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TC10 / 5. Alternant codes 
S. Xambó 
 
Definitions and examples 

Let ܨ ൌ ॲ௤ and ܨത ൌ ॲ௤೘. Let ߙଵ, … , ,௡ and ݄ଵߙ … , ݄௡ be elements of ܨത 
such  that ߙ௜ ്  ௝ whenߙ ݅ ് ݆ and ݄௜ ് 0  for all    ݅.  Let us  consider  the 
matrix 

    ܪ ൌ ௥ܸሺߙଵ, … , ௡ሻߙ ൉ diagሺ݄ଵ, … , ݄௡ሻ  

        ൌ ൮

݄ଵ
݄ଵߙଵ

ڭ
݄ଵߙଵ

௥ିଵ

   

…
…

…
   

݄௡
݄௡ߙ௡

ڭ
݄௡ߙ௡

௥ିଵ

 ൲ א ௡ܯ
௥ሺܨതሻ. 

We say that ܪ is the alternant control matrix of order ݎ associated to the 
vectors ࢎ ൌ ሺ݄ଵ, … , ݄௡ሻ and ࢻ ൌ ሺߙଵ, … ,  .௡ሻߙ
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We will also need the vector ࢼ ൌ ሺߚଵ, … , ௜ߚ ௡ሻ, whereߚ ൌ  ௜ (definedߙ/1
only if ߙ௜ ് 0 for all  ݅). 

The ܨ‐code defined by ܪ is 

    ,ࢎிሺܣ ,ࢻ ሻݎ ൌ ሼݔ א ்ܪݔ | ௡ܨ ൌ 0ሽ, 

and the codes of this kind are called alternant codes. 

If we define the ܪ‐syndrome ݏ of a vector ݕ א ݏ ത௡ byܨ ൌ ்ܪݕ א   ത௥, thenܨ
,ࢎிሺܣ ,ࢻ  ሻݎ is  the  subspace of ܨ௡ whose elements are  the vectors with 
zero ܪ‐syndrome. 

If ࢎ ൌ ,ࢻிሺܣ we will write ,ࢻ ࢘ሻ instead of ܣிሺࢻ, ,ࢻ  ሻ. On the other handݎ
,ࢎሺܣ ,ࢻ ,ࢻሺܣ ሻ orݎ ܨ ሻ are often used whenݎ ൌ Ժଶ. 

 

Proposition (Alternant bounds) If ܥ ൌ ,ࢎிሺܣ ,ࢻ   ሻ, thenݎ

    ݊ െ ݎ ൒ dimሺܥሻ ൒ ݊ െ i  ݀஼  ݉ݎ ൒ ݎ ൅ 1.  
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Proof.  Let ܪԢ  be  the  ݉ݎ ൈ ݊ matrix  over ܨ  obtained  after  substituting 
each element of ܪ by  the  column of  its  components with  respect  to a 
basis of ܨത over ܨ. Then ܥ is also the code associated to the control matrix 
 Ԣ. Takingܪ into account  that  the  rank of ܪԢ over ܭ  is at most ݉ݎ,  it  is 
clear that      

    dimሺܥሻ ൒ ݊ െ  .݉ݎ

Now the sub‐determinant of order ݎ of ܪ corresponding to the  columns 
݅ଵ, … , ݅௥ is equal to 

    ተተ

݄௜భ

݄௜భߙ௜భ
ڭ

݄௜భߙ௜భ
௥ିଵ

   

…
…

…
   

݄௜ೝ

݄௜ೝߙ௜ೝ
ڭ

݄௜ೝߙ௜ೝ
௥ିଵ

 ተተ ൌ ݄௜భ ڮ ݄௜ೝ ተተ

1    
  ௜భߙ

ڭ
௜భߙ

௥ିଵ

   

…
…

…
   

1   
  ௜ೝߙ

ڭ
௜ೝߙ

௥ିଵ
ተተ 

              ൌ ݄௜భ ڮ ݄௜ೝܦ൫ߙ௜భ, … , ௜ೝ൯ߙ ് 0  
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where  ,௜భߙ൫ܦ … ,  ௜ೝ൯ߙ denotes  the  determinant  of  the  Vandermonde 

matrix  ௥ܸ൫ߙ௜భ, … ,  ௜ೝ൯. This meansߙ that any   are ܪ columns of ݎ  linearly 

independent over ܨത and consequently  the minimum distance of ܥ  is at 
least ݎ ൅ 1. Finally, dimሺܥሻ ൑ ݊ ൅ 1 െ ݀஼ , by the Singleton bound, which 
together with ݀஼ ൒ ݎ ൅ 1 gives dimሺܥሻ ൑ ݊ െ  .ݎ                 □        

Remark. The last inequality can be established directly. If we set 

    ҧܥ ൌ ሼݔҧ א ்ܪҧݔ | ത௡ܨ ൌ 0ሽ, 

then dimிതሺܥҧሻ ൌ ݊ െ ܥ and ݎ ൌ ҧܥ ת ௡ܨ ك   ҧ. Henceܥ

    dimிሺܥሻ ൑ dimிതሺܥҧሻ, 

for  linearly  independent  vectors  of   ܥ over   ܨ are  linearly  independent 
over ܨത, and this shows that dim௄ሺܥሻ ൑ ݊ െ  .ݎ

