in [18], the projective
depths depend on the 3D structure, which in turn derives
from the depths. To recover the values of \;; an iterative
projective algorithm is proposed, based on Singular Value
Decomposition (SVD). Matrix W has to be a rank-4 ma-
trix if it is the matrix associated to a projection of a set of
real points. Consequently, for points in general positions,
a rank-4 factorization of the scaled matrix produces a pro-
jective reconstruction of the points. There exist different
approaches ([4],[8], [9].[12],[18]) to construct an iterative
algorithm that converges to a rank-4 decomposition of the
measurement matrix (see [14] for more details).

2.2 Metricreconstruction
The factorization of Equation (1) recovers the motion and

the shape up to a linear projective transformation H known
as the Projective Distortion Matrix (PDM)

W =PX =PHH 'X = PX 2)

with P = PH and X = H~'X. We need to impose
metric constraints to recover the correct Euclidean motion
and shape. This process is called normalization. As it
is stated in [14] this is equivalent to recover the absolute

quadric what makes this approach closer to the ones based
on epipolar geometry. Now, for each frame 4, the projective
3 x 4 matrix P; can be decomposed into

PH = ;K (R;|T;) i=1,...,m. (3)
where
fi B uo
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0 0 1
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Where p; is a scale factor, the calibration matrix K; en-
codes the intrinsic parameters of the camera, (ug;, vo;) 1S
the principal point, «; is the aspect ratio, 3; is the skew
and f; is the focal length. R; and T, are the ith rotation
3 x 3 matrix and translation vector of the camera for each
frame. Although different cases can be considered accord-
ing to the unknown intrinsic parameters of the camera, we
will consider the focal length f as the only unknown pa-
rameter. Therefore the aspect ratio is 1, the principal point
is at the origin and the camera has no skewing(see [9] for
the other possibilities). These are acceptable assumptions
when the ratio between the position of the scene and the
focal length is not too large. The later occurs when using
aerial imagery, where the objects are very far away from
the camera and the motion of the camera is small.

2.21 Normalization algorithm

We will give now a description of the normalization algo-
rithm as is stated in [9] and also the improvements we have
added in order to obtain a more robust one. As we will
show below, the method presented in [9] does not guaran-
tees to obtain good results by just applying a rank 3 decom-
position.

Combining Equation (3) for all the frames, we can
get the global matrix P = (M|T), where M; = K;R;,
and T; = K;T;. If we express the 4 x 4 matrix PDM as
H = (A|B) where Ais 4 x 3 and B is 4 x 1. Since
from (2) we have P = PH, then (M|T) = P (A|B). At
this moment, we decouple the computation of the transla-
tion from the rotation one. This way, we will be able to
compute the Euclidean reconstruction using essentially lin-
ear algorithms, instead of the nonlinear ones related with
Kruppa’s equations [7].

Taken into account that the shape matrix X is related
to the geometry of the object and therefore, independent of
the frame, we can express each point in local object coor-
dinates

X?Z(Tjszj,Tijj,Tjszj,Tj), j=1,...,n. (5)
where s; = (845, 8y;,5;) are the local coordinates. We
can also consider the origin of the world coordinate system
placed at the center of mass of the scaled object points.



Now, if we look at the sum of the first coordinates of
the projected points, using the center of mass we can obtain

Z)\ijuij :TriZTj- (6)
j=1 j=1

Analogously, a similar expression can be obtained for the
other coordinates. Next, we can use the translation terms to
compute B solving a linear least square problem. For that,
we consider (2.2.1) to get

Tei = szB7 Tyi = PyzBa T, = P;B. (7)

From (6) we obtain the quotient

n n
Toi D1 Nijthij Tyi D1 NijVij
- n ) - n
T 251N T >N

Finally, from (7) and (8) we can set up an homogeneous
system of 2n linear equations for the 4 unknowns elements
of B. The kernel of the system gives us the elements of B.

