GPU Based cloth simulation with Moving Humanoids

J. Rodriguez-Navarro
LABSID
Dept. Applied Mathematics
Universitat Politecnica de Catalunya
Barcelona-Espaiia

javier.rodriguez-navarro @upc.edu

Abstract

In this paper we present a new real-time cloth sim-
ulation. The usual bottleneck in cloth simulation is
collision detection, which becomes more difficult to
solve, with good frame rates, when a complex ge-
ometry, like a human body, is involved. Recent col-
lision image based methods, that use depth images
to detect collisions, usually relays on CPU for col-
lision correction. In our case we implement a GPU
based simulation that takes care both of cloth sim-
ulation and body-cloth collisions. Our solution is
based on a hierarchic depth map structure. A high
frame rate is obtained with both structured and un-
structured cloth meshes with thousands of particles.

1 Introduction

Cloth simulation can be considered as a particular
case included at the more general framework of de-
formable models. A deformable model simulation
requires the update of the model vertex positions at
each time step according to some deformation law.
This can be considered like a new object represen-
tation at each time step and was not possible take
advantage of the old graphic cards for deformable
simulations. Nowadays graphic cards incorporate
programable capacity for their GPU (Graphics Pro-
cessor Unity) and allows to read vertex positions
from a texture using Vertex Texture Fetch (VTF)
in a vertex program. As we will show, this can be
used for achieving a high frame rate simulation on
deformable models. Moreover, we have also intro-
duced a new technic, the quasi-feedback method,
that give us a criteria to ask about the status of

M. Sainz

Developers technical group

Nvidia Corporation

msainz@nvidia.com

A. Susin
LABSID
Dept. Applied Mathematics
Universitat Politecnica de Catalunya
Barcelona-Espaiia

toni.susin@upc.es

the system during simulation on the GPU. This was
only possible so far reading back to CPU with the
corresponding decrease in the performance.

More precisely, we are facing the problem of
cloth simulation on the GPU and the interaction be-
tween cloth and solid objects, essentially a human
body. Collision detection is usually one of the bot-
tleneck for cloth simulation because a huge num-
ber of computations are involved. When using the
graphics card pipeline a new image based tool is
available for collision detection. Depth map from
appropriate point of views allow as to detect when a
cloth particle is inside another object and a collision
correction can be activated.

In order to have more versatility we have used
both structured rectangular and unstructured trian-
gle meshes for the cloth. In case of working only
with structured rectangular meshes, the frame rate
can be increased due to the known neighbor rela-
tionship which takes advantage of the internal tex-
ture codification. Unstructured triangle meshes are
more general but, as we will explain, it will require
an extra texture for taking account of vertex connec-
tivity.

The paper is organized as follows, section 2 is
devoted to previous work in the area, section 3 de-
scribes the cloth simulation model and its GPU im-
plementation, section 4 is devoted to the collision
problem and our solution using a hierarchic depth
map. Results and conclusions are shown on last sec-
tion.

2 Previous work on cloth simulation

Cloth simulation is a well known and widely stud-
ied computer graphics problem. We can roughly
classify previous work according to the emphasis
on modelling, simulation and computational effi-
ciency. A good reference survey for the field is [14].

Early works are essentially devoted to the mod-
elling aspects. Papers by Terzopoulos et al. [17],
[18] where the first physically-based ones. They
introduce cloth simulation for graphics community
as a problem of deformable surfaces and used tech-
niques from mechanical engineering like the finite
element method and energy minimization. Other
approaches on the dynamic modelling has been, the
particle-based models from the works of Breen et al.
[3] and Eberhardt et al. [6], the energy-based mod-
els from Carignan et al. [4] and Baraff and Witkin
[2]. One of the most successful approach in mod-
elling has been the mass-spring one, introduced by
Provot [16].

One of the first, present and more successful
work in cloth simulation is devoted to the MiralLab
team leaded by N. Magnenat-Thalmann. Their con-
tributions start in the early 80’s and have reached
many important results in all the above areas classi-
fication [13].

