
TC10 / 4a. Cyclic codes 
S. Xambó 
 
A linear code ܥ ك   ௡ is cyclic ifܨ

    ሺܽ௡, ܽଵ, … , ܽ௡ିଵሻ א ܽ for all ܥ ൌ ሺܽଵ, … , ܽ௡ିଵ, ܽ௡ሻ א  .ܥ

In order to study cyclic codes, we need to introduce a few auxiliary alge‐
braic concepts. 

We have a unique ܨ‐linear isomorphism  

    ߨ ׷ ሿ௡ݔሾܨ ຳ ሾܺሿ/ሺܺ௡ܨ െ 1ሻ 

such that ݔ հ ሾܺሿ. If ݂ א ሾܺሿ, its image ݂ҧܨ א  ሿ௡ is determined by theݔሾܨ

substitution ܺ௝ հ ሾ௝ሿ೙ݔ ൌ  ௝ ୫୭ୢ ௡. We say that ݂ҧݔ is the cyclic reduction 
of order ݊ of  ݂.  
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We  can  use  the  isomorphism   ߨ to  transport  the  ring  structure  of 
ሾܺሿ/ሺܺ௡ܨ െ 1ሻ to a ring structure of the ring ܨሾݔሿ௡. This structure is de‐
termined by the ordinary sum and product of ܨሾݔሿ, except that the prod‐
uct is to be reduced modulo the relation ݔ௡ ൌ 1. 

On the other hand we have an ܨ‐linear isomorphism  

  ௡ܨ ຳ ሿ௡ݔሾܨ ൌ ሼߣଵ ൅ ݔଶߣ ൅ ڮ ൅ ௜ߣ|௡ିଵݔ௡ߣ א  ሽܨ

  ܽ ൌ ሺܽଵ, … , ܽ௡ሻ հ ܽሺݔሻ ൌ ܽଵ ൅ ܽଶݔ ൅ ڮ ൅ ܽ௡ݔ௡ିଵ, 

which allows us to transfer the ring structure of ܨሾݔሿ௡ to a ring structure 
of ܨ௡. The sum in this ring is the ordinary sum of vectors, and the product 
݌ ൌ ܾܽ of the vectors ܽ ൌ ሺܽଵ, … , ܽ௡ሻ and ܾ ൌ ሺܾଵ, … , ܾ௡ሻ is obtained by 
accumulating the product ܽ௜ ௝ܾ in the component ሺ݅ ൅ ݆ mod ݊ሻ െ 1 of ݌, 
1 ൑ ݅, ݆ ൑ ݊.  

Notation. If ݂ א ܽ ሾܺሿ andܨ א ሿ, ݂ܽ means ݂ҧܽݔሾܨ . 
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Lemma. ݏሺܽሻ ൌ ܽ for all ,ܽݔ א  ሿ௡, whereݔሾܨ

    ሺܽଵߪ ൅ ܽଶݔ ൅ ڮ ൅ ܽ௡ݔ௡ିଵሻ ൌ ܽ௡ ൅ ܽଵݔ ൅ ڮ ൅ ܽ௡ିଵݔ௡ିଵ. 

Proof. The product ܽݔ is ܽଵݔ ൅ ܽଶݔଶ ൅ ڮ ൅ ܽ௡ݔ௡. Since ݔ௡ ൌ 1, we have  

   ܽݔ ൌ ܽ௡ ൅ ܽଵݔ ൅ ڮ ൅ ܽ௡ିଵݔ௡ିଵ ൌ  .ሺܽሻߪ

Proposition. A linear code ܥ of length ݊ is cyclic if and only if it is an ideal 
of ܨሾݔሿ௡. 

Proof. The lemma indicates that ܥ is cyclic if and only if ܥݔ ك  Now it is .ܥ
enough to observe that this condition implies that ݔ௝ܥ ك ‐for any posi ܥ
tive integer ݆, and therefore that ܽܥ ك ܽ for all ܥ א   .ሿ௡ݔሾܨ
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Construction of cyclic codes 

Given ݂ א ௙ܥ ሾܺሿ, we setܨ ൌ ൫݂ҧ൯ ك ௙ܥ ሿ௡. Note thatݔሾܨ ൌ  .൫ሺ݂ሻ൯ߨ

Lemma. If ݃ and ݃Ԣ are monic divisors of ܺ௡ െ 1, then   

௚ܥ .1 ك ௚ᇲܥ  if and only if  ݃ᇱ|݃. 
௚ܥ .2 ൌ ௚ᇲܥ  if and only if  ݃ ൌ ݃Ԣ. 

