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Preliminaries on finite fields  

Let ܨ be a finite field, and let ݍ be the cardinal of ܨ. 

 ݍ  is  necessarily  the  power  of  a  prime  number,  ݍ ൌ  ௥݌ (we  say   
   that ݌ is the characteristic of ܨ). 
 If   ݍ is  a  power  of  a  primer  number,  there  is  a  unique  field  (up  to  
    isomorphism)  with  cardinal   .ݍ This  field  is  denoted  ॲ௤  or   

 .ሻݍሺܨܩ    
 If ݌ is a prime number, then ॲ௣ ൌ Ժ௣ 

   (the field of residues mod ݌). 
 If we select a monic irreducible polynomial 
     ݂ ൌ ܺ௥ ൅ ܽଵܺ௥ିଵ ൅ ڮ ൅ ܽ௥ א Ժ௣ሾܺሿ 
    then  ܨ ൌ Ժ௣ሾܺሿ/ሺ݂ሻ  is  a  field  of  cardinal   .௥݌ In  fact,  setting     

ݔ     ൌ ሾܺሿ, 1, ,ݔ … ,   :as a Ժ௣‐vector  space ܨ ௥ିଵ is a basis ofݔ

ܨ ൌ ൛ߙ ൌ ଴ߙ ൅ ݔଵߙ ൅ ڮ ൅ ,଴ߙ|௥ିଵݔ௥ିଵߙ ,ଵߙ … , ௥ିଵߙ א Ժ௣ൟ. 
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 The  product  in   ܨ is  obtained  by  performing  the  product  as  

    polynomials  in   ݔ and  reducing  the  monomials   ௝ݔ (݆ ൒  (ݎ using  
    the relation 

௥ݔ ൌ െሺܽଵݔ௥ିଵ ൅ ڮ ൅ ܽ௥ሻ  
    obtained  from  the  fact  that  ݂ሺݔሻ ൌ 0  (by  construction). 
 

Examples 
 

 ܺ௥ ൅ ܺ ൅ 1 א Ժଶሾܺሿ  is  irreducible  for  ݎ ൌ 2,3,4,6,7.  This  allows  
   us to construct ॲସ, ॲ଼, ॲଵ଺, ॲ଺ସ, ॲଵଶ଼. 
 ॲଷଶ  can  be  constructed  with  the  polynomial  ܺହ ൅ ܺଶ ൅ 1  and   
   ॲଶହ଺ with the polynomial ଼ܺ ൅ ܺ଻ ൅ ܺଷ ൅ ܺ ൅ 1.     
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Basic notions 

Consider codes ܥ ك  ௡ that are vector subspaces. Such codes will be saidܨ
to be linear. 

Note that if ݇ ൌ dimிሺܥሻ, then ݇ is also the dimension of ܥ, as |ܥ| ൌ  ௞ݍ
(count linear combinations of a basis of ܥ over ܨ). 

The weight of an element ݔ א  is the number of non‐zero ,|ݔ| ௡, denotedܨ
entries of ݔ, or also ݄݀ሺݔ, 0ሻ. It is a norm, as 

 |0| ൌ 0, |ݔ| ൐ 0 if ݔ ് 0, and |ݔ ൅ |ݕ ൑ |ݔ| ൅  .|ݕ|

The minimum weight  of ݓ ,ܥ஼,  is  the minimum  of  the weights   |ݔ| for 
ݔ א ݔ ,ܥ ് 0. 

Lemma.  ݓ஼ ൌ ݀஼ . 

Proof.  If  ݔ א  ,ܥ ݔ ് 0,  then  |ݔ| ൌ ݄݀ሺݔ, 0ሻ ൒ ݀஼,  and  so ݓ஼ ൒ ݀஼. On 
the other hand, if ݔ, ᇱݔ א ݔ ,ܥ ്  Ԣ, thenݔ
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   ݄݀ሺݔ, ᇱሻݔ ൌ ݔ| െ |Ԣݔ ൒ ஼ݓ , 
and hence ݀஼ ൒  .஼ݓ
 
Remark. For a general code ܥ of cardinal ܯ, the determination of ݀஼  in‐
volves the computation of the ܯሺܯ െ 1ሻ/2 Hamming distances between 
its pairs of distinct elements. The lemma above tells us that if ܥ is linear 
then  the  determination  of ݀஼   involves  only  the  computation  of ܯ െ 1 
weights. 
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Generating matrix 

Given a code ܥ of type ሾ݊, ݇ሿ, we will say that a matrix ܩ א ௡ܯ
௞ሺܨሻ  is a 

generating matrix of ܥ if the rows of ܩ form a linear basis of ܥ. 
 
Conversely, given a matrix ܩ א ௡ܯ

௞ሺܨሻ, the subspace ۄܩۃ ك  ௡ generatedܨ
by the rows of ܩ is a code of type ሾ݊, ݇Ԣሿ, where ݇Ԣ is the rank of ܩ.  We 
will say that ۄܩۃ is the code generated by ܩ. 
 
Examples 
a) The repetition code of length ݊ is generated by ૚௡. 
b) A  generating  matrix  for  the  Hamming  code  ሾ7,4,3ሿ  is  ܩ ൌ  ,்ܴ|ସܫ

where the columns of ܴ are the binary vectors of  length 3 of weight 
at least 2 (in some order). 

c) If  ܥ ك ܥ ௡ is a code of dimension ݇, letܨ ك   ܥ ௡ାଵ be the image ofܨ
by the linear map 

௡ܨ ՜ ௡ܨ ൈ ܨ ൌ ݔ ௡ାଵ  such thatܨ հ |ݔ െ  ,ሻݔሺݏ
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where  ሻݔሺݏ ൌ ∑ ௜௜ݔ .  Then   ҧܥ is  a  code  of  type  ሾ݊ ൅ 1, ݇ሿ  which  is 
called the parity extension of ܥ (the symbol െݏሺݔሻ is called the parity 
check symbol of the vector ݔ).  If ܩ  is a generating matrix of ܥ, then 
the matrix ܩҧ  obtained by appending to ܩ the column consisting of the 
parity check symbols of its rows is a generating matrix of ܥҧ. The ma‐
trix ܩҧ  will be called the parity completion (or parity extension) of ܩ. 

d) The elements  ݔ  א  ௡ାଵܨ such  that  ሻݔሺݏ ൌ 0  form a  code ܥ of  type 
ሾ݊ ൅ 1, ݊ሿ  (it  is called  the  zero‐parity code of  length ݊ ൅ 1, or of di‐
mension ݊). Then the matrix ܫ௡|૚௡

்  is a generating matrix of ܥ. 
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Coding with a generating matrix 

It is clear that if ܩ is a generating matrix of ܥ, then the map 

    ݂: ௞ܨ ՜ ݑ  ,௡ܨ հ  ,ܩݑ

induces an isomorphism of ܨ௞ onto ܥ and hence we can use ݂ as a cod‐
ing map for ܥ. 

