

TC10 / Problems 31-45

S. Xambó

31 (First order Reed–Muller codes). Let L_m be the vector space of polynomials of degree ≤ 1 in m indeterminates and with coefficients in F . Thus the elements of L_m are expressions $a_0 + a_1X_1 + \cdots + a_mX_m$, where X_1, \dots, X_m are indeterminates and a_0, a_1, \dots, a_m are arbitrary elements of F . So $1, X_1, \dots, X_m$ is a basis of L_m over F and, in particular, the dimension of L_m is $m + 1$.

Let n be an integer such that $q^{m-1} < n \leq q^m$ and pick distinct vectors

$$\mathbf{x} = x^1, \dots, x^n \in F^m.$$

Show that:

1) The linear map

$$\varepsilon: L_m \rightarrow F^n, \quad \varepsilon(f) = (f(x^1), \dots, f(x^n))$$

is injective.

2) The image of ε is a linear code of type $[n, m + 1, n - q^{m-1}]$.

Such codes are called (*first order*) *Reed–Muller codes* and will be denoted $RM_1^x(m)$. In the case $n = q^m$, instead of $RM_1^x(m)$ we will simply write $RM_1(m)$ and we will say that this is a *full Reed–Muller code*. Thus $M_1(m) \sim [q^m, m + 1, q^{m-1}(q - 1)]$.

32. Let C be the binary code generated by the matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}.$$

Construct a table of syndrome-leaders and use it to decode

110101101101110111000.

33. Let C be the binary code generated by the matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}.$$

Prove that for any $y \in B^{10}$ there is a unique vector $x \in C$ such that $hd(y, x)$ is minimum.

34. Show that for binary linear codes of length n , and a binary symmetric channel with a probability p of a bit error,

a) the probability of a correct decoding with the syndrome-leader decoder is

$$P_c = \sum_{j=0}^t \binom{n}{j} p^j (1-p)^{n-j} + \sum_{j=t+1}^n \alpha_j p^j (1-p)^{n-j},$$

where α_j is the number of leaders of weight j . Deduce that the dominant term (assuming p small) of the probability of a decoding error is

$$\left(\binom{n}{j} - \alpha_{t+1} \right) p^{t+1}.$$

b) Prove that the probability of an undetectable error is

$$\sum_{j=d}^n A_j p^j (1-p)^{n-j},$$

where A_j is the number of code vectors of weight j .

35. Let H be the control matrix of a binary linear code and E a leader's table.

a) Consider the following *incremental decoding* algorithm:

1. Set $j = 1$.
2. Let $w = |E(yH^T)|$, the weight of the leader class of the syndrome yH^T .
3. If $w = 0$, return y .
4. Otherwise, if the weight of the class leader of the syndrome $(y + \varepsilon_j)H^T$ is $< w$, set $y = y + \varepsilon_j, j = j + 1$.
5. If $j = n$, stop, else, go to 2.

Show that this decoder coincides with the syndrome-leader decoder corresponding to the table E .

b) Generalize the incremental decoding algorithm for linear codes over any finite field.

36. Let $a = \sum_{j=0}^{23} a_j t^j$ and $\bar{a} = \sum_{j=0}^{24} \bar{a}_j t^j$ be the weight enumerators of the binary Golay code C and of its parity completion \bar{C} .

1. Prove that $a_j = a_{23-j}$, $j = 0, \dots, 23$, and that $\bar{a}_j = \bar{a}_{24-j}$, $j = 0, \dots, 24$.
2. Using 1, show that the minimum distance of \bar{C} is 8, and using that \bar{C} has only even-weight vectors, obtain that \bar{a} has the form

$$\bar{a} = 1 + \bar{a}_8 t^8 + \bar{a}_{10} t^{10} + \bar{a}_{12} t^{12} + \bar{a}_{10} t^{14} + \bar{a}_8 t^{16} + t^{24}.$$

3. Use now the MacWilliams identities to show that

$$\bar{a}_8 = 759, \bar{a}_{10} = 0, \bar{a}_{12} = 2576.$$

4. Establish that

$$a_7 + a_8 = \bar{a}_8, \quad a_9 = a_{10} = 0 \quad \text{and} \quad a_{11} = a_{12} = \bar{a}_{12}/2.$$

5. Prove that

$$a_7 = 253 \text{ and } a_8 = 506,$$

so that

$$a = 1 + 253t^7 + 506t^8 + 1228t^{11} + 1288t^{12} + 506t^{15} + 253t^{16} + t^{23}$$

[Calculate a_7 directly, observing that for each word of weight 4 there is exactly a code word of weight 7 containing it]

37. A *q-ary erasure channel* is a *q-ary channel* for which some of the received vector components can be the symbol ?, in which case we say that we have an *erasure* in the corresponding position. If we use, with this channel, a linear code $C \sim [n, k, d]_q$, prove that it is possible to correct e errors and f erasures if and only if $2e + f \leq d - 1$.