Proof. The inclusion ܥ௚ ك ௚ᇲܥ  implies that  ҧ݃ ൌ ܽ݃Ԣഥ , for some ܽ א  .ሿ௡ݔሾܨ

If ܽ ൌ ݂ҧ, ݂ א ݃ ሾܺሿ, the relationܨ ൌ ݂݃Ԣ holds mod  ܺ௡ െ 1. Since ݃Ԣ is a 
divisor of ܺ௡ െ 1, say ܺ௡ െ 1 ൌ ݄݃Ԣ, we get ݃ ൌ ݂݃ᇱ ൅ ݄݃ᇱ ൌ ሺ݂ ൅ ݄ሻ݃Ԣ, 
and so ݃ᇱ|݃. That ݃ᇱ|݃ implies ܥ௚ ك ௚ᇲܥ  is clear, and 2 is a direct conse‐

quence of 1 and the fact that ݃ and ݃Ԣ are monic. 

Proposition. Given a cyclic code ܥ of length ݊, there exists a unique mon‐
ic divisor ݃ of ܺ௡ െ 1 such that ܥ ൌ  .௚ܥ



5 
 

Proof. Let ݃ א  ሾܺሿ be a non‐zero polynomial of minimal degree amongܨ
those that satisfy ݃ א ሺܺ௡ߨ note that) ܥ െ 1ሻ ൌ ௡ݔ െ 1 ൌ 0 א  so that ,ܥ
݃  exists  and  degሺ݃ሻ ൑ ݊).  We  can  assume  that  ݃  is  monic.  Since 
௚ܥ ൌ ሺ ҧ݃ሻ ك  we will end the proof of existence by establishing that ,ܥ

 ݃ is a divisor of ܺ௡ െ 1 
 ܥ ك  .௚ܥ

 
Indeed,  if   ݍ and   ݎ are  the  quotient  and  remainder  of  the  division  of 
ܺ௡ െ 1 by ݃ , so that  

    ܺ௡ െ 1 ൌ ݃ݍ ൅ ሻݎdegሺ  ,ݎ ൏ degሺ݃ሻ, 

then  0 ൌ ௡ݔ െ 1 ൌ തݍ ҧ݃ ൅  ,ҧݎ and  therefore  ҧݎ ൌ െݍത ҧ݃ א ௚ܥ ك  .ܥ Conse‐
quently  ݎ ൌ 0, by definition of ݃, and hence ݃|ܺ௡ െ 1. 

Let now ܽ א ܽ To see that .ܥ א  ௚, letܥ

    ܽ௑ ൌ ܽଵ ൅ ܽଶܺ ൅ ڮ ൅ ܽ௡ܺ௡ିଵ, 
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so that ܽ ൌ ܽଵ ൅ ܽଶݔ ൅ ڮ ൅ ܽ௡ݔ௡ିଵ ൌ തܽ௑. Let ݍ௔ and ݎ௔ be the quotient 
and remainder of the Euclidean division of ܽ௑ by ݃: 

    ܽ௑ ൌ ௔݃ݍ ൅ ௔ሻݎ௔,  degሺݎ ൏ degሺ݃ሻ. 

Thus  ݎ௔ഥ ൌ ܽ െ ത௔ݍ ҧ݃ א ௔ݎ ,ܥ ൌ 0  and  ܽ ൌ ത௔ݍ ҧ݃ א    .௚ܥ

The uniqueness of ݃  is an  immediate consequence of the previous  lem‐
ma.                                           □ 

 

The monic divisor ݃ of ܺ௡ െ 1 such that ܥ ൌ  ௚ܥ is called the generating 

polynomial of ܥ. The polynomial  ො݃ ൌ ሺܺ௡ െ 1ሻ/݃ is called the control po‐
lynomial of ܥ (we will see a reason for this term in a short while). 

Remark.  Given  ݂ א  ,ሾܺሿܨ the  generating  polynomial  of   ௙ܥ is  ݃ ൌ
gcdሺܺ௡ െ 1, ݂ሻ. Observe that 

   ௙ܥ ൌ ൫݂ҧ൯ ൌ ൫ሺ݂ሻ൯ߨ ൌ ൫ሺ݂ሻߨ ൅ ሺܺ௡ െ 1ሻ൯ ൌ ,ሺmcdሺ݂ߨ ܺ௡ െ 1ሻሻ. 
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Dimension of ܥ௚  

Proposition.  dim൫ܥ௚൯ ൌ degሺ ො݃ሻ ൌ ݊ െ deg ሺ݃ሻ. 

Proof. It is enough to consider the ܨ‐linear map ܨሾܺሿ ՜ ݂ ,ሿ௡ݔሾܨ հ ݂ ҧ݃, 
and notice that its image is ሺ ҧ݃ሻ ൌ ௚ and its kernel ሺܥ ො݃ሻ.           □  

Notations.  Instead  of  the  set  of  indices  ሼ1, … , ݊ሽ, we will  use  the  set 
ሼ0,1, … , ݊ െ 1ሽ.  In  this way  ܽ ൌ ሺܽ଴, ܽଵ, … , ܽ௡ିଵሻ  is  identified with  the 
polynomial 

    ܽሺݔሻ ൌ ܽ଴ ൅ ܽଵݔ ൅ ڮ ൅ ܽ௡ିଵݔ௡ିଵ. 