   



5 
 

Example. Let ߙ א ॲ଼ and suppose that ߙଷ ൌ ߙ ൅ 1. Consider the matrix 

    ܪ ൌ ቀ1
 1   ߙ1   1

 ଶ   1ߙ
 ଷ   1ߙ

 ସ   1ߙ
 ହ   1ߙ

 ଺ቁߙ

and  let   ܥ be  the  alternant  binary  code  defined  by   .ܪ Let  us  see  that 
ܥ ׽ ሾ7,3,4ሿ, and hence that ݀ ൌ 4 ൐ 3 ൌ ݎ ൅ 1.  

To begin with, the minimum distance ݀ of ܥ is ൒ 4, as any three columns 
of ܪ are linearly independent over ॲଶ. On the other hand, the three first 

columns  and  the  column  of   ହߙ are  linearly  dependent,  as  we  have 

ହߙ ൌ ଶߙ ൅ ߙ ൅ 1, and  this gives ݀ ൌ 4. Finally  the dimension of ܥ  is 3, 
because it has a control matrix of rank 4 over ॲଶ: 

    ൮

1
1
0
0

   

1
0
1
0

   

1
0
0
1

   

1
1
1
0

   

1
0
1
1

   

1
1
1
1

   

1
1
0
1

൲ 
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Examples 

ReedെSolomon  codes. Given distinct elements ߙଵ, … , ௡ߙ א  we know ,ܨ
that the Reed–Solomon code 

    ܥ ൌ ܴܵఈభ,…,ఈ೙
ሺ݇ሻ ك   ௡ܨ

has a control matrix of the form 

    ܪ ൌ ௡ܸି௞ሺߙଵ, … , ௡ሻߙ ൉ diagሺ݄ଵ, … , ݄௡ሻ 

with ݄௜ ൌ 1/ ∏ ൫ߙ௝ െ ௜൯௝ஷ௜ߙ . Consequently  

    ܴܵఈభ,…,ఈ೙
ሺ݇ሻ ൌ ,ࢎிሺܣ ,ࢻ ݊ െ ݇ሻ,  with  

    ࢻ ൌ ሺߙଵ, … , ࢎ  ,௡ሻߙ ൌ ሺ݄ଵ, … , ݄௡ሻ. 

Notice that in this case ܨത ൌ ݉) ܨ ൌ 1), and that the alternant bounds are 
exact, as we know that the minimum distance of ܥ is ݊ െ ݇ ൅ 1 ൌ ݎ ൅ 1, 
where ݎ is the number of rows of ܪ, and ݇ ൌ ݊ െ    .ݎ
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Remark (Generalized Reed–Solomon codes). The vector ࢎ involved in the 
definition of the control matrix of the code ܴܵఈభ,…,ఈ೙

ሺ݇ሻ  is a function of 
 .ࢻ If  we  admit  that   ࢎ can  be  chosen  independently  of   ,ࢻ but  with 
components  in   ,ܨ the  codes  obtained,  ,ࢎிሺܣ ,ࢻ ݊ െ ݇ሻ,  are  the 
generalized ReedെSolomon codes, and we write ܴܵܩሺࢎ, ,ࢻ ݇ሻ to denote 
them.  

 

Note  that  we  have,  by  definition  of  alternant  codes,  the  following 
relation: If ܨത is a finite field, ݎ a positive integer and ࢎ, ࢻ א  ത௡, then theܨ
linear code over ܨത defined by the alternant control matrix ܪ of order ݎ 
associated to ࢎ and ࢻ is the code ܴܵܩሺࢎ, ,ࢻ ݊ െ   ሻ andݎ

    ,ࢎிሺܣ ,ࢻ ሻݎ ൌ ,ࢎሺܴܵܩ ,ࢻ ݊ െ ሻݎ ת  .௡ܨ
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BCH  codes.  Let   ߙ be  an  element  of   ,തܨ ݀  a  positive  integer  and  ݈  an 
integer. Let ݊ be the order of ߙ. Then we know that a control matrix of 
ܥ ൌ ,ఈሺ݀ܪܥܤ ݈ሻ (the ܪܥܤ code over ܨ associated to ߙ and with design 
distance ݀ and offset ݈) is 

    ܪ ൌ ൮

1
1
ڭ
1

   
௟ߙ

௟ାଵߙ

ڭ
௟ାௗିଶߙ

   
ଶ௟ߙ

ଶሺ௟ାଵሻߙ

ڭ
ଶሺ௟ାௗିଶሻߙ

   

…
…

…
   

ሺ௡ିଵሻ௟ߙ

ሺ௡ିଵሻሺ௟ାଵሻߙ

ڭ
ሺ௡ିଵሻሺ௟ାଵሻߙ

   ൲ 

which  is  the  alternant  control matrix  of  order ݀ െ 1  associated  to  the 
vectors 

