

TC10 / 4a. Cyclic codes

S. Xambó

A linear code $C \subseteq F^n$ is *cyclic* if

$$(a_n, a_1, \dots, a_{n-1}) \in C \text{ for all } a = (a_1, \dots, a_{n-1}, a_n) \in C.$$

In order to study cyclic codes, we need to introduce a few auxiliary algebraic concepts.

We have a unique F -linear isomorphism

$$\pi : F[x]_n \xrightarrow{\sim} F[X]/(X^n - 1)$$

such that $x \mapsto [X]$. If $f \in F[X]$, its image $\bar{f} \in F[x]_n$ is determined by the substitution $X^j \mapsto x^{[j]_n} = x^{j \bmod n}$. We say that \bar{f} is the *cyclic reduction of order n of f* .

We can use the isomorphism π to transport the ring structure of $F[X]/(X^n - 1)$ to a ring structure of the ring $F[x]_n$. This structure is determined by the ordinary sum and product of $F[x]$, except that the product is to be reduced modulo the relation $x^n = 1$.

On the other hand we have an F -linear isomorphism

$$F^n \xrightarrow{\sim} F[x]_n = \{\lambda_1 + \lambda_2 x + \cdots + \lambda_n x^{n-1} \mid \lambda_i \in F\}$$

$$a = (a_1, \dots, a_n) \mapsto a(x) = a_1 + a_2 x + \cdots + a_n x^{n-1},$$

which allows us to transfer the ring structure of $F[x]_n$ to a ring structure of F^n . The sum in this ring is the ordinary sum of vectors, and the product $p = ab$ of the vectors $a = (a_1, \dots, a_n)$ and $b = (b_1, \dots, b_n)$ is obtained by accumulating the product $a_i b_j$ in the component $(i + j \bmod n) - 1$ of p , $1 \leq i, j \leq n$.

Notation. If $f \in F[X]$ and $a \in F[x]$, fa means $\bar{f}a$.

Lemma. $s(a) = xa$, for all $a \in F[x]_n$, where

$$\sigma(a_1 + a_2x + \cdots + a_nx^{n-1}) = a_n + a_1x + \cdots + a_{n-1}x^{n-1}.$$

Proof. The product xa is $a_1x + a_2x^2 + \cdots + a_nx^n$. Since $x^n = 1$, we have

$$xa = a_n + a_1x + \cdots + a_{n-1}x^{n-1} = \sigma(a).$$

Proposition. A linear code C of length n is cyclic if and only if it is an ideal of $F[x]_n$.

Proof. The lemma indicates that C is cyclic if and only if $xC \subseteq C$. Now it is enough to observe that this condition implies that $x^jC \subseteq C$ for any positive integer j , and therefore that $aC \subseteq C$ for all $a \in F[x]_n$.

Construction of cyclic codes

Given $f \in F[X]$, we set $C_f = (\bar{f}) \subseteq F[x]_n$. Note that $C_f = \pi((f))$.

Lemma. If g and g' are monic divisors of $X^n - 1$, then

1. $C_g \subseteq C_{g'}$ if and only if $g' \mid g$.
2. $C_g = C_{g'}$ if and only if $g = g'$.

Proof. The inclusion $C_g \subseteq C_{g'}$ implies that $\bar{g} = a\bar{g}'$, for some $a \in F[x]_n$. If $a = \bar{f}$, $f \in F[X]$, the relation $g = fg'$ holds mod $X^n - 1$. Since g' is a divisor of $X^n - 1$, say $X^n - 1 = hg'$, we get $g = fg' + hg' = (f + h)g'$, and so $g' \mid g$. That $g' \mid g$ implies $C_g \subseteq C_{g'}$ is clear, and 2 is a direct consequence of 1 and the fact that g and g' are monic.

Proposition. Given a cyclic code C of length n , there exists a unique monic divisor g of $X^n - 1$ such that $C = C_g$.

Proof. Let $g \in F[X]$ be a non-zero polynomial of minimal degree among those that satisfy $g \in C$ (note that $\pi(X^n - 1) = x^n - 1 = 0 \in C$, so that g exists and $\deg(g) \leq n$). We can assume that g is monic. Since $C_g = (\bar{g}) \subseteq C$, we will end the proof of existence by establishing that

- g is a divisor of $X^n - 1$
- $C \subseteq C_g$.