Given ܽ א ሿ௡, we set ℓሺܽሻݔሾܨ ൌ ܽ௡ିଵ (the leading coefficient of ܽ) and 

    ෤ܽ ൌ ܽ௡ିଵ ൅ ܽ௡ିଶݔ ൅ ڮ ൅ ܽ଴ݔ௡ିଵ. 

Then we have that 

    ℓሺ ෤ܾܽሻ ൌ ܽ଴ܾ଴ ൅ ڮ ൅ ܽ௡ିଵܾ௡ିଵ  

(the scalar product of ܽ, ܾ א  .(ሿ௡ݔሾܨ
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If ݌  is the characteristic of ܨ,   suppose that ݌ ץ ݊.  In particular we have 
݊ ് 0 in ܨ.  

Since  ሺܺ௡ܦ െ 1ሻ ൌ ݊ܺ௡ିଵ ׽ ܺ௡ିଵ  has  no  non‐constant  common  divi‐
sors with ܺ௡ െ 1,  the  irreducible  factors  ଵ݂, … , ௥݂ of ܺ௡ െ 1 are  simple 
(i.e., have multiplicity 1): 

    ܺ௡ െ 1 ൌ ଵ݂ ڮ ௥݂ . 

Thus the monic divisors of ܺ௡ െ 1 have the form  

    ݃ ൌ ௜݂భ ڮ ௜݂ೞ,  1 ൑ ݅ଵ ൏ ڮ ൏ ݅௦ ൑  .ݎ

From this it follows that there are exactly 2௥ cyclic codes of length ݊. Re‐
mark, however, that there may be non‐trivial equivalences among these 
codes (we will see examples later on).  
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Generating matrices 

The polynomials ݑ௜ ൌ ௜ݔ ҧ݃ (0 ൑ ݅ ൏ ݇) form a basis of ܥ௚. If 

    ݃ ൌ ݃଴ ൅ ݃ଵݔ ൅ ڮ ൅ ݃௡ି௞ݔ௡ି௞, 

then the ݇ ൈ ݊ matrix  

    ܩ ൌ

ۉ

ۈ
ۇ

݃଴ 
0

ڭ
0
0

   

݃ଵ 
݃଴ 
ڰ

ڮ
ڮ

   

ڮ
݃ଵ 
ڰ

0
ڮ

   

݃௡ି௞
ڮ
ڰ
݃଴
0

   

0
݃௡ି௞

ڮ
݃ଵ
݃଴

   

0
0
ڰ
ڮ
݃ଵ

   

ڮ
ڮ
ڰ

݃௡ି௞
ڮ

   

0
0

ڭ
0

݃௡ି௞

   

ی

ۋ
ۊ
 

is a generating matrix of ܥ ൌ ௚. Note that ݃௡ି௞ܥ ൌ 1 (݃ is monic). 

Remark. The coding ܨ௞ ՜ ݑ ,௚ܥ հ ‐can be described, in terms of po ,ܩݑ

lynomials, as the map ܨሾݔሿ௞ ՜ ݑ ,௚ܥ հ ݑ ҧ݃. 
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Normalized generating matrix  

For 0 ൑ ݆ ൏ ݇, let 

    ௡ି௞ା௝ݔ ൌ ௝݃ݍ ൅ ௝൯ݎ௝ ,  deg൫ݎ ൏ degሺ݃ሻ. 

Then  the  ݇  polynomials  ௝ݒ ൌ ௡ି௞ା௝ݔ െ  ௝ݎ forme  a  basis  of ܥ௚  and  the 

corresponding matrix of coefficients, ܩԢ, is normalitzed, in the sense that 
the submatrix formed by the last ݇ columns of ܩԢ is the identity matrix ܫ௞: 

    Ԣܩ ൌ െܴ|ܫ௞ ,  ܴ ൌ ൫ݎ௝௜൯ 

Therefore,  ܪᇱ ൌ  .௡ି௞|்ܴ is a normalitzed control matrixܫ

 

Remark. Let ݑ א ௞ܨ ຳ  Ԣ isܩ using the matrix ݑ ሿ௞. Then the coding ofݔሾܨ
obtained by substituting the monomials ݔ௝ of ݑ by ݒ௝ (0 ൑ ݆ ൏ ݇): 

    ଴ݑ ൅ ݔଵݑ ൅ ڮ ൅ ௞ିଵݔ௞ିଵݑ հ ଴ݒ଴ݑ ൅ ଵݒଵݑ ൅ ڮ ൅  .௞ିଵݒ௞ିଵݑ
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Moreover, if ܪԢ is the control matrix of ܥ௚ associated to ܩԢ, then the syn‐
drome  ݏ א ௡ି௞ܨ ຳ  ሿ௡ି௞ݔሾܨ of  ܽ א ௡ܨ ຳ  ሿ௡ݔሾܨ coincides with  the  re‐
mainder of the division of ܽ by ݃.  

Notice that  ݏ ൌ ᇱ்ܪܽ ൌ ܽ ቀܫ௡ି௞
ܴ ቁ. 

