TC10 /5. Alternant codes
S. Xambo

Definitions and examples

Let F = F, and F = Fym. Let a4, ..., @, and Ay, ..., h,, be elements of F
such that a; # a; when i # j and h; # 0 for all i. Let us consider the

matrix

H=V.(aq,..,ay,) - diag(h4, ..., h,;)

hl hn
= Mm@ M) e yre,
U W

We say that H is the alternant control matrix of order r associated to the
vectorsh = (hq,...,h,) anda = (a4, ..., a,,).
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We will also need the vector 8 = (f4, ..., 85,), where B; = 1/a; (defined
only if a; # 0 for all i).

The F-code defined by H is
Ar(h,a,v) = {x € F* | xH" = 0},
and the codes of this kind are called alternant codes.

If we define the H-syndrome s of avectory € F* by s = yH' € F", then
Ar(h,a,1) is the subspace of F™ whose elements are the vectors with
zero H-syndrome.

If h = a, we will write Az (a, 1) instead of Az(a, &, ). On the other hand
A(h,a,r) or A(a, 1) are often used when F = Z,.

Proposition (Alternant bounds) If C = Ar(h, «, 1), then

n—r=>dim(C)=2n—rmid;=>r+1.
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Proof. Let H be the rm X n matrix over F obtained after substituting
each element of H by the column of its components with respect to a
basis of F over F. Then C is also the code associated to the control matrix
H'. Taking into account that the rank of H' over K is at most rm, it is
clear that

dim(C) = n —rm.

Now the sub-determinant of order r of H corresponding to the columns
l1, ..., Ly IS equal to

hil . hir 1 nan 1

hilail hirair —h ...h ai, ai.

: : — My o :
r—-1 .. r—1 r-1 r—1

hi a; h a; ai, ai,
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where D(ail,...,air) denotes the determinant of the Vandermonde

matrix Vr(al-l, ...,air). This means that any 7 columns of H are linearly

independent over F and consequently the minimum distance of C is at
least  + 1. Finally, dim(C) < n + 1 — d, by the Singleton bound, which
together withd. = r + 1 givesdim(C) < n — . O

Remark. The last inequality can be established directly. If we set
C={xeF"|xH" =0},

then dimz(C) =n—randC = CNF"™ C C. Hence
dimg(C) < dimg(C),

for linearly independent vectors of C over F are linearly independent
over F, and this shows that dimyg(C) < n — .



Example. Let @ € Fg and suppose that a® = a + 1. Consider the matrix

(111 1 1 1 1
H_(l a o’ o ot a6)
and let C be the alternant binary code defined by H. Let us see that

C ~17,3,4],and hencethatd =4 >3 =7r + 1.

To begin with, the minimum distance d of C is = 4, as any three columns
of H are linearly independent over F,. On the other hand, the three first
columns and the column of a® are linearly dependent, as we have

5:

a®> = a? + a + 1, and this gives d = 4. Finally the dimension of C is 3,

because it has a control matrix of rank 4 over F»:

1111111

o o R
o R O
_, O O
e R
_ RO
_
_, O R



Examples

Reed—Solomon codes. Given distinct elements a4, ..., a,, € F, we know
that the Reed—Solomon code

C = RSy,.a, (k) € F™
has a control matrix of the form
H=V,_,(aq,..,a;,) -diag(h,, ..., hy)
with h; = 1/ ]_[jil-(aj — al-). Consequently

RSal,...,an(k) = Ar(h,a,n — k), with
a = (al, . an), h — (hll . hn)
Notice that in this case F = F (m = 1), and that the alternant bounds are

exact, as we know that the minimum distanceof Cisn—k+1=1r+1,
where r is the number of rows of H,and k = n —r.
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Remark (Generalized Reed—Solomon codes). The vector h involved in the
definition of the control matrix of the code RS, . (k) is a function of
a. If we admit that h can be chosen independently of a, but with
components in F, the codes obtained, Ar(h,a,n—k), are the
generalized Reed—Solomon codes, and we write GRS(h, a, k) to denote
them.