If ܣ א  ሻܨ௞ሺܯ is an  invertible matrix  (in other words, ܣ א  ሻ), thenܨ௞ሺܮܩ
 ܩܣ is  also  a  generating matrix of ܥ.  From  this  it  follows  that  for  each 
code ܥ there exists an equivalent code N1 which is generated by a matrix 
that has the form ܩ ൌ ሺܫ௞|ܲሻ, where ܫ௞  is the  identity matrix of order ݇ 
and ܲ א ௡ି௞ܯ

௞ ሺܨሻ. Since in this case ݂ሺݑሻ ൌ ܩݑ ൌ ሺܲݑ|ݑሻ, for all ݑ א  ,௞ܨ

we see that the coding of ݑ amounts to appending the vector ܲݑ א  ௡ି௞ܨ
to the vector ݑ (we may think of ܲݑ as a “redundancy” vector appended 
to the “information vector” ݑ). 
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The codes ܥ  (this  time not necessarily  linear) of dimension ݇  for which 
there are ݇ positions  in which appear, when we  let ݔ  run  in   all ,ܥ  se‐
quences of ݇ symbols, are said to be systematic (with respect to those ݇ 
positions). According to the preceding paragraph, each linear code of di‐
mension ݇  is equivalent to a systematic code with respect to the first ݇ 
positions.   
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Example (Reed—Solomon codes). Let ࢻ ൌ ,ଵߙ … , ௡ߙ א  ݊ a sequence of ܨ
distinct elements of 1) ܨ ൑ ݊ ൑   .(ݍ

For  every  integer    ݇ ൐ 0,  let ܨሾܺሿ௞  be  the ܨ‐vector  space whose  ele‐
ments are polynomials of degree ൏ ݇ with coefficients in ܨ. We have   

  ሾܺሿ௞ܨ ൌ ,1ۃ ܺ, … , ܺ௞ିଵۄி,  dimሺܨሾܺሿ௞ሻ ൌ ݇. 

If  ݇ ൑ ݊, the map 

    ߝ ׷ ሾܺሿ௞ܨ ՜ ݂  ,௡ܨ հ ሺ݂ሺߙଵሻ, … , ݂ሺߙ௡ሻሻ 

is  injective, since  the existence of a non‐zero polynomial of degree ൏ ݇ 
vanishing on all the ߙ௜ implies ݊ ൑ ݇ െ 1. The image of ߝ is therefore a li‐
near code ܥ of type ሾ݊, ݇ሿ. 

Proposition. The minimum distance of ܥ is ݊ െ ݇ ൅ 1. 

Proof.  Indeed, a non‐zero polynomial ݂ of degree ൏ ݇ can vanish on at 
most  ݇ െ 1  of  the  elements   ௜ߙ and  hence  the  weight  of 
ሺ݂ሺߙଵሻ, … , ݂ሺߙ௡ሻሻ  is  not  less  than  ݊ െ ሺ݇ െ 1ሻ ൌ ݊ െ ݇ ൅ 1.  Thus 
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݀஼ ൌ ஼ݓ ൒ ݊ െ ݇ ൅ 1. On the other hand, ݀஼ ൑ ݊ െ ݇ ൅ 1 by the Single‐
ton bound. Notice that it is also easy to produce an ݂ such that ߝሺ݂ሻ has 
weight ݊ െ ݇ ൅ 1, as for instance ݂ ൌ ሺܺ െ ଵሻߙ ڮ ሺܺ െ   .௞ିଵሻߙ

We will say that ܥ is a Reed—Solomon (ܴܵ) code of length ݊ and dimen‐
sion ݇, and will be denoted ܴܵࢻሺ݇ሻ. 

When  the ߙ௜ can be understood  from  the context, we will simply write 
ܴܵሺ݇ሻ, or ܴܵሺ݊, ݇ሻ if we want to display the length ݊.  

It  is clear that the ܴܵ codes satisfy the equality  in the Singleton bound, 
and  so  they  are  examples  of MDS  codes. On  the  other  hand we  have 
݊ ൑  to obtain interesting ݍ and so we will have to take high values of ,ݍ
codes. 
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Since 1, ܺ, … , ܺ௞ିଵ is a basis of ܨሾܺሿ௞, the Vandermonde matrix         

      ௞ܸሺߙଵ, … , ௡ሻߙ ൌ ൮

1
ଵߙ
ڭ

ଵߙ
௞ିଵ

   

1
ଶߙ
ڭ

ଶߙ
௞ିଵ

   

ڮ
…

ڮ
   

1
௡ߙ
ڭ

௡ߙ
௞ିଵ

൲ 

is a generating matrix for ܴܵࢻሺ݇ሻ. Notice that  

    ௞ܸሺߙଵ, … , ௡ሻߙ ൌ ൫ߙ௜
௝൯,  1 ൑ ݅ ൑ ݊,  0 ൑ ݆ ൏ ݇ 
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Dual code 

The linear subspace of ܨ௡ orthogonal to a subset ܼ ك  ௡ will be denotedܨ
ܼୄ.  

Let us recall that ܼୄ ൌ ሼݔ א ۄݖ|ݔۃ |௡ܨ ൌ 0  for all ݖ א ܼሽ, where 

    ۄݖ|ݔۃ ൌ ଵݖଵݔ ൅ ڮ ൅  . ௡ݖ௡ݔ
 
If ܥ is a code, the code ୄܥ is called the dual code of ܥ. 
 