 

The dual code  

Proposition. ܥ௚
ୄ ൌ ሚ௚ොܥ , where ܥሚ௚ො  is the image of ܥ௚ො  by the map ܽ հ ෤ܽ. 

Proof. Since ܥ௚
ୄ and ܥሚ௚ො  have dimension ݊ െ ݇,  it  is enough  to  see  that 

ሚ௚ොܥ ك ௚ܥ
ୄ. But this is clear: if ܽ א ௚ොܥ  and ܾ א ܾܽ ௚, thenܥ ൌ 0  and conse‐

quently ۃ ෤ܽ|ܾۄ ൌ ℓ൫ ෤ܽ෨ܾ൯ ൌ ℓሺܾܽሻ ൌ 0.                           □  

   



12 
 

Since  ො݃, ො݃ݔ, . . . , ො݃ݔ௡ି௞ିଵ form a basis of ܥ௚ො , if we let  

  ො݃ ൌ ݄଴ ൅ ݄ଵܺ ൅ ڮ ൅ ݄௞ܺ௞,  

then  

    ܪ ൌ

ۉ

ۈ
ۇ

݄௞ 
0

ڭ
0
0

 

݄௞ିଵ 
݄௞ 
ڰ
ڮ
ڮ

 

ڮ
݄௞ିଵ 

ڰ
0
ڮ

   

݄଴
ڮ
ڰ
݄௞
0

   

0
݄଴
ڮ

݄௞ିଵ
݄௞

   

0
0
ڰ
ڮ

݄௞ିଵ

   

ڮ
ڮ
ڰ
݄଴
ڮ

   

0
0

ڭ
0
݄଴

   

ی

ۋ
ۊ
   

is a control matrix of ܥ௚.  
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Example (The ternary Golay code). The polynomial 

   ݃ ൌ ܺହ െ ܺଷ ൅ ܺଶ െ ܺ െ 1  

is an irreducible factor of ܺଵଵ െ 1 over Ժଷ. In fact, the irreducible factors 

of  ܺଵଵ െ 1  over  Ժଷ  are  ܺ െ 1,  ݃,  and  ܺହ ൅ ܺସ െ ܺଷ ൅ ܺଶ െ 1  (notice 
that the 3‐ciclotomic classes mod 11 are ሼ0ሽ, ሼ1,3,9,5,4ሽ and ሼ2,6,7,10,8ሽ, 
and this shows that ܺଵଵ െ 1 two irreducible factors of degree 5). 

Let ݍ ൌ 3, ݊ ൌ 11 and ܥ ൌ  ௚. Thenܥ the  type of ܥ  is  ሾ11,6ሿ. Let us see 
that the minimum distance of ܥ is 5. 

Let   ܩ be  the  normalized  generating matrix  of   .ܥ The matrix  ҧܩ   (parity 
completion of ܩ) satisfies that ܩҧܩҧ ் ൌ 0 (in order to preserve the subma‐
trix ܫ଺ to the right, we place the parity symbols of the rows of ܩ to the 
left,  so  that  they  form  the  first  column  of ܩҧ).  It  follows  that  the  code 
ҧܥ ൌ  ҧ is aܥ is selfdual and therefore that the weight of any element of ۄҧܩۃ
multiple of 3. Since the rows of ܩҧ  have weight 6, the minimum distance 
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of ܥҧ is 3 or 6. But every row of ܩҧ  has exactly one 0 in the first 6 columns, 
and the position of this 0 is different for different rows. This implies that 
a  linear combination of two rows of ܩҧ  has weight ൒ 2 ൅ 2 and hence ൒
6. Since the weight of  this combination  is clearly ൑ 12 െ 4 ൌ 8,  it must 
have weight 6. In particular, it contains exactly 2 zeros in its first six posi‐
tions. This proves  that a  linear combination of 3  rows of ܩҧ  has at  least 
1 ൅ 3 non‐zero components, and therefore it has at least weight 6. Since 
the combinations of 4 or more rows of ܩҧ  have weight ൒ 4, this completes 
the proof. 

ҧܩ ൌ

ۉ

ۈۈ
ۇ

1
1
2
1
0
2

   

2
0
2
1
1
1

   

2
2
2
0
2
2

   

1
2
0
1
2
1

   

2
1
1
1
2
0

   

0
2
1
1
1
2

   

1
0
0
0
0
0

   

0
1
0
0
0
0

   

0
0
1
0
0
0

   

0
0
0
1
0
0

   

0
0
0
0
1
0

   

0
0
0
0
0
ی1

ۋۋ
ۊ
  

CC examples 
 cyclic-normalized-matrix[12,6]_3 
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Roots of a cyclic code 
Let ܨ be a  finite  field and ݍ ൌ  code of‐ܨ be a cyclic ܥ Let .|ܨ| length ݊ 
and ݃  its  generating polynomial.  The  roots of ܥ  are, by definition,  the 
roots of ݃ in a splitting field ܨԢ of ܺ௡ െ 1   over ܨ (recall that |ܨԢ| ൌ  ,௠ݍ
where ݉ ൌ ݁௡ሺݍሻ).  

