FORBIDDEN SUBGRAPHS IN THE NORM GRAPH

SIMEON BALL AND VALENTINA PEPE

ABSTRACT. We show that the norm graph with \(n \) vertices about \(\frac{1}{2} n^{2-1/t} \) edges, which contains no copy of the complete bipartite graph \(K_{t,(t-1)!+1} \), does not contain a copy of \(K_{t+1,(t-1)!-1} \).

1. INTRODUCTION

Let \(H \) be a fixed graph. The Turán number of \(H \), denoted \(ex(n, H) \), is the maximum number of edges a graph with \(n \) vertices can have, which contains no copy of \(H \). The Erdős-Stone theorem from [7] gives an asymptotic formula for the Turán number of any non-bipartite graph, and this formula depends on the chromatic number of the graph \(H \).

When \(H \) is a complete bipartite graph, determining the Turán number is related to the “Zarankiewicz problem” (see [3], Chap. VI, Sect. 2, and [9] for more details and references). In many cases even the question of determining the right order of magnitude for \(ex(n, H) \) is not known.

Let \(K_{t,s} \) denote the complete bipartite graph with \(t \) vertices in one class and \(s \) vertices in the other. The probabilistic lower bound for \(K_{t,s} \)

\[
ex(n, K_{t,s}) \geq cn^{2-(s+t-2)/(st-1)}
\]

is due to Erdős and Spencer [6]. Kővari, Sós and Turán [15] proved that for \(s \geq t \)

\[
ex(n, K_{t,s}) \leq \frac{1}{2} (s - 1)^{1/t} n^{2-1/t} + \frac{1}{2} (t - 1) n.
\]

The norm graph \(\Gamma(t) \), which we will define the next section, has \(n \) vertices and about \(\frac{1}{2} n^{2-1/t} \) edges. In [1] (based on results from [14]) it was proven that the graph \(\Gamma(t) \) contains no copy of \(K_{t,(t-1)!+1} \), thus proving that for \(s \geq (t-1)!+1 \),

\[
ex(n, K_{t,s}) > cn^{2-1/t}
\]

for some constant \(c \).

Date: 10 March 2015.

The first author acknowledges the support of the project MTM2008-06620-C03-01 of the Spanish Ministry of Science and Education and the project 2014-SGR-1147 of the Catalan Research Council.

The second author acknowledges the support of the project "Decomposizione, proprietà estremali di grafi e combinatoria di polinomi ortogonali" of the SBAI Department of Sapienza University of Rome.
In [2], it was shown that $\Gamma(4)$ contains no copy of $K_{5,5}$, which improves on the probabilistic lower bound of Erdős and Spencer [6] for $ex(n,K_{5,5})$. In this article, we will generalise this result and prove that $\Gamma(t)$ contains no copy of $K_{t+1,(t-1)!-1}$. For $t \geq 5$, this does not improve the probabilistic lower bound of Erdős and Spencer, but, as far as we are aware, it is however the deterministic construction of a graph with n vertices containing no $K_{t+1,(t-1)!-1}$ with the most edges.

2. The norm graph

Suppose that $q = p^h$, where p is a prime, and denote by \mathbb{F}_q the finite field with q elements. We will use the following properties of finite fields. For any $a, b \in \mathbb{F}_q$, $(a+b)^q = a^q + b^q$, for any $i \in \mathbb{N}$. For all $a \in \mathbb{F}_q^\ast$, $a^q = a$ if and only if $a \in \mathbb{F}_q$. Finally $N(a) = a^{1+q+\cdots+q^{k-1}} \in \mathbb{F}_q$, for all $a \in \mathbb{F}_q^\ast$, since $N(a)^q = N(a)$.

Let \mathbb{F} denote an arbitrary field. We denote by $\mathbb{P}_n(\mathbb{F})$ the projective space arising from the $(n+1)$-dimensional vector space over \mathbb{F}. Throughout dim will refer to projective dimension. A point of $\mathbb{P}_n(\mathbb{F})$ (which is a one-dimensional subspace of the vector space) will often be written as $\langle u \rangle$, where u is a vector in the $(n+1)$-dimensional vector space over \mathbb{F}.