Since  the  scalar  product   ۄ | ۃ is  non‐degenerate,  by  linear  algebra  we 
know that ୄܥ has dimension ݊ െ ݇ if ܥ has dimension ݇. In other words, 
,is of type ሾ݊ ୄܥ ݊ െ ݇ሿ if ܥ is of type ሾ݊, ݇ሿ. 
 
As ܥ ك  tautologically, and both sides of this ,ୄୄܥ inclusion have dimen‐
sion ݇, we infer that ୄୄܥ ൌ  .ܥ
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It often happens that ܥ and ୄܥ have a non‐zero intersection. Even more, 
it can happen  that ܥ ك  ,ୄܥ including ܥ ൌ  .ୄܥ In  the  latter case we say 
that ܥ is self‐dual.  

Note that in order to be self‐dual it is necessary that ݊ ൌ 2݇. 
 
Example. If ܥ is the length ݊ repetition code over ୄܥ ,ܥ is the zero‐parity 
code of length ݊. 
 
Example.  If ܩ  is a generating matrix of ܥ,  then ܥ ك  ୄܥ is equivalent  to 
the  relation  ்ܩܩ ൌ 0.  If  in  addition  we  have  ݊ ൌ 2݇,  the  relation 
்ܩܩ ൌ 0 is equivalent to ܥ ൌ  .ୄܥ

As an application, check that the parity extension of the Hamming code 
ሾ7,4,3ሿ is a self‐dual code. 
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Parity‐check matrix 
 
If ܪ is a generating matrix of ୄܥ (in which case ܪ is an ሺ݊ െ ݇ሻ ൈ ݊ ma‐
trix) we have that 

    ݔ א ்ܪݔ   if and only if  ܥ ൌ 0, 
because if ݄ is a row of ܪ we have 

்݄ݔ ൌ  .ۄ݄|ݔۃ
Said in other words, the elements ݔ א  are exactly those that satisfy the ܥ
݊ െ ݇ linear equations ۄ݄|ݔۃ ൌ 0, where ݄ runs through the rows of ܪ. 
 
Given  ݄ א  ,ୄܥ the  linear  equation  ۄ݄|ݔۃ ൌ 0, which  is  satisfied  for  all 
ݔ א  ,ܥ is called the check equation of ܥ corresponding to ݄. By the pre‐
vious paragraph, ܥ  is determined by  the ݊ െ ݇ check equations corres‐
ponding  to  the  rows of ܪ, and  this  is why  the matrix ܪ  is  said  to be a 
check matrix, or control matrix, of ܥ. 
The relation 
    ܥ ൌ ሼݔ א ்ܪݔ|௡ܨ ൌ 0ሽ 
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can also be interpreted by saying that 

     ,்ܪ is the set of linear relations satisfied by the rows of ܥ

that is, by the columns of ܪ.  
 
In particular we have the  following prescription  for  finding de minimum 
distance of a linear code in terms of a check matrix: 
 
Proposition. If any ݎ െ 1 columns of ܪ are linearly independent, then the 
minimum distance of ܥ is at least ݎ, and conversely. 
 

   



17 
 

Example (A check matrix for RS codes) 

Let ܥ ൌ ࢻ ሺ݇ሻ, whereࢻܴܵ ൌ ,ଵߙ … ,  ௡ are distinct nonzero elements of aߙ
finite field ܨ. Then we know that 

ܩ ൌ ௞ܸሺߙଵ, … ,   ௡ሻߙ

is a generating matrix of ܥ (p. 12). Note that the rows of ܩ have the form 

    ൫ߙଵ
௜ , … , ௡ߙ

௜ ൯,  with   ݅ ൌ 0, … , ݇ െ 1. 

Now we are going to describe a check matrix ܪ of ܥ, that is, a generating 
matrix of ୄܥ.  

Recall  that  if we define  the Vandermonde determinant   as  the determi‐
nant  ,ଵߙሺܦ … ,  ௡ሻߙ of  the  Vandermonde  matrix  ௡ܸሺߙଵ, … ,  ,௡ሻߙ then 
  ,ଵߙሺܦ … , ௡ሻߙ ൌ ∏ ሺߙ௝ െ ௜ሻ௜ழ௝ߙ  . 

Define the vector  

    ࢎ ൌ ሺ݄ଵ, … , ݄௡ሻ 
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 by the formula 

    ݄௜ ൌ ሺെ1ሻ௜ିଵܦሺߙଵ, … , ,௜ିଵߙ ,௜ାଵߙ … , ,ଵߙሺܦ/௡ሻߙ … ,  ௡ሻߙ

          ൌ 1/ ∏ ሺߙ௝ െ ௜ሻ௝ஷ௜ߙ . 

(Remark that in the last product there are precisely ݅ െ 1 factors with the 
indices in reverse order, namely the ߙ௝ െ ݆ ௜ withߙ ൏ ݅).  

Theorem. The matrix 

    ܪ ൌ ௡ܸି௞ሺߙଵ, … , ,௡ሻdiagሺ݄ଵߙ … , ݄௡ሻ 

is a check matrix of ܥ. 

Proof. To see this, it is enough to show that any row of ܩ is orthogonal to 
any row of ܪ, because ܪ clearly has rank ݊ െ ݇. 

Since the rows of ܪ have the form 

    ሺ݄ଵߙଵ
௝, … , ݄௡ߙ௡

௝ ሻ,  with  ݆ ൌ 0, … , ݊ െ ݇ െ 1, 
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we have to establish that 

    ∑ ௟ߙ
௜ା௝௡

௟ୀଵ ݄௟ ൌ 0  for 0 ൑ ݅ ൑ ݇ െ 1 and 0 ൑ ݆ ൑ ݊ െ ݇ െ 1. 

Thus it will be enough to make sure that 

    ∑ ௟ߙ
௦௡

௟ୀଵ ݄௟ ൌ 0  for 0 ൑ ݏ ൑ ݊ െ 2. 