If ߱ א  Ԣܨ is a primitive ݊‐th root of unity and we write ܧ௚ to denote the 

set of those ݇ א Ժ௡ such that ߱௞  is a root of ݃, then ܧ௚  is the union of 

the ݍ‐cyclotomic classes corresponding to the monic  irreducible divisors 
of ݃.  

If ܧ௚
ᇱ ك  ௚ܧ is a subset  formed by an element of each ݍ‐cyclotomic class 

contained in ܧ௚, we say that 

    ܯ ൌ ൛߱௞|݇ א ௚ܧ
ᇱ ൟ 

is a minimal set of roots of ܥ ൌ  .௚ܥ
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Proposition. If ܯ is a minimal set of roots of a cyclic code ܥ, then  

    ܥ ൌ ሼܽ א ሻߦሿ௡ | ܽሺݔሾܨ ൌ 0  for all  ߦ א  .ሽܯ

 

Determination  of  a  cyclic  code  by  specifying  its  roots.  Let  now 
,ଵߦ … , ௥ߦ א  Ԣ be ݊‐th roots of unityܨ

    కభ,…,కೝܥ ൌ ൛ܽ א ௝൯ߦሿ௡ | ܽ൫ݔሾܨ ൌ 0  for all ݆ ൌ 1, … ,  .ൟݎ

Then ܥకభ,…,కೝ  is an ideal of ܨሾݔሿ௡ and we say that it is the cyclic code de‐

termined by ߦଵ, … ,  .௥ߦ

Proposition. The generating polynomial of ܥకభ,…,కೝ is 

   ݃ ൌ lcmሺ݃ଵ, … , ݃௥ሻ,  

where ݃௜ is the minimal polynomial of ߦ௜. 
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Control matrix of ܥకభ,…,కೝ. The condition ܽ൫ߦ௝൯ ൌ 0 can be  seen as a  li‐
near  relation  on  the  components  ܽ଴, … , ܽ௡ିଵ  of  ܽ  with  coefficients 
1, ,௝ߦ … , ௝ߦ

௡ିଵ: 

    ܽ଴ ൅ ܽଵߦ௝ ൅ ڮ ൅ ܽ௡ିଵߦ௝
௡ିଵ ൌ 0.                    [כ] 

In other words, the matrix  ௡ܸሺߦଵ, … , ௥ሻ்ߦ א ௡ܯ
௥ሺܨԢሻ is a control matrix of 

 .కభ,…,కೝܥ

If we express each ߦ௝
௜  as a vector of the components relative to a basis of 

 [כ] the relation ,ܨ Ԣ overܨ is equivalent to ݉  linear relations with coeffi‐
cients in ܨ that have to be satisfied by ܽ଴, … , ܽ௡ିଵ. In this way we obtain 
a control matrix ܪഥ א ௡ܯ

௠ሺܨሻ with coefficients  in ܨ, and  from ܪഥ we can 
form  a  control matrix  ܪ א ௡ܯ

௡ି௞ሺܨሻ  by  eliminating  linearly  dependent 
rows.  
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Example  (some Hamming codes are cyclic).  Let ݉ be a positive  integer 
such that   gcdሺ݉, ݍ െ 1ሻ ൌ 1,  and define  

    ݊ ൌ ሺݍ௠ െ 1ሻ/ሺݍ െ 1ሻ. 

Let ߱ א  Ԣ beܨ an ݊‐th  root of unity of order ݊  (if ߙ א  Ԣܨ is  a primitive 
element, we can take ߱ ൌ  ఠ is equivalent to the Hammingܥ ௤ିଵ). Thenߙ
code of codimension ݉, Ham௤ሺ݉ሻ. Indeed,  

    ݊ ൌ ሺݍ െ 1ሻሺݍ௠ିଶ ൅ ௠ିଷݍ2 ൅ ڮ ൅ ݉ െ 1ሻ ൅ ݉, 

as  it can be easily checked, and hence gcdሺ݊, ݍ െ 1ሻ ൌ 1. It follows that 
߱௤ିଵ  is  an  ݊‐th  of  unity  of  order  ݊,  and  therefore  ߱௜ሺ௤ିଵሻ ് 1  for 
݅ ൌ 1, … , ݊ െ 1.  In particular, ߱௜ ב  Moreover, ߱௜ and ߱௝ are .ܨ linearly 
independent over ܨ  if ݅ ് ݆. As ݊  is the greatest number of elements of 
 the claim follows from ,ܨ Ԣ that are pair‐wise linearly independent overܨ
the description above of the control matrix ܥఠ  and the definition of the 
Hamming code Ham௤ሺ݉ሻ. 
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BCH codes 

Let ߱ א ߜ Ԣ be a primitive ݊‐th root of unity. Letܨ ൒ 2 and ℓ ൒ 1 be  in‐
tegers. Let ܪܥܤఠሺߜ, ℓሻ denote the cyclic code of length ݊ generated by 

  ݃ ൌ lcm൫݌ఠℓ, ,ఠℓశభ݌ … ,  . ఠℓశഃషమ൯݌

It is called the ܪܥܤN1 code with design (or intentional) distance ߜ and off‐
set ℓ.  