Like in other graphics topics, the increase in ap-
plications efficiency is related both with the chosen
model and the hardware performance. Moreover, a
trade-off between speed and precision has to be as-
sumed, the work of Hauth and Etzmuss [9], and the
one of Volino and Magnenat-Thalmann [20] discuss
the convenience of numerical integrators.

The final decision for choosing one simulation
model or another is mainly related with the final ap-
plication field, for video-games or films the require-
ments are totally different. The work of Jacobsen
[10] for the game industry has been the pioneer in
introducing a dynamic model for the cloth together
with the numerical integrator, the Verlet method,
which is suitable for GPU implementations. The
first GPU cloth implementation is due to S. Green
[8], a structured rectangular mesh cloth and a solid
sphere are simulated using Verlet method on the
GPU. Only stretch forces has been simulated.

For dealing with collisions on the GPU image
based methods are introduced by Vassilev et al. [19]
for walking humanoids without dealing with occlu-

sions. Other recent papers by Kolb et al. [11], [12]
studies collisions with complex but static objects.

We use ideas from these papers to introduce our
method for dealing with cloth colliding with a com-
plex object like the human body in motion. We
also solve the occlusion problem using many views
from cameras positioned in fixed local coordinates.
From the skinning correction applied during anima-
tion we simulate the human body as a non-rigid ob-
ject and therefore, more precise collision detection
is obtained.

3 Cloth Simulation model

As we pointed out in the previous section, there are
many different physically-based methods for ani-
mation of cloths. In our case we are aiming a realis-
tic result more than a real engineering simulation of
fiber cloths. Moreover, we want to use the graphics
hardware in order to obtain really fast simulations.
There are other approaches not relayed on the GPU
that obtain fast simulation [5] at the price of decom-
posing the cloth mesh in several parts and animate
only some of them. They have obtained nice results
but we are able to obtain similar ones without fixing
any part of the cloth which makes our method more
flexible and applicable to general garments without
restrictions.

Our cloth simulation model is based on [10],
from game industry, and the GPU implementation
presented in [8]. We extend these previous works to
a general triangulated mesh solving the difficulties
arising when a different number of neighbors has to
be considered for each vertex, and also to collisions
with general complex objects in motion.

The usual Newton’s dynamic equations are in-
tegrated using a stable Verlet numerical scheme
which can be stated for each i-particle as

X;_H :x£,+e(x£l—xi,_1)+aiAz2. (1)

Here x, stands for the present particle position and
a' its acceleration (essentially gravity). 0 <& <1
is a drag term usually used to stabilize numerically
the system. The simulation time step Az is the one
used for advance in time.

Indeed only external forces are taken into ac-
count when computing the acceleration term. In-
ternal forces are included in the simulation as a re-

striction of the motion [21], nowadays this approach
is one of the best choices for GPU implementation.

The cloth model is based on a particle system
where each vertex is a mass particle and the plane
deformation properties of stretch, shear and bend-
ing are simulated as a constraint on the initial length
of the edges of the mesh [16]. For structured meshes
it is equivalent to consider the usual scheme shown
in figure 1. One can only use stretch relations like
in [8] but results are in general too elastic.

O O C O

i

o B S
OO0 @& O O

Figure 1: Planar deformation relations for structured
meshes with stretch (red), shear (green) and bend (blue)
springs.

For unstructured triangular meshes we simulate
internal forces using connections between a vertex
and all neighbor particles. For that, we have an aux-
iliary texture, connectivity texture used as a look-up
table of connections and rest lengths.

Length constraints are satisfied using a relaxation
iterative procedure. At each time step and for each
of the mesh edges, if the present length is different
than the original (or the rest) one, the two particles
on this edge are displaced a percentage (stiffness
constant) of this difference in the edge direction.
Usually the stiffness constant, ks, is 0.5. Thus, if
we denote by d;; =|| x, —x}, || and we assume, for
instance, that d;; > [;; being [;; the rest length be-
tween particles i and j, then the corrected positions
will be

X = X — ks (dij —Lij) * vij,
X£:X£+ks*(dl‘j—lij)*vij. 2)
Here, v;; stands for the unit vector at the edge di-
rection from particle x;, to particle xb.