Note that we have, by definition of alternant codes, the following
relation: If F is a finite field, r a positive integer and h, @ € F™, then the
linear code over F defined by the alternant control matrix H of order r
associated to h and a is the code GRS(h, a,n — r) and

Agz(h,a,v) = GRS(h,a,n —r) N F",
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BCH codes. Let a be an element of F, d a positive integer and [ an
integer. Let n be the order of . Then we know that a control matrix of
C = BCH,(d,!l) (the BCH code over F associated to a and with design
distance d and offset [) is

1 al azz a(n—l)l
o= 1 gttt g2+ e (n=D(I+1)
i az+'d—z aZ(l-I:d—Z) a(n_{)(lﬂ)

which is the alternant control matrix of order d — 1 associated to the
vectors

h=(1,d,a% ..,.a™ V) and a = (1,a,a?, ...,a™b).

The alternant bound on the minimum distance gives that the minimum
distance is not less than (d — 1) + 1 = d, which is the BCH bound. The
alternant bounds on the dimension coincide with the corresponding
bounds for BCH codes.
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Classical Goppa codes. Let g € F[T] be a polynomial of degree r > 0.
let @ = ay, ..., a, € F be dinstinct elements such that g(a;) # 0 for all
i. Then the classical Goppa code over F associated to g and a, which will
be denoted I'(g, @), can be defined as the code Ag(h, a, 1) such that h is

the vector ((1/g(ai),..,1/g(ay)). It is thus clear, by the alternant

bounds, that the minimum distance of I'(g,a) is =7 + 1 and that its
dimension k satisfiesn—mrm <k <n-—r.

Proposition (The strict BCH codes are classical Goppa codes). Let w be a
primitive element of F = F,m and let 6 be an integer such that

2<6<n. Then C = BCH,(§) coincides with C' = F(X5‘1,a), with
a = (1,0)_1, . a)_("_l)).

Proof. Since the h vector of the control matrix H of C' is
(1, w1, ..., w(5‘1)("‘1)), the i-th row of H' is equal to
(1,w5‘i, ...,w(5_1)("‘i)). Thus we see that H' is the control matrix H

that defines C, but with the order of the rows reversed (note that the
number of rows of H' is deg(X°~1) = § — 1. m
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Localization and evaluation of errors. The key equation

let CC F", F = [F,, be the alternant code associated to the alternant
matrix H of order r constructed with the vectors h and «a (their
components are elements of F = [Fom). Let t = |r/2], i.e., the greatest
integer such that 2t < r. Note that if we set t’' = [r/2], thent +t' =71
(later we will use the equivalent equalityr — t = t').

Let x € C (vector sent) and e € F™ (error vector). Let y = x + e (vector
received). The goal of the decoders that we will study is to obtain x from
y and H when s = |e| <'t.

Let M = {m4, ..., m;} be the set of error positions, i.e., m € M if and only
if e,, # 0. Define the error locators n;, i =1,...,s, by the relation
Ni = &y, Since the a; are distinct, the knowledge of the error locators is

equivalent to the knowledge of the error positions.



11

Define the syndrome vector S = (S,, ..., S,_1) by the formula S = yHT.
Note that S = eH', as xH' = 0. Consider also the polynomial syndrome

S(z) =Sy +Siz+ -+ S,_;z" L.

Since S = 0 is equivalent to say that y is a code vector (and therefore
that y = x), from now on we assume that S # 0.

Remark. S; = Y;_, hmiemir]{ 0<j<r—1).

Remark. The minimum j such that §; # 0 satisfies j <'s, and hence also
j <t (otherwise hpy e .., hy ey, would satisfy s independent
homogeneous linear equations). Since gcd(z",S(z)) = z/, the degree of
gcd(z”,5(2)) is strictly less than s, and hence also strictly less than t.
Similarly, deg(S(z)) = t, as otherwise we would have S; = -+ = S§,_; =
0, and this also leads to a contradiction, becauser —t =t' >t > s.

