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Abstract

In this paper a new hybrid deformable model for
haptic interactions is presented. The main idea is
to use a two layer deformable model for the virtual
object which will be manipulated with a haptic tool
by the user, when the external force is applied on
the surface area. With this approach, deformation
is modelled both using a continuous model, based
on Finite Element Methods, and a discrete model
defined by Mesh Free Methods.

1 Introduction

Simulating and animating 3D deformable objects in
real time is essential to many interactive applica-
tions such as surgery simulators. One of the main
characteristics of these simulations is the dynamic
interaction between the deformable model and the
possible external forces acting on it.

The dynamic behavior of our volumetric 3D de-
formable model is based on linear elastic mechan-
ics. It is essentially based on techniques presented
in computer graphics and mechanical engineering
literature [8] , [10] and [3]. The works of J. O’Brien
and J. Hodgins [7] and G. Debunne [4] are good ref-
erences about the continuous deformation problem
in terms of Finite Elements Method (FEM).

This model has been implemented in a work-
bench with a haptic device (as the Fokker Haptic
Master) for interaction (see figure 1). Acting forces
are computed from the reaction of the model when
the user interacts with the virtual object.

The paper is organized as follows, sections 2 and
3 are devoted to introduce the FEM and MFM mod-
els respectively. In section 4 the hybrid model are

Figure 1: The workbench and phantom force-feedback de-
vice

defined. The dynamic of the virtual model is in sec-
tion 5. Results and conclusion are in section 6 and 7
respectively. Results and conclusions are presented
in the final sections.

2 Finite Element Formulation

The behavior of the molecules or particles of which
the material is composed can be first modelled as
continuous media. Letu = (u1,u2,u3)T ∈ R3 be a
vector inR3 that denotes a location in the material
coordinate frame.The deformation of the material is
defined by the functionx(u) = (x,y,z) that maps lo-
cations in the material coordinate frame to locations
in world coordinates.

Green’s strain tensorε is used to measure the lo-
cal deformation of the material [10].

εi j =
(

∂x
∂ui

· ∂x
∂u j

)
−δi j . (1)

Hereδi j is the Kronecker’s delta.



The stress and strain tensor are linked by

σ(ε)
i j =

3

∑
k=1

λεkk+2µεi j , (2)

µ andλ are the Lamé coefficients,µ represents the
rigidity of the material whileλ measures its ability
to preserve volume.

To improve realism, the following is considered

νi j =
(

∂x
∂ui

· ∂ẋ
∂u j

)
+

(
∂ẋ
∂ui

· ∂x
∂u j

)
, (3)

whereẋ =
∂x
∂t

is the velocity of a point. The viscous

stress is

σ(ν)
i j =

3

∑
k=1

φνkk+2ψνi j , (4)

whereφ andψ control how fast the material looses
kinetic energy.

The total stress tensor is obtained adding both the
elastic and viscous stressσ = σ(ε) +σ(ν)

By employing the Finite Element Method, lin-
ear tetrahedra elements will be used. TheNi is the
shape function, associated to each vertexxi

Ni(x,y,z) = βi1x+βi2y+βi3z+βi4. (5)

The matrixβ = (βi j ) is defined from the material
coordinates of the vertex. It is always a nonsingular
matrix unless the associated tetrahedron is degener-
ated.

The internal force is computed for each element
and is applied at their vertices

f (el)
i =

vol(el)

2

4

∑
j=1

x j

3

∑
k=1

3

∑
l=1

β jl βikσkl , (6)

wherevol(el) is the element volume.

3 Mesh Free Model

An approach for modelling deformation is to dis-
cretize the continuous material as a set of particles,
or more precisely point samples, that carries out the
material properties like density, strain and stress.
Using this model a fixed mesh is not needed and

because of that these methods are namedMesh Free
Method, MFM (see [5],[9]).

The continuous functionx(u) is approximated by

x(u)≈
∫

Ω
x(y)W(u−y,h)dy. (7)

The displacements, velocity, and acceleration are
interpolated using the kernel basis functionW de-
fined in (8). In the following, a short hand nota-
tion will be used:Wi = W(u−ui ,h), Wi j = W(ui −
u j ,h) andx j = x(u j ). The superscriptj refers to the
neighboring particle ofi.

