

TC10 / 3. Finite fields

S. Xambó

- The ring \mathbb{Z}_n
- Construction of finite fields
- The Frobenius automorphism
- Splitting field of a polynomial
- Structure of the multiplicative group of a finite field
- Structure of the multiplicative group of a finite field
- The discrete logarithm
- Minimal polynomial
- Uniqueness of the finite fields with the same cardinal
- Factorization of $X^n - 1$ over a finite field $F = \mathbb{F}_q$

The ring \mathbb{Z}_n

Set \mathbb{Z}_n to denote the ring $\mathbb{Z}/(n)$ of classes of integers modulo n . We usually represent its elements by the elements of the set $\{0, 1, \dots, n - 1\}$, with the operations of sum and product the ordinary sum and product of integers, but reduced modulo n .

We will also set \mathbb{Z}_n^* to denote the multiplicative group of invertible elements of \mathbb{Z}_n .^{N1}

An element $k \in \{0, 1, \dots, n - 1\}$ is invertible modulo n if and only if $\gcd(k, n) = 1$. In particular we see that \mathbb{Z}_n is a field if and only if n is prime.

We have, therefore, $|\mathbb{Z}_n^*| = \varphi(n)$, where $\varphi(n)$ is Euler's (totient) function (by definition, $\varphi(n)$ is the number of $k \in \{0, 1, \dots, n - 1\}$ such that $\gcd(k, n) = 1$). In particular we have

$$a^{\varphi(n)} \equiv 1 \pmod{n} \text{ for any integer } a \text{ such that } \gcd(a, n) = 1. \text{^{N2}}$$

The function $\varphi(n)$ has the following properties:

1. $\varphi(nn') = \varphi(n)\varphi(n')$ if $\text{mcd}(n, n') = 1$.
2. If p is prime, $\varphi(p^r) = p^{r-1}(p - 1)$.

Proposition. $\sum_{d|n} \varphi(d) = n$.

Construction of finite fields

A. If F is a finite field of cardinal q , then there exists a prime number p and a positive integer r such that $q = p^r$. The number p is called the *characteristic* of F .

B. If F is a finite field and K a subfield of F with cardinal q , then there is positive integer r such that $|F| = q^r$. If L is another subfield of F such that $K \subseteq L$, then $|L| = q^s$, where s is a divisor of r .

The converse of A is also valid: if p is a prime number and r is a positive integer, then there exist fields of cardinal $q = p^r$. Moreover, two fields of cardinal p^r are isomorphic (not canonically).

Let us summarize the essential ideas that are involved in proving these statements.

If K is a field, and $f = a_0 + a_1X + \cdots + a_{r-1}X^{r-1} + X^r \in K[X]$, then we have the quotient ring $F = K[X]/(f)$. This ring is a K -vector space of dimension r . More explicitly, if $x = [X]_f$ (the class of X mod f), then $1, x, \dots, x^{r-1}$ is a basis of F over K . In particular we have that if K is finite and $|K| = q$, then $|f| = q^r$.

The ring F is a field if and only if f is irreducible over K . Therefore, we know how to construct a field of p^r elements (p prime and r a positive integer) if we know an irreducible polynomial of degree r over \mathbb{Z}_p . Thus we have that the existence of a finite field of cardinal p^r is a consequence of the following result.

Theorem. If K is a finite field, and r is any positive integer, there exist irreducible polynomials over K of degree r .

Remark. For $r = 2$, the number of monic reducible polynomials is $(q + 1)q/2$, while the number of monic polynomials of degree 2 is q^2 . Hence the number of monic irreducible polynomials of degree 2 over K is $I_2 = q(q - 1)/2$.

A similar reasoning is valid for monic polynomial of degree 3. Indeed, there are q^3 monic polynomials of degree 3, while the number of monic reducible polynomials of degree 3 is

$$R_q = \binom{q+2}{3} + \frac{q^2(q-1)}{2} = \frac{2}{3}q^3 + \frac{1}{3}q$$

(the first summand counts polynomials that are the product of three monic linear factors and the second those that are the product of a monic linear factor and monic quadratic factor. It follows that the number of monic irreducible polynomials of degree 3 is

$$I_3 = q^3 - R_q = \frac{q^3}{3} - \frac{q}{3}.$$

Example. $\mathbb{Z}_2[X]/(X^2 + X + 1)$ is a field of 4 elements.

