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Preliminaries on finite fields

Let F be a finite field, and let g be the cardinal of F.

" (we say

B g is necessarily the power of a prime number, g =p
that p is the characteristic of F).

B If g is a power of a primer number, there is a unique field (up to
isomorphism) with cardinal g. This field is denoted I, or
GF(q).

B If pisaprime number, then F, = Z,

(the field of residues mod p).
B If we select a monicirreducible polynomial
f=X"+a,X"'+ - +a, €Z,[X]
then F =7Z,[X]/(f) is a field of cardinal p". In fact, setting
x = [X], 1, x, ....,x" 1is abasis of F as a ZL,-vector space:

F = {a =ag+a;x+ -+ a,_1x" Yag, ag, ..., a,_1 € Zp}.
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B The product in F is obtained by performing the product as
polynomials in x and reducing the monomials x’ (j =7) using
the relation

x"=—(ax" 1+ +a,)
obtained from the fact that f(x) =0 (by construction).

Examples

B X" +X+1€Z,[X] is irreducible for r = 2,3,4,6,7. This allows
us to construct [F,, Fg, IF14, Fga, Fq2g-

B F;, can be constructed with the polynomial X°>+ X%+ 1 and
F,cq with the polynomial X8 + X7 + X3 + X + 1.



Basic notions

Consider codes C € F™ that are vector subspaces. Such codes will be said
to be linear.

Note that if k = dimy(C), then k is also the dimension of C, as |C| = g
(count linear combinations of a basis of C over F).

The weight of an element x € F™*, denoted |x|, is the number of non-zero
entries of x, or also hd(x,0). Itis a norm, as

0] =0, |x|>0ifx #0,and |[x + y| < |x| + |y].

The minimum weight of C, wg, is the minimum of the weights |x| for
x€C,x #0.

Lemma. w, = d.

Proof. If x € C, x # 0, then |x| = hd(x,0) = d., and so w, = d,. On
the other hand, if x,x’ € C, x # x', then



hd(x,x") = |x — x'| = wg,

and hence d. = w.

Remark. For a general code C of cardinal M, the determination of d in-
volves the computation of the M(M — 1)/2 Hamming distances between
its pairs of distinct elements. The lemma above tells us that if C is linear
then the determination of d. involves only the computation of M — 1

weights.



Generating matrix

Given a code C of type [n, k], we will say that a matrix G € M¥(F) is a
generating matrix of C if the rows of G form a linear basis of C.

Conversely, given a matrix G € MX(F), the subspace (G) € F" generated
by the rows of G is a code of type [n, k'], where k' is the rank of G. We
will say that (G) is the code generated by G.

Examples

a) The repetition code of length n is generated by 1,,.

b) A generating matrix for the Hamming code [7,4,3] is G = I,|R”,
where the columns of R are the binary vectors of length 3 of weight
at least 2 (in some order).

c) If C S F"is a code of dimension k, let C € F™**! be the image of C
by the linear map

F" - F* x F = F™1 such thatx » x| — s(x),
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where s(x) = X;x;. Then C is a code of type [n + 1,k] which is
called the parity extension of C (the symbol —s(x) is called the parity
check symbol of the vector x). If G is a generating matrix of C, then
the matrix G obtained by appending to G the column consisting of the
parity check symbols of its rows is a generating matrix of C. The ma-
trix G will be called the parity completion (or parity extension) of G.
The elements x € F™*1 such that s(x) = 0 form a code C of type
In + 1,n] (it is called the zero-parity code of length n + 1, or of di-
mension n). Then the matrix I,,| 1} is a generating matrix of C.



Coding with a generating matrix

It is clear that if G is a generating matrix of C, then the map
f:F¥ > F", uw uG,

induces an isomorphism of F* onto C and hence we can use f as a cod-
ing map for C.

If A € M (F) is an invertible matrix (in other words, A € GL; (F)), then
AG is also a generating matrix of C. From this it follows that for each
code C there exists an equivalent code " which is generated by a matrix
that has the form G = (I;|P), where I}, is the identity matrix of order k
and P € M¥_, (F). Since in this case f(u) = uG = (u|uP), for allu € F¥,
we see that the coding of u amounts to appending the vector uP € F*F
to the vector u (we may think of uP as a “redundancy” vector appended
to the “information vector” u).
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The codes C (this time not necessarily linear) of dimension k for which
there are k positions in which appear, when we let x run in C, all se-
guences of k symbols, are said to be systematic (with respect to those k
positions). According to the preceding paragraph, each linear code of di-

mension k is equivalent to a systematic code with respect to the first k
positions.
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Example (Reed—Solomon codes). Let & = a4, ..., @, € F a sequence of n
distinct elements of F (1 < n < q).