    ࢎ ൌ ሺ1, ,௟ߙ ,ଶ௟ߙ … , ࢻ  ሺ௡ିଵሻ௟ሻ  andߙ ൌ ሺ1, ,ߙ ,ଶߙ … ,   .௡ିଵሻߙ

The alternant bound on  the minimum distance gives  that  the minimum 
distance  is not  less  than ሺ݀ െ 1ሻ ൅ 1 ൌ ݀, which  is  the BCH bound. The 
alternant  bounds  on  the  dimension  coincide  with  the  corresponding 
bounds for BCH codes. 
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Classical Goppa  codes.  Let ݃ א  തሾܶሿ beܨ a polynomial of degree  ݎ ൐ 0.  
Let ࢻ ൌ ,ଵߙ … , ௡ߙ א ௜ሻߙത be dinstinct elements such that ݃ሺܨ ് 0  for all  
݅. Then the classical Goppa code over ܨ associated to ݃ and ࢻ, which will 
be denoted Γሺ݃, ,ࢎிሺܣ ሻ, can be defined as the codeࢻ ,ࢻ  is ࢎ ሻ such thatݎ
the  vector  ൫ሺ1/݃ሺߙଵሻ, … ,1/݃ሺߙ௡ሻ൯.  It  is  thus  clear,  by  the  alternant 
bounds,  that  the minimum  distance  of  Γሺ݃,  ሻࢻ is  ൒ ݎ ൅ 1  and  that  its 
dimension ݇ satisfies ݊ െ ݉ݎ ൑ ݇ ൑ ݊ െ  .ݎ
Proposition (The strict ܪܥܤ codes are classical Goppa codes). Let ߱ be a 
primitive  element  of  തܨ ൌ ॲ௤೘   and  let   ߜ be  an  integer  such  that 
2 ൑ ߜ ൑ ݊.  Then  ܥ ൌ  ሻߜఠሺܪܥܤ coincides  with  ᇱܥ ൌ Γ൫ܺఋିଵ,  ,൯ࢻ with 
ࢻ ൌ ൫1, ߱ିଵ, … , ߱ିሺ௡ିଵሻ൯. 

Proof. Since the ࢎ vector of the control matrix ܪԢ  of ܥԢ is 
൫1, ߱ఋିଵ, … , ߱ሺఋିଵሻሺ௡ିଵሻ൯, the ݅‐th row of ܪԢ is equal to 
൫1, ߱ఋି௜, … , ߱ሺఋିଵሻሺ௡ି௜ሻ൯.  Thus we  see  that   Ԣܪ is  the  control matrix ܪ 
that defines ܥ, but with  the order of  the  rows  reversed  (note  that  the 
number of rows of ܪԢ is deg൫ܺఋିଵ൯ ൌ ߜ െ 1.                          □    
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Localization and evaluation of errors. The key equation  

Let ܥ ك ܨ ,௡ܨ ൌ ॲ௤, be  the  alternant  code  associated  to  the  alternant 

matrix   ܪ of  order   ݎ constructed  with  the  vectors   ࢎ and   ࢻ (their 
components are elements of ܨത ൌ ॲ௤೘). Let ݐ ൌ  ,ۂ2/ݎہ i.e.,  the greatest 
integer such that 2ݐ ൑  Note that .ݎ if we set ݐᇱ ൌ ݐ then ,ۀ2/ݎڿ ൅ ᇱݐ ൌ  ݎ
(later we will use the equivalent equality ݎ െ ݐ ൌ  .(Ԣݐ

Let ݔ א  ܥ (vector  sent) and ݁ א  ௡ܨ (error vector). Let ݕ ൌ ݔ ൅ ݁  (vector 
received). The goal of the decoders that we will study is to obtain ݔ from 
ݏ when ܪ and ݕ ൌ |݁| ൑  .ݐ

Let ܯ ൌ ሼ݉ଵ, … , ݉௦ሽ be the set of error positions, i.e., ݉ א  if and only ܯ
if  ݁௠ ് 0.  Define  the  error  locators   ,௜ߟ ݅ ൌ 1, … ,  ,ݏ by  the  relation 
௜ߟ ൌ ௝ߙ ௠೔. Since theߙ  are distinct, the knowledge of the error locators is 

equivalent to the knowledge of the error positions. 
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Define  the syndrome vector ܵ ൌ ሺܵ଴, … , ܵ௥ିଵሻ by  the  formula ܵ ൌ  .்ܪݕ
Note that ܵ ൌ ்ܪݔ as ,்ܪ݁ ൌ 0. Consider also the polynomial syndrome 

    ܵሺݖሻ ൌ ܵ଴ ൅ ଵܵݖ ൅ ڮ ൅ ܵ௥ିଵݖ௥ିଵ. 

Since ܵ ൌ 0  is equivalent  to  say  that ݕ  is a  code  vector  (and  therefore 
that ݕ ൌ ܵ  from now on we assume that ,(ݔ ് 0. 

Remark.   ௝ܵ ൌ ∑ ݄௠೔݁௠೔ߟ௜
௝௦

௜ୀଵ   (0 ൑ ݆ ൑ ݎ െ 1). 