Example. $\mathbb{Z}_2[X]/(X^3 + X + 1)$ is a field of 8 elements.

Examples. If $a \in K$, K a field, $X^2 - a$ is irreducible over K if and only if a is not a square in K . For example, $X^2 + 1$ is irreducible over \mathbb{Z}_3 , as the squares in \mathbb{Z}_3 are 0 and 1. Similarly, the squares of \mathbb{Z}_7 are 0, 1, 4 and 2, and hence the polynomials

$$X^2 - 3 = X^2 + 4, \quad X^2 - 5 = X^2 + 2, \quad X^2 - 6 = X^2 + 1$$

are irreducible over \mathbb{Z}_7 .

Examples. If $a \in K$, $X^3 - a$ is irreducible over K if and only if a is not a cube in K . Since the cubes in \mathbb{Z}_7 are 0, 1 and 6, the polynomials

$$X^3 - 2 = X^3 + 5, \quad X^3 - 3 = X^3 + 4, \quad X^3 - 4 = X^3 + 3 \quad \text{and} \quad X^3 - 5 = X^3 + 2$$

are irreducible over \mathbb{Z}_7 .

The Frobenius automorphism

In a finite field F of characteristic p , the map $F \rightarrow F$ such that $x \mapsto x^p$ is an automorphism of F . It is called the *Frobenius automorphism* of F .

The subfield of the elements $x \in F$ such that $x^p = x$ is \mathbb{Z}_p .

If K is a subfield of F , and $|K| = q$, the map $F \rightarrow F$ such that $x \mapsto x^q$ is an automorphism of F over K . It is called the *Frobenius automorphism of F relative to K* .

The subfield of the elements $x \in F$ such that $x^q = x$ is K .

Splitting field of a polynomial

Theorem. Given a field K and a monic polynomial $f \in K[X]$, there exists a field extension L/K and elements $\alpha_1, \dots, \alpha_r \in L$ such that

$$f = \prod_{j=1}^r (X - \alpha_j) \text{ and } L = K(\alpha_1, \dots, \alpha_r).$$

Proof. Let r be the degree of f . If $r = 1$, it is sufficient to set $L = K$. So we may suppose that $r > 1$, and, by induction, that the theorem is true for polynomials of degree $r - 1$.

If every irreducible factor of f has degree 1, then f has r roots in K and again we can set $L = K$. We may suppose, therefore, that f has at least one irreducible factor, say g , of degree > 1 . Define $K' = K[X]/(g)$ and $\alpha = [X]$. Then the field extension K'/K and the element $\alpha \in K'$ are such that $K' = K(\alpha)$ and $g(\alpha) = 0$. Since g divides f , we also have $f(\alpha) = 0$, and hence $f' = f/(X - \alpha) \in K'[X]$. Now the proof follows by induction applied to f' . □

A field L that satisfies the conditions of the preceding theorem is called a *splitting field* of f over K .

Theorem (Splitting field of $X^{q^r} - X$). Let K be a finite field and $q = |K|$.

Let L be a decomposition field of $h = X^{q^r} - X$ over K . Then $|L| = q^r$.

Proof. By definition of decomposition field, there exist elements $\alpha_i \in L$, $i = 1, \dots, q^r$, such that

$$X^{q^r} - X = \prod_{i=1}^{q^r} (X - \alpha_i) \text{ and } L = K(\alpha_1, \dots, \alpha_{q^r}).$$

The elements α_i are different, for otherwise h and h' would have a common root, which is impossible because $h' = -1$. On the other hand, the set $\{\alpha_1, \dots, \alpha_{q^r}\}$ of roots of h in L is a subfield of L . Indeed, if α and β are roots of h then

$$(\alpha - \beta)^{q^r} = \alpha^{q^r} - \beta^{q^r} = \alpha - \beta \text{ and } (\alpha\beta)^{q^r} = \alpha^{q^r}\beta^{q^r} = \alpha\beta,$$

and if α is a non-zero root of h , then

$$(1/\alpha)^{q^r} = 1/\alpha^{q^r} = 1/\alpha$$

(that is, $\alpha - \beta$, $\alpha\beta$ are roots of h , and so is $1/\alpha$ if $\alpha \neq 0$). Since $\lambda^q = \lambda$ for every $\lambda \in K$, the elements of K are also roots of h . It follows that

$$L = K(\alpha_1, \dots, \alpha_{q^r}) = \{\alpha_1, \dots, \alpha_{q^r}\}$$

and consequently $|L| = q^r$. □

Corollary (Existence of finite fields). If p is a prime number and r a positive integer, there exists a field of cardinal p^r .