Let $\Gamma(t)$ be the graph with vertices $(a, \alpha) \in \mathbb{F}_{q^{t-1}} \times \mathbb{F}_q$, $\alpha \neq 0$, where (a, α) is joined to (a', α') if and only if $N(a+a') = \alpha \alpha'$. The graph $\Gamma(t)$ was constructed in [14], where it was shown to contain no copy of $K_{t,t+1}$. In [1] Alon, Rónyai and Szabó proved that $\Gamma(t)$ contains no copy of $K_{t,(t-1)!+1}$. Our aim here is to show that it also contains no $K_{t+1,(t-1)!-1}$, generalizing the same result for $t = 5$ presented in [2].

Let

$$V = \{(1, a) \otimes (1, a^q) \otimes \cdots \otimes (1, a^{q^{h-2}}) \mid a \in \mathbb{F}_{q^{t-1}}\} \subset \mathbb{P}_{2^{t-1}-1}(\mathbb{F}_{q^{t-1}}).$$

The set V is the affine part of an algebraic variety that is in turn a subvariety of the Segre variety

$$\Sigma = \mathbb{P}_1 \times \mathbb{P}_1 \times \cdots \times \mathbb{P}_1,$$

where $\mathbb{P}_1 = \mathbb{P}_1(\mathbb{F}_q)$. We briefly recall that a Segre variety is the image of the Segre embedding:

$$\sigma : (v_1, v_2, \ldots, v_k) \in \mathbb{P}_{n_1-1} \times \mathbb{P}_{n_2-1} \times \cdots \times \mathbb{P}_{n_k-1} \mapsto v_1 \otimes v_2 \otimes \cdots \otimes v_k \in \mathbb{P}_{n_1n_2\cdots n_k-1},$$

i.e. it is the set of points corresponding to the simple tensors. For the reader that is not familiar to tensor products we remark that, up to a suitable choice of coordinates, if $v_i = (x_i^{(1)}, x_i^{(2)}, \ldots, x_i^{n_i-1})$, then $v_1 \otimes v_2 \otimes \cdots \otimes v_k$ is the vector of all possible products of type $x_{j_1}^{(1)} x_{j_2}^{(2)} \cdots x_{j_k}^{(k)}$ (see [12] for an easy overview on Segre varieties over finite fields).
Then, the affine point \(P_a = (1, a) \otimes (1, a^q) \otimes \cdots \otimes (1, a^{q^{t-2}}) \) has coordinates indexed by the subsets of \(T := \{0, 1, \ldots, t - 1\} \), where the \(S \)-coordinate is
\[
(\prod_{i \in S} a^q),
\]
for any non-empty subset \(S \) of \(T \) and
\[
\prod_{i \in S} a^q = 1
\]
when \(S = \emptyset \) (see [16]).

Let \(n = 2^{t-1} - 1 \).

We order the coordinates of \(\mathbb{P}_n(\mathbb{F}_{q^{t-1}}) \) so that if the \(i \)-th coordinate corresponds to the subset \(S \), then the \((n - i) \)-th coordinate corresponds to the subset \(T \setminus S \).

Embed the \(\mathbb{P}_n(\mathbb{F}_{q^{t-1}}) \) containing \(V \) as a hyperplane section of \(\mathbb{P}_{n+1}(\mathbb{F}_{q^{t-1}}) \) defined by the equation \(x_{n+1} = 0 \).

Let \(b \) be the symmetric bilinear form on the \((n+2) \)-dimensional vector space over \(\mathbb{F}_{q^{t-1}} \) defined by
\[
b(u, v) = \sum_{i=0}^{n} u_i v_{n-i} - u_{n+1} v_{n+1}.
\]

Let \(\perp \) be defined in the usual way, so that given a subspace \(\Pi \) of \(\mathbb{P}_{n+1}(\mathbb{F}_{q^{t-1}}) \), \(\Pi \perp \) is the subspace of \(\mathbb{P}_{n+1}(\mathbb{F}_{q^{t-1}}) \) defined by
\[
\Pi \perp = \{ v \mid b(u, v) = 0, \text{ for all } u \in \Pi \}.
\]

