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The ring Z,,

Set Z,, to denote the ring Z/(n) of classs of integers modulo n. We usual-
ly represent its elements by the elements of the set {0, 1, ...,n — 1}, with
the operations of sum and product the ordinary sum and product of in-
tegers, but reduced modulo n.

We will also set Z; to denote the multiplicative grup of invertible ele-
ments of Z,."*

An element k € {0,1,...,n— 1} is invertible modulo n if and only if
gcd(k,n) = 1. In particular we see that Z, is a field if and only if n is
prime.

We have, therefore, |Z;,| = @(n), where @(n) is Euler’s (totient) func-
tion (by definition, ¢ (n) is the number of k € {0, 1, ...,n — 1} such that
gcd(k,n) = 1). In particular we have

a?™ =1 (mod n) for any integer a such that gcd(a,n) = 1.



The function @ (n) has the following properties:
1.o(nn') = p(m)en') if med(n,n’) = 1.
2. 1fpisprime, p(p") =p" 1(p —1).

Proposition. ., ¢(d) = n.



Construction of finite fields

A. If F is a finite field of cardinal g, then there exists a prime number p
and a positive integer r such that ¢ = p". The number p is called the cha-
racteristic of F.

B. If F is a finite field and K a subfield of F with cardinal g, then there is
positive integer r such that |F| = q". If L is another subfield of F such
that K € L, then |L| = g°, where s is a divisor of r.

The converse of A is also valid: if p is a prime number and r is a positive
integer, then there exist fields of cardinal g = p”. Moreover, two fields of
cardinal p" are isomorphic (not canonically).

Let us summarize the essential ideas that are involved in proving these
statements.
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If K is afield,and f = ag + a; X + -+ a,_{X""1 + X" € K[X], then we
have the quotient ring F = K|[X]/(f). This ring is a K-vector space of di-
mension 1. More explicitely, if x = [X] (the class of X mod f), then
1,x, ...,x"1is a basis of F over K. In particular we have that if K is finite

and |K| = g, then |f| = q".

The ring F is a field if and only if f is irreductible over K. Therefore, we
know how to construct a field of p” elements (p prime and r a positive
integer) if we know an irreducible polynomial of degree r over Z,,. Thus
we have that the existence of a finite field of cardinal p" is a consequence
of the following result.

Theorem. If K is a finite field, and r is any positive integer, there exist ir-
reducible polynomials over K of degree r.
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Remark. For r = 2, the number of monic reducible polynomials is
(g + 1)g/2, while the number of monic polynomials of degre 2 is g2.
Hence the number of monic irreducible polynomials of degree 2 over K is

I, =q(q—-1)/2.
A similar reasoning is valid for monic polynomial of degree 3. Indeed,

there are g2 monic polynomials of degree 3, while the number of monic
reducible polynomials of degree 3 is

2
_q+2y,1@=-1) 2,1
Rq_( 3 )+ 7 39 *3

(the first summand counts polynomials that are the product of three

monic linear factors and the second those that are the product of a monic
linear factor and monic quadratic factor. It follows that the number of
monic irreducible polynomials of degree 3 is

q
l3=¢>—Rg="7-73.



Example. Z,[X]/(X? + X + 1) is a field of 4 elements.
Example. Z,[X]/(X3 + X + 1) ) is a field of 8 elements.

Examples. If a € K, K a field, X* — a is irreducible over K if and only if a
is not a square in K. For example, X% + 1 is irreducible over 4., as the
squares in Zs are 0 and 1. Similarly, the squares of Z- are 0, 1, 4 and 2,
and hence the polynomials

X*—3=X*4+4,X*-5=X*4+2, X*-6=X*+1
are irreducible over Z-.

Examples. |f a € K, X — a is irreducible over K if and only if a is not a
cube in K. Since the cubes in Z- are 0, 1 and 6, the polynomials

X3—-2=X3+45X3-3=X3+4X>-4=X>+3 and X>—-5=X3+2

are irreducible over Z-.



The Frobenius automorphism

In a finite field F of characteristic p, the map F — F such that x = xP is
an automorphism of F. It is called the Frobenius automorphism of F.

The subfield of the elements x € F such that x? = x is Zp.

If K is a subfield of F, and |K| = g, the map F — F such that x —» x% is

an automorphism of F over K. It is called the Frobenius automorphism of
F relative to K.

The subfield of the elements x € F such that x4 = x is K.