A potential function frequently used for SPH
simulations (see [2], [6]) is the Lennard-Jones (LJ)
given by

W(r i j ) = ε

[(
1
r i j

)3

−
(

1
r i j

)]
(8)

wherer i j is the distance between two moleculesi
and j, andε is the energy required to overcome the
cohesion of molecules (see figure 2)

Figure 2: Lennard-Jones’s potential functionW(r) and the
associated force functionF(r)

4 Hybrid Model

Suppose that the interpolation ofx(u) in Ω, with
Ω ∈ R3 is built using both the finite element and
mesh free method, the domain must include a set of
{ui}

i∈I
Ni
u

nodes with their associated base functions

Ni(u), which possess the information of the contri-
butions of the finite element inx f (u) as an approx-
imation of thex(u) function. Therefore

x f (u) = ∑
i∈I

Ni
u

x(ui)Ni(u). (9)



A set of particles{u j} j∈Ih
uj

also exists with as-

sociated base functionsNh
j (u), which possess the

information of the contributions of the free mesh
method in the approximationxh of functionx(u)

xh(u) = ∑
j∈Ih

u

x(u j )Nh
j (u). (10)

TheΩ domain isΩ = R1∪R2, where

R1= {u∈ Ω / ∃ i ∈ INi ; Ni(u) 6= 0},

and

R2= {u∈ Ω / ∃ j ∈ Ih; Nh
j (u) 6= 0},

Besides this, in the region where both interpola-
tions have influence,̃Ω = R1∩R2, a mixed interpo-
lation must be defined

x(u)≈ x f (u)+xh(u) (11)

5 Dynamical Time Evolution

Once internal forces of the model are calculated,
other possible external forces can be applied to
compute the time evolution of the system. Essen-
tially, Newtonian classical dynamics are considered

ẋ = v, v̇ =
F
m

. (12)

with the forceF , massm and the predicted acceler-
ation are defined by

a =
F
m

finite element method

a = ∑mj (
σ j

ρ j ρi )
∂W
∂u j SPH method

(13)
The Courant condition states that time incre-

ments have an upper maximum value to ensure sta-
bility,

4t < h

√
ρ

2λ+µ
, (14)

whereh is the minimum of the distances between a
node and its neighbors andρ is the material’s rest
density.

6 Results

As a first approach for testing the finite element
method, we build a simple model (ED0) consisting
in two concentric ellipsoids. This model has been
used as the interior of the virtual object described in
the previous section. After some initial tuning, the
final elasticity parameters and simulation time step
are shown in table 1.

Our second test example is shown in figure (3)
model (HM2) consisting in a heart model totally
filled with tetrahedra. The obtained frame rate per
second is about 29f/s. Although this result is ade-
quate for realistic visual response effects, it is not
sufficient for haptic interaction.

λ µ Φ Ψ 4t

ED0 5.5 2.5 9.0e-5 9.0e-5 7.0e-3
HM1 5.0 2.0 9.0e-5 9.0e-5 7.0e-3
HM2 0.04 1.6e-3 1.0e-4 1.0e-4 7.5e-3

Table 1:Simulation parameter values used in our models.

The hybrid left ventricle model (HM1) presented
in this paper is shown in figure (4). The region de-
fined between the tetrahedra mesh and the exterior
surface of the object does not have a uniform thick-
ness. For this reason, with this model, the amount
of particles that have to be activated for a haptic ac-
tion varies between 50 and 600, being 200 the av-
erage amount of activated particles for the interac-
tion. The total amount of particles initialized in the
preprocess step in the region R2 is 27988. Using a
personal computer with a Pentium IV and 2.8GHz
processor, a suitable haptic frame rate is obtained,
even in the worth case, with an interaction response
of 330 frm/s.

Figure 3: Model HM2. An actual left ventricle heart
model filled with tetrahedra.



Figure 4: Model HM1. Internal deformable model of
tetrahedra and activated particle region (left). Surface vi-
sualization at rest and after interaction (right).

7 Conclusions and Future Work

In this work we present a new deformable model
suitable for haptic interaction.We have applied this
methodology to the construction of a volumetric ob-
ject adjusted to a human data set of the left ventricle.

This object is divided in two different domains
for simulation. In the inner one, linear tetrahedra
finite elements are used. A coarse mesh allows
to move this biggest volumetric part in a very fast
way. In the comprise volume between the previous
one and the surface of the object, we have builded
a particle zone simulated with a mesh free method
(SPH).

The goal is to reconstruct the shape of the left
ventricle of an actual patient from its SPECT cap-
tured data. As a first step, two meshed surfaces,
corresponding to the external and internal walls of
the left ventricle, are obtained.

We are working now in improving both, effi-
ciency and deformation sensibility using different
size partitions on the particles zone. Another re-
search line can be to implement other type of mesh
free methods like the Free Galerking Method to
compare with the present SPH implementation [1].
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