Indeed, if q and r are the quotient and remainder of the division of $X^n - 1$ by g , so that

$$X^n - 1 = qg + r, \quad \deg(r) < \deg(g),$$

then $0 = x^n - 1 = \bar{q}\bar{g} + \bar{r}$, and therefore $\bar{r} = -\bar{q}\bar{g} \in C_g \subseteq C$. Consequently $r = 0$, by definition of g , and hence $g|X^n - 1$.

Let now $a \in C$. To see that $a \in C_g$, let

$$a_X = a_1 + a_2X + \cdots + a_nX^{n-1},$$

so that $a = a_1 + a_2x + \cdots + a_nx^{n-1} = \bar{a}_X$. Let q_a and r_a be the quotient and remainder of the Euclidean division of a_X by g :

$$a_X = q_a g + r_a, \quad \deg(r_a) < \deg(g).$$

Thus $\bar{r}_a = a - \bar{q}_a \bar{g} \in C$, $r_a = 0$ and $a = \bar{q}_a \bar{g} \in C_g$.

The uniqueness of g is an immediate consequence of the previous lemma. □

The monic divisor g of $X^n - 1$ such that $C = C_g$ is called the *generating polynomial* of C . The polynomial $\hat{g} = (X^n - 1)/g$ is called the *control polynomial* of C (we will see a reason for this term in a short while).

Remark. Given $f \in F[X]$, the generating polynomial of C_f is $g = \gcd(X^n - 1, f)$. Observe that

$$C_f = (\bar{f}) = \pi((f)) = \pi((f) + (X^n - 1)) = \pi(\text{mcd}(f, X^n - 1)).$$

Dimension of C_g

Proposition. $\dim(C_g) = \deg(\hat{g}) = n - \deg(g)$.

Proof. It is enough to consider the F -linear map $F[X] \rightarrow F[x]_n$, $f \mapsto f\bar{g}$, and notice that its image is $(\bar{g}) = C_g$ and its kernel (\hat{g}) . \square

Notations. Instead of the set of indices $\{1, \dots, n\}$, we will use the set $\{0, 1, \dots, n-1\}$. In this way $a = (a_0, a_1, \dots, a_{n-1})$ is identified with the polynomial

$$a(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}.$$

Given $a \in F[x]_n$, we set $\ell(a) = a_{n-1}$ (the leading coefficient of a) and

$$\tilde{a} = a_{n-1} + a_{n-2} x + \dots + a_0 x^{n-1}.$$

Then we have that

$$\ell(\tilde{a}b) = a_0 b_0 + \dots + a_{n-1} b_{n-1}$$

(the scalar product of $a, b \in F[x]_n$).

If p is the characteristic of F , suppose that $p \nmid n$. In particular we have $n \neq 0$ in F .

Since $D(X^n - 1) = nX^{n-1} \sim X^{n-1}$ has no non-constant common divisors with $X^n - 1$, the irreducible factors f_1, \dots, f_r of $X^n - 1$ are simple (i.e., have multiplicity 1):

$$X^n - 1 = f_1 \cdots f_r.$$

Thus the monic divisors of $X^n - 1$ have the form

$$g = f_{i_1} \cdots f_{i_s}, \quad 1 \leq i_1 < \cdots < i_s \leq r.$$

From this it follows that there are exactly 2^r cyclic codes of length n . Remark, however, that there may be non-trivial equivalences among these codes (we will see examples later on).

Generating matrices

The polynomials $u_i = x^i \bar{g}$ ($0 \leq i < k$) form a basis of C_g . If

$$g = g_0 + g_1 x + \cdots + g_{n-k} x^{n-k},$$

then the $k \times n$ matrix

$$G = \begin{pmatrix} g_0 & g_1 & \cdots & g_{n-k} & 0 & 0 & \cdots & 0 \\ 0 & g_0 & g_1 & \cdots & g_{n-k} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \cdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & g_0 & g_1 & \cdots & g_{n-k} & 0 \\ 0 & \cdots & \cdots & 0 & g_0 & g_1 & \cdots & g_{n-k} \end{pmatrix}$$

is a generating matrix of $C = C_g$. Note that $g_{n-k} = 1$ (g is monic).

