TC10 / 4a. Cyclic codes
S. Xambd

A linear code C € F™is cyclic if
(a,, aq,...,a,_1) € Cforalla = (a4, ...,a,_1,a,) € C.

In order to study cyclic codes, we need to introduce a few auxiliary alge-
braic concepts.

We have a unique F-linear isomorphism
m: Flx], = FIX]/(X" - 1)
such that x = [X]. If f € F[X], its image f € F[x],, is determined by the

substitution X/ +— xUln = xJmodn \we say that f is the cyclic reduction
of order n of f.
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We can use the isomorphism m to transport the ring structure of
F|X]/(X™ — 1) to a ring structure of the ring F|[x],,. This structure is de-
termined by the ordinary sum and product of F|x], except that the prod-
uct is to be reduced modulo the relation x™ = 1.

On the other hand we have an F-linear isomorphism
F" > Flx],, = {11 + Ax + -+ 1,x""L|A; € F}
a=(aq..,a, = alx) =a; +ax+ -+ a,x"1,

which allows us to transfer the ring structure of F|x],, to a ring structure
of F™. The sum in this ring is the ordinary sum of vectors, and the product
p = ab of the vectors a = (a4, ...,a,) and b = (by, ..., b,,) is obtained by
accumulating the product a;b; in the component (i +jmodn)—1 of p,
1<1i,j<n

Notation. If f € F[X] and a € F[x], fa means fa.



Lemma. s(a) = xa, for all a € F|x],,, where

olay +azx+ -+ ax™ D =a, +ayx + -+ ap_x™
Proof. The product xa is a;x + a,x? + -+ + a,x™. Since x™ = 1, we have
xa=a, +a;x+ -+ a,_1x" 1 =0(a).

Proposition. A linear code C of length n is cyclic if and only if it is an ideal
of F|x],,.

Proof. The lemma indicates that C is cyclic if and only if xC € C. Now it is

enough to observe that this condition implies that x/C < C for any posi-
tive integer j, and therefore that aC € C for all a € F|x],,.



Construction of cyclic codes
Given f € F|X], we set (f = (f) € F|x];,. Note that Cr = n((f)).
Lemma. If g and g’ are monic divisors of X™ — 1, then

1. C4 S Cyifandonlyif g'|g.

2. Cg=Cyifandonlyif g =g".

Proof. The inclusion C; < Cr implies that g = ag', for some a € F[x],.
If a = f, f € F[X], the relation g = fg’ holds mod X" — 1. Since g’ is a
divisorof X" — 1,say X" —1=hg,wegetg=fg' '+ hg' = (f + h)g/,
and so g'|g. That g'|g implies C, S C, is clear, and 2 is a direct conse-

quence of 1 and the fact that g and g’ are monic.

Proposition. Given a cyclic code C of length n, there exists a unique mon-
ic divisor g of X™ — 1 such that C = C,.
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Proof. Let g € F|X] be a non-zero polynomial of minimal degree among
those that satisfy g € C (note that t(X" — 1) =x™—1 =0 € C, so that
g exists and deg(g) <n). We can assume that g is monic. Since
Cy = (g) € C, we will end the proof of existence by establishing that

e gisadivisorof X" —1
o ( C (y.

Indeed, if ¢ and r are the quotient and remainder of the division of
X" —1byg, sothat

X" —1=gqg+r, deg(r) < deg(g),

then 0 =x"—-1=qgg+7, and therefore 7 = —qg € C; S C. Conse-
quently r = 0, by definition of g, and hence g|X™ — 1.

Let now a € C. To see thata € (g, let

ay = a; + aX + -+ a, X" 1,
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n-—1

sothata =a; +a,x + -+ a,x = ay. Let q, and 1, be the quotient

and remainder of the Euclidean division of ay by g:
ax = qqg + 1g, deg(ry) < deg(g).
Thus 1, =a—q,g €C, 1, =0 and a = q,g € (.

The uniqueness of g is an immediate consequence of the previous lem-
ma. O

The monic divisor g of X™ — 1 such that C = Cy is called the generating

polynomial of C. The polynomial § = (X" — 1)/g is called the control po-
lynomial of C (we will see a reason for this term in a short while).