For every integer k > 0, let F|X], be the F-vector space whose ele-
ments are polynomials of degree < k with coefficients in F. We have
FIX], =(1X,..,X* V), dim(F[X],) = k.

If k <n,the map

e:F[X]y = F", f = (flay), ..., f(an))

is injective, since the existence of a non-zero polynomial of degree < k
vanishing on all the «; implies n < k — 1. The image of ¢ is therefore a li-
near code C of type [n, k].

Proposition. The minimum distance of C isn — k + 1.

Proof. Indeed, a non-zero polynomial f of degree < k can vanish on at
most k—1 of the elements a; and hence the weight of
(f(aq), ..., f(a)) is not less than n—(k—1)=n—k+ 1. Thus
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dc. = w; =2n—k+ 1. On the other hand, d- < n — k + 1 by the Single-
ton bound. Notice that it is also easy to produce an f such that £(f) has
weightn —k 4+ 1, asforinstance f = (X —aq) - (X — ay_1).

We will say that C is a Reed—Solomon (RS) code of length n and dimen-
sion k, and will be denoted RS, (k).

When the a; can be understood from the context, we will simply write
RS(k), or RS(n, k) if we want to display the length n.

It is clear that the RS codes satisfy the equality in the Singleton bound,
and so they are examples of MDS codes. On the other hand we have
n < g, and so we will have to take high values of g to obtain interesting
codes.



Since 1, X, ..., X®* 1is a basis of F[X],, the Vandermonde matrix

a Ay .. Ay
Vk(al’ ---’an) — . . .
ak—l ak—l a#—l

is a generating matrix for RS, (k). Notice that

Vi(aq, ..., a,) = (a{), 1<i<n 0<j<k

12
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Dual code

The linear subspace of F™ orthogonal to a subset Z € F™ will be denoted
Z+

Let us recall that Z+ = {x € F"*| (x|z) = 0 forall z € Z}, where

(x|z) = %121 + -+ + X2y .
If C is a code, the code C+ is called the dual code of C.

Since the scalar product (|) is non-degenerate, by linear algebra we
know that C* has dimension n — k if C has dimension k. In other words,
Cis of type [n,n — k] if C is of type [n, k].

As C € C*1, tautologically, and both sides of this inclusion have dimen-
sion k, we infer that C++ = C.
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It often happens that C and C* have a non-zero intersection. Even more,
it can happen that C € C*, including C = C1. In the latter case we say
that C is self-dual.

Note that in order to be self-dual it is necessary that n = 2k.

Example. If C is the length n repetition code over C, C* is the zero-parity
code of length n.

Example. If G is a generating matrix of C, then C S C* is equivalent to
the relation GGT = 0. If in addition we have n = 2k, the relation
GGT = 0is equivalentto C = C*.

As an application, check that the parity extension of the Hamming code
|7,4,3] is a self-dual code.
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Parity-check matrix

If H is a generating matrix of C* (in which case H is an (n — k) X n ma-
trix) we have that

x € C ifandonlyif xHT =0,
because if h is a row of H we have
xh? = (x|h).

Said in other words, the elements x € C are exactly those that satisfy the
n — k linear equations (x|h) = 0, where h runs through the rows of H.

Given h € C, the linear equation (x|h) = 0, which is satisfied for all
x € C, is called the check equation of C corresponding to h. By the pre-
vious paragraph, C is determined by the n — k check equations corres-
ponding to the rows of H, and this is why the matrix H is said to be a
check matrix, or control matrix, of C.

The relation

C ={x € F'|xHT = 0}
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can also be interpreted by saying that
C is the set of linear relations satisfied by the rows of H,
that is, by the columns of H.

In particular we have the following prescription for finding de minimum
distance of a linear code in terms of a check matrix:

Proposition. If any r — 1 columns of H are linearly independent, then the
minimum distance of C is at least r, and conversely.



17
Example (A check matrix for RS codes)

Let C = RS,(k), where & = a4, ..., a,, are distinct nonzero elements of a
finite field F. Then we know that

G = Vk(al, e an)
is a generating matrix of C (p. 12). Note that the rows of G have the form
(ai, ...,a,il), with i =0,...,k— 1.