Remark. The coding $F^k \rightarrow C_g$, $u \mapsto uG$, can be described, in terms of polynomials, as the map $F[x]_k \rightarrow C_g$, $u \mapsto u\bar{g}$.

Normalized generating matrix

For $0 \leq j < k$, let

$$x^{n-k+j} = q_j g + r_j, \quad \deg(r_j) < \deg(g).$$

Then the k polynomials $v_j = x^{n-k+j} - r_j$ form a basis of C_g and the corresponding matrix of coefficients, G' , is normalized, in the sense that the submatrix formed by the last k columns of G' is the identity matrix I_k :

$$G' = -R|I_k, \quad R = (r_{ji})$$

Therefore, $H' = I_{n-k}|R^T$ is a *normalized control matrix*.

Remark. Let $u \in F^k \Rightarrow F[x]_k$. Then the coding of u using the matrix G' is obtained by substituting the monomials x^j of u by v_j ($0 \leq j < k$):

$$u_0 + u_1 x + \cdots + u_{k-1} x^{k-1} \mapsto u_0 v_0 + u_1 v_1 + \cdots + u_{k-1} v_{k-1}.$$

Moreover, if H' is the control matrix of C_g associated to G' , then the syndrome $s \in F^{n-k} \simeq F[x]_{n-k}$ of $a \in F^n \simeq F[x]_n$ coincides with the remainder of the division of a by g .

Notice that $s = aH'^T = a \begin{pmatrix} I_{n-k} \\ R \end{pmatrix}$.

The dual code

Proposition. $C_g^\perp = \tilde{C}_{\hat{g}}$, where $\tilde{C}_{\hat{g}}$ is the image of $C_{\hat{g}}$ by the map $a \mapsto \tilde{a}$.

Proof. Since C_g^\perp and $\tilde{C}_{\hat{g}}$ have dimension $n - k$, it is enough to see that $\tilde{C}_{\hat{g}} \subseteq C_g^\perp$. But this is clear: if $a \in C_{\hat{g}}$ and $b \in C_g$, then $ab = 0$ and consequently $\langle \tilde{a} | b \rangle = \ell(\tilde{a}b) = \ell(ab) = 0$. □

Since $\hat{g}, \hat{g}x, \dots, \hat{g}x^{n-k-1}$ form a basis of $C_{\hat{g}}$, if we let

$$\hat{g} = h_0 + h_1X + \dots + h_kX^k,$$

then

$$H = \begin{pmatrix} h_k & h_{k-1} & \cdots & h_0 & 0 & 0 & \cdots & 0 \\ 0 & h_k & h_{k-1} & \cdots & h_0 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \cdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & h_k & h_{k-1} & \cdots & h_0 & 0 \\ 0 & \cdots & \cdots & 0 & h_k & h_{k-1} & \cdots & h_0 \end{pmatrix}$$

is a control matrix of C_g .

Example (The ternary Golay code). The polynomial

$$g = X^5 - X^3 + X^2 - X - 1$$

is an irreducible factor of $X^{11} - 1$ over \mathbb{Z}_3 . In fact, the irreducible factors of $X^{11} - 1$ over \mathbb{Z}_3 are $X - 1$, g , and $X^5 + X^4 - X^3 + X^2 - 1$ (notice that the 3-cyclotomic classes mod 11 are $\{0\}$, $\{1,3,9,5,4\}$ and $\{2,6,7,10,8\}$, and this shows that $X^{11} - 1$ has two irreducible factors of degree 5).

Let $q = 3$, $n = 11$ and $C = C_g$. Then the type of C is $[11,6]$. Let us see that the minimum distance of C is 5.

Let G be the normalized generating matrix of C . The matrix \bar{G} (parity completion of G) satisfies that $\bar{G}\bar{G}^T = 0$ (in order to preserve the submatrix I_6 to the right, we place the parity symbols of the rows of G to the left, so that they form the first column of \bar{G}). It follows that the code $\bar{C} = \langle \bar{G} \rangle$ is selfdual and therefore that the weight of any element of \bar{C} is a multiple of 3. Since the rows of \bar{G} have weight 6, the minimum distance

of \bar{C} is 3 or 6. But every row of \bar{G} has exactly one 0 in the first 6 columns, and the position of this 0 is different for different rows. This implies that a linear combination of two rows of \bar{G} has weight $\geq 2 + 2$ and hence ≥ 6 . Since the weight of this combination is clearly $\leq 12 - 4 = 8$, it must have weight 6. In particular, it contains exactly 2 zeros in its first six positions. This proves that a linear combination of 3 rows of \bar{G} has at least $1 + 3$ non-zero components, and therefore it has at least weight 6. Since the combinations of 4 or more rows of \bar{G} have weight ≥ 4 , this completes the proof.