Remark. The minimum ݆ such that  ௝ܵ ് 0 satisfies ݆ ൏  and hence also ,ݏ
݆ ൏  ݐ (otherwise  ݄௠భ݁௠భ, … , ݄௠ೞ݁௠ೞ   would  satisfy   ݏ independent 

homogeneous  linear equations). Since gcdሺݖ௥, ܵሺݖሻሻ ൌ  ௝, the degree ofݖ
gcdሺݖ௥, ܵሺݖሻሻ  is  strictly  less  than   ,ݏ and hence  also  strictly  less  than   .ݐ
Similarly, degሺܵሺݖሻሻ ൒ as otherwise we would have ܵ௧ ,ݐ ൌ ڮ ൌ ܵ௥ିଵ ൌ
0, and this also leads to a contradiction, because ݎ െ ݐ ൌ ᇱݐ ൒ ݐ ൒  .ݏ

Remark.  For  the  code ܪܥܤఠሺߜ, ݈ሻ  over ॲ௤,  the  syndromes  ܵ଴, … , ܵఋିଶ 

are  the  values  of  the  received  polynomial    (or  also  of  the  error 
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polynomial)  on  the  elements  ߱௟, … , ߱௟ାఋିଶ:    ௝ܵ ൌ ܵሺ߱௟ା௝ሻ,    ݆ ൌ
0, … , ߜ െ 2.  

 

The error‐locator polynomial  ߪሺݖሻ is defined by the formula 

    ሻݖሺߪ ൌ ∏ ሺ1 െ ሻ௦ݖ௜ߟ
௜ୀଵ . 

Thus the roots of ߪ are precisely the reciprocals of the error locators. 

We also define the error‐evaluator polynomial  by the formula 

    ߳ሺݖሻ ൌ ∑ ݄௠೔݁௠೔
∏ ሺ1 െ ሻ௦ݖ௝ߟ

௝ୀଵ,௝ஷ௜
௦
௜ୀଵ . 

Proposition (Forney’s formula). For ݇ ൌ 1, … ,   we have ,ݏ

    ݁௠ೖ ൌ െߟ௞߳൫ߟ௞
ିଵ൯/݄௠ೖߪԢ൫ߟ௞

ିଵ൯,  

where ߪԢ is the derivative of ߪ. 
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Proof. The derivative of ߪ is given by 

    ሻݖᇱሺߪ ൌ െ ∑ ௜ߟ ∏ ሺ1 െ ሻ௦ݖ௝ߟ
௝ୀଵ,௝ஷ௜௜  

and from this expression we obtain that 

    ௞ߟᇱ൫ߪ
ିଵ൯ ൌ െߟ௞ ∏ ሺ1 െ ௞ሻ௝ஷ௞ߟ/௝ߟ . 

On the other hand we have, from the definition of ߳, that 

     ߳൫ߟ௞
ିଵ൯ ൌ ݄௠ೖ݁௠ೖ

∏ ሺ1 െ ௞ሻ௝ஷ௞ߟ/௝ߟ . 

Comparing the last two expressions we obtain the relation 

    ௞ߟ௞߳൫ߟ
ିଵ൯ ൌ െ݄௠ೖ݁௠ೖߪᇱ൫ߟ௞

ିଵ൯, 

which is equivalent to the stated formula.  
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Theorem  (Key  equation).  The  polynomials  ߳ሺݖሻ  and   ሻݖሺߪ satisfy  the 
congruence 

    ߳ሺݖሻ ؠ  .௥ݖ  ሻ  modݖሻܵሺݖሺߪ

Proof. By definition of ߳ it is clear that we also have 

    ߳ሺݖሻ ൌ ሻݖሺߪ ∑
௛೘೔௘೘೔
ଵିఎ೔௭

௦
௜ୀଵ . 

But  ∑
௛೘೔௘೘೔
ଵିఎ೔௭

௦
௜ୀଵ ൌ ∑ ݄௠೔݁௠೔

∑ ሺߟ௜ݖሻ௝
௝ஹ଴

௦
௜ୀଵ  

    ؠ ∑ ݄௠೔݁௠೔
∑ ሺߟ௜ݖሻ௝௥ିଵ

௝ୀ଴
௦
௜ୀଵ  mod ݖ௥  

    ൌ ∑ ൫∑ ݄௠೔݁௠೔ߟ௜
௝௦

௜ୀଵ ൯௥ିଵ
௝ୀ଴ ௝ݖ ൌ ∑ ௝ܵݖ௝௥ିଵ

௝ୀ଴ ൌ ܵሺݖሻ. 

Remark. The key equation implies that 

    degሺgcdሺݖ௥, ܵሺݖሻሻሻ ൏   ݐ

as  gcdሺݖ௥, ܵሺݖሻሻ  divides  ߳  (this  conclusion  was  obtained  before  in  a 
different way). 
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Solution of the key equation. The key equation shows that there exists a 
unique polynomial ߬ሺݖሻ such that  

    ߳ሺݖሻ ൌ ߬ሺݖሻݖ௥ ൅   .ሻݖሻܵሺݖሺߪ

This equation  is equivalent  to  the key equation, and one of  the  crucial 
steps in the decoding of alternant codes is to find a solution (ߪ and ߳) in 
terms of  ݖ௥ and ܵሺݖሻ. 