For a direct solution concerning all particles
proper correction, a global linear system must be
builded taken into account all the connection edges.
This can be done in a quite fast way [1] but it is
not the best choice again for GPU implementation.
Instead of building a huge matrix for solving the
position correction problem one can use an iterative
method more appropriated for sparse systems like
the one involved here. Sparsity is inherent to cloth
simulation because each particle is connected with
few neighbor vertex compared to the total number
of particles in the mesh. As we will show in the
next section, the GPU implementation of deforma-
tion restrictions is equivalent to solve this linear
system using a Gauss-Seidel iterative scheme (see
[15]) without need of an explicit global matrix. Af-
ter several iterations of the same procedure, the sys-
tem will converge to the rest length for all edges.

The number of iterations were fixed in all previ-
ous implementations of such an iterative process in
GPU so far. We have implemented a new technic,
the quasi-feedback method, to stop an iterative pro-
cess saving a lot of useless iterations. This method
consists in a mechanism to obtain a value from the
GPU that reports of the system status. In our case
we want to stop iterations when the deformation
of the cloth is not significant. For that we ren-
der the cloth discarding the points whose displace-
ment are less than a suitable threshold, we call the
ARB_occlusion_guery extension and it gives
the number of samples that are less than this thresh-
old. We stop the iterative process when no correc-
tion is needed. A full description of this technic is
beyond the scope of this paper and it will be pub-
lished somewhere. The convergence is almost guar-
antied unless huge accelerations are acting in the
simulation. Using this relaxation procedure unreal-
istic cloth enlargements (see figure 2) are avoided.

Cloth particles are stored in a texture 2D and
the topology do not change in any step simula-
tion. We resort to NV_vertex_program3 ex-
tension which allows to fetch vertex from a texture
in the vertex program. So we remove the read back
to CPU obtaining a big performance increase. In
the same vertex program we compute the normal
of each vertex, averaging neighbor normal faces as
usual, for lighting the cloth.

Figure 2: Unrealistic cloth enlargements (right) accord-
ing to the number of iterations in the motion restriction
procedure. Left image with 80 iterations, right with 10
iterations.

3.1 Simulation on the GPU

We will explain next the details for the GPU imple-
mentation of our simulator. The way we solve the
collision problem is postponed to the next section.

Our goal is to run the complete dynamical sim-
ulation on the GPU and we use CG language for
this propose. In [8] a structured mesh is used for
modelling a piece of rectangular cloth. Taking ad-
vantage of this simple neighbor structure only three
textures are used for storing the past, present and
new mesh positions.

In order to extend our simulations to a wider
range of cloth meshes, we consider more general
unstructured meshes using both triangular and rect-
angular elements. These are the kind of meshes you
can usually obtain from a modeler software tool.
Thus, we are forced to take into account the differ-
ent number of neighbors for each vertex and stored
it into a connectivity texture used for address pro-
poses.

We can not use dynamic allocation for textures
and this forces to choose a different storing strat-
egy. Instead of forcing a new connectivity texture
to take into account the different number of neigh-
bors for each vertex (skyline storage), we choose
to store the neighbor indexes for each vertex using
a fixed amount of positions (maximum size band
storage). For each mesh, we define the parameter

Nmax by the maximum number of neighbors that has
any vertex in the mesh and we use this fixed num-
ber of texture elements for storing the indexes of
the present neighbors. Thus, the size of the needed
texture can be determined when the cloth mesh is
loaded. We have to establish a trade-off between the
way to store the associated indexes and maximum
size of available textures. By one hand, we have
stored in a texture the positions of the simulated
cloth mesh, called positions texture (texPos). To get
a position which is located in the index (i, j) of the
position texture, it is enough to call the CG func-
tion f4tex2D (texPos, float2(i, j)). On
the other hand, we know the neighbors of a fixed
vertex , p;;j, located at index (i, j) in the rexPos. As
a special case, if we want to simulate 1-dimensional
deformable objects, the connectivity becomes 2,
then we can generate a connectivity texture RGBA
where we can store at the index (i, ;) the index
of the neighbors of this vertex. If Npax < 4, we
can make an analog procedure, in this case we put
the index of neighbors in each coordinate as fol-
lows: if we suppose that the indexes in texPos are
(ix, jx), k=1,..., 4 and the size of texPos is (w, h),
then the value of the coordinate & in the index (i, j)
of index texture is ix * w+ ji. The following cg-
sentences allow to recover the index of texPos,

float idx1D =
sampler2D(texConn, T.xy);
float2 idx2D ;

idx2D.x = frac(idx1D/h) *w;

idx2D.y = idx1D/h;