$$\bar{G} = \begin{pmatrix} 1 & 2 & 2 & 1 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 2 & 1 & 2 & 0 & 1 & 0 & 0 & 0 & 0 \\ 2 & 2 & 2 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 2 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 2 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

CC examples

cyclic-normalized-matrix[12, 6]_3

Roots of a cyclic code

Let F be a finite field and $q = |F|$. Let C be a cyclic F -code of length n and g its generating polynomial. The roots of C are, by definition, the roots of g in a splitting field F' of $X^n - 1$ over F (recall that $|F'| = q^m$, where $m = e_n(q)$).

If $\omega \in F'$ is a primitive n -th root of unity and we write E_g to denote the set of those $k \in \mathbb{Z}_n$ such that ω^k is a root of g , then E_g is the union of the q -cyclotomic classes corresponding to the monic irreducible divisors of g .

If $E'_g \subseteq E_g$ is a subset formed by an element of each q -cyclotomic class contained in E_g , we say that

$$M = \{\omega^k \mid k \in E'_g\}$$

is a minimal set of roots of $C = C_g$.

Proposition. If M is a minimal set of roots of a cyclic code C , then

$$C = \{a \in F[x]_n \mid a(\xi) = 0 \text{ for all } \xi \in M\}.$$

Determination of a cyclic code by specifying its roots. Let now $\xi_1, \dots, \xi_r \in F'$ be n -th roots of unity

$$C_{\xi_1, \dots, \xi_r} = \{a \in F[x]_n \mid a(\xi_j) = 0 \text{ for all } j = 1, \dots, r\}.$$

Then C_{ξ_1, \dots, ξ_r} is an ideal of $F[x]_n$ and we say that it is the cyclic code determined by ξ_1, \dots, ξ_r .

Proposition. The generating polynomial of C_{ξ_1, \dots, ξ_r} is

$$g = \text{lcm}(g_1, \dots, g_r),$$

where g_i is the minimal polynomial of ξ_i .

Control matrix of C_{ξ_1, \dots, ξ_r} . The condition $a(\xi_j) = 0$ can be seen as a linear relation on the components a_0, \dots, a_{n-1} of a with coefficients $1, \xi_j, \dots, \xi_j^{n-1}$:

$$a_0 + a_1 \xi_j + \dots + a_{n-1} \xi_j^{n-1} = 0. \quad [*]$$

In other words, the matrix $V_n(\xi_1, \dots, \xi_r)^T \in M_n^r(F')$ is a control matrix of C_{ξ_1, \dots, ξ_r} .

If we express each ξ_j^i as a vector of the components relative to a basis of F' over F , the relation $[*]$ is equivalent to m linear relations with coefficients in F that have to be satisfied by a_0, \dots, a_{n-1} . In this way we obtain a control matrix $\bar{H} \in M_n^m(F)$ with coefficients in F , and from \bar{H} we can form a control matrix $H \in M_n^{n-k}(F)$ by eliminating linearly dependent rows.

Example (some Hamming codes are cyclic). Let m be a positive integer such that $\gcd(m, q - 1) = 1$, and define

$$n = (q^m - 1)/(q - 1).$$

Let $\omega \in F'$ be an n -th root of unity of order n (if $\alpha \in F'$ is a primitive element, we can take $\omega = \alpha^{q-1}$). Then C_ω is equivalent to the Hamming code of codimension m , $\text{Ham}_q(m)$. Indeed,

$$n = (q - 1)(q^{m-2} + 2q^{m-3} + \cdots + m - 1) + m,$$

as it can be easily checked, and hence $\gcd(n, q - 1) = 1$. It follows that ω^{q-1} is an n -th root of unity of order n , and therefore $\omega^{i(q-1)} \neq 1$ for $i = 1, \dots, n - 1$. In particular, $\omega^i \notin F$. Moreover, ω^i and ω^j are linearly independent over F if $i \neq j$. As n is the greatest number of elements of F' that are pair-wise linearly independent over F , the claim follows from the description above of the control matrix C_ω and the definition of the Hamming code $\text{Ham}_q(m)$.