Splitting field of a polynomial

Theorem. Given a field K and a monic polynomial f € K|[X], there exists
a field extension L/K and elements a4, ..., a,- € L such that

f — H§=1(X — CK]) and L = K(al, ---;a”r)'

Proof. Let r be the degree of f. If r = 1, it is sufficient to set L = K. So
we may suppose that r > 1, and, by induction, that the theorem is true
for polynomials of degree r — 1.

If every irreducible factor of f has degree 1, then f has r roots in K and
again we can set L = K. We may suppose, therefore, that f has at least
one irreducible factor, say g, of degree > 1. Define K' = K[X]/(g) and
a = [X]. Then the field extension K’ /K and the element @ € K’ are such
that K’ = K(a) and g(a) = 0. Since g divides f, we also have f(a) = 0,
and hence f' = f/(X — a) € K'[X]. Now the proof follows by induction
applied to f. O
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A field L that satisfies the conditions of the preceding theorm is called a
splitting field of f over K.

Theorem (Splitting field of X4 — X). Let K be a finite field and qg = |K]|.
Let L be a decomposition field of h = X9 — X over K. Then |L| = q".

Proof. By definition of decomposition field, there exist elements a; € L,
i=1,..,q9", such that
XU - X =TIL, (X —a)) and L = K(ay, ..., azr).

The elements «; are different, for otherwise h and h’ would have a com-
mon root, which is impossible because h' = —1. On the other hand, the

set {al, ...,aqr} of roots of h in L is a subfield of L. Indeed, if « and [ are
roots of h then

(@a—B) =a? —B? =a—p and (aB)? =a? B9 =ap,

and if a is a non-zero root of h, then



11
(1/0)? =1/a? =1/a
(thatis, @« — B, aff are roots of h, and sois 1/« if @ + 0). Since A9 = A for
every A € K, the elements of K are also roots of h. It follows that
L= K(al, ...,aqr) = {al, . aqr}
and consequently |L| = q". u

Corollary (Existence of finite fields). If p is a prime number and r a posi-
tive integer, there exists a field of cardinal p™.

Proof. The cardinal of the splitting field of X' — X over Ly isp". O

Corollary. Given a field L such that |[L| = p" and a divisor s of r, there ex-
ists a unique subfield of L of cardinal p°.

st —

Proof. If r = st and we set ¢ = p%, then |L| = p" = p5t = q*. If thereisa
subfield K of L of cardinal g, it must be K = {a € L | a? = a}. Let, then,
K ={a €L|a? = a}. Since the elements of K are the elements of L
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that are fixed by the automorphism a —» a4, K is a subfield of L. To see
that the cardinal of K is g, notice that X' — X is divisible by X9 — X:

XV —x =X —x =x(x0"1—1) = x(x@Dm 1) = x(X9"1 — 1)(--)

Thus X9 — X has g roots in L and this completes the proof. O

Structure of the multiplicative group of a finite field

Order of an element. If K is a finite field and a is a non-zero element of
K, the order of a, ord(a), is the least positive integer r such that a” = 1.
Note that r exists and that it is a divisor of ¢ — 1 (g the cardinal of K).
Moreover, r > 1 except for a = 1.

Example. In Z< we have ord(2) = ord(3) = 4 and ord(4) = 2.
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Proposition. Let K be a finite field, « € K — {0} and r = ord(«).

1. If x € K — {0} is such that x” = 1, then there exists an integer k such

that x = a*.

2. For every integer k, ord(a®) = r/ gcd(k, 7).

3. The elements of order r of K have the form a*, with gcd(k,r) = 1. In
particular we have that if there exists an element of order r, then there
are exactly @ (r) elements of order r.

Proof. Consider the polynomial f = X" — 1 € K[X]. Since f has degree r
and K is a field, f has at most r roots in K. Since r is the order of a, all
the elements of the subgroup

R={1,qa,..,a" 1}

are roots of f and hence f has no roots other than the elements of R.
Since x is a root of f by hypothesis, x € R. This settles point 1.
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To establish 2, let d = gcd(r, k) and s = r/d. We want to see that a”
has order s. If (ak) = 1, then a®™ = 1 and hence r|km. Dividing by d

we see that S|(m(k/d)). As s and k/d have no common primer divisors,
it follows that s|m. Finally it is clear that

(ak)s — gkr/d) — or(k/d) — 1
and this completes the proof of 2.
Finally 3 is a direct consequence of 1, 2 and the definition of ¢ (7). O

Primitive roots. A non-zero element a of a finite field K of cardinal
q =p'" is said to be a primitive root (or a primitive element) of K if
ord(a) = g — 1. In this case it is clear that

K*={1,a,.., a97?}.
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This representation of the elements of K is called exponential representa-
tion relative to a primitive root a. With this representation, the product
of elements of K is particularly easy to obtain:

a‘a’ = a¥, wherek =i+ jmodqg—1.
Examples. The elements 2 and 3 are the primitive roots of Zs.