We wish to define the same graph \(\Gamma(t) \), so that adjacency is given by the bilinear form. Let \(P = (0, 0, 0, \ldots, 1) \). Let \(\Gamma' \) be a graph with vertex set the set of points on the lines joining the aff points of \(V \) to \(P \) obtained using only scalars in \(\mathbb{F}_q \), distinct from \(P \) and not contained in the hyperplane \(x_{n+1} = 0 \). Join two vertices \(\langle u \rangle \) and \(\langle u' \rangle \) in \(\Gamma' \) if and only if \(b(u, u') = 0 \). It is a simple matter to verify that the graph \(\Gamma' \) is isomorphic to the graph \(\Gamma(t) \) by the map \(P_a + \alpha P \mapsto (a, \alpha) \) since
\[
N(a + b) - \alpha \beta = \sum_{\emptyset \subseteq T \subseteq S} \prod_{i \in S, j \in T \setminus S} a^q b^q - \alpha \beta = b(u, v),
\]
where
\[
u = (1, a) \otimes (1, a^q) \otimes \cdots \otimes (1, a^{q^{t-2}}) + \alpha P,
\]
and
\[
v = (1, b) \otimes (1, b^q) \otimes \cdots \otimes (1, b^{q^{t-2}}) + \beta P.
\]

We shall refer to \(\Gamma' \) as \(\Gamma(t) \) from now on.

We recall some known properties of \(\Sigma \) and its subvariety
\[
\mathcal{V} = \{ (a, b) \otimes (a^q, b^q) \otimes \cdots (a^{q^{t-2}}, b^{q^{t-2}}) \mid (a, b) \in \mathbb{P}_1(\mathbb{F}_{q^{t-1}}) \}.
\]
and prove a new one in Theorem 2.5.

Let \(\mathbb{F}_q \) denote the algebraic closure of \(\mathbb{F}_q \) and consider \(\Sigma \) as the Segre variety over \(\mathbb{F}_q \).

Theorem 2.1. \(\Sigma \) is a smooth irreducible variety.

Theorem 2.2. The dimension of \(\Sigma \) (as algebraic variety) is \(t - 1 \) and its degree is \((t - 1)! \).

Proof. The (Segre) product \(X \times Y \) of two varieties \(X \) and \(Y \) of dimension \(d \) and \(e \) has dimension \(d + e \), see, for example [13], page 138. The Hilbert polynomial of \(X \times Y \) is the product of the Hilbert polynomials of \(X \) and \(Y \) (see [13, Chapter 18]). The Hilbert polynomial \(h(m) \) of \(\mathbb{P}_1 \) is \(m + 1 \), hence the Hilbert polynomial of \(\Sigma = \mathbb{P}_1 \times \mathbb{P}_1 \times \cdots \times \mathbb{P}_1 \) \(t-1 \) times is \(h_\Sigma(m) = (m + 1)^{t-1} \). Since the leading term of \(h_\Sigma \) is 1 and the dimension of \(\Sigma \) is \(t - 1 \), we have that the degree of \(\Sigma \) is \((t - 1)! \).

Theorem 2.3. [16] Any \(t \) points of \(\mathcal{V} \) are in general position.

Theorem 2.4. [11] If \(t + 1 \) points span a \((t - 1) \)-dimensional projective space, then that space contains \(q + 1 \) points of \(\mathcal{V} \).

Theorem 2.5. If a subspace of codimension \(t \) contains a finite number of points of \(\Sigma \) then it contains at most \((t - 1)! - 2 \) points of \(\Sigma \).

Proof. By Theorem 2.1, \(\Sigma \) is smooth, so it is regular at each of its points, i.e., if \(T_P \Sigma \) is the tangent space of \(\Sigma \) at a point \(P \in \Sigma \), then \(\dim T_P \Sigma = t - 1 \).

Let \(\Pi \) be a subspace of codimension \(t \) containing a finite number of points of \(\Sigma \). Let \(P \in \Pi \cap \Sigma \). Then \(\dim \langle T_P \Sigma, \Pi \rangle \leq n - 1 \). Therefore, there is a hyperplane \(H \) containing \(\langle T_P \Sigma, \Pi \rangle \).