BCH codes

Let $\omega \in F'$ be a primitive n -th root of unity. Let $\delta \geq 2$ and $\ell \geq 1$ be integers. Let $BCH_\omega(\delta, \ell)$ denote the cyclic code of length n generated by

$$g = \text{lcm}(p_{\omega^\ell}, p_{\omega^{\ell+1}}, \dots, p_{\omega^{\ell+\delta-2}}).$$

It is called the BCH^{N1} code with *design* (or *intentional*) *distance* δ and *offset* ℓ .

In the case $\ell = 1$, we write $BCH_\omega(\delta)$ instead of $BCH_\omega(\delta, 1)$ and we say that they are *strict* BCH codes.

An BCH is called **primitive** if $n = q^m - 1$ (note that this condition is equivalent to say that ω is a primitive element of F').

Theorem (The *BCH* bound). If d is the minimum distance of $BCH_\omega(\delta, \ell)$, then $d \geq \delta$.

Proof.^{N2} First note that an element $a \in F[x]_n$ is in $BCH_\omega(\delta, \ell)$ if and only if $a(\omega^{\ell+i}) = 0$ for all $i \in \{0, \dots, \delta - 2\}$. But the relation $a(\omega^{\ell+i}) = 0$ is equivalent to

$$a_0 + a_1 \omega^{\ell+i} + \dots + a_{n-1} \omega^{(n-1)(\ell+i)} = 0,$$

and hence

$$(1, \omega^{\ell+i}, \omega^{2(\ell+i)}, \dots, \omega^{(n-1)(\ell+i)}) \quad [*]$$

is a control vector of $BCH_\omega(\delta, \ell)$. Now we claim that the matrix H whose rows are the vectors $[*]$ has the property that any $\delta - 1$ of its columns are linearly independent. Indeed, the determinant formed by the columns $j_1, \dots, j_{\delta-1}$ is equal to

$$\begin{vmatrix} \omega^{j_1\ell} & \dots & \omega^{j_{\delta-1}\ell} \\ \omega^{j_1(\ell+1)} & \dots & \omega^{j_{\delta-1}(\ell+1)} \\ \vdots & & \vdots \\ \omega^{j_1(\ell+\delta-2)} & \dots & \omega^{j_{\delta-1}(\ell+\delta-2)} \end{vmatrix}$$

and this is non-zero if $j_1, \dots, j_{\delta-1}$ are distinct, as it is equal to $\omega^{j_1\ell} \dots \omega^{j_{\delta-1}\ell} \cdot V_{\delta-1}(\omega^{j_1}, \dots, \omega^{j_{\delta-1}})$.

Example (The minimum distance of a **BCH** code can be greater than the design distance). Let $q = 2$ and $m = 4$. Let ω be a primitive element of \mathbb{F}_{16} . Since ω has order 15, we can apply the previous results to the case $q = 2, m = 4$ and $n = 15$. The 2-cyclotomic classes mod n are

$$\{1,2,4,8\}, \{3,6,12,9\}, \{5,10\}, \{7,14,13,11\}.$$

This shows, if we set $\mathcal{C}_\delta = BCH_\omega(\delta)$ and $d_\delta = d_{\mathcal{C}_\delta}$, that

$\mathcal{C}_4 = \mathcal{C}_5$, and hence $d_4 = d_5 \geq 5$, and

$\mathcal{C}_6 = \mathcal{C}_7$, and hence $d_6 = d_7 \geq 7$.

Note that the dimension of $C_4 = C_5$ is $15 - 2 \cdot 4 = 7$, and that the dimension of $C_6 = C_7$ is $15 - 2 \cdot 4 - 2 = 5$.

Example. It is similar to the preceding example, with $q = 2$ and $m = 5$.