The method  that we will present  is a modification of Euclid’s algorithm 
for finding the gcd of two polynomials.  
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The algorithm Sugiyama(zr,S,t). It is a variation of  Euclid’s algorithm. The 
input is a pair of polynomials ݎ଴ ൌ ଵݎ ௥ andݖ ൌ ܵሺݖሻ (recall that we have 
assumed that ܵ ് 0), and an integer ݐ. The description of the algorithm is 
as follows: 

1. Let   ,௜ݎ ݅ ൌ 0, … , ݆,  be  the  polynomials  that  are  calculated  with 
Euclid’s algorithm applied to ݎ଴ and ݎଵ, but with ݆ equal to the first 
index such that deg൫ݎ௝൯ ൏ ݅ For .ݐ ൌ 2, … , ݆, let ݍ௜ be the quotient 
of the Euclidean division of ݎ௜ିଶ by  ݎ௜ିଵ, so that  
    ௜ݎ ൌ ௜ିଶݎ െ  .௜ିଵݎ௜ݍ

2. Note  that  since degሺݎଵሻ ൌ degሺܵሻ ൒  ݐ (as  seen before), we have 
݆ ൒ 2. Note also that the integer ݆ exists, for the degree of the gcd 
݀  of   ଴ݎ  and   ଵݎ is  less  than   ,ݐ   and we  know  that  the  full  Euclid 
algorithm returns ݀. 

3. Define ݒ଴, ,ଵݒ … , ௝ݒ  so that ݒ଴ ൌ ଵݒ ,0 ൌ 1 and ݒ௜ ൌ ௜ିଶݒ െ  ௜ିଵݒ௜ݍ
for ݅ ൌ 2, … , ݆. 

4. Return the pair  ൛ݒ௝,  .௝ൟݎ
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In order  to establish  that  the Sugiyama algorithm produces  the wanted 
solution of the key equation,  it  is convenient to calculate, together with 
,଴ݒ ,ଵݒ … ,  ,௝ݒ the  sequence  ,଴ݑ ,ଵݑ … ,  ௝ݑ such  that  ଴ݑ ൌ 1,  ଵݑ ൌ 0,  and 
௜ݑ ൌ ௜ିଶݑ െ ݅ ௜ିଵ forݑ௜ݍ ൌ 2, … , ݆. 

଴ݎ ଵݎ ଶݎ ଷݎ  ڮ ௝ିଶݎ ௝ିଵݎ ௝ݎ
    ଶݍ ଷݍ  ڮ ௝ିଶݍ ௝ିଵݍ ௝ݍ
଴ݒ ൌ 0 ଵݒ ൌ 1 ଶݒ ଷݒ  ڮ ௝ିଶݒ ௝ିଵݒ ௝ݒ
଴ݑ ൌ 1 ଵݑ ൌ 0 ଶݑ ଷݑ  ڮ ௝ିଶݑ ௝ିଵݑ ௝ݑ

 

 We have that ݑ௜ݎ଴ ൅ ଵݎ௜ݒ ൌ ݅  ௜ for allݎ ൌ 0, … , ݆. 

Remark  (Extended Euclid Algoritm). If we modify Sugiyama’s algoritm so 
that  ݆  is  the  greatest  integer  such  that  ௝ݎ ് 0,  then ݀ ൌ ௝ݎ   is  equal  to 
gcd ሺݎ଴, ଵሻ and the identity above shows that ܽ଴ݎ ൌ ௝ݑ  and ܽଵ ൌ  ௝ yieldݒ
a solution of Bezout’s identity: 

    ܽ଴ݎ଴ ൅ ܽଵݎଵ ൌ ݀. 
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Let us continue with  the notations  introduced  in  the description of  the 
Sugiyama algorithm. Recall that ݐᇱ ൌ ݎ and ۀ2/ݎڿ െ ݐ ൌ  .Ԣݐ

Lemma. Let ߳ҧ ൌ ௝, ߬ҧݎ ൌ തߪ ,௝ݑ ൌ   ௝. Thenݒ

    ߳ҧሺݖሻ ൌ ߬ҧሺݖሻݖ௥ ൅ തሻߪሻ,  with  degሺݖሻܵሺݖതሺߪ ൑ Ԣ,  degሺ߳ҧሻݐ ൏  .ݐ

Proof: We have ݑ௜ݎ଴ ൅ ଵݎ௜ݒ ൌ  ,௜ݎ ݅ ൌ 0, … , ݆.  For  ݅ ൌ ݆  it  coincides with 
the equality of  the  statement. Now we will use  induction on  ݅  to  show 
that degሺݒ௜ሻ ൌ ݎ െ deg ሺݎ௜ିଵሻ  for  ݅ ൌ 1, … , ݆  (and  thereby  that deg ሺݒ௜ሻ 
is strictly increasing with ݅). Since the relation is clearly true for ݅ ൌ 1, we 
can assume that ݅ ൐ 1. Then ݒ௜ ൌ ௜ିଶݒ െ  ௜ିଵ andݒ௜ݍ