Proof. The cardinal of the splitting field of $X^{p^r} - X$ over \mathbb{Z}_p is p^r . □

Corollary. Given a field L such that $|L| = p^r$ and a divisor s of r , there exists a unique subfield of L of cardinal p^s .

Proof. If $r = st$ and we set $q = p^s$, then $|L| = p^r = p^{st} = q^t$. If there is a subfield K of L of cardinal q , it must be $K = \{\alpha \in L \mid \alpha^q = \alpha\}$. Let, then, $K = \{\alpha \in L \mid \alpha^q = \alpha\}$. Since the elements of K are the elements of L

that are fixed by the automorphism $\alpha \mapsto \alpha^q$, K is a subfield of L . To see that the cardinal of K is q , notice that $X^{p^r} - X$ is divisible by $X^q - X$:

$$X^{p^r} - X = X^{q^t} - X = X(X^{q^{t-1}} - 1) = X(X^{(q-1)m} - 1) = X(X^{q-1} - 1)(\cdots)$$

Thus $X^q - X$ has q roots in L and this completes the proof. \square

Structure of the multiplicative group of a finite field

Order of an element. If K is a finite field and α is a non-zero element of K , the *order* of α , $\text{ord}(\alpha)$, is the least positive integer r such that $\alpha^r = 1$. Note that r exists and that it is a divisor of $q - 1$ (q the cardinal of K). Moreover, $r > 1$ except for $\alpha = 1$.

Example. In \mathbb{Z}_5 we have $\text{ord}(2) = \text{ord}(3) = 4$ and $\text{ord}(4) = 2$.

Proposition. Let K be a finite field, $\alpha \in K - \{0\}$ and $r = \text{ord}(\alpha)$.

1. If $x \in K - \{0\}$ is such that $x^r = 1$, then there exists an integer k such that $x = \alpha^k$.
2. For every integer k , $\text{ord}(\alpha^k) = r / \text{gcd}(k, r)$.
3. The elements of order r of K have the form α^k , with $\text{gcd}(k, r) = 1$. In particular we have that if there exists an element of order r , then there are exactly $\varphi(r)$ elements of order r .

Proof. Consider the polynomial $f = X^r - 1 \in K[X]$. Since f has degree r and K is a field, f has at most r roots in K . Since r is the order of α , all the elements of the subgroup

$$R = \{1, \alpha, \dots, \alpha^{r-1}\}$$

are roots of f and hence f has no roots other than the elements of R . Since x is a root of f by hypothesis, $x \in R$. This settles point 1.

To establish 2, let $d = \gcd(r, k)$ and $s = r/d$. We want to see that α^k has order s . If $(\alpha^k)^m = 1$, then $\alpha^{km} = 1$ and hence $r|km$. Dividing by d we see that $s|(m(k/d))$. As s and k/d have no common prime divisors, it follows that $s|m$. Finally it is clear that

$$(\alpha^k)^s = \alpha^{k(r/d)} = \alpha^{r(k/d)} = 1$$

and this completes the proof of 2.

Finally 3 is a direct consequence of 1, 2 and the definition of $\varphi(r)$. □

Primitive roots. A non-zero element α of a finite field K of cardinal $q = p^r$ is said to be a *primitive root* (or a *primitive element*) of K if $\text{ord}(\alpha) = q - 1$. In this case it is clear that

$$K^* = \{1, \alpha, \dots, \alpha^{q-2}\}.$$

This representation of the elements of K is called *exponential representation* relative to a primitive root α . With this representation, the product of elements of K is particularly easy to obtain:

$$\alpha^i \alpha^j = \alpha^{i+j}, \text{ where } k = i + j \bmod q - 1.$$

Examples. The elements 2 and 3 are the primitive roots of \mathbb{Z}_5 .

Theorem. Let K be a finite field of cardinal q and d a positive integer. If $d|(q - 1)$, then K contains exactly $\varphi(d)$ elements of order d .