Remark. For the code BCH,(0,l) over g, the syndromes Sy, ..., S5
are the values of the received polynomial (or also of the error
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l

polynomial) on the elements !, .., w!*%72; S =S(w')), j=

0,..,0 —2.

The error-locator polynomial o(z) is defined by the formula
0(z) = Ilj=1(1 — n;2).
Thus the roots of o are precisely the reciprocals of the error locators.
We also define the error-evaluator polynomial by the formula
€(2) = Xi=1 hm;em, §=1,j¢i(1 —1;Z).
Proposition (Forney’s formula). For k = 1, ..., s, we have
em, = M€ )/ hm, o' (i),

where ¢’ is the derivative of o.



Proof. The derivative of o is given by
0'(z) = = 2inillj=1,j=:(1 —1n;2)

and from this expression we obtain that
o' (") = =M [ = 15/M0)-

On the other hand we have, from the definition of ¢, that
(') = hmyem (1 = 1;/m0).

Comparing the last two expressions we obtain the relation
nkf(nﬁl) = —hmkemkﬂ'(nil)'

which is equivalent to the stated formula.

13
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Theorem (Key equation). The polynomials €(z) and o(z) satisfy the
congruence

€(z) =0(z)S(z) mod z".

Proof. By definition of € it is clear that we also have

6(2) = 0(2) iy i

lllnlz

€.
ml ml

1-niz
= Yio1 hmem, 2720(;z)! mod z"
T (S5y hmgemn]) 2/ = 2528 5;20 = S(2).
Remark. The key equation implies that
deg(ged(z",5(2))) <t

as gcd(z",S(z)) divides € (this conclusion was obtained before in a

But Z S=1 hmiemi ZjZO(niZ)j

different way).
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Solution of the key equation. The key equation shows that there exists a
unique polynomial T(z) such that

€(z) =1(2)z" + 0(2)S(2).

This equation is equivalent to the key equation, and one of the crucial
steps in the decoding of alternant codes is to find a solution (o and €) in
terms of z" and S(2).

The method that we will present is a modification of Euclid’s algorithm
for finding the gcd of two polynomials.
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The algorithm Sugiyama(z',S,t). It is a variation of Euclid’s algorithm. The
input is a pair of polynomials 1y, = z" and r; = S(2) (recall that we have
assumed that S # 0), and an integer t. The description of the algorithm is
as follows:

1. Let 1y, i =0,...,J, be the polynomials that are calculated with
Euclid’s algorithm applied to 7y and 7y, but with j equal to the first
index such that deg(rj) <t.Fori=2,..,j, let g; be the quotient
of the Euclidean division of r;_, by 1;_1, so that

r ="Ti—2 — qiTli-1-

2. Note that since deg(r;) = deg(S) >t (as seen before), we have
J = 2. Note also that the integer j exists, for the degree of the gcd
d of 1, and 7y is less than t, and we know that the full Euclid
algorithm returns d.

3. Define vy, vy, ...,vj sothat vy =0, v, =1l and v; = v;_, — q;V;_1
fori =2,...,].

4. Return the pair {vj,rj}.
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In order to establish that the Sugiyama algorithm produces the wanted
solution of the key equation, it is convenient to calculate, together with
Vg, V1) s V), the sequence ug, uq, oy Uj such that uyg =1, uy =0, and

Ui =Uji—9 — qiU;j—1q fori = 2, ,]

To r o3|\ j—2|Tj-1|1
> 43| """ |q4j—29j-19;
Vo =0|v; =1 vy |vg || Vj_2 | Vj_1|Vj
Up = 1|\ug = 0juy Uz | | Uj_2 | Uj_1 | U,

B We have that u;rg + v;7y = r; forall i =0, ..., J.

Remark (Extended Euclid Algoritm). If we modify Sugiyama’s algoritm so
that j is the greatest integer such that r; # 0, then d =1; is equal to

gcd (rp,11) and the identity above shows that ay = u; and a; = v; yield
a solution of Bezout’s identity:

apgry + aqr; = d.
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Let us continue with the notations introduced in the description of the
Sugiyama algorithm. Recall that t' = [r/2]andr —t = t'.

