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TC10 / 0. Introduction  
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The digital era 
     A Mathematical Theory of 
     Communication (1948) 

• Mathematical foundations of com-
munication systems 

• Definition of information,  
of channel capacity  
and of error-correcting codes. 

• Source and channel  
coding theorems  

 
 

    Claude Shannon (1916-2001) 

 Master’s thesis (1937): logic 
circuits 

 II WWII: Cryptography 
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         Analogical signal      Binary alphabet      Digital signal  

   

                Image 
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   B = {0,1} 

…and sound 
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Exercise 

 1 s of digital audio: ≃ 1 Mb 
 Jackson, Classical electrodynamics: ≃ 5 Mb 
 Large encyclopedia: ≃ 0.5 Gb 
 1 s of digital video: ≃ 1.5 Gb 
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Model of a communication system 

             
 

  

 

�1 − 𝑝 𝑝
𝑝 1 − 𝑝�  

0            1 
0            
1 Binary symmetric channel (BSC): 
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Example: The repetition code [3,1,3] 

  𝑓(𝑢) : =  𝑢𝑢𝑢 

 𝑔(𝑥) ≔ 𝐢𝐟 weight(𝑥) > 1 

          𝐭𝐡𝐞𝐧 1 

    𝐞𝐥𝐬𝐞 0   

(weight(𝑥) is the number of 1’s in 𝑥) 

What is the probability 𝑝′ of error per bit after decoding? 

  𝑝′ = 3𝑝2(1 − 𝑝) + 𝑝3 ≃ 3𝑝2 (aproximation valid if 𝑝 is small). 

Thus  𝑝′/𝑝 ≃ 3𝑝. For example, if 𝑝 = 0.01, 𝑝′/𝑝 ≃ 0.03, which means 
that for every 100 channel only 3 remain (on average) after decoding. 
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Example (the Hamming code [7,4,3]). Let 𝐵 = ℤ2 be the field of binary 
digits. Consider the 𝐵-matrix 

  𝑅 = �
1
1
1

  
1
1
0

  
1
0
1

  
0
1
1
�. 

Note that the columns of 𝑅 are the binary vectors of length 3 whose 
weight is at least 2 (the weight of a binary vector is the number of 1’s it 
contains). Writing 𝐼𝑟 to denote the identity matrix of order 𝑟, let  
  𝐺 = 𝐼4|𝑅𝑇  and  𝐻 = 𝑅|𝐼3. 
Note that the columns of 𝐻 are precisely the seven non-zero binary vec-
tors of length 3. 

Define the block encoding  

𝑓:𝐵4 → 𝐵7,  𝑢 ↦ 𝑢𝐺 = 𝑢(𝐼4|𝑅𝑇) = 𝑢|𝑢𝑅𝑇.  

The image of this function is  𝐶 = 〈𝐺〉, the 𝐵-linear subspace spanned by 
the rows of 𝐺 (» 𝑨). We say that 𝐶 is a [7, 4] code. Since 
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  𝐺𝐻𝑇 = (𝐼4|𝑅𝑇) �𝑅
𝑇