Proof. Let $p(d)$ be the number of elements of K that have order d . It is clear that

$$\sum_{d|(q-1)} p(d) = q - 1,$$

as the order of any non-zero element is a divisor of $q - 1$. Now observe that $p(d) = \varphi(d)$ if $p(d) \neq 0$ and that $\sum_{d|(q-1)} \varphi(d) = q - 1$, with which the proof is easily completed. \square

Proposition. Let L be a finite field, K a subfield of L and $q = |K|$. Let r be the positive integer such that $|L| = q^r$. If α is a primitive element of L , then $1, \alpha, \dots, \alpha^{r-1}$ is a basis of L as a K -vector space.

Proof. If $\alpha \in L$ and $1, \alpha, \dots, \alpha^{r-1}$ are linearly dependent over K , there would exist $a_0, \dots, a_{r-1} \in K$, not all zero, such that

$$a_0 + a_1\alpha + \dots + a_{r-1}\alpha^{r-1} = 0.$$

If we let

$$h = a_0 + a_1X + \dots + a_{r-1}X^{r-1} \in K[X],$$

then h is a polynomial of positive degree $< r$ such that $h(\alpha) = 0$. It follows that there exists a monic irreducible polynomial $f \in K[X]$ of degree $< r$ such that $f(\alpha) = 0$. This implies that the kernel of the homomorphism $K[X] \rightarrow L$ such that $g \mapsto g(\alpha)$ is the ideal (f) and therefore that there is an inclusion of the field $K' = K[X]/(f)$ in L that is the identity on K and such that it maps $x = [X]_f$ to α .

But then the order of α divides $|K'| - 1 = q^{\deg(f)} - 1 < q^r - 1$ and α would not be a primitive root. \square

Primitive polynomials. If f is an irreducible polynomial of degree r over \mathbb{Z}_p , p a prime, then

$$\mathbb{Z}_p(x) = \mathbb{Z}_p[X]/(f)$$

is a field of cardinal p^r , where x is the class of X mod f . The element x may be primitive or not. In the case $\mathbb{Z}_2(x) = \mathbb{Z}_2[X]/(X^2 + X + 1)$, for example, it is primitive, but in the case $\mathbb{Z}_3(x) = \mathbb{Z}_3[X]/(X^2 + 1)$, $\text{ord}(x) = 4$.

Proposition. Let K be a finite field and $f \in K[X]$ a monic irreducible polynomial, $f \neq X$. Let x be the class of X in $L = K[X]/(f)$. If $m = \deg(f)$, then $\text{ord}(x)$ is the least divisor d of $q^m - 1$ such that $f|(X^d - 1)$.

Proof. The order of x is the least divisor d of

$$|L| - 1 = q^m - 1$$

such that $x^d = 1$. But this is equivalent to say that $X^d - 1$ is $0 \bmod f$, which is the same as asserting that $X^d - 1$ is a multiple of f . \square

If x is a primitive root, we say that f is *primitive* over \mathbb{Z}_p . The least divisor d of $q^m - 1$ such that $f|(X^d - 1)$ is called the *period* (or *exponent*) of f .

The discrete logarithm

Suppose that L is a finite field and that $\alpha \in L$ is a primitive element of L . Let K be a subfield of L and let $q = |K|$, $r = \dim_K(L)$. We know that $1, \alpha, \dots, \alpha^{r-1}$ form a basis of L over K , so that the elements of L can be uniquely written in the form

$$a_0 + a_1\alpha + \cdots + a_{r-1}\alpha^{r-1}, \quad a_0, \dots, a_{r-1} \in K.$$

This representation of the elements of L is called *additive representation* over K relative to the primitive root α .

With the additive representation the sum of two elements of L is reduced to the sum of two vectors of K^r . To calculate products, however, it is more convenient to use the exponential representation with respect to the primitive element α . More concretely, if $x, y \in L^*$ and we know the exponents i, j such that $x = \alpha^i, y = \alpha^j$, then

$$xy = \alpha^{i+j} = \alpha^k, \quad k = i + j \bmod q - 1, \quad q = |L|.$$

Given x , we write $\text{ind}(x)$ to indicate the exponent i (defined mod $q - 1$) such that $x = \alpha^i$ and we say that it is the *index* or *discrete logarithm* of x with respect to α .

In order to be able to use the additive and exponential representations at the same time, it is convenient to tabulate the additive form of the powers α^i ($0 \leq i \leq q - 1$),

$$\alpha^i = a_{i0} + a_{i1}\alpha + \cdots + a_{i,r-1}\alpha^{r-1},$$

as this allows us to pass from the exponential form to the additive form and conversely. This table is often completed by assigning a conventional symbol (say $-$ or ∞) as the index of 0.