In the case ℓ ൌ 1, we write ܪܥܤఠሺߜሻ instead of ܪܥܤఠሺߜ, 1ሻ and we say 
that they are strict ܪܥܤ codes.  

An   ܪܥܤ is  called  primitive  if  ݊ ൌ ௠ݍ െ 1  (note  that  this  condition  is 
equivalent to say that ߱ is a primitive element of ܨԢ). 
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Theorem (The ܪܥܤ bound). If ݀ is the minimum distance of ܪܥܤఠሺߜ, ℓሻ, 
then ݀ ൒  .ߜ

Proof.N2 First note that an element ܽ א ,ߜఠሺܪܥܤ ሿ௡ is inݔሾܨ ℓሻ if and only 
if ܽ൫߱ℓା௜൯ ൌ 0  for all  ݅ א ሼ0, … , ߜ െ 2ሽ. But  the  relation ܽ൫߱ℓା௜൯ ൌ 0  is 
equivalent to 

    ܽ଴ ൅ ܽଵ߱ℓା௜ ൅ ڮ ൅ ܽ௡ିଵ߱ሺ௡ିଵሻሺℓା௜ሻ ൌ 0, 

and hence  

    ൫1, ߱ℓା௜, ߱ଶሺℓା௜ሻ, … , ߱ሺ௡ିଵሻሺℓା௜ሻ൯                           [*] 

is a control vector of ܪܥܤఠሺߜ, ℓሻ. Now we claim that the matrix ܪ whose 
rows are the vectors  [*] has  the property that any ߜ െ 1 of  its columns 
are  linearly  independent.  Indeed,  the  determinant  formed  by  the  col‐
umns ݆ଵ, … , ݆ఋିଵ is equal to 
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    ተ
߱௝భℓ ڮ       ߱௝ഃషభℓ

߱௝భሺℓାଵሻ ௝ഃషభሺℓାଵሻ߱     ڮ      

ڭ                            ڭ
߱௝భሺℓାఋିଶሻ ௝ഃషభሺℓାఋିଶሻ߱  ڮ   

ተ  

and this is non‐zero if ݆ଵ, … , ݆ఋିଵ are distinct, as it is equal to 

  ߱௝భℓ ڮ ߱௝ഃషభℓ ൉ ఋܸିଵ൫߱௝భ, … , ߱௝ഃషభ൯. 

Example (The minimum distance of a BCH code can be greater than the 
design distance). Let ݍ ൌ 2 and ݉ ൌ 4. Let ߱ be a primitive element of 
ॲଵ଺. Since ߱ has order 15, we can apply the previous results to the case 
ݍ ൌ 2, ݉ ൌ 4 and ݊ ൌ 15. The 2‐cyclotomic classes mod ݊ are 

    ሼ1,2,4,8ሽ, ሼ3,6,12,9ሽ, ሼ5,10ሽ, ሼ7,14,13,11ሽ. 

This shows, if we set ܥఋ ൌ ሻ and ݀ఋߜఠሺܪܥܤ ൌ ݀஼ഃ, that  

    ସܥ ൌ ହ,  and hence  ݀ସܥ ൌ ݀ହ ൒ 5, and  

଺ܥ ൌ ଻,  and hence ݀଺ܥ ൌ ݀଻ ൒ 7. 
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Note  that  the dimension of ܥସ ൌ  ହܥ is 15 െ 2 ൉ 4 ൌ 7,  and  that  the di‐
mension of ܥ଺ ൌ ଻ is 15ܥ െ 2 ൉ 4 െ 2 ൌ 5. 

Example.  It  is similar to the preceding example, with ݍ ൌ 2 and ݉ ൌ 5.  
Let ߱ be a primitive element of ॲଷଶ. The 2‐cyclotomic classes mod 31 are 

  ሼ1,2,4,8,16ሽ, ሼ3,6,12,24,17ሽ, ሼ5,10,20,9,18ሽ, 

   ሼ7,14,28,25,19ሽ, ሼ11,22,13,26,21ሽ, ሼ15,30,29,27,23ሽ. 

Thus we see, with similar conventions as in the previous example, that 

ଶܥ      ൌ ସܥ ,ଷܥ ൌ ଺ܥ ,ହܥ ൌ ଼ܥ ,଻ܥ ൌ ଽܥ ൌ ଵ଴ܥ ൌ ଵଶܥ ,ଵଵܥ ൌ ଵଷܥ ൌ ଵସܥ ൌ  .ଵହܥ

Therefore  

    ݀ଶ ൌ ݀ଷ ൒ 3, ݀ସ ൌ ݀ହ ൒ 5, ݀଺ ൌ ݀଻ ൒ 7,  

    ଼݀ ൌ ݀ଽ ൌ ݀ଵ଴ ൌ ݀ଵଵ ൒ 11, and 

    ݀ଵଶ ൌ ݀ଵଷ ൌ ݀ଵସ ൌ ݀ଵହ ൒ 15. 
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If we set ݇ఋ ൌ dimሺܥఋሻ, then we have  

    ݇ଶ ൌ 31 െ 5 ൌ 26, ݇ସ ൌ 31 െ 2 ൉ 5 ൌ 21,   ݇଺ ൌ 31 െ 3 ൉ 5 ൌ 16, 

    ଼݇ ൌ 31 െ 4 ൉ 5 ൌ 11,  ݇ଵଶ ൌ 31 െ 5 ൉ 5 ൌ 6.  