To see this, multiply throughout by the (nonzero) determinant 

    ,ଵߙሺܦ … ,  .௡ሻߙ

Taking into account the definition of ݄௟, we wish to derive that 

    ∑ ௟ߙ
௦௡

௟ୀଵ ሺെ1ሻ௟ିଵܦሺߙଵ, … , ,௟ିଵߙ ,௟ାଵߙ … , ௡ሻߙ ൌ 0. 

But  finally this  is obvious, because the  left hand side coincides with  the 
determinant 
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    ተ
ተ

ଵߙ
௦

1
ଵߙ
ڭ

ଵߙ
௡ିଶ

   

…
…
…

…

   

௡ߙ
௦

1
௡ߙ
ڭ

ଵߙ
௡ିଶ

ተ
ተ 

(developed along the first row), and this determinant has a repeated row. 

Remark. As we will see in a later chapter, the form of the matrix ܪ indi‐
cates  that ܴܵࢻሺ݇ሻ  is an alternant code, and as a consequence  it will be 
decodable with any of  the  fast decoders  for alternant  codes  studied  in 
that chapter. 

 

Example (Hamming codes).  A ݍ‐ary code ܥ of type ሾ݊, ݊ െ  ሿ is said to beݎ
a  Hamming  code  of  codimension     ݎ if  the  columns  of  a  check matrix 
ܪ א ௡ܯ

௥ሺܨሻ of ܥ  form a maximal set among  the subsets of ܨ௥ with  the 
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property that any two of its elements are linearly independent (of such a 
matrix we will say that it is a ݍ‐ary Hamming matrix of codimension ݎ).  

There  is  a  straightforward  way  of  constructing  such  a  matrix.  For 
݅ ൌ 1, … ,  ௥ thatܨ ௜ be the matrix whose columns are the vectors ofܪ let ,ݎ
have the form ሺ0, … ,0,1, ,௜ାଵߙ … , ,௜ାଵߙ ௥ሻ, withߙ … , ௥ߙ א  ௥ arbitrary. Letܨ
ܪ ൌ |ଶܪ|ଵܪ ڮ  ,ݎ ary Hamming matrix of codimension‐ݍ is a ܪ ௥. Thenܪ|
as any non‐zero vector of  length ݎ  is proportional  to exactly one of  the 
columns of ܪ (we will say that such an ܪ is a normalized ݍ‐ary Hamming 

matrix  of  codimension   .(ݎ Since   ௜ܪ has   ௥ି௜ݍ columns,   ܪ has 
݊ ൌ ሺݍ௥ െ 1ሻ ሺݍ െ 1⁄ ሻ columns. 

It  is clear  that  two Hamming codes of  the same codimension are scalar 
equivalent.  We  will  write  Ham௤ሺݎሻ  to  denote  any  one  of  them  and 

Ham௤
ୄሺݎሻ to denote the corresponding dual code, that is to say, the code 

generated  by  the  check matrix   ܪ used  to  define  Ham௤ሺݎሻ.  The  code 
Ham௤ሺݎሻ has dimension 
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     ݇ ൌ ݊ െ ݎ ൌ ሺݍ௥ െ 1ሻ/ሺݍ െ 1ሻ െ  . ݎ

Its codimension, which is the dimension of Ham௤
ୄሺݎሻ, is equal to ݎ. 

The binary Hamming  code of  codimension 3, Hamଶሺ3ሻ,  is  the  code 
[7,4] defined by (say) the normalized check matrix  

    ܪ ൌ ൭
1
0
0

   
1
0
1

   
1
1
0

   
1
1
1

   
0
1
0

   
0
1
1

   
0
0
1

൱ . 

 

Proposition. If ܥ is any Hamming code, then ݀஼ ൌ 3. In particular, the er‐
ror‐correcting capacity of a Hamming code is 1. 

Proof. If ܪ  is a check matrix of ܥ, then we know that the elements of ܥ 
are the linear relations satisfied by the columns of ܪ. Since any two col‐
umns  of   ܪ are  linearly  independent,  the minimum  distance  of ܥ  is  at 
least 3. On the other hand, ܥ has elements of weight 3, because the sum 
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of two columns of ܪ  is  linearly  independent of them and hence  it must 
be proportional  to  another  column of ܪ  (the  columns of ܪ  contain  all 
non‐zero vectors of ܨ௥ up to a scalar factor). 

Corollary. The Hamming codes are perfect (cf. P7). 

Proposition.  If  ᇱܥ ൌ ௤݉ܽܪ
ୄሺݎሻ  is  the  dual  of  a  Hamming  code  ܥ ൌ

 ,௥ିଵ. In particularݍ Ԣ isܥ ሻ, the weight of any non‐zero element ofݎ௤ሺ݉ܽܪ

the distance between any pair of distinct elements of ܥԢ is ݍ௥ିଵ. 

Proof. Let ܪ ൌ ሺ݄௜௝ሻ be a check matrix of ܥ. Then the non‐zero vectors of 
ݖ Ԣ have the formܥ ൌ ܽ ,ܪܽ א ܽ ,௥ܨ ് 0. So the ݅‐th component of ݖ has 
the form  

௜ݖ ൌ ܽଵ݄ଵ௜ ൅ ڮ ൅ ܽ௥݄௥௜  . 

Therefore  the condition ݖ௜ ൌ 0  is equivalent  to  say  that  the point  ௜ܲ of 
Զ௥ିଵ ൌ Զሺܨ௥ሻ  defined  by  the  ݅‐th  column  of ܪ  belongs  to  the  hyper‐
plane of Զ௥ିଵ defined by the equation 
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    ܽଵݔଵ ൅ ڮ ൅ ܽ௥ݔ௥ ൌ 0 . 

Since ሼ ଵܲ, … , ௡ܲሽ ൌ Զ௥ିଵ, it follows that the number of non‐zero compo‐
nents of ݖ  is  the  cardinal of  the  complement of a hyperplane of Զ௥ିଵ. 
Since this complement is an affine space ८௥ିଵ, its cardinal is ݍ௥ିଵ and so 
any non‐zero element of ܥԢ has weight ݍ௥ିଵ.                  □  

Codes such that the distance between pairs of distinct elements is a fixed 
integer ݀ are called equidistant of distance ݀. Thus Ham௤

ୄሺݎሻ  is equidis‐
tant of distance ݍ௥ିଵ. 