On the other hand, we have to compute the matrix A
to complete the desired distortion matrix. The information
embedded in A is the orientation of the PDM. To express
that in a compressible way, first from (3) and (2.2.1) we
obtain

(®)

Myi = s fili + pauoiks,
My; = pio fiji + pivoiks, M = pik;. 9)

In the case we are considering «; = 1, ug; = vo; = 0, and
using that the rotation axis are orthogonal we get the metric
relations

| Myl = [ Myil®,  |Mil? = pif,

From (10), the metric constraints can be written as linear
constraints

MMT = pAATPT = PQPT. (11)

obtaining a set of 4m linear equations for the 10 unknowns
of Q. In [9] they solved the problem adding a new non-
homogeneous metric equation (based on the scale factors
on (3)) fixing the first factor to one, 1 = 1, and adding
the equation |M.;|?> = 1to (11). After obtaining the least
square solution they make a rank 3 decomposition of @) to
get the matrix A and this way completing the projective
distortion matrix. As we have stated in [14] this is not in
general a robust method of solution because the essential
condition (see [19]) rank(€2)=3 is not imposed to the solu-
tion @ obtained from (11).

In the general case the homogeneous system (11)
turns to be of rank 8. This is because, as we have shown
in [14], the unknowns involved in the system (11) are es-
sentially the components of the absolute quadric €2 and the
dual absolute conic w. From [19] we know that there is
an additional constraint that forces the angles between vi-
sual planes measured using €2 to agree with those measured

from the corresponding image lines using w. When pro-
jected to epipolar planes this constraint gives the Kruppa
linear constraint. Therefore, we have one extra degree of
freedom for the solution which can be used to force the fi-
nal matrix @ to be rank 3. Indeed, we consider a linear
combination of the vectors associated to the zero singular
values and we impose det(Q) = 0. This gives us a four or-
der polynomial, using the linear combination coefficients
quotient as unique variable, and we choose the best root
that gives us a rank 3 matrix Q). After that, we obtain ma-
trix A as a rank 3 approximation of ) using again the SVD
decomposition.

3 Shape Recovery

From the above autocalibration process we have recovered
the position and orientation of the cameras from which our
images had been taken. The next step is to recover the 3D
shape of the objects in the scene. As mention before, we
use a volumetric method known as voxel carving and has
been analyzed in ([11], [1], [2], [5D).

We start from an initial voxelized volume that is larger
than the object being reconstructed. At each iteration some
voxels are carved away until the resulting shape is a good
approximation of the external visible part of the scene. A
voxel is carved if it is not consistent with the input images.
The resulting voxelized object reprojects to the images and
matches closely the original images. This object is called
the Photo Hull as an analogy to the convex hull because it
reprojects properly although it could be a superset of voxels
of the real model. As shown in [11], the accuracy of the
final model will depends on the number of views and their
coverage of the scene. A crucial part in the method is the
Consistency Check Criterion which is the mechanism that
decides whether a voxel will be kept or carved.

Our current implementation uses a plane sweep space
carving algorithm [11] with some modifications. The main
steps are

1. Estimate threshold.

2. Initialize voxel volume to only those voxels visi-
ble in a minimum number of cameras (more than
one) and that do not lay in background areas.
Store the voxels in an Octree data structure.

3. Determine active cameras. Draw frontal faces of
voxels that lay in the sweep plane.

4. Draw Shadow voxels in front of the sweep plane.

5. Scan the images and build a list of voxels with
their RGB statistics per image.

6. Perform a consistency check at each voxel. If is
not consistent carve the voxel.

7. go tostep 3.

The following subsections will provide more detail of
the key issues of the algorithm.

3.1 Initial Voxedized Volume

One of the first steps of the algorithm is to determine the
initial volume to be carved. The size of this volume is cal-



culated by upscaling the bounding box that contains the re-
covered 3D points from the SFM reconstruction. The ori-
entation of the initial volume will be determined by aver-
aging the recovered camera orientations. This will allow to
maximize the exposed voxel surface in all the cameras.

One issue to take into account is that some of the ini-
tial voxels will only be visible in one or few cameras and it
is reasonable to eliminate them to reduce the total amount
of voxels to analyze. Furthermore, when reconstructing an
object, there will be areas in the images that correspond to
the background and eliminating the voxels that project into
those areas before the consistency analysis will speed up
the carving process.