Exercise.  If ߱  is  a primitive element ॲ଺ସ, prove  that  the minimum dis‐
tance of ܪܥܤఠሺ16ሻ is ൒ 21 and that its dimension is 18. 

Example CC 

# Given q and m, to find a table  
#   {s-> {k_s, d_s} with s in 2..n} 
# where k_s is dimension of BCH_{GF(q^m)}(s)  
# and d_s a lower bound for the minimum distance. 
# q = 2 is default value of q. 
 
bch_dimension_distancelb(m):=    
     bch_dimension_distancelb(m,2); 
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bch_dimensionlbs(m,q):= 
begin 
  local n=q^m-1, j, C={}, D={} 
  for k in 2..n do 
    j=k-1 
    C=union(C,cyclotomic_class(j,n,q)) 
    while index(j,C)!=0 do j=j+1 end 
    D=D|{k->{n-length(C), j}} 
    if j==n then return D else continue end 
  end 
end; 

X=bch_dimension_distancelb(6); 
{x.2→x.1 with x in X} 
 → 
{ 
{1,63}->32, 
{7,31}->(28,29,30,31), 
{10,27}->(24,25,26,27), 
{16,23}->(22,23), 
{18,21}->(16,17,18,19,20,21), 
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{24,15}->(14,15), 
{30,13}->(12,13), 
{36,11}->(10,11), 
{39,9}->(8,9), 
{45,7}->(6,7), 
{51,5}->(4,5), 
{57,3}->(2,3) 

} 

In relation to the dimension of ܪܥܤఠሺߜ, ℓሻ, the following bound holds: 
Proposition. If ݉ ൌ ݁௡ሺݍሻ, then  

   dim ሻߜఠሺܪܥܤ ൒ ݊ െ ݉ሺߜ െ 1ሻ. 

Proof: If ݃ is the generating polynomial of ܪܥܤఠሺߜ, ℓሻ, then  

    dim ሻߜఠሺܪܥܤ ൌ ݊ െ degሺ݃ሻ. 

Since ݃ is the least common multiple of the minimal polynomials  

    ௜݌ ൌ ݅ ,ఠℓశ೔݌ ൌ 1, … , ℓ െ 1,  and 
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    deg൫݌ఠℓశ೔൯ ൑ ሾܨᇱ: ሿܨ ൌ ݉, 

it is clear that degሺ݃ሻ ൑ ݉ሺߜ െ 1ሻ, and this implies the claimed inequali‐
ty.  

Improving the dimension bound in the binary case 

The bound in the previous proposition can be improved considerably for 
strict binary BCH codes. Let ܥ௜ be the 2‐cyclotomic class of ݅ mod ݊. If we 
set ݌௜ to denote the minimal polynomial of ߱௜, where ߱ is a primitive ݊‐
th root of unity, then ݌௜ ൌ ଶ௜, as ሺ2݅ mod ݊ሻ݌ א ݐ ௜. We get, ifܥ ൒ 1, that 

      lcmሺ݌ଵ, ,ଶ݌ … , ଶ௧ሻ݌ ൌ lcmሺ݌ଵ, ,ଶ݌ … ,  ଶ௧ିଵሻ݌

                    ൌ lcmሺ݌ଵ, ,ଷ݌ … ,   .ଶ௧ିଵሻ݌

Now  the  first  of  these  equalities  tells  us  that  ݐఠሺ2ܪܥܤ ൅ 1ሻ ൌ
 ሻ, so that it is enough to consider, among the strict binary BCHݐఠሺ2ܪܥܤ
codes, those with odd design distance.  
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Proposition. If ݇ is the dimension of the strict binary code 

   ݐఠሺ2ܪܥܤ ൅ 1ሻ,  

then ݇ ൒ ݊ െ ݉ where ,݉ݐ ൌ ݁௡ሺ2ሻ. 

Proof:  Let  ݃ ൌ lcmሺ݌ଵ, ,ଶ݌ … ,  ଶ௧ሻ݌ be  the  generating  polynomial  of 
ݐఠሺ2ܪܥܤ ൅ 1ሻ. The we know that ݇ ൌ ݊ െ degሺ݃ሻ. But  

    ݃ ൌ lcmሺ݌ଵ, ,ଷ݌ … ,   ଶ௧ିଵሻ݌

and hence deg ሺ݃ሻ is at most the sum of the degrees of ݌ଵ, ,ଷ݌ … ,  .ଶ௧ିଵ݌
Since the degree of ݌௜ is at most ݉, it follows that degሺ݃ሻ ൑  and this  ݉ݐ
establishes the claim. 