Remark. Given f € F|[X], the generating polynomial of Cf is g =
gcd(X™ — 1, f). Observe that

¢ = (F) = n((H) = n((F) + (K™ = 1)) = w(med(f, X" — 1),



Dimension of C;
Proposition. dim(Cg) = deg(g) = n —deg (9).

Proof. It is enough to consider the F-linear map F[X] - Flx],, f » fg,
and notice that its image is (g) = C; and its kernel (). O

Notations. Instead of the set of indices {1,...,n}, we will use the set
{0,1,...,n — 1}. In this way a = (ay, a4, ..., a,_1) is identified with the
polynomial
a(x) =ag+a;x+ -+ a,_x" 1L
Given a € F|x],,, we set £(a) = a,,_; (the leading coefficient of a) and
d=a,_1+a, ,x+ -+ agx™ 1
Then we have that
f(ﬁb) — aobo + + an_lbn_l

(the scalar product of a, b € F|x],,).
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If p is the characteristic of F, suppose that p t n. In particular we have
n+0inkF.

Since D(X™ — 1) = nX™" 1! ~ X™ 1 has no non-constant common divi-
sors with X™ — 1, the irreducible factors f4, ..., f of X" — 1 are simple
(i.e., have multiplicity 1):

X"—1=ff.
Thus the monic divisors of X™ — 1 have the form

g:fil"'fisr 1<i;<--<ig<r.

From this it follows that there are exactly 2" cyclic codes of length n. Re-
mark, however, that there may be non-trivial equivalences among these
codes (we will see examples later on).



Generating matrices

The polynomials u; = x'g (0 < i < k) form a basis of Cy. If

9=9go+ gix+ -+ gn_gx™K,

then the k X n matrix

dgo 91 - YGn-k O 0 -0 \
0 9o 91 = Gnsx O 0
O - 0 go g1 = Gnk O
I S A

is a generating matrix of C = C,. Note that g,,_; = 1 (g is monic).

Remark. The coding Fk > Cy, U = uG, can be described, in terms of po-

lynomials, as the map Flx], = C;, u » ug.
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Normalized generating matrix

For0 <j <k, let

x"k*t = qig + 17, deg(r;) < deg(g).

n—k+j

Then the k polynomials v; = x — 17 forme a basis of C; and the

corresponding matrix of coefficients, G', is normalitzed, in the sense that
the submatrix formed by the last k columns of G’ is the identity matrix I :

G'=—R|l;, R = (r;;)

Therefore, H' = I,_,|R" is a normalitzed control matrix.

Remark. Let u € F* = F[x],. Then the coding of u using the matrix G’ is
obtained by substituting the monomials x/ of u by v; (0 <j <k):

k-1

Ug + U X+ -+ U1 X = UgVg + UV, + o+ Up—1 Vg —1-
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Moreover, if H' is the control matrix of C4 associated to G', then the syn-
drome s € F* % = F[x],_, of a € F* = F[x],, coincides with the re-
mainder of the division of a by g.

. I
— IT _ n—=k
Notice that s = aH'' = a( R )
The dual code
Proposition. C; = (4, where Cj is the image of C; by the map a ~ d.

Proof. Since Cgl and C’g have dimension n — k, it is enough to see that
C~g C Cgl. But this is clear: if a € (45 and b € C,, then ab = 0 and conse-
quently (@|b) = ¢(ab) = ¢(ab) = 0. 0



Since g, gx, .. .,gx”‘k‘l form a basis of Cp, if we let

g =hy+ hX+ -+ hXF

then
/hk hk—l hO 0 0 -« 0 \
0 hk hk—l hO 0 o 0
H = :
0 .. 0 h heq - hgO
\o 0 he ey g )

is a control matrix of Cg.
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Example (The ternary Golay code). The polynomial
g=X>—-X3+X?-X-1
is an irreducible factor of X1 — 1 over Zs. In fact, the irreducible factors
of X1 —1 over Z3 are X—1, g, and X°> + X* — X3+ X2 — 1 (notice

that the 3-ciclotomic classes mod 11 are {0}, {1,3,9,5,4} and {2,6,7,10,8},
and this shows that X! — 1 two irreducible factors of degree 5).

Let ¢ =3, n =11 and C = (. Then the type of C is [11,6]. Let us see

that the minimum distance of C is 5.