    degሺݒ௜ሻ ൌ degሺݍ௜ሻ ൅ degሺݒ௜ିଵሻ 

             ൌ degሺݎ௜ିଶሻ െ degሺݎ௜ିଵሻ ൅ ݎ െ degሺݎ௜ିଶሻ 

             ൌ ݎ െ deg ሺݎ௜ିଵሻ   

(in the second step we have used the definition of ݍ௜ and the  induction 
hypothesis).  
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In particular 

    degሺߪതሻ ൌ deg൫ݒ௝൯ ൌ ݎ െ deg൫ݎ௝ିଵ൯ ൑ ݎ െ ݐ ൌ  ,Ԣݐ

and  this  establishes  the  first  inequality  in  the  statement.  The  second 
inequality is a direct consequence of the definition of ݆ and ߳ҧ. 

Remark. With the same notations as  in the  lemma,  it  is straightforward 
that 

    ௜ିଵݒ௜ݑ െ ௜ିଵݑ௜ݒ ൌ ሺെ1ሻ௜,  ݅ ൌ 1, … , ݆.  

This implies that gcdሺݑ௜, ௜ሻݒ ൌ 1. So, in particular, gcdሺ߬ҧ, തሻߪ ൌ 1. 

Theorem. With notations as in the lemma, there exists ߩ א ॲ௤೘
כ  such that 

    ߪ ൌ ߳  ത  iߪߩ ൌ    .ҧ߳ߩ

Proof: Multiplying the key equation ߳ሺݖሻ ൌ ߬ሺݖሻݖ௥ ൅  ത, theߪ ሻ byݖሻܵሺݖሺߪ
equation ߳ҧሺݖሻ ൌ ߬ҧሺݖሻݖ௥ ൅  and subtracting ,ߪ  ሻ in the lemma byݖሻܵሺݖതሺߪ
the results, we obtain the identity 
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    ത߳ߪ െ ҧ߳ߪ ൌ ሺߪത߬ െ  .௥ݖҧሻ߬ߪ

The degree of the polynomial in the left hand side is  ൏   as ,ݎ

    degሺߪത߳ሻ ൌ degሺߪതሻ ൅ degሺ߳ሻ ൑ ᇱݐ ൅ ݐ െ 1 ൌ ݎ െ 1, 

    degሺ߳ߪҧሻ ൌ degሺߪሻ ൅ degሺ߳ҧሻ ൑ ݐ ൅ ݐ െ 1 ൑ ݎ െ 1.  

Since  the polynomial on  the  right hand  side  contains  the  factor ݖ௥, we 
infer  that ߪത߳ ൌ ത߬ߪ ,ҧ߳ߪ ൌ  ത߳ߪ|ߪ ഥ. Hence ߬ߪ and ߪത|߬ҧߪ. As  gcdሺߪ, ߳ሻ ؠ 1, 
because   ߪ and  ߳  have  no  common  roots,  and  also  gcdሺ ҧ߬, തሻߪ ൌ 1, we 
obtain ߪ|ߪത, ߪത|ߪ and ߪ|ߪത߳, ߪത|ߪ. Therefore there exists ߩ א ॲ௤೘

כ   such that 
ߪ ൌ ߳ ത andߪߩ ൌ   .ҧ, as claimed߳ߩ
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Remark. The theorem shows that ߪത and ߪ have the same roots, and so 
we can use ߪത  instead of ߪ for finding the error  locations. Moreover, the 
Forney’s  formula  shows  that we can use ߪത and ߳ҧ  instead of ߪ and ߳  in 
order to find the error values: 

   
ఎೖఢത൫ఎೖ

షభ൯
௛೘ೖఙഥᇲ൫ఎೖ

షభ൯
ൌ ఎೖఢ൫ఎೖ

షభ൯
௛೘ೖఙᇲ൫ఎೖ

షభ൯
 . 

 

 

The BerlekampെMassey–Sugiyama algorithm 

Let ܪ be the control matrix of the alternant code ܥ ൌ ுܥ ك  ݎ ௡ of orderܨ
associated to the vectors ࢎ, ࢻ א   ത௡, and letܨ

  ࢼ ൌ ሺߚଵ, … , ௜ߚ ,௡ሻߚ ൌ ݐ ௜, iߙ/1 ൌ   .ۂ2/ݎہ

Let  ݕ א  .௡ be the received vectorܨ
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Algorithm BMS 

Input: ݕ 

1. Calculate  ݏ ൌ  ,்ܪݕ ݏ ൌ ሺݏ଴, … ,  ,௥ିଵሻݏ and  form  the  polynomial 
ܵ ൌ ܵ ,ݖ ሻ in the variableݖሺݏ ൌ ଴ݏ ൅ ݖଵݏ ൅ ڮ ൅  ௥ିଵ (we sayݖ௥ିଵݏ
that ܵ is the polynomic syndrome). 