Example. If we apply the bound of the previous proposition to the code 
ఠሺ8ሻܪܥܤ ൌ   ఠሺ9ሻ, ߱ be a primitive element of ॲଷଶ, we get thatܪܥܤ

    ݇ ൒ ݊ െ ݉ݐ ൌ 31 െ 4 ൉ 5 ൌ 11.  
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Since the dimension of this code  is exactly 11, we see that the bound  in 
the proposition cannot be improved in general. 

Exercise. Let  

    ݂ ൌ ܺସ ൅ ܺ ൅ 1 א Ժଶሾܺሿ,  ܨ ൌ Ժଶሾܺሿ/ሺ݂ሻ,  

and  let ߙ be a primitive element of ܨ. Find the dimension and a control 
matrix of ܪܥܤఈሺ4ሻ. 
Example CC: bch_16(4). 

Example  (The  binary  Golay  code  is  cyclic).  Let  ݍ ൌ 2,  ݊ ൌ 23  and 
݉ ൌ ݁௡ሺ2ሻ ൌ 11. The splitting field of ܺଶଷ െ 1 א Ժଶሾܺሿ  is ܮ ൌ ॲଶభభ. The 
2‐cyclotomic classes mod 23 are 

    ଴ܥ ൌ ሼ0ሽ, 
    ଵܥ ൌ ሼ1,2,4,8,16,9,18,13,3,6,12ሽ,          
    ହܥ ൌ ሼ5,10,20,17,11,22,21,19,15,7,14ሽ. 
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If ߱ א  ܮ is a primitive 23‐rd  root of unity,  the generating polynomial of 
ܥ ൌ  ఠሺ5ሻܪܥܤ is  ݃ ൌ lcmሺ݌ଵ, ,ଶ݌ ,ଷ݌ ସሻ݌ ൌ  .ଵ݌ Since  degሺ݌ଵሻ ൌ |ଵܥ| ൌ
11,  it  turns out  that dimሺܥሻ ൌ 23 െ 11 ൌ 12. Moreover,  the minimum 
distance of ܥ is 7 (see next exercise; note that by the BCH bound it is ൒ 5) 
and therefore ܥ is a binary perfect code of type [23,12,7].  

Exercise. Show that the minimum distance of the binary code in the pre‐
vious example is 7. [Hint. Adapt the arguments in the presentation of the 
ternary Golay code as a cyclic code]. 

Example CC: golay2 

The RS codes with ݊ ൌ ݍ െ 1 turn out to be strict primitive BCH codes.  

Proposition.  If  ߱  is  a  primitive  element  of  a  finite  field  ܨ ൌ ॲ௤  and 

݊ ൌ ݍ െ 1, then  

    ሻߜఠሺܪܥܤ ൌ ܴܵଵ,ఠ,…,ఠ೙షభሺ݊ െ ߜ ൅ 1ሻ. 
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Proof: The Vandermonde matrix ܪ ൌ ଵܸ,ఋିଵሺ1, ߱, … , ߱௡ିଵሻ  is a  control 
matrix of ܥ ൌ ܴܵଵ,ఠ,…,ఠ೙షభሺ݊ െ ߜ ൅ 1ሻ, P26.  Since  the  ݅‐th  row of ܪ  is 

1, ߱௜, … , ߱௜ሺ௡ିଵሻ,  the  vectors ࢇ ൌ ሺܽ଴, ܽଵ, … , ܽ௡ିଵሻ of ܥ  are  those  that 
satisfy  ܽ଴ ൅ ܽଵ߱௜ ൅ ڮ ൅ ܽ௡ିଵ߱௜ሺ௡ିଵሻ ൌ 0  for  ݅ ൌ 1, … , ߜ െ 1.  In  terms 

of the polynomial ܽ௑, this is equivalent to say that ߱௜ is a root of ܽ௑ for 
݅ ൌ 1, … , ߜ െ 1 and thereby ܥ coincides with the cyclic code correspond‐
ing to the roots ߱, … , ߱ఋିଵ. But this code is precisely ܪܥܤఠሺߜሻ. 
 

Notes 
N1.  From  Bose–Chaudhuri–Hocquenghem.  The  BCH  codes  were  pro‐
posed in 1959 by Alexis Hocquenghem (1908?‐1990), in the paper Codes 
correcteurs d’erreurs (Chifres 2, 147‐156), and in 1960, independently, by 
Raj Chandra Bose  (1901‐1987) and Dwijendra Kumar Ray‐Chaudhuri  (b. 
1933), in the papers On a class of error correcting binary group codes and 
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Further results on error correcting binary group codes (Inform. Control 3, 
68‐79 and 279‐290). 

N2.  In next chapter we will see that the BCH codes are a special case of 
alternant codes and that the BCH bound is a special case of the ‘alternant 
bound’. Actually the alternant bound is a straightforward transcription of 
the BCH bound to the more general setting of alternant codes. 