It may also be possible to eliminate frac in-
struction by using the repeating-tiled addressing
mode (GL_REPEAT). This reduces the conversion
to a single assembly instruction, otherwise this may
not work on some texture configuration ([7]).

In our case, we have connectivity Nyqx = 16.
We create a connectivity texture RGBA of size
(wx16,h). The indexes of the neighbors of p;; are
represented by (16, j), (ix16+1,j),..., (ix 16+
15, j). As the number of connection is not constant,
but less than 16, we first initialize the connectiv-
ity texture to —1 marking when no more neighbors
exists. We put at the coordinates rg the index of
the neighbors and reserve the coordinate b to put
the rest length of the associated mesh edge. At the
coordinate a we store the diagonal mesh distance

V2 %b.

We want to remark that, because we are using
texture 2d, we have previously normalized the in-
dexes to [0,1].

Onces the position was stored in the correspond-
ing texture, one pass through a Verlet fragment pro-
gram updates to a new position. After that we it-
erate, using a constraint fragment program, a con-
venient number of times to ensure the correct fi-
nal length between particles. And finally, as it will
be explained bellow, collision detection has to be
checked.

4 Dealing with Collisions

In computer animations, in general, there is always
a bottleneck: the collision problem. One has to take
into account interaction between different objects
in a scene and this can be a very tedious problem.
The shape of the objects is one of the most impor-
tant features in the collision detection. The first CG
cloth implementation [8] uses only a sphere as a
solid body for cloth collision and this makes the col-
lision detection easy. Only a distance computation
between the center of the sphere and the cloth parti-
cles is needed. This can be computed on the GPU at
really high frame rates. In general, for basic geome-
try primitives like spheres or aligned boxes one can
use simple distance functions and solve this prob-
lem easily.

For dealing with a more complex object, like a
human figure, an image-based hardware accelerated
approach is one of the best choices. We follow
a depth map based approach similar to [11], [12]
but we extended it to collision with moving objects.
Moreover, using present depth information, we are
not forced to consider the human body as a set of
rigid bodies, but we can consider it as a deformable
surface, taken into account the skinning correction
at the vertex near the joints and also consider mus-
cle shape deformations.

For moving models, the work of [19] is a first
step, but they use only two depth maps, front and
back, for the whole figure. Therefore, when some
occlusions arises, for instance when the arm passes
in front of the chest, no possible information about
collisions can be extracted from these depth maps.
To overcome this problem we consider several de-
tailed views, in fact, we use a front and back view

for each of the anatomical sets of our humanoid.
Based on the hierarchic structure of the humanoid,
already used for animation purposes, we place two
fixed cameras in local coordinates (front and back)
for each anatomical set, see figure 3. During mo-
tion, the position of the cameras will be always the
same with respect to the associated set and the oc-
clusion problem can be solved. In our approach we
consider 14 anatomical sets, we choose head, torso,
and 3 segments for each arm and leg. This give us a
maximum total amount of 28 different depth maps
(see figure 3) that will be processed two by two as
we explain in what follows.

4.1 GPU collision detection

Figure 3: Superposed image of virtual camera positions
associated to human body segments. A closeup for the
left arm.

For each particle cloth we should check when
there are interpenetration with the human body.
Since it is divided in different parts, we associate at
the beginning two orthographic camera, front (FC)
and back (BC) cameras to each part. The rotation
and translation which are applied to the part of body
at the present frame is also applied to the FC and
BC, so we keep the point of view and handle each
part independently to remove possible occlusions
with other different body parts. Then, in each time
step, to check the interpenetration of a cloth parti-
cle into the deformable body, we express the par-
ticle coordinates in the corresponding local coordi-
nate system for each part of the body. We have to

verify that the particle belongs to the inner part of
the camera volume of viewing. Finally, we detect
an interpenetration when the depth of the particle is
less than the depth of the back and front part. This
process is called depth-test, see the algorithm be-
low.