Now we are going to describe a check matrix H of C, that is, a generating
matrix of C*.

Recall that if we define the Vandermonde determinant as the determi-
nant D(aq,...,a,) of the Vandermonde matrix V,(aq,...,a,), then

D(alJ =) an) = Hi<j(aj _ ai) .
Define the vector

h — (hll . hn)
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by the formula
hy = (=D 'D(ay, ., Qj—1, Xigq, o, @) /D (@4, .., )
=1/ Hj;ti(“j —a;).

(Remark that in the last product there are precisely i — 1 factors with the
indices in reverse order, namely the a; — a; with j </).

Theorem. The matrix
H=V,_,(aq,..,a,)diag(h4, ..., h,)
is a check matrix of C.

Proof. To see this, it is enough to show that any row of G is orthogonal to
any row of H, because H clearly has rankn — k.

Since the rows of H have the form

(hya?, ..., hpal), with j=0,...,n—k —1,
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we have to establish that
nah=0for0<i<k-land0<j<n—k-—1.

Thus it will be enough to make sure that
oy hy=0for0<s<n-2.

To see this, multiply throughout by the (nonzero) determinant

D(ayq, ..., an).

Taking into account the definition of h;, we wish to derive that

ol (VD ID(ay, . @iy, Qg e, ) = 0.

But finally this is obvious, because the left hand side coincides with the
determinant
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a1 an
1 1
a1 Un
n—2 n—2
al - al

(developed along the first row), and this determinant has a repeated row.

Remark. As we will see in a later chapter, the form of the matrix H indi-
cates that RS, (k) is an alternant code, and as a consequence it will be
decodable with any of the fast decoders for alternant codes studied in
that chapter.

Example (Hamming codes). A g-ary code C of type [n,n — r] is said to be
a Hamming code of codimension v if the columns of a check matrix
H € M} (F) of C form a maximal set among the subsets of F" with the
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property that any two of its elements are linearly independent (of such a
matrix we will say that it is a g-ary Hamming matrix of codimension r).

There is a straightforward way of constructing such a matrix. For
i =1,..,r, let H; be the matrix whose columns are the vectors of F" that
have the form (0, ...,0,1, &4, ..., &;-), With @; .4, ..., a, € F" arbitrary. Let
H = H,|H,| - |H,. Then H is a g-ary Hamming matrix of codimension r,
as any non-zero vector of length r is proportional to exactly one of the
columns of H (we will say that such an H is a normalized g-ary Hamming
matrix of codimension 7). Since H; has g"~! columns, H has

n=(q" —1)/(q —1) columns.

It is clear that two Hamming codes of the same codimension are scalar
equivalent. We will write Ham,(r) to denote any one of them and

Hamj(’r) to denote the corresponding dual code, that is to say, the code
generated by the check matrix H used to define Ham,(r). The code

Ham, (r) has dimension
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k=n—-r=(@q -1)/(q—1)—r.
Its codimension, which is the dimension of Hamé (r), isequal tor.

The binary Hamming code of codimension 3, Ham,(3), is the code
[7,4] defined by (say) the normalized check matrix
1111000
H=(0011110].

0101011

Proposition. If C is any Hamming code, then d. = 3. In particular, the er-
ror-correcting capacity of a Hamming code is 1.

Proof. If H is a check matrix of C, then we know that the elements of C
are the linear relations satisfied by the columns of H. Since any two col-
umns of H are linearly independent, the minimum distance of C is at
least 3. On the other hand, C has elements of weight 3, because the sum
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of two columns of H is linearly independent of them and hence it must
be proportional to another column of H (the columns of H contain all
non-zero vectors of F" up to a scalar factor).

Corollary. The Hamming codes are perfect (cf. P7).

Proposition. If C' = HamglL (r) is the dual of a Hamming code C =
Ham,(r), the weight of any non-zero element of C "is q"L. In particular,

the distance between any pair of distinct elements of C' is g" 1.

Proof. Let H = (h;;) be a check matrix of C. Then the non-zero vectors of

C’ have the form z = aH, a € F", a # 0. So the i-th component of z has
the form

zi = ahy + -+ ayhyy.

Therefore the condition z; = 0 is equivalent to say that the point P; of
P"™~1 = P(F") defined by the i-th column of H belongs to the hyper-
plane of P"~1 defined by the equation
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axy +--+ax.=0.