Suppose that \(H \) contains another tangent space \(T_R \Sigma \), with \(R \in \Pi \cap \Sigma \). The algebraic variety \(H \cap \Sigma \) has dimension \(t - 2 \) (since \(\Sigma \) is irreducible) and it has two singular points, \(P \) and \(R \). Since \(\dim H \cap \Sigma = t - 2 \) as an algebraic variety, there must be a linear subspace \(\Pi_1 \) of codimension \(t - 2 \) in \(H \) containing \(\Pi \) and such that \(\Pi_1 \cap H \cap \Sigma \) consists of \(\deg(H \cap \Sigma) \leq (t - 1)! \) points of \(\Sigma \) counted with their multiplicity. Since \(\Pi_1 \) contains \(P \) and \(R \), which are singular points and so with multiplicity at least 2, we have that

\[|\Pi \cap \Sigma| \leq |\Pi_1 \cap \Sigma| \leq (t - 1)! - 2. \]

Suppose now that \(H \) does not contain any other tangent space \(T_R \Sigma \) with \(R \in \Pi \cap \Sigma \), \(R \neq P \). Then take \(R \in \Pi \cap \Sigma \) and consider a hyperplane \(H' \neq H \) containing \(\langle T_R \Sigma, \Pi \rangle \). Then the tangent spaces of \(P \) and \(R \) with respect to \(H \cap H' \cap \Sigma \) are \(T_P \Sigma \cap H' \) and \(T_R \Sigma \cap H \), and they both have dimension \(t - 2 \) (as linear spaces).

If \(\dim H \cap H' \cap \Sigma = t - 3 \) as an algebraic variety, then \(P \) and \(R \) are two singular points of \(H \cap H' \cap \Sigma \) and we can find, as before, a linear subspace \(\Pi_1 \) of codimension \(t - 3 \) in \(H \cap H' \) such that it contains \(\Pi \) and intersects \(H \cap H' \cap \Sigma \) in \(\deg(H \cap H' \cap \Sigma) \leq (t - 1)! \)
points, counted with their multiplicity. Since P and R have multiplicity at least 2, we have

$$|\Pi \cap \Sigma| \leq |\Pi_1 \cap \Sigma| \leq (t - 1)! - 2.$$

If $\dim H \cap H' \cap \Sigma = t - 2$ as an algebraic variety, then $H \cap \Sigma$ is reducible. Hence, we have

$$H \cap \Sigma = V_1 \cup V_2 \cup \cdots \cup V_r,$$

where V_i is an irreducible variety of dimension $t - 2$, for all $i = 1, \ldots, r$. So we have

$$H \cap H' \cap \Sigma = V_1 \cup V_2 \cup \cdots \cup V_s \cup W_{s+1} \cup W_{s+2} \cup \cdots \cup W_r,$$

where W_i is a hyperplane section of V_i, for all $i = s+1, \ldots, r$. We observe that also $H' \cap \Sigma$ has to be reducible and, since the decomposition in irreducible components is unique, we have

$$H' \cap \Sigma = V_1 \cup V_2 \cup \cdots \cup V_{s'} \cup V_{s'+1} \cup V_{s'+2} \cup \cdots \cup V_r,$$

where V_i and V'_j are irreducible varieties of dimension $t - 2$.

We have, by hypothesis, that $T_P \Sigma \subset H$ and $P \in \Pi$. So either $P \in V_i$ and it is singular for V_i, for some $i \in \{1, 2, \ldots, r\}$, or it is not singular for V_i, for any $\ell \in \{1, 2, \ldots, r\}$.

Suppose we are in the first case. We know that $P \in \Pi \subset H'$. If $V_i \subset H'$, then P is singular for an irreducible component of $H' \cap \Sigma$ and so $T_P \Sigma \subset H'$, contradicting our hypothesis, so V_i is not contained in H' and $H' \cap V_i = W_i$. We have that $\dim T_P \Sigma \cap H' = t - 2$ (as linear subspace) and $\dim W_i = t - 3$ (as algebraic variety), so P is singular for W_i.

Suppose now that P is not singular for any V_i, so the dimension of $T_P V_i$, as a subspace, is $t - 2$. If $P \notin V_j$, for any $i \neq j$, then

$$T_P (H \cap \Sigma) = T_P (V_i) = T_P (\Sigma),$$

a contradiction since the dimension of $T_P (\Sigma)$ is $t - 1$. Hence $P \in V_i \cap V_j$, and so P is contained in the intersection of two components of $H' \cap \Sigma$, so it is again a singular (or multiple) point. The same is true for the point R such that $T_R \Sigma \subset H'$, so in

$$V_1 \cup V_2 \cup \cdots \cup V_s \cup W_{s+1} \cup W_{s+2} \cup \cdots \cup W_r$$

there are at least two multiple points and when we sum up all the degrees, we count at least two points twice, hence, by