Let G be the normalized generating matrix of C. The matrix G (parity
completion of G) satisfies that GG = 0 (in order to preserve the subma-
trix I to the right, we place the parity symbols of the rows of G to the
left, so that they form the first column of G). It follows that the code
C = (G) is selfdual and therefore that the weight of any element of C is a
multiple of 3. Since the rows of G have weight 6, the minimum distance
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of C is 3 or 6. But every row of G has exactly one 0 in the first 6 columns,
and the position of this 0 is different for different rows. This implies that
a linear combination of two rows of G has weight > 2 + 2 and hence >
6. Since the weight of this combination is clearly < 12 — 4 = 8, it must
have weight 6. In particular, it contains exactly 2 zeros in its first six posi-
tions. This proves that a linear combination of 3 rows of G has at least
1 4+ 3 non-zero components, and therefore it has at least weight 6. Since
the combinations of 4 or more rows of G have weight > 4, this completes

the proof.
122120100000
102212010000

G=222011001000
110111000100
\012221000010
212102000001

CC examples
cyclic—-normalized-matrix[12,6] 3
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Roots of a cyclic code
Let F be a finite field and g = |F|. Let C be a cyclic F-code of length n

and g its generating polynomial. The roots of C are, by definition, the
roots of g in a splitting field F' of X™ — 1 over F (recall that |F'| = g™,
wherem = ¢e,,(q)).

If w € F' is a primitive n-th root of unity and we write E, to denote the
set of those k € Z,, such that w” is a root of g, then E, is the union of

the g-cyclotomic classes corresponding to the monic irreducible divisors
of g.

If Eé C E; is a subset formed by an element of each g-cyclotomic class

contained in E;, we say that
M = {w"*|k € Ej}

is @ minimal set of roots of C = Cg.
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Proposition. If M is a minimal set of roots of a cyclic code C, then

C={a€F|x],|a(&) =0 forall £ € M}.

Determination of a cyclic code by specifying its roots. Let now
1, ..., & € F' be n-th roots of unity

Ce,..8. = {a € Flx],, | a(fj) =0 forallj =1, ...,r}.

Then C¢, ¢ is an ideal of F|x],, and we say that it is the cyclic code de-
termined by &4, ..., &,

Proposition. The generating polynomial of C¢ ¢ is

g = lem(gy, ..., 9r),

where g; is the minimal polynomial of ¢;.
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Control matrix of C¢ . The condition a(€j) = 0 can be seen as a li-

near relation on the components ay,...,a,—1 of a with coefficients

1, 5]’ e }1_1:

Ao + aléj + e+ an_lé}'l_l = 0. [*]
In other words, the matrix V,,(¢4, ..., &,)T € ML (F") is a control matrix of

Ce,, 8y

If we express each g‘]‘: as a vector of the components relative to a basis of
F' over F, the relation [*] is equivalent to m linear relations with coeffi-
cients in F that have to be satisfied by ay, ..., a,,—1. In this way we obtain
a control matrix H € M™(F) with coefficients in F, and from H we can
form a control matrix H € M,t}"k(F) by eliminating linearly dependent
rows.
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Example (some Hamming codes are cyclic). Let m be a positive integer
such that gcd(m,q — 1) = 1, and define

n=0@"-1/(@-1).
Let w € F' be an n-th root of unity of order n (if @« € F' is a primitive

element, we can take w = a?71). Then C,, is equivalent to the Hamming
code of codimension m, Ham, (m). Indeed,

n=0@-D@™*+2¢g™3+--+m—-1)+m,

as it can be easily checked, and hence gcd(n,q — 1) = 1. It follows that

~1 is an n-th of unity of order n, and therefore 0@ 1 =1 for

wi
i =1,..,n—1. In particular, w' & F. Moreover, w! and w’ are linearly
independent over F if i # j. As n is the greatest number of elements of
F' that are pair-wise linearly independent over F, the claim follows from
the description above of the control matrix C,, and the definition of the

Hamming code Ham, (m).
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BCH codes
Let w € F' be a primitive n-th root of unity. Let 6 > 2 and £ > 1 be in-
tegers. Let BCH,, (6, ¥) denote the cyclic code of length n generated by

g = lcm(pwe,pwfﬂ, ...,pw£+6—2) .

It is called the BCH" code with design (or intentional) distance & and off-
set ?.

In the case £ = 1, we write BCH(9) instead of BCH,,(J,1) and we say
that they are strict BCH codes.