In order to achieve this initial simplification, we cre-
ate an octree data structure that will be recursively divided
and tested for intersection against the camera frustums. If
an octree cell is visible in less that a minimum number of
cameras it will be marked as initially carved and it will not
be subdivided. We call this test the Misibility Test. More-
over, if the images used for the carving process can be seg-
mented into background and foreground, an additional test
can be performed in order to stop the subdivision process
if an octree cell falls into the background in any of the im-
ages. We call this the Background Test

The result of this initialization step will be a pre-
carved voxel space adjusted to the object’s convex hull.
The octree structure will be also very useful to access the
different planes of voxels during the plane sweep carving
process.

3.2 Sweep plane projection

As shown above, the plane sweep algorithm is and iter-
ative process that in each step projects a plane of voxels
to all the cameras. Each voxel’s projection into an image
or camera focal plane is called footprint. These footprints
will store the average color and statistical values of each
voxel per each image. Since this step is performed several
times, we have optimized our implementation by relying
on OpenGL accelerated hardware. Each voxel is assigned
a unique RGB color and all the voxels that intersect the
sweep plane are drawn for each camera settings and then
each framebuffer is grabbed from the videocard memory.
The resulting set of images will contain the projections of
voxels.

The voxels that belong to the active sweep plane will
only be painted as a single square face, opposing the sweep
direction. However, voxels that have not been carved in
previous iterations will be fully painted in color black in
order to mask those parts of the images already assigned to
previous voxels. We call these the Shadow Voxels.

3.3 Consistency Check Criterion

We follow the ideas of the recent work by Kutulakos and
Seitz [11] and by Broadhurst and Cipolla [1] but in their
approach the user is required to select the threshold that
will be used to determine if a voxel has to be carved. How-
ever, in our approach we have more information about the

scene due to the reconstruction process we have done. In
particular, we know the 3D coordinates of the points we
have used along the autocalibration process. As explained
above, we use these true pointsto determine the initial vox-
elized volume. Moreover, since we know the projections of
the points in the images, we can evaluate a threshold esti-
mation that would avoid to carve the true points from the
voxel space. This solves the problem of the manual se-
lected threshold.

Here on we will assume that the object’s surface can
be considered Lambertian, so regardless of the viewing an-
gle the color does not change and a voxel consistency can
be determined by measuring and comparing the color of its
projection among the different camera planes.

Because the voxels project to larger areas than a sin-
gle pixel, we agree with [1] that using a single pixel color
per voxel, as in the original algorithm (see [11]), we lose
important information and the method is very sensible to
the sensor’s noise. Therefore we will use a statistical con-
sistency check instead of the traditional one. For each foot-
print of a voxel we will store the number of pixel samples,
and per each R,G and B channel the mean, the variance,
the sum and the sums of squares (SS) of its pixel values.
During the consistency check we will perform a One Way
ANOVA with Unequal Sample Sizes test considering the
different footprints of a voxel as groups and testing if all
those groups can be assimilated to a single color distribu-
tion. In other words, when there is sufficient evidence to
suggest that the voxel can not correspond to the same part
of object in all the images, it will be carved. If not, the
voxel will be kept and marked to be rendered as a shadow
voxel.

4 Experimentsand Results

In this section we will present several tests that have been
performed with real imagery and we will introduce a de-
tailed analysis of our model reconstruction pipeline stages
and its performance for the different datasets. Figure 1
shows a mosaic of different stages of the reconstruction
pipeline and the final results.

The first stage of the pipeline is to digitize the se-
quences and track them to obtain enough 2D information
to calibrate the cameras. We use a standard handheld digi-
tal video camera that transfers digital video to the computer
using a FireWire connection. We have tested three tracking
strategies because of the differences of footage and quality
of the images of the presented datasets.

The House dataset was tracked automatically with an
in-house tracker implementation. The images do not have
reflections, there are also sharp corners in the objects that
facilitate their detection and tracking, and most important
the change of the object’s position between frames is very
small. We used 30 frames of 512x512 pixels and a total of
39 points were found by the tracking system.