 

 

 

 

 



25 
 

Syndrome‐leader decoding 

Let   ܥ by  an   linear‐ܨ ሾ݊, ݇ሿ  code  and   ܪ a  control matrix  of   .ܥ Given 
ݕ א  ,௡ܨ the element ݏ ൌ ்ܪݕ א  ௡ି௞ܨ is called syndrome of ݕ  (with  re‐
spect to ܪ).  

Since  ܥ ൌ ሼݔ א ்ܪݔ|௡ܨ ൌ 0ሽ,  the  elements  if   ܥ are  precisely  those 
whose syndrome is 0. If we set ܥ௦ ൌ ሼݔ א ்ܪݔ|௡ܨ ൌ ݏ ሽ for anyݏ א  ,௡ି௞ܨ
then in particular we have  ܥ ൌ  .଴ܥ

As the linear map ݏ ׷ ௡ܨ ՜ ݕ ,௡ି௞ܨ հ  has rank ܪ is surjective (for ,்ܪݕ
݊ െ ݇) and its kernel is ܥ଴ ൌ ௦ܥ we see that ,ܥ ്  Moreover, if we pick .׎
any ݖ௦ א  ௦, thenܥ ௦ܥ  ൌ ௦ݖ ൅  .ܥ In other words, ܥ௦  is a coset modulo ܥ, 
and we say that ܥ௦ is the coset of the syndrome ݏ). 
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Lemma. If 2ݐ ൏ |݁| ௦ contains at most one vector ݁ such thatܥ ,݀ ൑  .ݐ

For if ݁ᇱ א |௦ and |݁Ԣܥ ൑ ݔ then ,ݐ ൌ ݁ െ ݁ᇱ א ଴ܥ ൌ |ݔ| ,ܥ ൏ ݀. So ݔ ൌ 0. 

Let ݃ be  the minimum distance decoder of ݔ ,ܥ א  ܥ (sent  vector)  and 
ݕ א  is the correcting capacity of ݐ ௡ (received vector).  Then we have, ifܨ
 : ܥ

Proposition. The vector ݕ is ݃‐decodable if and only if there exists ݁ א  ௡ܨ
such that ்ܪݕ ൌ |݁| and ்ܪ݁ ൑  If this is the case, then ݁ is unique (by .ݐ
the lemma) and ݃ሺݕሻ ൌ ݕ െ ݁. 

Proof. If ݕ is ݃‐decodable, let ݔᇱ ൌ ݃ሺݕሻ א ݁ and ܥ ൌ ݕ െ   Ԣ. Thenݔ

     ்ܪݕ ൌ ሺݔᇱ ൅ ݁ሻ்ܪ ൌ |݁|  and  ்ܪ݁ ൌ ݄݀ሺݔᇱ, ሻݕ ൑  .ݐ

Conversely,  let  ݁ א  ௡ܨ be  such  that  ்ܪݕ ൌ  ்ܪ݁ and  |݁| ൑  .ݐ Let 
ᇱݔ ൌ ݕ െ ݁. Then ݔᇱ்ܪ ൌ ்ܪݕ െ ்ܪ݁ ൌ 0, so ݔᇱ א  and ,ܥ

   ݄݀ሺݔᇱ, ሻݕ ൌ ݕ| െ |Ԣݔ ൌ |݁| ൑  ,ݐ

which shows that ݕ is ݃‐decodable and that ݃ሺݕሻ ൌ ᇱݔ ൌ ݕ െ ݁.              ᇝ 
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The  proposition  above  suggests  the  following  decoding  scheme.  First 
form a table 

    ܧ ൌ ሼݏ ՜ ݁௦ሽ௦אி೙షೖ,  with ݁௦ א  ௦ of minimum weightܥ

(The element ݁௦ is said to be a leader of the class ܥ௦ and ܧ a leader’s ta‐
ble  for ܥ. Note  that ݁௦  is unique  if  |݁௦| ൑  otherwise ;ݐ it has  to be  se‐
lected among the vectors of ܥ௦ that have minimum weight. Now the syn‐
drome decoder can be described as follows: 
   
  SYNDROMEെLEADER DECODER (SLD) 

Input: ݕ א  ௡  [received vector]ܨ
1.  Set ݏ ൌ  [ݕ the syndrome of] ்ܪݕ
2.  Let ݁ ൌ  [௦ܥ the leader of] ሻݏሺܧ
3. Return ݕ െ ݁. 

Proposition.  If ܦ ൌ ח ,ݔሺܤ ஼אሻ௫ݐ   is the set of vectors that are decodable 
by  the minimum  distance  decoder ݃,  then  SLD  coincides with ݃  for  all 
ݕ א  .ܦ
Proof. It is an immediate consequence of the previous proposition.
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The Gilbert—Varshamov existence condition 

Theorem. Fix positive integers 
   ݊, ݇, ݀ such that ݇ ൑ ݊ and 2 ൑ ݀ ൑ ݊ ൅ 1. 

If the relation 

vol௤ሺ݊ െ 1, ݀ െ 2ሻ ൏  ௡ି௞ݍ

is  satisfied  (this  is  called  the GilbertെVarshamov  condition),  then  there 
exists a linear code of type ሾ݊, ݇, ݀Ԣሿ with ݀ᇱ ൒ ݀. 

Proof. A) It is sufficient to see that the condition allows us to construct a 

matrix ܪ א ௡ܯ
௡ି௞ሺܨሻ of rank ݊ െ ݇ with the property that any ݀ െ 1 of 

its columns are linearly independent. Indeed, if this is the case, then the 
code ܥ defined as  the orthogonal space of  the  rows of ܪ has  length ݊, 
dimension ݇ (from ݊ െ ሺ݊ െ ݇ሻ ൌ ݇), and minimum weight ݀ᇱ ൒ ݀ (since 
there are no linear relations of length less than ݀ among the columns of 
 .(ܥ which is a check matrix of ,ܪ
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B) Before constructing ܪ, we first establish that the GilbertെVarshamov 
condition  implies  that  ݀ െ 1 ൑ ݊ െ ݇  (note  that  this  is  the  Singleton 
bound for the parameters ݀ and ݇).  