Given a table of discrete logarithms, we can form the *Zech* (or *Jacobi*) table, which by definition associates the index $Z(i) = \text{ind} (1 + \alpha^i)$ to the exponent i . With this we can get exponential representation of a sum $\alpha^i + \alpha^j$ as $\alpha^i(1 + \alpha^{j-i}) = \alpha^{i+Z(j-i)}$.

x	$\text{ind}(x)$
0000	—
0001	0
0010	1
0011	4
0100	2
0101	8
0110	5
0111	10

x	$\text{ind}(x)$
1000	3
1001	14
1010	9
1011	7
1100	6
1101	13
1110	11
1111	12

k	α^k	$Z(k)$
—	0000	0
0	0001	—
1	0010	4
2	0100	8
3	1000	14
4	0011	1
5	0110	10
6	1100	13

k	α^k	$Z(k)$
7	1011	9
8	0101	2
9	1010	7
10	0111	5
11	1110	12
12	1111	11
13	1101	6
14	1001	3

Discrete logarithme and Zech table of $\mathbb{Z}_2(\alpha) = \mathbb{Z}_2[X]/(X^4 + X + 1)$

Minimal polynomial

Let L be finite field and K a subfield. Let $q = |K|$. Then $|L| = q^m$, for some positive integer m .

Given $\alpha \in L$, the $m + 1$ elements $1, \alpha, \dots, \alpha^m$ are linearly dependent over K . Hence there exist $a_0, \dots, a_m \in K$ not all zero such that

$$a_0 + a_1\alpha + \cdots + a_m\alpha^m = 0.$$

This means that if

$$f = a_0 + a_1X + \cdots + a_mX^m,$$

then $f \neq 0$ and

$$f(\alpha) = 0.$$

Proposition. There exists a unique monic polynomial $p \in K[X]$ that satisfies the following two conditions:

1. $p(\alpha) = 0$.
2. If $f \in K[X]$ satisfies $f(\alpha) = 0$, then $p|f$.

The polynomial p is irreducible and satisfies

3. $\deg(p) \leq m$.

Proof. Among all the monic polynomials that satisfy $f(\alpha) = 0$, pick one, say p , of least degree. It is clear that $\deg(p) \leq m$, as we have observed that there exist non-zero polynomials f of degree $\leq m$ such that $f(\alpha) = 0$. If now f is any polynomial such that $f(\alpha) = 0$, let g and r be the quotient and remainder of the integer division of f by p :

$$f = gp + r, \text{ with } r = 0 \text{ or } \deg(r) < \deg(p).$$

Since $f(\alpha) = p(\alpha) = 0$, we also have $r(\alpha) = 0$. It follows that $r = 0$, for otherwise we would have a contradiction with the definition of p . But this means that $p|f$, which is the property 2.

To see that p is unique, let p' be another monic polynomial that satisfies 1 and 2. Then $p|p'$ (we can apply 2 to p' , as $p'(\alpha) = 0$). Similarly, $p'|p$. This implies that $p' = \lambda p$, for some $\lambda \in K^*$. Since p and p' are monic, we conclude that $p = p'$.

To prove that p is irreducible, suppose that $p = gh$, $g, h \in K[X]$. Then $g(\alpha) = 0$ or $h(\alpha) = 0$. Without loss of generality we may assume that $g(\alpha) = 0$. Then $g = pg'$ for some polynomial g' . Thus $p = gh = pg'h$ and hence $g'h$ is a constant polynomial. Consequently g' and h are constants and therefore the factorization $p = gh$ is not proper. Hence p is irreducible. \square

The polynomial p of last proposition is called the *minimal polynomial* of α over K , and usually will be denoted p_α . The degree of p_α is also called *degree of α* , and is denoted $\deg(\alpha)$.

Remark. Note that $\deg(\alpha)$ is the least positive integer r such that $\alpha^r \in \langle 1, \alpha, \dots, \alpha^{r-1} \rangle_K$.

Remark. There exists a unique K -isomorphism

$$K[X]/(p_\alpha) \simeq K[\alpha] \text{ such that } x \mapsto \alpha,$$

where $x = [X]$. Thus we see that the degree of α coincides with the dimension of $K[\alpha]$ over K . For example, if α is a primitive element of L , then $\deg(\alpha) = m$, as $K[\alpha] = L$.