$$\sum_{i=1}^s \deg V_i + \sum_{j=s+1}^r \deg W_j \leq (t - 1)!,$$

we get that the number of points in

$$\Pi \cap (V_1 \cup V_2 \cup \cdots \cup V_s \cup W_{s+1} \cup W_{s+2} \cup \cdots \cup W_r),$$

is at most $(t - 1)! - 2$. \qed
Remark One could wonder whether one could try with one more hyperplane H'' such that $T_Q\Sigma \subset H''$, $T_Q\Sigma \notin H$, $T_Q\Sigma \notin H'$ and $Q \in \Pi$. However, it can happen that $H \cap H' \cap H'' = H \cap H'$, so $\dim T_Q\Sigma \cap H \cap H' \cap H'' = t - 2$ (as a linear space) and $\dim H \cap H' \cap H'' \cap \Sigma = t - 2$, so Q would not be a singular point of $H \cap H' \cap H'' \cap \Sigma$.

The locus of hyperplanes containing a tangent space to a variety X of \mathbb{P}^n is a variety X^* of the dual space $(\mathbb{P}_n)^*$ (see, e.g., [13, Chapter 15]). Let Σ^* be the dual variety of Σ. From [17], we know that Σ^* is a hypersurface, hence, if d is the degree of Σ^*, then the number of points of Σ^* on a general line of $(\mathbb{P}_n)^*$ is d. Suppose that the line of $(\mathbb{P}_n)^*$ defined by $H \cap H'$ is general, hence if $|\Pi \cap \Sigma| > d$, then we could find a point $Q \in \Pi \cap \Sigma$ such that $T_Q\Sigma \subset H''$ and H'' is a hyperplane not containing $H \cap H'$. If $d > (t - 1)! - 2$ then we would not be able to get a better bound than the bound in Theorem 2.5. The degree of Σ^* is found in [10], where it is given by N_{t-1}, where N_r is defined by the generating function

$$\sum_{r \geq 0} N_r z^r = \frac{e^{-2z}}{(1 - z)^2}.$$

Hence $d = \deg \Sigma^*$, is the evaluation of

$$\left(\frac{e^{-2z}}{(1 - z)^2}\right)^{(t-1)}$$

at $z = 0$, where we denote by $f^{(n)}$ the n–th derivative of the function f.

Let $F = fg$, where f and g are two functions, then

$$F^{(n)} = \sum_{i=0}^{n} \binom{n}{i} f^{(i)} g^{(n-i)}.$$

Let

$$f = e^{-2z} \text{ and } g = (1 - z)^{-2}.$$

It is easy to see that

$$f^{(i)} = (-2)^i f \text{ and } g^{(i)} = (i + 1)!(1 - z)^{-(i+2)}.$$

Since $f(0) = 1$, we have that $F^{(n)}$, evaluated at $z = 0$, is

$$\sum_{i=0}^{n} \binom{n}{i} (-2)^i (n + 1 - i)!.$$

When $n = t - 1$ and we have

$$d = N_{t-1} = \sum_{i=0}^{t-1} \binom{t-1}{i} (-2)^i (t - i)!.$$
Now
\[\sum_{i=0}^{t-1} \binom{t-1}{i} (-2)^i (t-i)! = (t-1)! \sum_{i=0}^{t-1} \frac{(-2)^i}{i!} (t-i). \]

Note that
\[\sum_{i=0}^{t-1} \frac{(-2)^i}{i!} (t-i) = 1 \]

for \(t = 5 \) and
\[\sum_{i=0}^{t} \frac{(-2)^i}{i!} (t+1-i) - \sum_{i=0}^{t-1} \frac{(-2)^i}{i!} (t-i) = \sum_{i=0}^{t} \frac{(-2)^i}{i!}. \]

Since \(\sum_{i=0}^{5} \frac{(-2)^i}{i!} = \frac{1}{15} \) and
\[\frac{(-2)^{n-1}}{(n-1)!} - \frac{(-2)^n}{n!} = \frac{2^{n-1}(n-2)}{n!} > 0 \]

when \(n \geq 3 \) is odd,
\[\sum_{i=0}^{t} \frac{(-2)^i}{i!} > 0 \]

for all \(t \geq 4 \) and so
\[\sum_{i=0}^{t-1} \frac{(-2)^i}{i!} (t-i) \]

is an increasing function. Thus, for \(t \geq 5 \),
\[\sum_{i=0}^{t-1} \frac{(-2)^i}{i!} (t-i) \geq 1, \]

and so
\[(t-1)! \sum_{i=0}^{t-1} \frac{(-2)^i}{i!} (t-i) \geq (t-1)! \]

and hence \(d = N_{i-1} > (t-1)! - 2 \).