Indeed, 

    vol௤ሺ݊ െ 1, ݀ െ 2ሻ ൌ ∑ ൬݊ െ 1
݆ ൰ௗିଶ

௝ୀ଴ ሺݍ െ 1ሻ௝  

                  ൒ ∑ ൬݀ െ 2
݆ ൰ௗିଶ

௝ୀ଴ ሺݍ െ 1ሻ௝ 

                  ൌ ൫1 ൅ ሺݍ െ 1ሻ൯ௗିଶ ൌ   ௗିଶݍ

and hence ݍௗିଶ ൏  ௡ି௞ݍ if the GilbertെVarshamov condition  is satisfied. 
Therefore ݀ െ 2 ൏ ݊ െ ݇, or ݀ െ 1 ൑ ݊ െ ݇. 

C)  In  order  to  construct   we ,ܪ first  select  a  basis  ܿଵ, … , ܿ௡ି௞ א  .௡ି௞ܨ
Since ݀ െ 1 ൑ ݊ െ ݇, any ݀ െ 1 vectors extracted  from  this basis are  li‐
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nearly independent. Also, any matrix ܪ of type ሺ݊ െ ݇ሻ ൈ ݉ with entries 

in ܨ which contains the columns  ௝ܿ
் (݆ ൌ 1, … , ݊ െ ݇), has rank ݊ െ ݇. 

Now assume that we have constructed,  for some  ݅ א ሾ݊ െ ݇, ݊ሿ, vectors 
ܿଵ, … , ܿ௜ א ݀ ௡ି௞ with the property that anyܨ െ 1 of them 

are  linearly  independent. If ݅ ൌ ݊,  it  is sufficient to take ܪ ൌ ሺܿଵ
், … , ܿ௡

்ሻ 
and by part A our question is answered. 

Otherwise we will have ݅ ൏ ݊. In this case, the number of linear combina‐
tions that can be formed with at most ݀ െ 2 vectors from among ܿଵ, … , ܿ௜ 
is not greater  than vol௤ሺ݅, ݀ െ 2ሻ  (see P6).  Since  ݅ ൑ ݊ െ 1, vol௤ሺ݅, ݀ െ
2ሻ ൑ vol௤ሺ݊ െ 1, ݀ െ 2ሻ. If the GilbertെVarshamov condition is satisfied, 

then  there  is a vector ܿ௜ାଵ א  ௡ି௞ whichܨ is not a  linear combination of 
any  subset  of  ݀ െ 2  vectors  extracted  from  the  list  ܿଵ, … , ܿ௜,  and  our 
claim follows by induction.   ᇝ 
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Remark.  Since  ,௤ሺ݊ܣ ݀ሻ ൒ ,௤ሺ݊ܣ ݀Ԣሻ  if  ݀ᇱ ൒ ݀,  the  Gilbert‐‐Varshamov 

condition  shows  that  ,௤ሺ݊ܣ ݀ሻ ൒  .௞ݍ This  lower  bound,  called  the 

bertെVarshamov  bound,  often  can  be  used  to  improve  the  Gilbert 
bound. 

Example. Gilbert(10,3)ൌ19, as in this case 

   ,௡/vol௤ሺ݊ݍ ݀ െ 1ሻ ൌ 2ଵ଴/volଶሺ10,2ሻ ൌ 2ଵ଴/56 ؄ 18.3 . 

And  GilbertVarshamov(10,3)ൌ64,  as  volଶሺ9,1ሻ ൌ 10  and  10 ൏ 2ଵ଴ି଺ ൌ
16 while 2ଵ଴ି଻ ൌ 8 ൏ 10. 

 

The MacWilliams identities 

The weight enumerator of a code ܥ is defined as the polynomial 

    ሻݐሺܣ ൌ ∑ ௜௡ݐ௜ܣ
௜ୀ଴ , 

where  iA  is the number of elements of ܥ that have weight ݅. 
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It is clear that ܣሺݐሻ can be expressed in the form 

    ሻݐሺܣ ൌ ∑ |௫|ݐ
௫א஼   

for the term ݐ௜ appears in this sum as many times as the number of solu‐
tions of the equation |ݔ| ൌ ݔ ,݅ א  .ܥ
Remark. ܣ଴ ൌ 1, since ૙௡  is the unique element of ܥ with weight 0. On 
the other hand ܣ௜ ൌ 0 if 0 ൏ ݅ ൏ ݀, where ݀ is the minimum distance of 
 ௜ is not easy in general and it is one ofܣ The determination of the other .ܥ
the basic problems of coding theory. 

 

Theorem  (F.  J.  MacWilliams).1  The  weight  enumerator 
,of type ሾ݊ ܥ of a code ୄܥ ሻ  of the dual codeݐሺܤ ݇ሿ can be 
determined from the weight enumerator ܣሺݐሻ of ܥ accord‐
ing to the following identity:   

ሻݐሺܤ௞ݍ             ൌ ሺ1 ൅ ሺݍ െ 1ሻݐሻ௡ܣ ቀ ଵି௧
ଵାሺ௤ିଵሻ௧

ቁ. 
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Remark. In the proof of the theorem we need the notion of character of 
a  group   ,ܩ which  by  definition  is  a  group  homomorphism  of   ܩ to 
ܷሺ1ሻ ൌ ሼݖ א ԧ| |ݖ| ൌ 1ሽ, the group of complex numbers of modulus 1. 

The constant map ݃ հ 1 is a character, called the unit character.  A char‐
acter different  from  the unit  character  is  said  to be non‐trivial and  the 
main  fact we will need  is  that  the  additive  group of  finite  field ॲ௤ has 
non‐trivial  characters.  Actually  any  finite  abelian  group  has  non‐trivial 
characters. Let us sketch how this can be established. 