Let ω be a primitive element of \mathbb{F}_{32} . The 2-cyclotomic classes mod 31 are

$$\{1, 2, 4, 8, 16\}, \{3, 6, 12, 24, 17\}, \{5, 10, 20, 9, 18\},$$

$$\{7, 14, 28, 25, 19\}, \{11, 22, 13, 26, 21\}, \{15, 30, 29, 27, 23\}.$$

Thus we see, with similar conventions as in the previous example, that

$$C_2 = C_3, C_4 = C_5, C_6 = C_7, C_8 = C_9 = C_{10} = C_{11}, C_{12} = C_{13} = C_{14} = C_{15}.$$

Therefore

$$d_2 = d_3 \geq 3, d_4 = d_5 \geq 5, d_6 = d_7 \geq 7,$$

$$d_8 = d_9 = d_{10} = d_{11} \geq 11, \text{ and}$$

$$d_{12} = d_{13} = d_{14} = d_{15} \geq 15.$$

If we set $k_\delta = \dim(C_\delta)$, then we have

$$k_2 = 31 - 5 = 26, k_4 = 31 - 2 \cdot 5 = 21, k_6 = 31 - 3 \cdot 5 = 16,$$

$$k_8 = 31 - 4 \cdot 5 = 11, k_{12} = 31 - 5 \cdot 5 = 6.$$

Exercise. If ω is a primitive element \mathbb{F}_{64} , prove that the minimum distance of $BCH_\omega(16)$ is ≥ 21 and that its dimension is 18.

Example CC

```
# Given q and m, to find a table
# {s-> {k_s, d_s} with s in 2..n}
# where k_s is dimension of BCH_{GF(q^m)}(s)
# and d_s a lower bound for the minimum distance.
# q = 2 is default value of q.
```

```
bch_dimension_distancelb(m) :=
  bch_dimension_distancelb(m, 2);
```

```

bch_dimensionlbs(m,q) :=
begin
  local n=q^m-1, j, C={ }, D={}
  for k in 2..n do
    j=k-1
    C=union(C,cyclotomic_class(j,n,q))
    while index(j,C)!=0 do j=j+1 end
    D=D|{k->{n-length(C), j}}
  if j==n then return D else continue end
end
end;

X=bch_dimension_distancelb(6);
{x.2->x.1 with x in X}

→
{
  {1,63}->32,
  {7,31}->(28,29,30,31),
  {10,27}->(24,25,26,27),
  {16,23}->(22,23),
  {18,21}->(16,17,18,19,20,21),
}

```

```

{24,15} -> (14,15),
{30,13} -> (12,13),
{36,11} -> (10,11),
{39,9} -> (8,9),
{45,7} -> (6,7),
{51,5} -> (4,5),
{57,3} -> (2,3)
}

```

In relation to the dimension of $BCH_\omega(\delta, \ell)$, the following bound holds:

Proposition. If $m = e_n(q)$, then

$$\dim BCH_\omega(\delta) \geq n - m(\delta - 1).$$

Proof: If g is the generating polynomial of $BCH_\omega(\delta, \ell)$, then

$$\dim BCH_\omega(\delta) = n - \deg(g).$$

Since g is the least common multiple of the minimal polynomials

$$p_i = p_{\omega^{\ell+i}}, i = 1, \dots, \ell - 1, \text{ and}$$

$$\deg(p_{\omega^{\ell+i}}) \leq [F':F] = m,$$

it is clear that $\deg(g) \leq m(\delta - 1)$, and this implies the claimed inequality.

Improving the dimension bound in the binary case

The bound in the previous proposition can be improved considerably for strict binary **BCH** codes. Let C_i be the 2-cyclotomic class of $i \bmod n$. If we set p_i to denote the minimal polynomial of ω^i , where ω is a primitive n -th root of unity, then $p_i = p_{2i}$, as $(2i \bmod n) \in C_i$. We get, if $t \geq 1$, that

$$\begin{aligned} \text{lcm}(p_1, p_2, \dots, p_{2t}) &= \text{lcm}(p_1, p_2, \dots, p_{2t-1}) \\ &= \text{lcm}(p_1, p_3, \dots, p_{2t-1}). \end{aligned}$$

Now the first of these equalities tells us that $BCH_\omega(2t+1) = BCH_\omega(2t)$, so that it is enough to consider, among the strict binary **BCH** codes, those with odd design distance.

Proposition. If k is the dimension of the strict binary code

$$BCH_{\omega}(2t + 1),$$

then $k \geq n - tm$, where $m = e_n(2)$.