2. Let ሼߪ, ߳ሽ be the pair returned by Sugiyama(zr,S,t). 
3. Form the list ܯ ൌ ሼ݉ଵ, … , ݉௦ሽ of the indeces ݉ א ሼ1, … , ݊ሽ such 

that  ௠ሻߚሺߪ ൌ 0  (we  call  them  error  position).  If  ݏ ൏ degሺߪሻ, 
return Error. 

4. Let   ݔ be  the  result  of  substituting   ௠ݕ by  ௠ݕ ൅ ݁௠,  for  each 
݉ א  where ,ܯ

    ݁௠ ൌ ఈ೘൉ఢሺఉ೘ሻ
௛೘൉ఙᇲሺఉ೘ሻ 

 Ԣߪ) is  the derivative of ߪ).  If ݁௠ ב  ܨ for  some ݉,  return  Error. 
Otherwise return ݔ if ݔ is a code vector, or Error if not. 



23 
 

Theorem. The algorithm ܵܯܤ corrects ݐ ൌ  .errors ۂ2/ݎہ
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The algorithm PGZ 

We shall present another decoding algorithm for alternant codes. Define 
the error locating polynomial by 

    ሻݖሺߪ ൌ ∏ ሺݖ െ ௜ሻ௦ߟ
௜ୀଵ , 

so that now the roots of ߪ are the error locators ߟ௜. From now on we will 
assume that ݏ ൑   .ݐ
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Determination  of  the  number  of  errors.  For  each  integer  ℓ  such  that 
ݏ ൑ ℓ ൑  define ,ݐ

    ℓܣ ൌ ൮

ܵ଴
ଵܵ
ڭ

ܵℓିଵ

   
ଵܵ

ܵଶ
ڭ

ܵℓ

   

…
…

…
   

ܵℓିଵ
ܵℓ
ڭ

ܵଶℓିଶ

 ൲, 

which is called the Hankel matrix associated to the vector 

    ሺܵ଴, ଵܵ, … , ܵଶℓିଶሻ. 

Note that this vector exists, as 2ℓ െ 2 ൑ ݎ െ 2. 

Lemma. We  have  that  detሺܣℓሻ ൌ 0  for  ݏ ൏ ݈ ൑  ݐ and  detሺܣ௦ሻ ് 0.  In 
other words, ݏ is the greatest integer (among those satisfying ݏ ൑  such (ݐ
that detሺܣ௦ሻ ് 0. 

   



26 
 

Proof:  Let  ᇱܯ ൌ ሼ݉ଵ
ᇱ , … , ݉ℓ

ᇱ ሽ ك ሼ0, … , ݊ െ 1ሽ  be  any  subset  such  that 
ܯ ك ݅ Ԣ. Forܯ ൌ 1, … , ℓ, let ߟ௜ ൌ ௠೔ߙ

ᇲ. As we already know,  

    ௝ܵ ൌ ∑ ݄௠ೖ݁௠ೖߙ௠ೖ
௝௦

௞ୀଵ ൌ ∑ ݄௠ೖ
ᇲ ݁௠ೖ

ᇲ ௞ߟ
௝ℓ

௞ୀଵ  

for ݆ ൌ 0, … , ݎ െ 1. 

Let  ܦ ൌ diag ቀ݄௠భ
ᇲ ݁௠భ

ᇲ , … , ݄௠ℓ
ᇲ ݁௠ℓ

ᇲ ቁ,  so  that  detሺܦሻ ് 0  if  ℓ ൌ  ݏ and 
detሺܦሻ ൌ 0 if ℓ ൐ ܹ Set .ݏ ൌ ℓܸሺߟଵ, … ,  ℓሻ (the Vandermonde matrix ofߟ
ℓ  rows  associated  to  the  elements   ௜. Noteߟ that  in particular we have 
detሺܹሻ ് 0.  

We also have that ்ܹܹܦ ൌ  ℓ, since theܣ ݅‐th row of ܹ  is ሺߟଵ
௜ , … , ℓߟ

௜ ሻ, 

the ݆‐th column of ்ܹܦ  is ቀ݄௠భ
ᇲ ݁௠భ

ᇲ ଵߟ
௝, … , ݄௠ℓ

ᇲ ݁௠ℓ
ᇲ ℓߟ

௝ቁ, and their product  

    ∑ ݄௠ೖ
ᇲ ݁௠ೖ

ᇲ ௞ߟ
௜ା௝ℓ

௞ୀଵ ൌ ௜ܵା௝  (݅, ݆ ൌ 0, … , ℓ െ 1). 