It  is known that any finite abelian group ܩ  is  isomorphic to a product of 
the form  

   Ժ௡భ ൈ ڮ ൈ Ժ௡ೖ   
with ݇ a positive  integer and ݊ଵ, … , ݊௞  integers greater  than 1.   For ex‐
ample,  in  the  case  of  a  finite  field  ॲ௤, we  have  (if  ݍ ൌ  ,௥݌  ݌ prime), 

ॲ௤ ؆ ൫Ժ௣൯௥
, since ॲ௤ is a vector space of dimension ݎ over Ժ௣.  

 



34 
 

In any case, it is clear that if we know how to find a non‐trivial character 
of Ժ௡భ, then we also know how to  find a non‐trivial character of ܩ  (the 
composition  of  the  non‐trivial  character  of  Ժ௡భ  with  the  projection  of 
Ժ௡భ ൈ ڮ ൈ Ժ௡ೖ  onto Ժ௡భ  gives a non‐trivial character of ܩ).  

Finally note that if ݊ is an integer greater than 1 and ߦ ് 1 is an ݊‐th root 
of unity then the map ߯ ׷  Ժ௡ ՜ ܷሺ1ሻ such that ߯ሺ݇ሻ ൌ  ௞ is well definedߦ
and is a non‐trivial character of Ժ௡. 

 

Proof.  Let ߯ be a non‐trivial  character of  the additive group of ܨ ൌ ॲ௤ 
(see the preceding Remark). Thus we have a map 

    ߯ ׷ ܨ ՜ ܷሺ1ሻ  
such that ߯ሺߙ ൅ ሻߚ ൌ ߯ሺߙሻ߯ሺߚሻ for any ߙ, ߚ א ሻߛwith ߯ሺ ܨ ് 1 for some 
ߛ א ∑ Observe that .ܨ ߯ሺߙሻఈאி ൌ 0, since 
    ߯ሺߛሻ ∑ ߯ሺߙሻఈאி ൌ ∑ ߯ሺߙ ൅ ிאሻఈߛ ൌ ∑ ߯ሺߙሻఈאி  

and ߯ሺߛሻ ് 1. 
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Now consider the sum 

    ܵ ൌ ∑ ∑  ߯ሺݔ, |௬|ݐሻݕ
௬אி೙௫א஼  

where ߯ሺݔ, ሻݕ ൌ ߯ሺۄݕ|ݔۃሻ ൌ ∏ ߯ሺݔ௜ݕ௜ሻ௡
௜ୀଵ . After reordering we have 

    ܵ ൌ ∑ |௬|ݐ
௬אி೙ ∑ ߯ሺݔ, ஼אሻ௫ݕ  

If ݕ א ۄݕ|ݔۃ then ,ୄܥ ൌ 0 for all ݔ א ሻۄݕ|ݔۃand so ߯ሺ ܥ ൌ 1 for all ݔ א  ,ܥ
and in this case ∑ ߯ሺݔ, ஼אሻ௫ݕ ൌ |ܥ| ൌ   .௞ݍ

If  ݕ ב  ,ୄܥ then  the  linear map ܥ ՜  ܨ such  that  ݔ հ  ۄݕ|ݔۃ takes  each 
value  of   ܨ the  same  number  of  times,  say   ,ݎ and  hence,  using  that 
∑ ߯ሺߙሻఈאி ൌ 0, we  have  that  ∑ ߯ሺݔ, ஼אሻ௫ݕ ൌ ݎ ∑ ߯ሺߙሻఈאி ൌ 0.  Putting 
the two cases together we have that 
    ܵ ൌ |ܥ| ∑ |௬|ݐ

௬א஼఼ ൌ  .ሻݐሺܤ௞ݍ

On the other hand, for any given ݔ א  and making the convention, for ,ܥ

all ߙ א |ߙ| that ,ܨ ൌ ቄ1 if ߙ ് 0
0 if ߙ ൌ 0ቅ, we have 
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    ∑ ߯ሺݔ, |௬|ݐሻݕ
௬אி೙ ൌ ∑ ߯ሺݔଵݕଵ ൅ ڮ ൅ |ା|௬೙ڮ௬భ|ା|ݐ௡ሻݕ௡ݔ

௬భ,..,௬೙אி  

                 ൌ  ∑ ∏ ߯ሺݔ௜ݕ௜ሻ௡
௜ୀଵ |௬೔|ݐ

௬భ,..,௬೙אி  

                     ൌ ∏ ൫∑ ߯ሺݔ௜ߙሻఈאி ఈ|൯௡|ݐ
௜ୀଵ .  

But  ∑ ߯ሺݔ௜ߙሻఈאி |ఈ|ݐ ൌ ൜1 ൅ ሺݍ െ 1ሻݐ  if  ݔ௜ ൌ 0
1 െ ௜ݔ  if                ݐ ് 0 

because ∑ ߯ሺߚሻఉאிכ ൌ െ1. Consequently 

    ∏ ∑ ߯ሺݔ௜ߙሻఈאி ఈ|௡|ݐ
௜ୀଵ ൌ ሺ1 ൅ ሺݍ െ 1ሻݐሻ௡ ቀ ଵି௧

ଵାሺ௤ିଵሻ௧
ቁ

|௫|
 

and summing with respect to ݔ א  it is clear that ܥ

    ܵ ൌ ሺ1 ൅ ሺݍ െ 1ሻݐሻ௡ܣ ቀ ଵି௧
ଵାሺ௤ିଵሻ௧

ቁ .                    □  

Example  (Weight  enumerator  of  the  zero‐parity  code).  The  zero‐parity 
code of length ݊ is the dual of the repetition code ܥ of length ݊. Since the 
weight enumerator of ܥ is ܣሺݐሻ ൌ 1 ൅ ሺݍ െ 1ሻݐ௡, the weight enumerator 
 ሻ of the zero‐parity code is given by the relationݐሺܤ
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    ሻݐሺܤݍ ൌ ሺ1 ൅ ሺݍ െ 1ሻݐሻ௡ ቀ1 ൅ ሺݍ െ 1ሻ ଵି௧
ଵାሺ௤ିଵሻ௧

ቁ
௡
 

           ൌ ሺ1 ൅ ሺݍ െ 1ሻݐሻ௡ ൅ ሺݍ െ 1ሻሺ1 െ  ሻ௡ݐ   

In the binary case we have 

    ሻݐሺܤ2 ൌ ሺ1 ൅ ሻ௡ݐ ൅ ሺ1 െ  ,ሻ௡ݐ

and therefore 

    ሻݐሺܤ ൌ ∑ ቀ ݊
2݅ቁ ଶ௜௜ஸ௡/ଶݐ

௜ୀ଴ . 