Lemma. Let € =17, T = u;, 0 = v;. Then
€(z) =7(2)z" + 6(2)S(z), with deg(a) < t', deg(¢é) < t.

Proof: We have u;ry + viry =1;, 1 =0, ...,j. For i = it coincides with
the equality of the statement. Now we will use induction on i to show
that deg(v;) = r —deg (r;_,) fori =1, ...,j (and thereby that deg (v;)
is strictly increasing with i). Since the relation is clearly true fori = 1, we
can assume thati > 1. Then v; = v;_, — q;v;_1 and

deg(v;) = deg(q;) + deg(v;_1)
= deg(r;_z) — deg(r;—1) + r — deg(r;_2)
=1 —deg (r;-1)

(in the second step we have used the definition of g; and the induction
hypothesis).
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In particular
deg(d) = deg(v;) =r —deg(r;_,) <r—t =1,

and this establishes the first inequality in the statement. The second
inequality is a direct consequence of the definition of j and €.

Remark. With the same notations as in the lemma, it is straightforward
that

UV — il = (=D, i =1,..,).
This implies that gcd(u;, v;) = 1. So, in particular, gcd(7,0) = 1.
Theorem. With notations as in the lemma, there exists p € IF’C‘Im such that
0O = po | € = peE.

Proof: Multiplying the key equation €(z) = t(2)z" + 0(2)S(z) by &7, the
equation €(z) = 7(z)z" + 6(2)S(2) in the lemma by o, and subtracting
the results, we obtain the identity
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oc—o€=(oTt—o0T)z".
The degree of the polynomial in the left hand sideis < r, as
deg(ge) = deg(d) + deg(e) <t'+t—1=r—1,
deg(o€) = deg(o) + deg(é) <t+t—-1<r—1.

Since the polynomial on the right hand side contains the factor z", we
infer that 6e = g€, 6t = 0T . Hence o|ge and &|To. As gcd(o,€) = 1,
because ¢ and € have no common roots, and also gcd(7,0) = 1, we
obtain o|g, d|o and ag|d€, a|o. Therefore there exists p € IFZm such that

o = po and € = péE, as claimed.
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Remark. The theorem shows that ¢ and o have the same roots, and so
we can use ¢ instead of o for finding the error locations. Moreover, the
Forney’s formula shows that we can use ¢ and € instead of o and € in
order to find the error values:

meE(mic’)  _ _mee(ni’)
hmy @' (") o' (M)

The Berlekamp—Massey—Sugiyama algorithm

Let H be the control matrix of the alternant code C = Cy € F" of order r
associated to the vectors h, @ € F™, and let

ﬁ - (:81' "":871)/ :81' — 1/ail It = lT'/ZJ

Let y € F™ be the received vector.
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Algorithm BMS

Input: y

1. Calculate s = yHT, s = (sg, ..., S,_1), and form the polynomial
S = s(z) inthevariablez, S = sq + sz + -+ s,_1z" "1 (we say
that S is the polynomic syndrome).

2. Let {0, €} be the pair returned by Sugiyama(z',S,t).

3. Form the list M = {mq, ..., m¢} of the indeces m € {1, ..., n} such
that o(f,,) = 0 (we call them error position). If s < deg(o),
return Error.

4. Let x be the result of substituting y,, by y,, + e, for each
m € M, where

e = Am-€(Bm)
m hm-o'(Bm)

(o’ is the derivative of ¢). If e,,, € F for some m, return Error.
Otherwise return x if x is a code vector, or Error if not.




Theorem. The algorithm BMS corrects t = |r/2] errors.

23
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The algorithm PGZ

We shall present another decoding algorithm for alternant codes. Define
the error locating polynomial by

0(z) = [li=1(z = 1),

so that now the roots of ¢ are the error locators n;. From now on we will
assume that s < t.
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Determination of the number of errors. For each integer £ such that
s < ¥ <t,define
S0 51 v Sp-a1
g =] StoSe o Se
Se—1 S¢ = Sa2p-2

which is called the Hankel matrix associated to the vector

(S0, S1, ) Sop2).
Note that this vector exists, as 2f — 2 <r — 2.