Since {P;, ..., P,} = P"71, it follows that the number of non-zero compo-
nents of z is the cardinal of the complement of a hyperplane of P" 1.
Since this complement is an affine space A"}, its cardinal is g" ! and so
any non-zero element of C’ has weight g" 1. O

Codes such that the distance between pairs of distinct elements is a fixed
integer d are called equidistant of distance d. Thus Hamg () is equidis-

tant of distance g" 1.
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Syndrome-leader decoding

Let C by an F-linear |n, k] code and H a control matrix of C. Given
y € F", the element s = yHT € F™" ¥ is called syndrome of y (with re-
spect to H).

Since C = {x € F*|xH” = 0}, the elements if C are precisely those
whose syndrome is 0. If we set C; = {x € F*|xHT = s} foranys € F*7k,
then in particular we have C = (,.

As the linear map s : F* - F™* %,y v yHT, is surjective (for H has rank
n — k) and its kernel is C; = C, we see that C; # @. Moreover, if we pick
any z, € C,, then C; =z, + C. In other words, C is a coset modulo C,
and we say that C is the coset of the syndrome s).
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Lemma. If 2t < d, C, contains at most one vector e such that |e| < t.
Forife' e C;and |e'| <t,thenx =e—e'€Cy=C, |x| <d.Sox =0.

Let g be the minimum distance decoder of C, x € C (sent vector) and
y € F™ (received vector). Then we have, if t is the correcting capacity of

C:

Proposition. The vector y is g-decodable if and only if there exists e € F™
such that yH' = eH" and |e| < t. If this is the case, then e is unique (by
the lemma)and g(y) =y —e.

Proof. If y is g-decodable, let x" = g(y) € C ande = y — x'. Then
yHT = (x' + e)HT = eH" and |e| = hd(x',y) < t.

Conversely, let e € F* be such that yHT = eH" and |e| <t. Let
x'=y—e.Thenx'H' = yHT —eH" = 0,s0x’ € C, and

hd(x',y) =y —x'| = le| <t,
which shows that y is g-decodable and that g(y) = x' =y —e. O
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The proposition above suggests the following decoding scheme. First
form a table

E = {s — eg},cpn-k, With e € C5 of minimum weight

(The element e; is said to be a leader of the class C and E a leader’s ta-
ble for C. Note that e is unique if |e;| < t; otherwise it has to be se-
lected among the vectors of C; that have minimum weight. Now the syn-
drome decoder can be described as follows:

SYNDROME—LEADER DECODER (SLD)
Input: y € F™* [received vector]

1. Set s = yH' [the syndrome of y]
2. Let e = E(s) [the leader of (]

3. Returny — e.

Proposition. If D = [|,ec B(x,t) is the set of vectors that are decodable
by the minimum distance decoder g, then SLD coincides with g for all
y €D.

Proof. It is an immediate consequence of the previous proposition.
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The Gilbert—Varshamov existence condition

Theorem. Fix positive integers
n, k,dsuchthatk <nand2<d<n-+1.

If the relation
vol,(n—1,d —2) < gk

is satisfied (this is called the Gilbert—Varshamov condition), then there
exists a linear code of type [n, k,d'] withd' > d.

Proof. A) It is sufficient to see that the condition allows us to construct a
matrix H € M**(F) of rank n — k with the property that any d — 1 of
its columns are linearly independent. Indeed, if this is the case, then the
code C defined as the orthogonal space of the rows of H has length n,
dimension k (fromn — (n — k) = k), and minimum weight d’ > d (since
there are no linear relations of length less than d among the columns of
H, which is a check matrix of C).
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B) Before constructing H, we first establish that the Gilbert—Varshamov
condition implies that d — 1 <n — k (note that this is the Singleton
bound for the parameters d and k).

Indeed,

volg(n—1,d=2) =342 (" 7 ) (g - 1)

= Lj= o(d] 2)(51—1)]

—(1+(q—1)) g2

and hence g%72 < g™ % if the Gilbert—Varshamov condition is satisfied.
Therefored —2<n—k,ord —1<n-—k.

C) In order to construct H, we first select a basis cy, ..., ¢, € F"7F,
Sinced —1<n-—k, any d — 1 vectors extracted from this basis are li-
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nearly independent. Also, any matrix H of type (n — k) X m with entries
in I which contains the columns ch (j=1,..,n—k), hasrankn — k.