Theorem. Let K be a finite field of cardinal g and d a positive integer. If
d|(q — 1), then K contains exactly ¢(d) elements of order d.

Proof. Let p(d) be the number of elements of K that have order d. It is
clear that

2d|q-npd) =q—1,

as the order of any non-zero element is a divisor of ¢ — 1. Now observe
that p(d) = ¢(d) if p(d) # 0 and that X 44-1)@(d) = q — 1, with

which the proof is easily completed. O
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Proposition. Let L be a finite field, K a subfield of L and g = |K]|. Let  be
the positive integer such that |L| = q". If a is a primitive element of L,

then 1,q,...,a" 1is a basis of L as a K-vector space.

Proof. If a €L and 1,q,...,a”" ! are linearly dependent over K, there
would exist ay, ..., a,_1 € K, not all zero, such that

ap +a;a+ - a,_ja’ 1 =0.
If we let
h=ay+a X+ a1 X"t eK[X],

then h is a polynomial of positive degree < r such that h(a) = 0. It fol-
lows that there exists a monic irreducible polynomial f € K[X] of degree
< r such that f(a) = 0. This implies that the kernel of the homomor-
phism K[X] — L such that g —» g(a) is the ideal (f) and therefore that
there is an inclusion of the field K’ = K[X]/(f) in L that is the identity
on K and such that it maps x = [X]f to a.
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But then the order of a divides |K'| —1=qg9¢8U) —1 < q¢" —1 and «
would not be a primitive root. O

Primitive polynomials. If f is an irreducible polynomial of degree r over
Ly, p @ prime, then

Zp(x) — Zp[X]/(f)

is a field of cardinal p”, where x is the class of X mod f. The element x
may be primitive or not. In the case Z,(x) = Z,[X]/(X* + X + 1), for
example, it is primitive, but in the case Zs(x) = Z3[X]/(X? + 1),
ord(x) = 4.



18

Proposition. Let K be a finite field and f € K|X] a monic irreducible po-
lynomial, f # X. Let x be the class of X in L = K[X]/(f). If m = deg(f),
then ord(x) is the least divisor d of g™ — 1 such that f|(X% — 1).

Proof. The order of x is the least divisor d of
IL| -1 =qm™ -1

such that x% = 1. But this is equivalent to say that X¢ — 1is 0 mod f,
which is the same as asserting that X¢ — 1 is a multiple of f. O

If x is a primitive root, we say that f is primitive over Z,,. The least divisor
d of g™ — 1 such that f|(X% — 1) is called the period (or exponent) of f.
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The discrete logarithm

Suppose that L is a finite field and that a € L is a primitive element of L.
Let K be a subfield of L and let g = |K|, r = dimg(L). We know that
1,a,.., a1 form a basis of L over K, so that the elements of L can be
uniquely written in the form

1

a, +aa+--a,._qa""+, ay,..,a,_1 €EK.

This representation of the elements of L is called additive representation
over K relative to the primitive root «.

With the additive representation the sum of two elements of L is reduced
to the sum of two vectors of K”. To calculate products, however, it is
more convenient to use the exponential representation with respect to
the primitive element a. More concretely, if x,y € L* and we know the
exponents i, j such that x = at y = a’, then

xy=a't/=a% k=i+jmodq—1, q=|L|.
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Given x, we write ind(x) to indicate the exponent i (defined mod g — 1)
such that x = a' and we say that it is the index or discrete logarithm of x
with respect to «.

In order to be able to use the additive and exponential representations at
the same time, it is convenient to tabulate the additive form of the pow-

ersat (r<i<q-2),

at =a;+apa+a a7

as this allows us to pass from the exponential form to the additive form
and conversely. This table is often completed by assigning a conventional

symbol (say — or o0) as the index of 0.

Given a table of discrete logarithms, we can form the Zech (or Jacobi) ta-
ble, which by definition associates the index Z(i) = ind (1 + a') to the
exponent i. With this we can get exponential representation of a sum

al + a’l as ai(l + aj_i) = q'*t20-0),



C(k

0000

0001

0010

0100

1000

0011

x |ind(x) x |ind(x)
0000, — 1000 3
0001 0 1001, 14
0010 1 1010 9
0011 4 1011 7/
0100 2 1100 6
0101 8 1101 13
0110 5 1110] 11
0111} 10 1111 12

0110

O uh,WNE O

1100

k| af |Z(k)
/711011 9
8 {0101 2
9 {1010| 7
10/0111] 5
111110 12
1211111 11
1311101 6
1411001 3

Discrete logaritme and Zech table of Z,(a) = Z,[X]/(X* + X + 1)

21
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Minimal polynomial

Let L be finite field and K a subfield. Let g = |K|. Then |L| = q™, for
some positive integer m.