An BCH is called primitive if n = g™ — 1 (note that this condition is
equivalent to say that w is a primitive element of F').
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Theorem (The BCH bound). If d is the minimum distance of BCH,,(0,7?),
thend = 6.

Proof."? First note that an element a € F[x],, isin BCH,, (8, %) if and only
if a(w“i) =0 for all i € {0, ...,5 — 2}. But the relation a(w“i) =0 is
equivalent to

ap + a0ttt + o+ a0 VERD =,
and hence

(1’ w£+i, w2(£+i)’ . CU(n—l)(£+i)) [*]

is a control vector of BCH,,(6, ). Now we claim that the matrix H whose
rows are the vectors [*] has the property that any 6 — 1 of its columns
are linearly independent. Indeed, the determinant formed by the col-
umns jq, ..., js—1 is equal to
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a)j1£ a)j6—11'0
WD) s (EHD)
W (E+6=2) .. so1(£+6-2)

and this is non-zero if j;, ..., js—1 are distinct, as it is equal to
a)jﬂ) a)ja—ﬂ’ . V(S—l(a)jl» - wj6—1)_

Example (The minimum distance of a BCH code can be greater than the
design distance). Let g = 2 and m = 4. Let w be a primitive element of
[F1¢. Since w has order 15, we can apply the previous results to the case
q =2, m=4andn = 15. The 2-cyclotomic classes mod n are

{1,2,4,8},{3,6,12,9},{5,10},{7,14,13,11}.
This shows, if we set (s = BCH,,(0) and ds = d,, that
C, = Cs, and hence d, = dg = 5, and

Ce = Cy;, and hencedgy =d, = 7.
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Note that the dimension of C, = Cg is 15— 2 -4 =7, and that the di-
mensionof C, = C,is15—2-4—-2 =5.

Example. It is similar to the preceding example, with ¢ = 2 and m = 5.
Let w be a primitive element of [F5,. The 2-cyclotomic classes mod 31 are

{1,2,4,8,16}, {3,6,12,24,17}, {5,10,20,9,18},
{7,14,28,25,19}, {11,22,13,26,21}, {15,30,29,27,23}.
Thus we see, with similar conventions as in the previous example, that
C, =C3,C4 =0C5,Cq =C;,Cqg =Cqg = Cqg =Cqq,C1p =Ci3 = Cy4 = Cy5.
Therefore
d, =d; =23,dy,=dg=5,dg =d; =7,
dg = dg = dy9 = dq1 = 11, and
dip = dyz = diy = dy5 2 15.
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If we set ks = dim(Cys), then we have
k,=31-5=26,k,=31—-2-5=21, kg =31—-3-5=16,
k¢=31—-4-5=11, k;, =31—-5-5=6.

Exercise. If w is a primitive element [Fg,, prove that the minimum dis-
tance of BCH,,(16) is = 21 and that its dimension is 18.

Example CC

# Given g and m, to find a table

i {s=> {k s, d s} with s in 2..n}

# where k s 1s dimension of BCH {GF(g"m)} (s)

# and d s a lower bound for the minimum distance.
# g = 2 1is default value of qg.

bch dimension distancelb (m) :=
bch dimension distancelb (m,2);



bch dimensionlbs (m,q) :=
begin
local n=g”m-1, j, C={}, D={}
for k 1n 2..n do
J=k-1
C=union (C,cyclotomic class(j,n,q))
while index(3,C)!=0 do j=j+1 end
D=D| {k->{n-1length(C), J}}
1f J==n then return D else continue end
end
end;

X=bch dimension distancelb (6);
{x.2-x.1 with x in X}

—

{
{1,63}->32,
{7,31}->(28,29,30,31),
{10,27}->(24,25,26,27),
{16,23}->(22,23),
{18,21}->(1le,17,18,19,20,21),
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{24,15}->(14,15),
{30,13}->(12,13),
{36,11}->(10,11),
{39,9}->(8,9),

{4517}_>(6 7)/
{31,5}->(4,5),
{5713}_>(2/3)

}

In relation to the dimension of BCH (8, ), the following bound holds:

Proposition. If m = e,,(q), then
dimBCH,(0) =2n—m(o — 1).

Proof: If g is the generating polynomial of BCH,,(0,%), then
dimBCH,(6) = n —deg(g).