𝐼3
� = 𝑅𝑇 + 𝑅𝑇 = 0 

(the latter because arithmetic is mod 2), we see that the rows of 𝐺, and 
hence the elements of 𝐶, are in the kernel of 𝐻𝑇. In fact, 
  𝐶 = {𝑦 ∈ 𝐵7|𝑦𝐻𝑇 = 0}, 
as the right-hand side contains 𝐶 and both expressions are 𝐵-linear sub-
spaces of dimension 4. From the fact that all columns of 𝐻 are distinct, it 
is easy to conclude that any two elements of 𝐶 differ in at least 3 posi-
tions, and in some cases exactly in 3, and we express this by saying that   
𝐶 has type [7, 4, 3].  
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As a decoding function we take the map 𝑔:𝐵7 → 𝐵4 defined by the fol-
lowing recipe: 
1. Let 𝑠 = 𝑦𝐻𝑇 (this length 3 binary vector is said to be the syndrome of 
    the vector 𝑦 with respect to 𝐻). 
2. If 𝑠 = 0, return 𝑦 (as we said above, 𝑠 = 0 is equivalent to say that            
    𝑦 ∈ 𝐶). So we can assume that 𝑠 ≠ 0. 
3. Let 𝑗 be the index of 𝑠 as a row of 𝐻𝑇. 
4. Negate the bit 𝑦𝑗 of 𝑦 (and still cal 𝑦 the resulting vector). 
5. Return the first four components of 𝑦. 
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Let us show that this decoder corrects 1 error. Indeed, assume that 𝑥 ∈ 𝐶 
is the vector that has been sent. If there are no errors, then 𝑦 = 𝑥, 𝑠 = 0, 
and the decoder returns 𝑥. Now assume that the 𝑗-th bit of 𝑥 ∈ 𝐶 is 
changed during the transmission, and that the received vector is 𝑦. We 
can write 𝑦 = 𝑥 + 𝜀𝑗 , where 𝜀𝑗 is the vector with 1 on the j-th entry and 
0 on all the others. Then  
  𝑠 = 𝑦𝐻𝑇 = 𝑥𝐻𝑇 + 𝜀𝑗𝐻𝑇 = 𝜀𝑗𝐻𝑇, 
which clearly is the 𝑗-th row of 𝐻𝑇. Thus the result of negating the bit 𝑦𝑗 
is 𝑦 + 𝜀𝑗 = 𝑥 = 𝑢|𝑢𝑅𝑇 and therefore 𝑔(𝑦) = 𝑢. 
 

We notice that the Hamming code has the same correcting capacity as 
the repetition code [3,1,3], but on the other hand its information rate is 
4/7, which is considerably better than 1/3. 
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Conclusions 

Error correction is possible, at the price of increasing the channel time 
and of incorporating coding and decoding schemes, which also imply 
higher operation time. 

Error correction can be improved, as the Hamming code [7,4,3] does with 
respect to the repetition code [3,1,3].  

This leads to some of the key questions that have driven error-correcting 
coding techniques in the last six decades. 
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Basic problems 

What limits can be achieved, by means of coding schemes, with regard 
to: 

1.  Decreasing errors?  

2.  Increasing the information transmission rate? 

3.  Bounding the computational costs? 

 

  



12 
 

Channel capacity 

The capacity of a channel is a number 𝑐 in the interval [0, 1] that 
measures the maximum fraction of the information sent through the 
channel that is available at the receiving end. In the case of a binary 
symmetric channel it turns out that 

𝐶 = 1 + 𝑝 log2(𝑝) + (1 − 𝑝) log2(1 − 𝑝), 

where log2 is the base 2 logarithm function. Notice that 
𝑐 = 𝑐(𝑝) is a strictly decreasing function in the interval 
[0, 1/2], with 𝑐(0)  =  1 and 𝑐(1/2)  =  0, and that 
𝑐(𝑝) = 𝑐(1 − 𝑝) (see Figure). 

𝑐�10−𝑘�, 𝑘 = 1. .6 

1 2 3 4 5 6 

0.531 0.919 0.989 0.9995 0.9998 0.9999 
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Channel coding theorem 

Shannon’s channel coding theorem states that if 𝑅 is a positive real num-
ber less than the capacity 𝑐 of a binary symmetric channel (0 < 𝑅 < 𝑐), 
and 𝜀 is any positive real number, then there are ‘codes’ with rate at least 
𝑅 and with a probability of code-error less than 𝜀. 

Shannon’s theorem shows that in theory it is possible to transmit infor-
mation with sufficient confidence and with a transmission time increase 
by a factor that can be as close to 1/𝑐 as desired.  

Unfortunately, his methods only show the existence of such codes, but 
do not produce them, nor their coding and decoding, in an effective way.  

It can be said that the main motivation of the theory of error-correcting 
codes in the last sixty years has been, to a great extent, to find  

• explicit codes with good rates,  
• small code-error probabilities, and  
• with fast coding and decoding procedures. 
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𝑨. In general, the product 𝑢𝐺 of a vector 𝑢 = (𝑢1, … ,𝑢𝑘) and a 𝑘 × 𝑛 
matrix 𝐺 is the linear combination 𝑢1𝑔1 + ⋯+ 𝑢𝑘𝑔𝑘  of the 𝑘 rows 
𝑔1, … ,𝑔𝑘 of 𝐺 with coefficients the components of 𝑢. It follows that the 
set {𝑢𝐺 | any 𝑢 } is the (linear) span of the rows of  𝐺, often denoted 〈𝐺〉. 