Algorithm 4.1 Depth test

for each body part P do
pLocall = mul(P.MVPfront, p);
pLocal2 = mul(P.MVPback, p);
if P.OBB contains pLocal then
float4 d1 = tex2D(front, pLocall.xy);
float4 d2 = tex2D(back, pLocal2.xy);
if pLocall.z <dl.a && pLocal2.z <d2.a then
Interpenetration.
end if
end if
end for

To improve the performance we use only one tex-
ture RGBA to save the normal map and the depth
map associated to each anatomic body set. For this
purposes, we use a frame buffer object to render it
offscreen. Pbuffer could be another option to do
this, but neither it does not allow render to texture
directly with Vertex Array Range (VAR) extension
or Vertex Buffer Object (VBO) extension, nor fetch
the texture in the vertex program. In both cases the
performance of the simulation decreases consider-
ably.

In the following vertex program we compute the
depth value and save, at the coordinate texture, the
values of the normal vector and the depth value. No
color coordinates are used to prevent interpolation
on the values.

vE30 vp_depthnorm(
float4 P:POSITION,
float3 N:NORMAL,
uniform float4x4 MVP)

vE30 Out;

Out .HPOS = mul (MVP, P);
Out.TEX0.xyz = Nj;

Out.TEXO.w 0.5*0Out.HPOS.z+0.5;
return Out;

The vertex progam is followed by a fragment pro-
gram that transforms the texture coordinate in color

coordinate.

Furthermore, the way we have started needs to
store 28 (two for every body segment) depth maps,
however the fragment program nowadays accepts
only 16 texture as a maximum. To solve this prob-
lem we store for each anatomical set, the front and
back depth map in the same texture reducing this
number to 14 textures. Another possibility could be
to handle the textures one by one, i.e., generate the
normal and depth map of one body part and check
the interpenetration, but in this case the application
performance decreases considerably.

As it could be notice, we verify each particle col-
lision with all parts of the human body. If the cloth
is really in contact with too many parts, this ap-
proach could be very efficient. However, if the cloth
has only collision with a small number of parts, this
is not suitable. In this case, we only select parts of
the body such that the cloth has interpenetrated in
theirs oriented bounding box OBB. We remark that
the volume of viewing of the camera associate to
each body part fits in the OBB of its part. So when
we display the cloth from FC or BC, if there are not
interpenetrations between the cloth and the OBB of
its associated part, the number of drawn samples are
zero. To know the number of drawn samples we
call the function glGetQueryObjectuivARB
of ARB_occlusion_query extension. One can
improve the performance of this method using an
approach equivalent to a multiresolution strategy. It
is not necessary render the completed cloth mesh,
we can maintain two list of index positions, one of
them, the complete list, and the other, a reduced list,
containing an up third level grouping one of every
eight particles. The reduction of the list depends on
the dimension of the particle system. In our case,
we have reduced the list until no gain in latency and
no loss accuracy have been found.

4.2 Collision correction

When the front and back checks return penetration a
collision correction is needed. Here we found a new
problem, the particle position has to be changed and
for that, the normal direction to the body at the col-
lision point has to be known. We solved this prob-
lem in a similar way of [11], [12] based again in
the graphics hardware. The idea is to use an im-
plicit model representation of the body skin, which

consists essentially in storing together depth and
body’s normal information as it has been explained
above. When we render the corresponding human
subset from the point of view of the local cameras.
At the beginning we have stored a normal for each
vertex of the human body. During animation we
have to recompute every normal according to the
corresponding motion matrix and skinning weight,
see figure 4. The vertex program vp_depthnorm
must be modified conveniently to introduce this fea-
tures. For the sake of clarity we do not have incor-
porate all the details of this shader.

Figure 4: Two Normal-Depth textures corresponding to
Front-Arm view (up) and Back-Torso view (down).