Lemma. We have that det(4,) = 0 for s <[ <t and det(4) # 0. In
other words, s is the greatest integer (among those satisfying s < t) such
that det(4;) # 0.
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Proof: Let M' = {m3,...,m;} €{0,...,n — 1} be any subset such that
McM.Fori=1,..,% letn; = Apy! - As we already know,

_ J v J
Sj - ?czl hmkemkamk — Zkzl hm;(em;(r]k

forj=0,..,r—1.

Let D = diag (h re_r,.,h ;emj))' so that det(D) # 0 if £ =s and

mi-my’ "t tm
det(D) =0if £ >s.Set W =V,(n4, ...,n,) (the Vandermonde matrix of

£ rows associated to the elements 1;. Note that in particular we have
det(W) # 0.

We also have that WDWT = 4,, since the i-th row of W is (!, ...,77%),
the j-th column of DWTis (hmiemin{, ...,hméemén{],), and their product
izlhmkemlr{n?] =S4 (L,j=0,..,-1).

Thus det(4;,) = det(D) - det(W)?, which is 0 if £ > s (in this case
det(D) = 0), and # 0 if £ = s (in this case det(D) # 0 and det(W) # 0).
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How to find the error locator polynomial. Once the number s of errors is
known (recall that we assume that it < t), we can find the coefficients of
the error locating polynomial as follows. Note that

o(z) =1.,z=—n)=25+az5 ' +--+aq,

where a; = (—1)j0j(771, ., Ns), with g, =0;(ny,..,ns) the j-th
elementary symmetric polynomial inthe n; (0 < j < s).

Remark. The polynomial 1+ a;z+ -+ a,z® is the error locator
>_1(1 — n;2) considered in the study of the BMS algorithm.

Proposition. If a = (as,...,a,) is the coefficient vector of o and
b=(S,,..,S5_1), then aA; = —b. Since det(A;) + 0, this relation
determines a uniquely: a = —b(4,)~ 1.

Proof: Substituting z by the n; in the identity
Hf=1(z —1n;) =2z° + ale‘l + -+ ag
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we obtain the relations
S +an i+ 4+a;=0i=1,..,5.

Multiplying by hmiemin{ and adding with respect to i, we obtain the
relations

Sj+S + a15j+5_1 + oo 4 ClSSj — O, _] — O, e, S — 1 ,

and it is immediate to check that these relations are equivalent to the
claimed matrix relation.
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The algorithm PGZ. The lemma and the proposition allow us to
formulate an algorithm, essentially due to Peterson, Gorenstein and
Zierler, to descode alternant codes. With conventions similar to those
used in the algorithm BMS, including those relative to the meaning of
Error, the PGZ algorithm goes as follows:

1) Calculate the syndrome vector,
S = (So, ""S’I‘—l) — yHT
IfS =0, return y.

2) Thus we assume that S # 0. Beginning with s =t, and while
det(4;) = 0, set s = s — 1. The value of s at the end of this loop is the
number of errors (s > 0, as otherwise S would be 0).

3) Calculate (ag,...,a;) = —(Ss, ...,S,c_1)(45)71, and form the
polynomial

c(z) =z°+a,z5 + -+ a..
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4) Find the elements a; that aret he roots of g. If the number of these

roots is < s, return Error. Otherwise, let n4, ...,ns be the error locators
corresponding to the roots ans set M = {m;, ..., ms}, where ; = ..

5) Determine the error evaluator €(z) by reducing mod z" the product
1+az+-+asz°)S(2).

6) Calculate the errors e,,, by means of Forney’s formula with the error

locator 1 + a,z + - + a,z° and the error evaluator €(z). If any of these
values does not lie in K, return Error. Otherwise, return y — e or Error
according to whether y — e is or is not a code vector.

Proposition. PGZ correct up to t errors.

Remark. The determination of the errors €m,» - » €m, CAN also be done by

solving the system of linear equations

him,em, M + -+ hm e 1l = S;.



