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The digital era
A Mathematical Theory of
Communication (1948)

e Mathematical foundations of com-
munication systems
e Definition of information,
of channel capacity
and of error-correcting codes.
e Source and channel
coding theorems

Claude Shannon (1916-2001)

» Master’s thesis (1937): logic

circuits

« Il WWII: Cryptography
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Exercise

»  1sofdigital audio: = 1 Mb
Jackson, Classical electrodynamics: = 5 Mb

Large encyclopedia: = 0.5 Gb
1 s of digital video: =~ 1.5 Gb
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Example: The repetition code [3,1,3] 1
f(w): = uuu

g(x) = if weight(x) > 1 -

then 1

else

(weight(x) is the number of 1’s in x) 0 0.19 12
What is the probability p’ of error per bit after decoding?
p' = 3p?(1 —p) + p3 = 3p? (aproximation valid if p is small).

Thus p'/p = 3p. For example, if p = 0.01, p'/p = 0.03, which means
that for every 100 channel only 3 remain (on average) after decoding.
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Example (the Hamming code [7,4,3]). Let B = Z, be the field of binary
digits. Consider the B-matrix

1110
R=11101|.
1011

Note that the columns of R are the binary vectors of length 3 whose
weight is at least 2 (the weight of a binary vector is the number of 1’s it
contains). Writing I- to denote the identity matrix of order r, let

G = I,|R" and H = R|L.
Note that the columns of H are precisely the seven non-zero binary vec-
tors of length 3.

Define the block encoding
f:B* > B7, uv uG = u(l,|R") = u|uR?’.

The image of this function is C = (G), the B-linear subspace spanned by
the rows of ¢ (» A). We say that C is a [7, 4] code. Since



GHT = (I,|RT) (%) = RT+RT =0
(the latter because arithmetic is mod 2), we see that the rows of ¢, and
hence the elements of C, are in the kernel of H”. In fact,

C ={y €B’|yH" =0},
as the right-hand side contains C and both expressions are B-linear sub-
spaces of dimension 4. From the fact that all columns of H are distinct, it
is easy to conclude that any two elements of C differ in at least 3 posi-

tions, and in some cases exactly in 3, and we express this by saying that
C has type [7, 4, 3].
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As a decoding function we take the map g: B” — B* defined by the fol-

lowing recipe:

1. Let s = yHT (this length 3 binary vector is said to be the syndrome of
the vector y with respect to H).

2. If s =0, return y (as we said above, s = 0 is equivalent to say that
y € C).So we can assume that s # 0.

3. Let j be the index of s as a row of H'.

4. Negate the bit y; of y (and still cal y the resulting vector).

5. Return the first four components of y.
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Let us show that this decoder corrects 1 error. Indeed, assume that x € C
is the vector that has been sent. If there are no errors, theny = x, s = 0,
and the decoder returns x. Now assume that the j-th bitof x € C is

changed during the transmission, and that the received vector is y. We
can write y = x + & , where &; is the vector with 1 on the j-th entry and

0 on all the others. Then

s=yH" =xH" + ¢gH" = ¢H",
which clearly is the j-th row of HT. Thus the result of negating the bit Vj
isy + & = x = u|uR" and therefore g(y) = u.

We notice that the Hamming code has the same correcting capacity as
the repetition code [3,1,3], but on the other hand its information rate is
4/7, which is considerably better than 1/3.
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Conclusions

Error correction is possible, at the price of increasing the channel time
and of incorporating coding and decoding schemes, which also imply
higher operation time.

Error correction can be improved, as the Hamming code [7,4,3] does with
respect to the repetition code [3,1,3].

This leads to some of the key questions that have driven error-correcting
coding techniques in the last six decades.
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Basic problems

What limits can be achieved, by means of coding schemes, with regard
to:

1. Decreasing errors?
2. Increasing the information transmission rate?

3. Bounding the computational costs?
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Channel capacity

The capacity of a channel is a number ¢ in the interval [0,1] that
measures the maximum fraction of the information sent through the
channel that is available at the receiving end. In the case of a binary
symmetric channel it turns out that

C=1+plog,(p) + (1 —p) log,(1 —p),

where log, is the base 2 logarithm function. Notice that

¢ = c(p) is a strictly decreasing function in the interval
10,1/2], with ¢(0) = 1 and ¢(1/2) = 0, and that
c(p) = c(1 —p) (see Figure).

C(lO_k), k=1..6 0 2 1

1 2 3 4 5 0

0.531{0.919]0.989(0.9995|0.9998 | 0.9999
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4(p-1/2Y)

21n(2)-(p-1/2)

c(p)=1+ plog,(p)+(1- p)log,(1- p)
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Channel coding theorem

Shannon’s channel coding theorem states that if R is a positive real num-
ber less than the capacity ¢ of a binary symmetric channel (0 < R < ¢),
and € is any positive real number, then there are ‘codes’ with rate at least
R and with a probability of code-error less than &.

Shannon’s theorem shows that in theory it is possible to transmit infor-
mation with sufficient confidence and with a transmission time increase
by a factor that can be as close to 1/c as desired.

Unfortunately, his methods only show the existence of such codes, but
do not produce them, nor their coding and decoding, in an effective way.

It can be said that the main motivation of the theory of error-correcting
codes in the last sixty years has been, to a great extent, to find

e explicit codes with good rates,
e small code-error probabilities, and
e with fast coding and decoding procedures.
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A. In general, the product uG of a vector u = (uq,...,u;) and a k Xn
matrix G is the linear combination u;g* + --- + u,g* of the k rows
gl, ..., g% of G with coefficients the components of u. It follows that the
set {uG | any u } is the (linear) span of the rows of G, often denoted (G).