Givena € L, the m + 1 elements 1, «, ..., a™ are linearly dependent over
K. Hence there exist a,, ..., a,,; € K not all zero such that

ap +aa+ - ana™ =
This means that if

f=ag+a X+ apX™,
then f # 0 and

f(a) = 0.
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Proposition. There exists a unique monic polynomial p € K|[X] that satis-
fies the following two conditions:

1.p(a) = 0.

2.If f € K[X] satisfies f(a) = 0, then p|f.
The polynomial p is irreducible and satisfies

3. deg(p) < m.

Proof. Among all the monic polynomials that satisfy f(a) = 0, pick one,
say p, of least degree. It is clear that deg(p) < m, as we have observed
that there exist non-zero polynomials f of degree < m such that
f(a) = 0. If now f is any polynomial such that f(a) = 0, let g and r be
the quotient and remainder of the integer division of f by p:

f=gp+r, with r =0 or deg(r) < deg(p).
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Since f(a) = p(a) = 0, we also have r(a) = 0. It follows that r = 0, for
otherwise we would have a contradiction with the definition of p. But
this means that p|f, which is the property 2.

To see that p is unique, let p’ be another monic polynomial that satisfies
1 and 2. Then p|p’ (we can apply 2 to p’, as p'(a) = 0). Similarly, p’|p.
This implies that p’ = Ap, for some 1 € K*. Since p and p’ are monic, we
conclude thatp = p'.

To prove that p is irreducible, suppose that p = gh, g,h € K[X]. Then
g(a) = 0 or h(a) = 0. Without loss of generality we may assume that
g(a) = 0. Then g = pg’ for some polynomial g'. Thus p = gh = pg'h
and hence g'h is a constant polynomial. Consequently g’ and h are con-
stants and therefore the factorization p = gh is not proper. Hence p is
irreducible. O
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The polynomial p of last proposition is called the minimal polynomial of
a over K, and usually will be denoted p,. The degree of p, is also called
degree of a, and is denoted deg(a).

Remark. Note that deg(a) is the least positive integer r such that
a’ €(l,a,..,a" " 1),

Remark. There exists a unique K-isomorphism
K|X]/(p,) = K[a] such that x = a,

where x = [X]. Thus we see that the degree of a coincides with the di-
mension of K|a] over K. For example, if a is a primitive element of L,
then deg(a) = m, as K[a] = L.

Remark. If f € K[X] is a monic irreducible polynomial and « is a root of f
in an extension L of K, then f is the minimal polynomial of a over K.
Note, in particular, that if K[x] = K|X]/(f), then f is the minimal poly-
nomial of x over K.
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Example. let K=17,, K =K[X]/(X*?+X+1), x=[X], L=
K'[Y]/(Y24+xY +1), y=][Y]. Then y*=xy+1€(1,y)g, which
amounts to rediscovering that the minimal polynomial of y over K' is
Y2+ xY + 1. But y* & (1, y)k, so that the minimal polynomial of y over
K has degree > 2. Since y> = xy + x € (1,y,y%)x and y* = y3 + y% +
y + 1, the minimal polynomial of y over K is

Y*+Y34+Y24+Y +1.
Notice that this polynomial is not primitive, as ord(y) = 5.

Conjugates of an element. The set C, of conjugates over K of an element
a € L is defined as

C, = {a,aq,aqz, ...,aqr_l} ,
where 7 is the least positive integer such that

al = q.
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Proposition. p, = [lgec (X — B).

Proof. We will use the extension of the Frobenius automorphism of L/K
to the automorphism of the ring L[X] such that

ap+a X+-+a,X"—al +alX+-+alxm
The polynomial

f=1lpec, X = B)

is invariant by this automorphism, as f — 9 permutes the elements of
C,. Hence f € K[X]. Now observe that if § € L is a root of p,, then S is
also a root of p,, as seen by applying the Frobenius automorfisme of L /K
to the relation p,(B) = 0. Applying this observation repeatedly begin-
ning with the root a of p,, we obtain that p,(f) = 0 for any S € C,.
Hence, f|p,. But since p, is irreducible and f has positive degree, we
conclude that f = p,, inasmuch as both polynomials are monic. O]
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Uniqueness of the finite fields with the same cardinal

Theorem. If K and K' are finite fields with the same cardinal g, then there
exists an isomorphism ¢: K — K'.