Theorem 2.6. For \(q \geq (t-1)! + 1 \) the graph \(\Gamma(t) \) contains no \(K_{t+1,(t-1)!-1} \).

Proof. Let \(X = \{x_1, x_2, \ldots, x_{t+1} \} \) be \(t + 1 \) distinct vertices of \(\Gamma(t) \). The set of common neighbours of the elements of \(X \) is \(\Pi^\perp \cap \Gamma(t) \), where \(\Pi \) is the subspace spanned by \(X \). If any two elements of \(X \) project from \(P \) onto the same point of \(V \), then \(P \in \Pi \) and hence \(\Pi^\perp \subset P^\perp \). Since \(P^\perp \) is the hyperplane \(x_{n+1} = 0 \), \(\Pi^\perp \cap \Gamma(t) = \emptyset \), and the elements of \(X \) have no common neighbour.

Therefore, we assume now that all the points in \(X \) project from \(P \) onto distinct points of \(V \). Then, by Theorem 2.3, \(\dim \Pi \geq t - 1 \).
If \(\text{dim} \, \Pi = t - 1 \), then by Theorem 2.4, the projection of \(\Pi \) onto \(V \) contains at least \(q \) points of \(V \) (we recall that \(V \) is the affine part of \(\mathcal{V} \) and the hyperplane section we removed contains just one point of \(\mathcal{V} \)). Therefore, there are at least \(q \) points \(Y \) of \(\Pi \) on the lines joining \(P \) to the points of \(V \). We wish to prove that the points of \(Y \) are vertices of the graph \(\Gamma(t) \). To do this, we have to show that the points of \(Y \), which are of the form \(\langle (v, \lambda) \rangle \), where \(v \in V \) and \(\lambda \in \mathbb{F}_q \), are of the form \(\langle (u, \mu) \rangle \), where \(u \in V \), \(u \neq -v \) and \(\mu \in \mathbb{F}_q \), is a common neighbour of the elements of \(X \) of the form \(\langle (u, \mu) \rangle \), where \(u \in V \), \(u \neq -v \) and \(\mu \in \mathbb{F}_q \), is a common neighbour of the elements of \(X \). Then \(\langle (u, \mu) \rangle \) is in \(\Pi^\perp \) and since \(Y \subset \Pi \),

\[
N(u + v) = \lambda \mu.
\]

Since \(N(u + v) \in \mathbb{F}_q \) and \(\mu \in \mathbb{F}_q \), we have that \(\lambda \in \mathbb{F}_q \) and so the points of \(Y \) are vertices of the graph \(\Gamma(t) \). Therefore, the vertices of \(X \) have at least \(q \) common neighbours. Since \(\Gamma \) contains no \(K_{t,(t-1)!+1} \), if \(q \geq (t - 1)! + 1 \), then this case cannot occur.

If \(\text{dim} \, \Pi = t \) then \(\text{dim} \, \Pi^\perp = n - t \). Let \(Y \) be the points of \(\Pi^\perp \) which project from \(P \) onto \(V \). Arguing as in the previous paragraph, the points \(Y \) are vertices of the graph \(\Gamma(t) \). Since the vertices of \(X \) have at most \((t - 1)! \) common neighbours, there are a finite number of points in \(Y \) and so a finite number of points in the projection of \(\Pi^\perp \) onto \(V \). By Theorem 2.5, this projection contains at most \((t - 1)! - 2 \) points of \(V \), so there are at most \((t - 1)! - 2 \) points in \(Y \). Therefore, the vertices in \(X \) have at most \((t - 1)! - 2 \) common neighbours. \(\square \)

References

Simeon Ball
Departament de Matemàtica Aplicada IV,
Universitat Politècnica de Catalunya, Jordi Girona 1-3, Mòdul C3, Campus Nord,
08034 Barcelona, Spain
simeon@ma4.upc.edu

Valentina Pepe
SBAI Department,
Sapienza University of Rome, Via Antonio Scarpa 16
00161 Rome, Italy
valepepe@sba.uniroma1.it