When a cloth particle p. is detected inside an
anatomical set, two points of the corresponding
depth maps are associated to this particle, the front
py and back p;, points. The amount of real penetra-
tion RP is computed from the scaled differences

RPy = z5(d1.a — pLocall .z)
and
RP, = z5(d2.a — pLocal2.7), 3)

respectively. The variables pLocall , pLocal2, d1
and d2 have been defined in algorithm 4.1 and zs is
the scale parameter passing from camera distance to
real world distance. These quantities are both pos-
itives in case of penetration and the stored normal
at the closest depth point (see figure 5) is used to
correct its position outside of the body.

| 4

4

e

plLocall.z pLocaIZ.z

If Cdza |
afis| | B

Figure 5: Image based collision correction using front and
back cameras for the left upper-leg segment.

If the distance between RPy, RP, is less than
an advisable tolerance an average normal is taken.
This, according to the shape of body segments, can
happens only in the boundaries of the depth maps.
Time step simulation prevents from big penetrations
and therefore, the average normal is usually a good
approximation of the actual normal of the body sur-
face.

5 Experiments and Results

The simulation example consists in a cloth falling
on a walking woman, see figure 6. We have cho-
sen this simulation because the cloth is not fixed to
any part of the body and occlusions between differ-
ent body parts are present, for instance, forearm and
torso. The mesh used for the woman is composed
of 17523 vertex, 17539 quadrangles and 2789 trian-
gles, which is stored in a vertex buffer object, and
the motion is read from a standard biovision for-
mat file. Skinning weights values were calculated
only once according to the animation and stored in a
skinning file. The maximum number of iterations in
the relaxation algorithm is 40, but using the quasi-
feedback method, at the beginning when there are a
little deformation, only 2-5 iterations are needed.
On table 1 we present the results for different
cloth dimensions. The values of the table give
the number of frames per second for each ren-
der, including simulation. First column represents

fixed iter(20/40) | quasi-feedback
64 x 64 105/86 88-124
128 x 128 63/43 44-90
256 x 256 22/14 14-42

Table 1: Frame rate results for different cloth di-

mensions considering all body parts.

fixed iter(20/40) | quasi-feedback
64 x 64 90-144/77-108 107-200
128 x 128 54-77/41-50 40-133
256 x 256 20-24/14-15 14-55

Table 2: Frame rate results for different cloth di-
mensions considering only body parts which can
collide.

the simulation times with a fixed number of itera-
tions, 20/40. And the second one gives a minimum
and maximum frame rate when the quasi-feedback
method is activated.

On table 2 the same results are shown when the
oriented bounding box are used as a previous filter
to select the possible body parts for collision. In
this case, first column show also the minimum and
maximum frame rate achieved during animation.

These results are obtained using a desktop com-
puter with a Pentium IV 3.0 Ghz processor, and a
nVidia Geforce 6800 GT graphics card.

Figure 6: Two screenshots corresponding to the final sim-
ulation of the cloth falling on the walking woman.

6 Conclusions and Future Work

We have presented a new method for simulating vir-
tual cloth for real-time animations. Our method is
running completely on the GPU using the last fea-
tures of the present graphics cards. Collision cor-
rection bottleneck is overcome by means of image
based depth-map methods. A high increase of the
simulation speed is due to cut off the unnecessary
computations. A new technic for getting a feedback
from the GPU that allows interrupt an iterative pro-
cess has been introduced.

For cloth simulation we use structurated meshes
in our results, although we can also simulate a cloth
defined by an unstructurated mesh. In this case, a
small decrease of the frame rate is appreciable due
to an extra call to the connectivity texture. How-
ever, for unstructured meshes the internal deforma-
tion forces can not be simulated using mass-spring
connections, if you want to avoid too large itera-
tions, and therefore, loosing real-time performance.
‘When a small number of iterations are used for gen-
eral cloth meshes, an unrealistic elongation of the
cloth is produced. We are working in other differ-
ent models to solve this problem on the GPU. This
will allow us to dress a virtual humanoid using any
cloth generated previously with a modeler software.
With our present model we are limited to garments
formed only by rectangle meshes.