Thus  detሺܣℓሻ ൌ detሺܦሻ ൉ detሺܹሻଶ,  which  is  0  if  ℓ ൐  ݏ (in  this  case 
detሺܦሻ ൌ 0), and ് 0 if ℓ ൌ ሻܦin this case detሺ) ݏ ് 0 and detሺܹሻ ് 0).  
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How to find the error locator polynomial. Once the number ݏ of errors is 
known (recall that we assume that it ൑  we can find the coefficients of ,(ݐ
the error locating polynomial as follows. Note that 

    ሻݖሺߪ ൌ ∏ ሺݖ െ ௜ሻ௦ߟ
௜ୀଵ ൌ ௦ݖ ൅ ܽଵݖ௦ିଵ ൅ ڮ ൅ ܽ௦ , 

where  ௝ܽ ൌ ሺെ1ሻ௝ߪ௝ሺߟଵ, … ,  ,௦ሻߟ with  ௝ߪ ൌ ,ଵߟ௝ሺߪ … ,  ௦ሻߟ the  ݆‐th 
elementary symmetric polynomial in the ߟ௝ (0 ൑ ݆ ൑  .(ݏ

Remark.  The  polynomial  1 ൅ ܽଵݖ ൅ ڮ ൅ ܽ௦ݖ௦  is  the  error  locator 
∏ ሺ1 െ ሻ௦ݖ௜ߟ

௜ୀଵ  considered in the study of the BMS algorithm. 

Proposition.  If  ࢇ ൌ ሺܽ௦, … , ܽଵሻ  is  the  coefficient  vector  of   ߪ and 
࢈ ൌ ሺܵ௦, … , ܵଶ௦ିଵሻ,  then  ௦ܣࢇ ൌ െ࢈.  Since  detሺܣ௦ሻ ് 0,  this  relation 
determines ࢇ uniquely: ܽ ൌ െܾሺܣ௦ሻିଵ. 

Proof: Substituting ݖ by the ߟ௜ in the identity 

    ∏ ሺݖ െ ௜ሻ௦ߟ
௜ୀଵ ൌ ௦ݖ ൅ ܽଵݖ௦ିଵ ൅ ڮ ൅ ܽ௦ 
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we obtain the relations 

    ௜ߟ
௦ ൅ ܽଵߟ௜

௦ିଵ ൅ ڮ ൅ ܽ௦ ൌ 0,  ݅ ൌ 1, … ,  . ݏ

Multiplying  by  ݄௠೔݁௠೔ߟ௜
௝  and  adding with  respect  to  ݅, we  obtain  the 

relations 

    ௝ܵା௦ ൅ ܽଵ ௝ܵା௦ିଵ ൅ ڮ ൅ ܽ௦ ௝ܵ ൌ 0,  ݆ ൌ 0, … , ݏ െ 1 , 

and  it  is  immediate  to  check  that  these  relations are equivalent  to  the 
claimed matrix relation.  
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The  algorithm   .ܼܩܲ The  lemma  and  the  proposition  allow  us  to 
formulate  an  algorithm,  essentially  due  to  Peterson,  Gorenstein  and 
Zierler,  to  descode  alternant  codes. With  conventions  similar  to  those 
used  in  the  algorithm ܵܯܤ,  including  those  relative  to  the meaning of 
Error, the ܼܲܩ algorithm goes as follows: 

1) Calculate the syndrome vector, 

    ܵ ൌ ሺܵ଴, … , ܵ௥ିଵሻ ൌ  .்ܪݕ

     If ܵ ൌ 0, return ݕ. 

2)  Thus  we  assume  that  ܵ ് 0.  Beginning  with  ݏ ൌ  ,ݐ and  while 
detሺܣ௦ሻ ൌ 0, set ݏ ൌ ݏ െ 1. The value of ݏ at the end of this  loop  is the 
number of errors (ݏ ൐ 0, as otherwise ܵ would be 0). 

3)  Calculate  ሺܽ௦, … , ܽଵሻ ൌ െሺܵ௦, … , ܵଶ௦ିଵሻሺܣ௦ሻିଵ,  and  form  the 
polynomial 

    ሻݖሺߪ ൌ ௦ݖ ൅ ܽଵݖ௦ିଵ ൅ ڮ ൅ ܽ௦. 
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4) Find  the elements ߙ௝  that aret he  roots of ߪ.  If  the number of  these 

roots  is ൏  ,ݏ return Error. Otherwise,  let ߟଵ, … ,  ௦ beߟ the error  locators  
corresponding to the roots ans set ܯ ൌ ሼ݉ଵ, … , ݉௦ሽ, where ߟ௜ ൌ  .௠೔ߙ

5) Determine the error evaluator ߳ሺݖሻ by reducing mod ݖ௥ the product 

    ሺ1 ൅ ܽଵݖ ൅ ڮ ൅ ܽ௦ݖ௦ሻܵሺݖሻ . 

6) Calculate the errors ݁௠೔  by means of Forney’s  formula with the error 

locator 1 ൅ ܽଵݖ ൅ ڮ ൅ ܽ௦ݖ௦ and the error evaluator ߳ሺݖሻ. If any of these 
values does not  lie  in ܭ,  return Error. Otherwise,  return ݕ െ ݁ or Error 
according to whether ݕ െ ݁ is or is not a code vector. 

Proposition. ܼܲܩ correct up to ݐ errors. 

Remark. The determination of the errors ݁௠భ, … , ݁௠ೞ  can also be done by 

solving the system of linear equations 

    ݄௠భ݁௠భߟଵ
௝ ൅ ڮ ൅ ݄௠ೞ݁௠ೞߟ௦

௝ ൌ ௝ܵ. 