Note that this could have been written directly, for the binary zero‐parity 
code of  length ݊ has only even‐weight words and  the number of  those 

having weight 2݅ is ቀ ݊
2݅ቁ. 

 

Example (Weight enumerator of the Hamming codes). We know that the 
dual  Hamming  code  Ham௤

ୄሺݎሻ  is  equidistant,  with  minimum  distance 
 ሻ, is the polynomialݐሺܤ ௥ିଵ. This means that its weight enumerator, sayݍ
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    ሻݐሺܤ ൌ 1 ൅ ሺݍ௥ െ 1ሻݐ௤௥ିଵ
,  

because ݍ௥ െ 1 is the number of non‐zero vectors in Ham௤
ୄሺݎሻ and each 

of these has weight ݍ௥ିଵ. Now the MacWilliams identity allows us to de‐
termine the weight enumerator ܣሺݐሻ of Ham௤ሺݎሻ. Setting ݍො ൌ ݍ െ 1, we 
have: 

    ሻݐሺܣ௥ݍ ൌ ሺ1 ൅ ܤሻ௡ݐොݍ ቀ ଵି௧
ଵା௤ො௧

ቁ 

         ൌ ሺ1 ൅ ሻ௡ݐොݍ ൅ ሺݍ௥ െ 1ሻሺ1 ൅ ሻ௡ݐොݍ ሺଵା௧ሻ೜ೝషభ

ሺଵା௤ො௧ሻ೜ೝషభ 

         ൌ ሺ1 ൅ ሻ௡ݐොݍ ൅ ሺݍ௥ െ 1ሻሺ1 ൅ ሻ௡ି௤௥ିଵሺ1ݐොݍ ൅ ሻ௤௥ିଵݐ
 

          ൌ  ሺ1 ൅ ሻ௡ି௤௥ିଵݐොݍ ቀሺ1 ൅ ሻ௤௥ିଵݐොݍ ൅ ሺݍ௥ െ 1ሻሺ1 െ  ሻ௤ೝషభቁݐ

          ൌ  ሺ1 ൅ ሻݐොݍ
೜ೝషభషభ

೜షభ ቀሺ1 ൅ ሻ௤௥ିଵݐොݍ ൅ ሺݍ௥ െ 1ሻሺ1 െ  ሻ௤ೝషభቁݐ

since ݊ ൌ ሺݍ௥ െ 1ሻ/ሺݍ െ 1ሻ and ݊ െ ௥ିଵݍ ൌ ሺݍ௥ିଵ െ 1ሻ/ሺݍ െ 1ሻ. 
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In the binary case the previous formula yields that the weight enumera‐
tor ܣሺݐሻ of Hamሺݎሻ satisfies 

    2௥ܣሺݐሻ ൌ ሺ1 ൅ ሻሺଶೝషభିଵሻ൫ሺ1ݐ ൅ ሻሺଶೝିଵሻݐ ൅ ሺ2௥ െ 1ሻሺ1 െ  ሻଶೝషభ൯ݐ

For ݎ ൌ 3, Hamሺ3ሻ has type ሾ7,4ሿ and 
    ሻݐሺܣ8 ൌ ሺ1 ൅ ሻଷሺሺ1ݐ ൅ ሻସݐ ൅ 7ሺ1 െ  ,ሻସሻݐ
    ሻݐሺܣ   ൌ 1 ൅ ଷݐ7 ൅ ସݐ7 ൅   .଻ݐ

So  ܣ଴ ൌ ଻ܣ ൌ ଷܣ  ,1 ൌ ସܣ ൌ ଵܣ  ,7 ൌ ଶܣ ൌ ହܣ ൌ ଺ܣ ൌ 0. 
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Actually  it  is  easy  to  find,  using  the  description  of  this  code,  that  the 
weight 3 vectors of Hamሺ3ሻ are 

[1,1,0,1,0,0,0], [0,1,1,0,1,0,0], [1,0,1,0,0,1,0], [0,0,1,1,0,0,1], 

[1,0,0,0,1,0,1], [0,1,0,0,0,1,1], [0,0,0,1,1,1,0] 

and the weight 4 vectors are 

[1,1,1,0,0,0,1], [1,0,1,1,1,0,0], [0,1,1,1,0,1,0], [1,1,0,0,1,1,0], 

[0,1,0,1,1,0,1], [1,0,0,1,0,1,1], [0,0,1,0,1,1,1] 

Note that the latter are obtained from the former, in reverse order, by in‐
terchanging 0 and 1. 

 

Notes 

1. http://www.awm‐math.org/noetherbrochure/TOC.html 
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Notes 

N1. Two codes ܥ, ᇱܥ ك ܶ௡ of  length ݊ are  said  to be equivalent  if 
there is a permutation ߪ of 1, … , ݊ and permutations ߬ଵ, … , ߬௡ of ܶ 
such that the map ߩ ׷ ܶ௡ ՜ ܶ௡ given by  

  ሺݔଵ, … , ௡ሻݔ հ ቀ߬ଵ൫ݔఙሺଵሻ൯, … , ߬௡൫ݔఙሺ௡ሻ൯ቁ 

induces a 1‐to‐1 map between ܥ and ܥԢ. Note that equivalent codes 
have  the  same  parameters,  as  ݄݀ሺݔ, ሻݕ ൌ ݄݀ሺݔߩ,  ሻݕߩ for  any 
,ݔ ݕ א  .ܥ If we  can  choose  ߬ଵ ൌ ڮ ൌ ߬௡ ൌ  ,݀ܫ then ܥ  and ܥԢ  are 
called permutationally equivalent. If ܶ is a finite field and  

  ௝߬ሺݐሻ ൌ  ݐ௝ߙ

for some non‐zero ߙ௝, then we say that ܥ and ܥԢ are scalarly equiva‐
lent. 