Proof: Let $g = \text{lcm}(p_1, p_2, \dots, p_{2t})$ be the generating polynomial of $BCH_{\omega}(2t + 1)$. Then we know that $k = n - \deg(g)$. But

$$g = \text{lcm}(p_1, p_3, \dots, p_{2t-1})$$

and hence $\deg(g)$ is at most the sum of the degrees of $p_1, p_3, \dots, p_{2t-1}$. Since the degree of p_i is at most m , it follows that $\deg(g) \leq tm$ and this establishes the claim.

Example. If we apply the bound of the previous proposition to the code $BCH_{\omega}(8) = BCH_{\omega}(9)$, ω be a primitive element of \mathbb{F}_{32} , we get that

$$k \geq n - tm = 31 - 4 \cdot 5 = 11.$$

Since the dimension of this code is exactly 11, we see that the bound in the proposition cannot be improved in general.

Exercise. Let

$$f = X^4 + X + 1 \in \mathbb{Z}_2[X], \quad F = \mathbb{Z}_2[X]/(f),$$

and let α be a primitive element of F . Find the dimension and a control matrix of $BCH_\alpha(4)$.

Example CC: `bch_16(4)`.

Example (The binary Golay code is cyclic). Let $q = 2$, $n = 23$ and $m = e_n(2) = 11$. The splitting field of $X^{23} - 1 \in \mathbb{Z}_2[X]$ is $L = \mathbb{F}_{2^{11}}$. The 2-cyclotomic classes mod 23 are

$$C_0 = \{0\},$$

$$C_1 = \{1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12\},$$

$$C_5 = \{5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14\}.$$

If $\omega \in L$ is a primitive 23-rd root of unity, the generating polynomial of $C = BCH_\omega(5)$ is $g = \text{lcm}(p_1, p_2, p_3, p_4) = p_1$. Since $\deg(p_1) = |C_1| = 11$, it turns out that $\dim(C) = 23 - 11 = 12$. Moreover, the minimum distance of C is 7 (see next exercise; note that by the BCH bound it is ≥ 5) and therefore C is a binary perfect code of type [23,12,7].

Exercise. Show that the minimum distance of the binary code in the previous example is 7. [*Hint.* Adapt the arguments in the presentation of the ternary Golay code as a cyclic code].

Example CC: golay2

The **RS** codes with $n = q - 1$ turn out to be strict primitive **BCH** codes.

Proposition. If ω is a primitive element of a finite field $F = \mathbb{F}_q$ and $n = q - 1$, then

$$BCH_\omega(\delta) = RS_{1,\omega,\dots,\omega^{n-1}}(n - \delta + 1).$$

Proof: The Vandermonde matrix $H = V_{1,\delta-1}(1, \omega, \dots, \omega^{n-1})$ is a control matrix of $C = RS_{1,\omega,\dots,\omega^{n-1}}(n - \delta + 1)$, **P26**. Since the i -th row of H is $1, \omega^i, \dots, \omega^{i(n-1)}$, the vectors $\mathbf{a} = (a_0, a_1, \dots, a_{n-1})$ of C are those that satisfy $a_0 + a_1\omega^i + \dots + a_{n-1}\omega^{i(n-1)} = 0$ for $i = 1, \dots, \delta - 1$. In terms of the polynomial a_X , this is equivalent to say that ω^i is a root of a_X for $i = 1, \dots, \delta - 1$ and thereby C coincides with the cyclic code corresponding to the roots $\omega, \dots, \omega^{\delta-1}$. But this code is precisely $BCH_\omega(\delta)$.

Notes

N1. From *Bose–Chaudhuri–Hocquenghem*. The BCH codes were proposed in 1959 by Alexis Hocquenghem (1908?-1990), in the paper *Codes correcteurs d'erreurs* (Chifres 2, 147-156), and in 1960, independently, by Raj Chandra Bose (1901-1987) and Dwijendra Kumar Ray-Chaudhuri (b. 1933), in the papers *On a class of error correcting binary group codes* and

Further results on error correcting binary group codes (Inform. Control 3, 68-79 and 279-290).

N2. In next chapter we will see that the BCH codes are a special case of alternant codes and that the BCH bound is a special case of the ‘alternant bound’. Actually the alternant bound is a straightforward transcription of the BCH bound to the more general setting of alternant codes.