Remark. If $f \in K[X]$ is a monic irreducible polynomial and α is a root of f in an extension L of K , then f is the minimal polynomial of α over K . Note, in particular, that if $K[x] = K[X]/(f)$, then f is the minimal polynomial of x over K .

Example. Let $K = \mathbb{Z}_2$, $K' = K[X]/(X^2 + X + 1)$, $x = [X]$, $L = K'[Y]/(Y^2 + xY + 1)$, $y = [Y]$. Then $y^2 = xy + 1 \in \langle 1, y \rangle_{K'}$, which amounts to rediscovering that the minimal polynomial of y over K' is $Y^2 + xY + 1$. But $y^2 \notin \langle 1, y \rangle_K$, so that the minimal polynomial of y over K has degree > 2 . Since $y^3 = xy + x \notin \langle 1, y, y^2 \rangle_K$ and $y^4 = y^3 + y^2 + y + 1$, the minimal polynomial of y over K is

$$Y^4 + Y^3 + Y^2 + Y + 1.$$

Notice that this polynomial is not primitive, as $\text{ord}(y) = 5$.

Conjugates of an element. The set C_α of conjugates over K of an element $\alpha \in L$ is defined as

$$C_\alpha = \{\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{r-1}}\},$$

where r is the least positive integer such that

$$\alpha^{q^r} = \alpha.$$

Proposition. $p_\alpha = \prod_{\beta \in C_\alpha} (X - \beta)$.

Proof. We will use the extension of the Frobenius automorphism of L/K to the automorphism of the ring $L[X]$ such that

$$a_0 + a_1X + \cdots + a_nX^n \mapsto a_0^q + a_1^qX + \cdots + a_n^qX^n.$$

The polynomial

$$f = \prod_{\beta \in C_\alpha} (X - \beta)$$

is invariant by this automorphism, as $\beta \rightarrow \beta^q$ permutes the elements of C_α . Hence $f \in K[X]$. Now observe that if $\beta \in L$ is a root of p_α , then β^q is also a root of p_α , as seen by applying the Frobenius automorphism of L/K to the relation $p_\alpha(\beta) = 0$. Applying this observation repeatedly beginning with the root α of p_α , we obtain that $p_\alpha(\beta) = 0$ for any $\beta \in C_\alpha$. Hence, $f | p_\alpha$. But since p_α is irreducible and f has positive degree, we conclude that $f = p_\alpha$, inasmuch as both polynomials are monic. \square

Uniqueness of the finite fields with the same cardinal

Theorem. If K and K' are finite fields with the same cardinal q , then there exists an isomorphism $\varphi: K \rightarrow K'$.

Proof. If $q = p^r$, \mathbb{Z}_p is a subfield of K and of K' . Consider the polynomial

$$X^q - X \in \mathbb{Z}_p[X].$$

Regarded as a polynomial with coefficients in K , we have

$$X^q - X = \prod_{\alpha \in K} (X - \alpha).$$

Analogously,

$$X^q - X = \prod_{\alpha' \in K'} (X - \alpha').$$

Let α be a primitive element of K and $f \in \mathbb{Z}_p[X]$ its minimal polynomial. We know that $\deg(f) = r$. Since all the roots of f are in K , we also have

$$f | (X^{p^r-1} - 1)$$

as polynomials with coefficients in K . But since these polynomials are monic and with coefficients in \mathbb{Z}_p , the relation $f|(X^{p^r-1} - 1)$ is also valid as polynomials with coefficients in \mathbb{Z}_p . The polynomial $X^{p^r-1} - 1$ also factors completely in K' and thereby f has a root $\alpha' \in K'$. From this it follows that there is a unique isomorphism

$$\mathbb{Z}_p[X]/(f) \simeq \mathbb{Z}_p[\alpha'] = K'$$

such that $x = [X] \mapsto \alpha'$. But there is also a unique isomorphism

$$\mathbb{Z}_p[X]/(f) \simeq \mathbb{Z}_p[\alpha] = K$$

such that $x = [X] \mapsto \alpha$. As a result, there is a unique isomorphism $K \simeq K'$ such that $\alpha \mapsto \alpha'$. □

Factorization of $X^n - 1$ over a finite field $F = \mathbb{F}_q$

The solution of this question turns out to be of fundamental importance for the study of cyclic codes. If $q = p^r$, p prime, and we put $n = p^k n'$, $p \nmid n'$, then we have

$$X^n - 1 = (X^{n'} - 1)^{p^k}.$$

This shows that we can assume that n is not divisible by p .

