

TC10 / 4b. The Meggit decoder for cyclic codes

S. Xambó

- Syndrome of the received vector (polynomial).
- The Meggitt table
- The Meggitt decoding algorithm

Syndromes

Let $g \in F[x]$ be the generating polynomial of a cyclic code C of length n over F . We want to implement the Meggitt decoder for C . In this decoder, a received vector $y = [y_0, \dots, y_{n-1}]$ is seen as a polynomial

$$y_0 + y_1x + \dots + y_{n-1}x^{n-1} \in F[x]_n$$

and by definition the *syndrome* of y , $S(y)$, is the remainder of the Euclidean division of y by g (in computational terms, `remainder(y, g)`). The vectors with zero syndrome are, again by definition, the vectors of C .

Proposition. We have the identity

$$S(xy) = S(xS(y)).$$

Proof. By definition of $S(y)$, there exists $q \in F[x]_n$ such that

$$y = qg + S(y).$$

Multiplying by x , and taking residue mod g , we get the result.

Corollary. If we set $S_0 = S(y)$ and

$$S_j = S(x^j y), \quad j = 1, \dots, n - 1,$$

then $S_j = S(xS_{j-1})$.

The Meggitt table

If we want to correct t errors, where t is not greater than the error-correcting capacity, then the Meggitt decoding scheme presupposes the computation of a table E of the syndromes of the error-patterns of the form $ax^{n-1} + e$, where $a \in F^*$ and $e \in F[x]$ has degree $n - 2$ (or less) and at most $t - 1$ non-vanishing coefficients.

Example (Meggitt table of the binary Golay code). The binary Golay code can be defined as the length $n = 23$ cyclic code generated by

$$g = x^{11} + x^9 + x^7 + x^6 + x^5 + x + 1 \in \mathbb{Z}_2[x]$$

and in this case, since the error-correcting capacity is 3, the Meggitt table can be encoded as follows:

```

# Meggitt table for the binary Golay code
n=23; R=0..(n-2);
g=x^11+x^9+x^7+x^6+x^5+x+1 : Zmod(2)[x];

# The table
E1=[remainder(x^(n-1),g) → x^(n-1)];
E2=[remainder(x^(n-1)+x^i,g) → x^(n-1)+x^i
    with i in R];
E3=[remainder(x^(n-1)+x^i+x^j,g) → x^(n-1)+x^i+x^j
    with (i,j) in (R,R) where j<i];
E=E1+E2+E3;

# Example
s=remainder(x^(n-1)+x^14+x^3,g) #
E(s) # → x^22+x^14+x^3

```

Thus we have that $E(s)$ is 0 for all syndromes s that do not coincide with the syndrome of x^{22} , or of $x^{22} + x^i$ for $i = 0, \dots, 21$, or of $x^{22} + x^i + x^j$ for $i, j \in \{0, 1, \dots, 21\}$ and $i > j$. Otherwise $E(s)$ selects, among those polynomials, the one that has syndrome s .

Example (Meggitt table of the ternary Golay code). The ternary Golay code can be defined as the length 11 cyclic code generated by

$$g = x^5 + x^4 + 2x^3 + x^2 + 2 \in \mathbb{Z}_3[x]$$

and in this case, since the error-correcting capacity is 2, the Meggitt table can be defined as follows:

```
# Meggitt table for the binary Golay code
n=11; R=0..(n-2);
U={1,-1};
g=x^5+x^4-x^3+x^2+1 : Zmod(3)[x];
# The table
E1=[remainder(u*x^(n-1),g) → u*x^(n-1)
    with u in U];
E2=[remainder(u*x^(n-1)+v*x^i,g) → u*x^(n-1)+v*x^i
    with (i,u,v) in (R,U,U)];
E=E1+E2;

# Example
s=remainder(-x^(n-1)+x^5,g) #
E(s) # → 2*x^10+x^5
```

The Meggitt algorithm

If y is the received vector (polynomial), the Meggitt algorithm goes as follows:

- 1) Find the syndrome $s = s_0$ of y .
- 2) If $s = 0$, return y (we know y is a code vector).
- 3) Otherwise compute, for $j = 1, 2, \dots, n - 1$, the syndromes s_j of $x^j y$, and stop for the first $j \geq 0$ such that $e = E(s) \neq 0$.
- 4) Return $y - e/x^j$.

Remark. The s_j are computed recursively by $s_0 = s$ and $s_j = S(xs_{j-1})$.

Remark. The j in step 3 exists because the code is perfect.

```
# Meggitt decoder. We assume that g is known
meggitt(y):=
begin
  local x=variable(g), s=remainder(y,g), j=0, e
  if s==0 then say("Code vector "|y); return y end
  while E(s)==0 do
    j=j+1
    s=remainder(x*s,g)
  end
  e=E(s)/x^j; say("Error pattern; "|e)
  y=y-e
end;
```