Proof. If g = p", Z, is a subfield of K and of K'. Consider the polynomial
X7 —X € Z,[X].

Regarded as a polynomial with coefficients in K, we have
XT—X =[lgex X — @) .

Analogously,
X=X =]lgrex X —a').

Let a be a primitive element of K and f € Z,[X] its minimal polynomial.

We know that deg(f) = r. Since all the roots of f are in K, we also have

flI(x? =t —1)



29

as polynomials with coefficients in K. But since these polynomials are

monic and with coefficients in Z,, the relation f|(Xpr‘1 — 1) is also valid

as polynomials with coefficients in Z,. The polynomial XP'~1 1 also

factors completely in K’ and thereby f has a root @’ € K'. From this it fol-
lows that there is a unique isomorphism

Z,[X1/(f) = Zpla'] = K’
such that x = [X] » «’. But there is also a unique isomorphism
Z,[X)/(f) = Zyla] = K

such that x = [X] » a. As a result, there is a unique isomorphism
K =~ K' suchthata » «'. O
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Factorization of X™ — 1 over a finite field F = IFq

The solution of this question turns out to be of fundamental importance
for the study of cyclic codes. If ¢ = p”, p prime, and we put n = p*n’,
p t n’, then we have

k

xn—1=(x"-1)" .
This shows that we can assume that n is not divisible by p.

Field of decomposition of X™ — 1. The condition p { n tells us that
lq],, € Z;,. Hence we may consider the order m of [g],, in Z;,. By defini-
tion, m is the least positive integer such that

q™ =1 (n).
In other words, m is the least positive integer such that

nl(g™—-1).
We write e,,(q) to denote it.
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Let now h € F|X]| be any monic irreducible polynomial of degree
m = e, (q) and define

F' = F[X]/(R) (F' = Fgm).

Let o be a primitive element of F’ (if we chose h primitive, we can take
a = |X];). Then, by definition of m, ord(a) = g™ — 1 is divisible by n.
Set

r=(@"—1)/nand w =a".
Proposition. Over F' we have

X" —1=[15X — w’).
Proof. Since

ord(w) = (@™ —=1)/r =n,
the set

R={w/|0<j<n-1}
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has cardinal n. Moreover, w’ is a root of X™ — 1 for all j, because
1) .
(a)f) = (")) =1.
Hence the set R contains n distinct roots of X™ — 1. It follows that

]_[?;&(X — w’) is a monic polynomial of degree n that divides X™ — 1.

Since both polynomials are monic of degree n, they must coincide.

Proposition. F' = F[w] and so F' is the splitting field of X™ — 1 over F.

Proof. Indeed, if |F[w]| = q°, then n = ord(w) must divide g° — 1 and,
by definition of m, we get s = m.



33
Cyclotomic classes

Given an integer j in 0..(n — 1), the g-cyclotomic class of j mod n is the
set

G =4, .97},
where t is the least positive integer such that gtj = j (modn).
If C is a g-cyclotomic class mod n, we define

fc =ljecX — w’) .

Lemma. The polynomial f. has coefficients in F for every g-cyclotomic
class C.

Proof. It is enough to note that f. is invariant by the Frobenius automor-
phism.



34

Theorem. The correspondence C = f. is a bijection between the set of
q-cyclotomic classes mod n and the set of monic irreducible factors of
X" —1overkF.

Proof. The fact that the g-cyclotomic classes mod n form a partition of
{0,1,..,n — 1}, and the factoritzation fr = [[jec(X — w’), imply that
the factorization X™ — 1 =[], fc, where C runs over the g-cyclotomic
classes mod n. It is therefore enough to show that f. € F[X] is irreduci-
ble for any class C. To see this, note that

{a)f|jEC}

is the set of conjugates of anyone of its elements, so that f. is the mi-

nimal polynomial of w’ for anyj € C.
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Notes

N1. If A is a ring with multiplicative unit (usually dented 1, or 1,), then
the set A™ of invertible elements of A forms a grup with the product op-
eration of A.

Examples. 7 = {+1}. A is a field if and only if A* = A — {0}. If K is a
field, K[X]* = K*. If M,,(K) is the ring of square matrices of dimension n,
then M,,(K)* = GL(n, K), the linear grup over K of dimension n.

N2. If G is a finite grup of order n, then a™ = e for any a € G (e denotes
the identity element of ). Indeed, there is a least positive integer r such
that a” = e. Since {e = a°, a, ...,a" '} is a subgroup of order r of G, we
know that r|n (Lagrange lemma) and this clearly implies the assertion.