For the second dataset, the Dragon, we only had a
few still pictures of 720x480 pixels from different angles.
An initial set of 15 images was reduced to 5 useful ones



House Dragon  Anteater

# Features 39 10 9
# Images 30 5 39
Projection Time(sec.) 4.15 0.421 15
Metric Time (sec.) 0.031  0.016 0.016
Max 2D Error (pixels) 4 11 5

Table 1. AutoCalibration results

because specularities in the object. We used 10 features
and they were selected manually.

Finally, the Anteater dataset has 393 frames of
720x480 pixels. We put markers in the object and we used
a pseudo automatic tool, were the user selects the point
to track in one frame, and the software does the tracking
through the rest of frames. A total of 9 features have been
used.

The next stage of the pipeline is the autocalibration
of the cameras, where we will obtain the cameras intrin-
sec and extrinsec parameters related to the 3D location of
the object itself. The accuracy of the reconstruction is de-
termined with a 2D reprojection error analysis (Table 1) in
addition of a visual quality check will serve as verification
of the results because we do not have ground true data.

Most of the computation time for the autocalibration
is used in the iterative projective depth recovery. On the
other hand the metric reconstruction takes an nonsignificant
amount of time compared to the iterative part. We run our
tests in a PC P4 at 1.8GHz and the real datasets take around
0.5s to 5s to complete.

The last stage of the pipeline is the voxel carving algo-
rithm. We have used initial volumes of 256 voxels per side
and a downsampled set of images: for the House dataset
we have used 7 images and 6 for the anteater. The dragon
dataset used all the images available (a total of 5).

House  Dragon  Anteater

Volume 256 256> 256>
# Initial Leafs 2747120 2333184 1438448
Initial Memory (Kb.) 173429 147518 91827
# Final Leafs 116306 112438 107704
Threshold 4.6e-2 1.0e-2 1.9e-2
Init. Time (sec.) 501 278 539
Carving Time (sec.) 472 291 560

Table 2. Voxel carving results

In order to accelerate the carving process we have
masked of the background of the images to enforce the oc-
tree optimization and background testing. Table 2 shows
the initialization times, initial volume, volume reduction
and memory used to store the octree. This initialization
step is very important because it reduces the initial volume
to a 16.3%, 13.9% and 8.6% of the original 2563 voxels for
the house, dragon and anteater datasets respectively.

The thresholds have been calculated using the voxels
containing the recovered 3D points of the objects. Before
starting the initialization of the octree, these voxels are pro-
jected into the camera planes and the threshold is adjusted

to enforce the consistency of these voxels. The value repre-
sents the confidency of discaring the consistency of a voxel.
For our samples, any value with a F-value greater than 5%,
1% or 1.9% will be carved.

The carving algorithm is very time consuming but
with the octree optimization and the background test step
we have been able to obtain small running times for large
voxel resolutions. The carving tests have also been done in
a PC P4 at 1.8Ghz and the total amount of model carving
is between 9 and 18 minutes.

The final voxelized models have a very good appear-
ance from the calibrated cameras, and for any location
around to those cameras. For novel views that are too far
apart from the original views the models are not that accu-
rate. This is a well know limitation of all the model recon-
struction algorithms based on images, because we can not
reconstruct, without any additional information, the parts
of the model one can not see. However, with a set of images
that provide a good coverage of the object a fairly accurate
model can be reconstructed easily, as shown in this work.

5 Conclusions

A completed pipeline for reconstructing 3D models from
uncalibrated images of real objects has been presented.

One of the advantages of the proposed method is that
it does not need any initial solution or arbitrary additional
constraints to compute the final result. Another advantage
is that the Sfm method is linear in the unknowns therefore
computationally faster than other nonlinear approaches.

We have developed an optimized version of the space
carving algorithm that used statistical measurements and
a automatic threshold selection to determine voxel consis-
tency. Moreover it uses an octree based data structure to
optimize the process and reduce the computational time
drastically.

We have tested the pipeline with both multiple views
and long real image sequences. In all the datasets excellent
reconstructions have been obtained, although some of the
models have non convex surfaces. Moreover, the proposed
method is computationally fast in standard PC computers,
making it a very attractive solution.

As a future work, we plan to extend our optimized
space carving algorithm to perform multiple plane sweeps
and to generate directly triangulated meshes for straight-
forward integration with an IBR algorithm such the ones
mentioned.