38. Prove that $\varphi(n)$ is even for all $n > 2$ and find the sets $\{n \in \mathbb{Z}^+ \mid \varphi(n) = m\}$ for $m = 1, 2, 4$.

39. The four groups \mathbb{Z}_5^* , \mathbb{Z}_8^* , \mathbb{Z}_{10}^* and \mathbb{Z}_{12}^* have order 4. Determine which are cyclic and which are isomorphic to the Klein group (the only two possibilities for groups of order 4).

40. Prove that the values of n for which $|\mathbb{Z}_n^*| = 6$ are 7, 9, 14 and 18. As any group of order 6 is cyclic, the groups \mathbb{Z}_7^* , \mathbb{Z}_9^* , \mathbb{Z}_{14}^* and \mathbb{Z}_{18}^* are isomorphic. Find an isomorphism between \mathbb{Z}_7^* and each of the other three groups.

41. Prove that the values of n for which $|\mathbb{Z}_n^*| = 8$ are 15, 16, 20, 24 and 30. Prove that \mathbb{Z}_{24}^* is isomorphic to \mathbb{Z}_2^3 and that the other four groups are isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_4$. Find an isomorphism between \mathbb{Z}_{15}^* and \mathbb{Z}_{16}^* .

42. For each $k = 1, 2, 3, \dots$ let p_k be the k -th prime number and set

$$N_k = (p_1 - 1)(p_2 - 1) \cdots (p_k - 1) \text{ and } P_k = p_1 p_2 \cdots p_k.$$

Prove that the minimum of $\varphi(n)/n$ on the interval $(P_k) \dots (P_{k+1} - 1)$ is N_k/P_k . Deduce from this that in the interval $2 \dots (2 \times 10^{11})$ we have $\varphi(n)/n > 0.1579$. On the other hand, prove that $\liminf_{n \rightarrow \infty} \frac{\varphi(n)}{n} = 0$.

43. a) Let F be a finite field and K a subfield. Set $q = |K|$ and let r be the positive integer such that $|F| = q^r$. Let $f \in K[X]$ be a monic irreducible polynomial of degree r and $\beta \in F$ such that $f(\beta) = 0$. Prove that there exists a unique K -isomorphism $K[X]/(f) \simeq F$ such that $x \mapsto \beta$, where x is the class of X mod f .

b) The polynomials $f = X^3 + X + 1$ and $g = X^3 + X^2 + 1$ are irreducible over \mathbb{Z}_2 . Find all isomorphisms between $\mathbb{Z}_2[X]/(f)$ and $\mathbb{Z}_2[X]/(g)$.

44. Let K be a finite field, $\alpha, \beta \in K^r$, $r = \text{ord}(\alpha)$, $s = \text{ord}(\beta)$. Let

$$t = \text{ord}(\alpha\beta), \quad d = \text{mcd}(r, s), \quad m = \text{mcm}(r, s), \quad m' = m/d.$$

Prove that $m' \mid t$ and $t \mid m$. Thus $\text{ord}(\alpha\beta) = rs$ if $d = 1$. Find examples for which $d > 1$ and $t = m'$ (respectively $t = m$).

45. Gauss algorithm to find a primitive element α of a field K of q elements:

1. Let a be a non-zero element of K and $r = \text{ord}(a)$. If $r = q - 1$, it is enough to put $\alpha = a$. Thus we may assume that $r < q - 1$.
2. Let b be an element such that $b \notin \{1, a, \dots, a^{r-1}\}$ (this can be achieved by selecting an element x of K at random and finding x^r ; if $x^r \neq 1$, then $x \notin \{1, a, \dots, a^{r-1}\}$, and we can take $b = x$; otherwise we try with another x).

3. Let s be the order of b . If $m = q - 1$, we can set $\alpha = b$. Otherwise we have $s < q - 1$. In this case, calculate positive integers d and e , starting with $d = e = 1$, in the following way: examine successively the prime divisors p of r and s and set, if m is the minimum of the exponents of p in r and s , $d := dp^m$ if m is reached for r (in this case p appears in s with exponent at least m) and $e := ep^m$ if m is reached for s (in this case p appears in r with exponent higher than m).

4. Substitute a by $a^d b^s$ and reset $r = \text{ord}(a)$. if $r = q - 1$, we can take $\alpha = a$. Otherwise we go back to step 2.

Prove that this algorithm ends in a finite number of steps (show that the ordre of $a^d b^s$ in step 4 is $\text{mcm}(r, s)$ and that $\text{mcm}(r, s) > \max(r, s)$).