7 Acknowledgments

We would like to thank Prof. Renato Pajarola, cur-
rently at Univ. of Ziirich, for his support at the be-
ginning of our research at the Univ. of California,
Irvine. This work has been supported by a collabo-
ration grant CCEGP-03/04 and CICYT grant TIN-
2004-08065-C02-01.

References

[1] Baraft D., Linear-Time Dynamics Using La-
grange Multipliers. Computer Graphics Proceed-
ings, Annual Conference Series, 96: 137-146,
1996.

[2] Baraft, D. and Witkin, A. (1998). Large steps
in cloth simulation. Computer Graphics Proceed-
ings, Annual Conference Series, 98: 3—-54, 1998.

[3] Breen, D., House, D. and Wozny, M. . Predict-
ing the drape of woven cloth using interacting
particles. Computer Graphics Proceedings, An-
nual Conference Series, 94: 365-372, 1994.

[4] Carignan, M., Yang, Y., Thalmann, N. M., and
Thalmann, D. Dressing animated synthetic ac-
tors with complex deformable clothes. Computer
Graphics Proceedings, Annual Conference Se-
ries, 92: 99-104, 1992.

[5] Cordier F., Seo H., and Magnenat-Thalmann
N., Made-to-Measure Technologies for an On-
line Clothing Store. IEEE Computer graphics
and applications, 38—48, January 2002.

[6] Eberhardt B., Weber A. and Strasser W. A fast,
flexible, particle-system model for cloth draping.
IEEE Computer Graphics and Applications, 16:
52-59, 1996.

[7] Lefohn A., Kniss J. and Owens J. Implement-
ing Efficient Parrallel Data Structures on GPUs.
In GPU gems 2: Programming Techniques
for High-Performance Graphics and General-
Purposes Computation. Edited by Matt Pharr, pp.
512-545. Addison Wesley, 2005.

[8] Green S., Nvidia developers 2003.
http://developer.nvidia.com/object/demo
_cloth_simulation.html .

[9] Hauth M. and Etzmuss O. A high performance
solver for the animation of deformable objects
using advanced numericla methods. Computer
Graphics Forum. Vol. 20 num. 3, 1-10, 2001.

[10] Jacobsen T., Advanced Character Physics.
Proc. Game Developers Conference’01, 1-10,
2001.

[11] Kolb A., John L., Volumetric model repair
for virtual reality applications. In Eurographics
short presentations 2001, Univ. of Manchester,
249-256, 2001.

[12] Kolb A., Latta L. and Rezk-Salama C.,
Hardware-based simulation and collision detec-
tion for large particle systems. In proc. Graphics
Hardware’04, T. Akenine-Moller, M. McCool
Ed., 1-9, 2004.

[13] MiraLab, University of
http://miralabwww.unige.ch/ .

[14] Ng H.N., Grimsdale R.L., Computer graphics
techniques for modeling cloth. IEEE Computer
Graphics and Applications 16: 28-41, 1996.

Geneve.

[15] Press W.H., Flannery B.P., Teukolsky S.A.,
and Vetterling W.T. Numerical Recipes. Cam-
bridge University Press, 1986.

[16] Provot, X. Deformation constraints in a mass-
spring model to describe rigid cloth behaviour. In
Proceedings of Graphics Interface 95, 141-155,
1995.

[17] Terzopoulos D., Platt J.C. and Barr A.H. Elas-
tically deformable models. Computer Graphics
(Proc. SIGGRAPH), 21: 205-214, 1987.

[18] Terzopoulos and K. Fleischer. Deformable
models. Visual Computer, 4:306-331, 1988.

[19] Vassilev, T., Spanlang, B., Chrysanthou, Y.
Fast Cloth Animation on Walking Avatars. Com-
puter Graphics Forum, vol 20 num. 3, 1-8, 2001.

[20] Volino P. and Magnenat-Thalmann N., Com-
paring Efficiency of Integration Methods for
Cloth Animation, Proceedings of Computer
Graphics International (CGI), IEEE Press, 265-
274, 2001.

[21] Witkin A., Baraff D. and Kass M., Physically-
based Modeling. SIGGRAPH Course notes.
2001.