Now assume that we have constructed, for some i € [n — k, n], vectors
Cy, ..., C; € F % with the property that any d — 1 of them

are linearly independent. If i = n, it is sufficient to take H = (¢!, ..., cI)
and by part A our question is answered.

Otherwise we will have i < n. In this case, the number of linear combina-
tions that can be formed with at most d — 2 vectors from among ¢, ..., ¢;
is not greater than vol,(i,d — 2) (see P6). Since i <n —1, vol,(i,d —
2) < vol,(n—1,d — 2). If the Gilbert—Varshamov condition is satisfied,
then there is a vector c¢;.; € F* % which is not a linear combination of
any subset of d — 2 vectors extracted from the list ¢4, ...,c;, and our
claim follows by induction. O
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Remark. Since A,(n,d) = A;(n,d’) if d' = d, the Gilbert--Varshamov
condition shows that A,(n,d) > g*. This lower bound, called the

bert—Varshamov bound, often can be used to improve the Gilbert
bound.

Example. Gilbert(10,3)=19, as in this case
q"/vol,(n,d — 1) = 21%/vol,(10,2) = 21%/56 ~ 18.3.

And GilbertVarshamov(10,3)=64, as vol,(9,1) = 10 and 10 < 2197¢ =
16 while 21977 = 8 < 10.

The MacWilliams identities

The weight enumerator of a code C is defined as the polynomial

where A is the number of elements of C that have weight i.
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It is clear that A(t) can be expressed in the form

A(t) — ZxEC tlxl
for the term t* appears in this sum as many times as the number of solu-
tions of the equation |x| =i, x € C.

Remark. Ay, = 1, since 0,, is the unique element of C with weight 0. On
the other hand 4; = 0if 0 < i < d, where d is the minimum distance of
C. The determination of the other A; is not easy in general and it is one of
the basic problems of coding theory.

Theorem (F. ). MacWilliams)." The weight enumerator
B(t) of the dual code C* of a code C of type [n, k] can be
determined from the weight enumerator A(t) of C accord-
ing to the following identity:

¢“B(t) = 1+ (q - DO ().

1+(g—-1)t
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Remark. In the proof of the theorem we need the notion of character of
a group G, which by definition is a group homomorphism of G to
U(1) = {z € C| |z| = 1}, the group of complex numbers of modulus 1.

The constant map g = 1 is a character, called the unit character. A char-
acter different from the unit character is said to be non-trivial and the
main fact we will need is that the additive group of finite field IF, has

non-trivial characters. Actually any finite abelian group has non-trivial
characters. Let us sketch how this can be established.

It is known that any finite abelian group G is isomorphic to a product of
the form

L, X +++ X Ly,
with k a positive integer and n4, ..., n; integers greater than 1. For ex-
ample, in the case of a finite field F,, we have (if g = p", p prime),

o, : : :
F, = (Zp) , since [F is a vector space of dimension r over Z,,.
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In any case, it is clear that if we know how to find a non-trivial character
of Zy, then we also know how to find a non-trivial character of G (the

composition of the non-trivial character of Z, with the projection of
Ly, X+ X Ly, onto Zy, gives a non-trivial character of G).

Finally note that if n is an integer greater than 1 and ¢ # 1 is an n-th root
of unity then the map y : Z,, —» U(1) such that y(k) = &¥ is well defined
and is a non-trivial character of Z,,.

Proof. Let y be a non-trivial character of the additive group of F = IF,
(see the preceding Remark). Thus we have a map

x:F—->U()

such that y(a + B) = y(a)x(B) forany a, 8 € F with y(y) # 1 for some
Yy € F. Observe that ), ,cr x(a) = 0, since

X(V) ZaEF x(a) = ZaEFX(a +y) = ZaEF x(a)
and y(y) # 1.
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Now consider the sum

S = Zxec Lyern x(x, y)tV!
where y(x,y) = x{x|y)) = [Ii={ x(x;v;). After reordering we have

S = Xyepn t Y e x(,y)

If y € Ct, then (x|y) = 0 for all x € C and so y({x|y)) = 1 for all x € C,
and in this case Y.cc x(x,¥) = |C| = q*.