Since g is the least common multiple of the minimal polynomials

pi =p,e+i, i =1,...,£ =1, and

25
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deg(pwui) <[F":F] =m,
it is clear that deg(g) < m(8 — 1), and this implies the claimed inequali-
ty.
Improving the dimension bound in the binary case

The bound in the previous proposition can be improved considerably for
strict binary BCH codes. Let C; be the 2-cyclotomic class of i mod n. If we

set p; to denote the minimal polynomial of w!, where w is a primitive n-
th root of unity, then p; = p,;, as (2i mod n) € C;. We get, if t > 1, that

lem(py, P2, -y P2¢) = lem(py, P2, -y P2t-1)

= lem(pq, p3, - P2t-1)-

Now the first of these equalities tells us that BCH, (2t + 1) =
BCH,(2t), so that it is enough to consider, among the strict binary BCH
codes, those with odd design distance.
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Proposition. If k is the dimension of the strict binary code
BCH,, (2t + 1),
then k = n — tm, where m = e, (2).

Proof: Let g = lcm(pq,py,...,P2:) be the generating polynomial of
BCH, (2t + 1). The we know that k = n — deg(g). But

g = lem(py, 3, s D26-1)

and hence deg (g) is at most the sum of the degrees of py, p3, ..., P2t—1-
Since the degree of p; is at most m, it follows that deg(g) < tm and this
establishes the claim.

Example. |If we apply the bound of the previous proposition to the code
BCH,(8) = BCH,(9), w be a primitive element of F5,, we get that

k>n—tm=31—-—4-5=11.
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Since the dimension of this code is exactly 11, we see that the bound in
the proposition cannot be improved in general.

Exercise. Let
f=X*+X+1€Z,[X], F =Z[X]/(f),
and let a be a primitive element of F. Find the dimension and a control
matrix of BCH,(4).
Example CC: bch 16(4).

Example (The binary Golay code is cyclic). Let g =2, n =23 and
m = e, (2) = 11. The splitting field of X?3 — 1 € Z,[X] is L = F,11. The
2-cyclotomic classes mod 23 are

Co = {0},

c; =1{1,2,4,8,16,9,18,13,3,6,12},

Cs ={5,10,20,17,11,22,21,19,15,7,14}.
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If w € L is a primitive 23-rd root of unity, the generating polynomial of

C = BCH,(5) is g =lcm(py,p2,P3,Pa) = p1. Since deg(p,) = [C1] =
11, it turns out that dim(C) = 23 — 11 = 12. Moreover, the minimum

distance of C is 7 (see next exercise; note that by the BCH bound it is = 5)
and therefore C is a binary perfect code of type [23,12,7].

Exercise. Show that the minimum distance of the binary code in the pre-
vious example is 7. [Hint. Adapt the arguments in the presentation of the

ternary Golay code as a cyclic code].
Example CC: golay?2
The RS codes withn = g — 1 turn out to be strict primitive BCH codes.

Proposition. If w is a primitive element of a finite field F =, and

n=q — 1, then

-----
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Proof: The Vandermonde matrix H = V; 5_1(1, w, .., ™ 1) is a control
1, !, ..., o™ D the vectors a = (agy, a4, ..., a,_1) of C are those that
satisfy ag + ala)i + -+ an_lwi("‘l) =0fori=1,..,6 —1. In terms
of the polynomial ay, this is equivalent to say that w' is a root of ay for
i =1,..,6 —1 and thereby C coincides with the cyclic code correspond-
ing to the roots w, ..., w°~1. But this code is precisely BCH,, (6).

Notes

N1. From Bose—Chaudhuri-Hocquenghem. The BCH codes were pro-
posed in 1959 by Alexis Hocquenghem (19087?-1990), in the paper Codes
correcteurs d’erreurs (Chifres 2, 147-156), and in 1960, independently, by
Raj Chandra Bose (1901-1987) and Dwijendra Kumar Ray-Chaudhuri (b.
1933), in the papers On a class of error correcting binary group codes and
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Further results on error correcting binary group codes (Inform. Control 3,
68-79 and 279-290).

N2. In next chapter we will see that the BCH codes are a special case of
alternant codes and that the BCH bound is a special case of the ‘alternant
bound’. Actually the alternant bound is a straightforward transcription of
the BCH bound to the more general setting of alternant codes.