Field of decomposition of $X^n - 1$. The condition $p \nmid n$ tells us that $[q]_n \in \mathbb{Z}_n^*$. Hence we may consider the order m of $[q]_n$ in \mathbb{Z}_n^* . By definition, m is the least positive integer such that

$$q^m \equiv 1 \pmod{n}.$$

In other words, m is the least positive integer such that

$$n|(q^m - 1).$$

We write $e_n(q)$ to denote it.

Let now $h \in F[X]$ be any monic irreducible polynomial of degree $m = e_n(q)$ and define

$$F' = F[X]/(h) \quad (F' \simeq \mathbb{F}_{q^m}).$$

Let α be a primitive element of F' (if we chose h primitive, we can take $\alpha = [X]_h$). Then, by definition of m , $\text{ord}(\alpha) = q^m - 1$ is divisible by n . Set

$$r = (q^m - 1)/n \text{ and } \omega = \alpha^r.$$

Proposition. Over F' we have

$$X^n - 1 = \prod_{j=0}^{n-1} (X - \omega^j).$$

Proof. Since

$$\text{ord}(\omega) = (q^m - 1)/r = n,$$

the set

$$R = \{\omega^j \mid 0 \leq j \leq n - 1\}$$

has cardinal n . Moreover, ω^j is a root of $X^n - 1$ for all j , because

$$(\omega^j)^n = (\omega^n)^j = 1.$$

Hence the set R contains n distinct roots of $X^n - 1$. It follows that $\prod_{j=0}^{n-1} (X - \omega^j)$ is a monic polynomial of degree n that divides $X^n - 1$. Since both polynomials are monic of degree n , they must coincide.

Proposition. $F' = F[\omega]$ and so F' is the splitting field of $X^n - 1$ over F .

Proof. Indeed, if $|F[\omega]| = q^s$, then $n = \text{ord}(\omega)$ must divide $q^s - 1$ and, by definition of m , we get $s = m$.

Cyclotomic classes

Given an integer j in $0..(n - 1)$, the q -cyclotomic class of $j \bmod n$ is the set

$$C_j = \{j, qj, \dots, q^{t-1}j\},$$

where t is the least positive integer such that $q^t j \equiv j \pmod{n}$.

If C is a q -cyclotomic class mod n , we define

$$f_C = \prod_{j \in C} (X - \omega^j).$$

Lemma. The polynomial f_C has coefficients in F for every q -cyclotomic class C .

Proof. It is enough to note that f_C is invariant by the Frobenius automorphism.

Theorem. The correspondence $C \mapsto f_C$ is a bijection between the set of q -cyclotomic classes mod n and the set of monic irreducible factors of $X^n - 1$ over F .

Proof. The fact that the q -cyclotomic classes mod n form a partition of $\{0, 1, \dots, n-1\}$, and the factorization $f_C = \prod_{j \in C} (X - \omega^j)$, imply that the factorization $X^n - 1 = \prod_C f_C$, where C runs over the q -cyclotomic classes mod n . It is therefore enough to show that $f_C \in F[X]$ is irreducible for any class C . To see this, note that

$$\{\omega^j \mid j \in C\}$$

is the set of conjugates of anyone of its elements, so that f_C is the minimal polynomial of ω^j for any $j \in C$.

Notes

N1. If A is a ring with multiplicative unit (usually denoted 1 , or 1_A), then the set A^* of invertible elements of A forms a group with the product operation of A .

Examples. $\mathbb{Z}^* = \{\pm 1\}$. A is a field if and only if $A^* = A - \{0\}$. If K is a field, $K[X]^* = K^*$. If $M_n(K)$ is the ring of square matrices of dimension n , then $M_n(K)^* = GL(n, K)$, the linear group over K of dimension n .

N2. If G is a finite group of order n , then $a^n = e$ for any $a \in G$ (e denotes the identity element of G). Indeed, there is a least positive integer r such that $a^r = e$. Since $\{e = a^0, a, \dots, a^{r-1}\}$ is a subgroup of order r of G , we know that $r|n$ (Lagrange lemma) and this clearly implies the assertion.