If y & C+, then the linear map C — F such that x — (x|y) takes each
value of F the same number of times, say r, and hence, using that

Yaer X(@) =0, we have that Y ,.ccx(x,y) =1 X ,erx(a) = 0. Putting
the two cases together we have that

S = |C| Xyect t?! = q*B(b).
On the other hand, for any given x € C, and making the convention, for

all @ € F, that |a| = {1 ifa#0

0if g — O}’ we have
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Syern XY =Ty ep XCrays + - + Xpyp) Va0l
= Zyli"r:)/nEF H?=1 X(xlyl) tlyll

= ?=1(ZaEF x(x;a) tlal)-

1+(@—1Dt if x; =0
) tlel = ‘
But Yaer X(X;@) t {1 ¢t if x; #0

because Y.zcr ¥(f) = —1. Consequently

n y tlal = (1+( _1)t)n( 1-t )le
i=1 2aer X(x;a) — q 1+(g-1)t

and summing with respect to x € C it is clear that

1-t
§=0+@- D" (5 5) 0

Example (Weight enumerator of the zero-parity code). The zero-parity
code of length n is the dual of the repetition code C of length n. Since the
weight enumerator of C is A(t) = 1 + (g — 1)t™, the weight enumerator
B(t) of the zero-parity code is given by the relation
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gB(t) = (1+ (g — )" (1 +(q—-1) 1+(1q_—t1)t)n

=1+@-DO)"+(@-DA-O)"
In the binary case we have
2B)=0Q+)"+0-0)",

and therefore
_ yisn/2 (MY o
B(t) = Lio (Zi)t '

Note that this could have been written directly, for the binary zero-parity
code of length n has only even-weight words and the number of those

having weight 2i is (Z)

Example (Weight enumerator of the Hamming codes). We know that the
dual Hamming code Hamcll(r) is equidistant, with minimum distance

g" 1. This means that its weight enumerator, say B(t), is the polynomial
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B() =1+ (q" — DT,

because g — 1 is the number of non-zero vectors in Hamcll(r) and each
of these has weight g"~1. Now the MacWilliams identity allows us to de-
termine the weight enumerator A(t) of Ham, (7). Setting § = q — 1, we

have:

A 1-t
a"A®) = (1 +§0"B (1)

_ A\ r _ AT (1+t)qr_1
=1+q0)" +(q" - DA +g)" - =

r—1

(1+ g™+ (q" — DA +§O)"9 (1 + t)"
= A+a0™ 7 (+407 " + (@ - DA-T)

= (1+g0) e (A+g)7  + (¢ -DA -7 )
sincen = (q" —1)/(g— 1) andn—q" " = (¢""1 = 1)/(q — D).
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In the binary case the previous formula yields that the weight enumera-
tor A(t) of Ham(r) satisfies

2PA) = A+ )T V(1 + )P D+ 2r - 1A -1)F)
For r = 3, Ham(3) has type [7,4] and
8AM) = (1+t)3((1L+)*+ 701 —t)%),
A) =1+ 73+ 7t + t7.
S0 Ag=A,=1, A3 =A,=7, A; =4, = A = A, = 0.
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Actually it is easy to find, using the description of this code, that the
weight 3 vectors of Ham(3) are

[1,1,0,1,0,0,0], [0,1,1,0,1,0,0], [1,0,1,0,0,1,0], [0,0,1,1,0,0,1],
[1,0,0,0,1,0,1], [0,1,0,0,0,1,1], [0,0,0,1,1,1,0]

and the weight 4 vectors are
[1,1,1,0,0,0,1], [1,0,1,1,1,0,0], [0,1,1,1,0,1,0], [1,1,0,0,1,1,0],
[0,1,0,1,1,0,1], [1,0,0,1,0,1,1], [0,0,1,0,1,1,1]

Note that the latter are obtained from the former, in reverse order, by in-
terchanging O and 1.

Notes

1. http://www.awm-math.org/noetherbrochure/TOC.html
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Notes

N1. Two codes C,C’" € T™" of length n are said to be equivalent if
there is a permutation o of 1, ...,n and permutations 74, ...,7,, of T
such thatthe mapp : T" — T" given by

(xl: ---:xn) = (Tl (xa(l))' -"'Tn(xa(n)))

induces a 1-to-1 map between C and C'. Note that equivalent codes
have the same parameters, as hd(x,y) = hd(px,py) for any
x,y € C. If we can choose 7, =+ =1, = Id, then C and C' are
called permutationally equivalent. If T is a finite field and

for some non-zero a;, then we say that € and C’ are scalarly equiva-

lent.