6 Acknowledgements

This research was partially funded by grants from NSF
(CCR-0083080) and from CIRIT, Gaspar de Portola grant
C01-02.

References

[1] Broadhurst A. and Cipolla R., A statistical consistency
check for the space carving algorithm. Proc. British Ma-
chine Vision Conference, |, 282-291, 2000.



a) House dataset

¢) Anteater dataset

Figure 1. For each of the datasets (ab,c), the top left image
shows one of the original images. The top right image is a view
of the reconstructed model from one of the calibrated cameras.
The bottom images show novel views of the reconstructed model.

(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

Broadhurst A., Drummond T.W. and Cipolla R., A proba-
bilistic framework for space carving. International Confer-
ence on Computer Vision, I, 282-291, 2001.

Buehler C., Bosse M., McMillan L., Gortler S., Cohen M.,
Unstructured Lumigraph Rendering, SGGRAPH '01 Pro-
ceedings, 2001, 425-432.

Chen Q. and Medioni G., Efficient, iterative solution to M-
view projective reconstruction problem. Proc. |IEEE Com-
puter Vision and Pattern Recognition, 1, 55-61, 1999.
Culbertson W.B., Malzbender T. and Slabaugh G., General-
ized Voxel Coloring. Proc. of Vision Algorithms Theory and
Practice Workshop, 100-114, Corfu, Greece, 1999.
Debevec P., Taylor C., and Malik J. Modeling and ren-
dering architecture from photographs.S GGRAPH ' 96 Pro-
ceedings, 1996, pages 11-20.

Fusiello A., Uncalibrated Euclidean reconstruction: a re-
view. Image and Vision Computing, 18, 555-563, 2000.
Heyden A., Berthilsson R. and Sparr G., An iterative fac-
torization method for projective structure and motion from
image sequences. Image Vision and Computing, 17, 981—
991, 1999.

Han M. and Kanade T., Creating 3D Models with Uncal-
ibrated Cameras |EEE Computer Society Workshop on the
Application of Computer Vision (WACV2000), 9(2), 137—
154, 2000.

Jacobs D., Linear fitting with missing data for structure-
from-motion Computing Visison and Image Under standing,
82, 57-81, 2001.

Kutulakos K. and Seitz S., A theory of shape by space carv-
ing. International Journal of Computer Vision, 38(3), 198—
218, 2000.

Mahamud S. and Hebert M., Iterative projective recon-
struction from multiple views. motion |EEE Conference on
Computer Vision and Pattern Recognition (CVPR ’'00), 2,
430-437, 2000. 2000.

Poelman C.J. and Kanade T., A paraperspective factor-
ization method for shape and motion recovery Technical
Report CMU-CS 93-219, School of Computer Science,
Carnegie Mellon University , December 1993.

Sainz M., Bagherzadeh N. and Susin A., Recovering 3D
Metric Structure and Motion from Multiple Uncalibrated
Cameras. To appear in IEEE Proc. International Con-
ference on Information Technology: Coding and Com-
puting ,Las Vegas, 2002. (preprint available at http:\
\ibmrlab.ece.uci.edu\)

Seitz S. and Dyer C., Photorealistic scene reconstruction by
voxel coloring. International Journal of Computer Vision,
35(2), 1067-1073, 1999.

Sturm P., Critical motion sequences for monocular self-
calibration and uncalibrated euclidean reconstruction. Proc.
IEEE Computer Vision and Pattern Recognition, 1100-
1105, 1997.

Tomasi C. and Kanade T., Shape and Motion from Image
Streams Under Orthography: a factorization method Inter-
national Journal of Computer Vision, 9(2), 137-154, 1992.

Triggs B., Factorization methods for projective structure
and motion |EEE CVPR96, 845-851, 1996.

Triggs B., Autocalibration and the Absolute Quadric IEEE
CVPR97, 609-614, 1997.

Wood D., Azuma D., Aldinger K., Curless B., Duchamp T.,
Salesin D., Stuetzle W., Surface Light Fields for 3D Pho-
tography, SGGRAPH ' 00 Proceedings, 2000, 287-386.



