

TC10 / 2. Linear codes

S. Xambó

- Preliminaries on finite fields
- Basic notions
- Generating matrix
- Coding with a generating matrix
 - Example: RS codes
- Dual code
- Parity-check matrix
 - Example: a check matrix for RS codes
 - Hamming codes
- Syndrome decoding
- The Gilbert—Varshamov existence condition
- The MacWilliams identities

Preliminaries on finite fields

Let F be a finite field, and let q be the cardinal of F .

- q is necessarily the power of a prime number, $q = p^r$ (we say that p is the *characteristic* of F).
- If q is a power of a prime number, there is a unique field (up to isomorphism) with cardinal q . This field is denoted \mathbb{F}_q or $GF(q)$.
- If p is a prime number, then $\mathbb{F}_p = \mathbb{Z}_p$ (the field of residues mod p).
- If we select a monic *irreducible* polynomial

$$f = X^r + a_1 X^{r-1} + \cdots + a_r \in \mathbb{Z}_p[X]$$

then $F = \mathbb{Z}_p[X]/(f)$ is a field of cardinal p^r . In fact, setting $x = [X]$, $1, x, \dots, x^{r-1}$ is a basis of F as a \mathbb{Z}_p -vector space:

$$F = \{\alpha = \alpha_0 + \alpha_1 x + \cdots + \alpha_{r-1} x^{r-1} \mid \alpha_0, \alpha_1, \dots, \alpha_{r-1} \in \mathbb{Z}_p\}.$$

- The product in F is obtained by performing the product as polynomials in x and reducing the monomials x^j ($j \geq r$) using the relation

$$x^r = -(a_1 x^{r-1} + \cdots + a_r)$$

obtained from the fact that $f(x) = 0$ (by construction).

Examples

- $X^r + X + 1 \in \mathbb{Z}_2[X]$ is irreducible for $r = 2, 3, 4, 6, 7$. This allows us to construct $\mathbb{F}_4, \mathbb{F}_8, \mathbb{F}_{16}, \mathbb{F}_{64}, \mathbb{F}_{128}$.
- \mathbb{F}_{32} can be constructed with the polynomial $X^5 + X^2 + 1$ and \mathbb{F}_{256} with the polynomial $X^8 + X^7 + X^3 + X + 1$.

Basic notions

Consider codes $C \subseteq F^n$ that are vector subspaces. Such codes will be said to be *linear*.

Note that if $k = \dim_F(C)$, then k is also the dimension of C , as $|C| = q^k$ (count linear combinations of a basis of C over F).

The *weight* of an element $x \in F^n$, denoted $|x|$, is the number of non-zero entries of x , or also $hd(x, 0)$. It is a norm, as

$$|0| = 0, \quad |x| > 0 \text{ if } x \neq 0, \text{ and } |x + y| \leq |x| + |y|.$$

The *minimum weight* of C , w_C , is the minimum of the weights $|x|$ for $x \in C, x \neq 0$.

Lemma. $w_C = d_C$.

Proof. If $x \in C, x \neq 0$, then $|x| = hd(x, 0) \geq d_C$, and so $w_C \geq d_C$. On the other hand, if $x, x' \in C, x \neq x'$, then

$$hd(x, x') = |x - x'| \geq w_C,$$

and hence $d_C \geq w_C$.

Remark. For a general code C of cardinal M , the determination of d_C involves the computation of the $M(M - 1)/2$ Hamming distances between its pairs of distinct elements. The lemma above tells us that if C is linear then the determination of d_C involves only the computation of $M - 1$ weights.

Generating matrix

Given a code C of type $[n, k]$, we will say that a matrix $G \in M_n^k(F)$ is a *generating matrix* of C if the rows of G form a linear basis of C .

Conversely, given a matrix $G \in M_n^k(F)$, the subspace $\langle G \rangle \subseteq F^n$ generated by the rows of G is a code of type $[n, k']$, where k' is the rank of G . We will say that $\langle G \rangle$ is *the code generated by G* .

Examples

- a) The repetition code of length n is generated by $\mathbf{1}_n$.
- b) A generating matrix for the Hamming code $[7,4,3]$ is $G = I_4|R^T$, where the columns of R are the binary vectors of length 3 of weight at least 2 (in some order).
- c) If $C \subseteq F^n$ is a code of dimension k , let $C \subseteq F^{n+1}$ be the image of C by the linear map

$$F^n \rightarrow F^n \times F = F^{n+1} \text{ such that } x \mapsto x| - s(x),$$

where $s(x) = \sum_i x_i$. Then \bar{C} is a code of type $[n + 1, k]$ which is called the *parity extension* of C (the symbol $-s(x)$ is called the *parity check symbol* of the vector x). If G is a generating matrix of C , then the matrix \bar{G} obtained by appending to G the column consisting of the parity check symbols of its rows is a generating matrix of \bar{C} . The matrix \bar{G} will be called the *parity completion* (or parity extension) of G .

- d) The elements $x \in F^{n+1}$ such that $s(x) = 0$ form a code C of type $[n + 1, n]$ (it is called the *zero-parity code* of length $n + 1$, or of dimension n). Then the matrix $I_n | \mathbf{1}_n^T$ is a generating matrix of C .

Coding with a generating matrix

It is clear that if G is a generating matrix of C , then the map

$$f: F^k \rightarrow F^n, \quad u \mapsto uG,$$

induces an isomorphism of F^k onto C and hence we can use f as a coding map for C .

If $A \in M_k(F)$ is an invertible matrix (in other words, $A \in GL_k(F)$), then AG is also a generating matrix of C . From this it follows that for each code C there exists an equivalent code ^{N1} which is generated by a matrix that has the form $G = (I_k | P)$, where I_k is the identity matrix of order k and $P \in M_{n-k}^k(F)$. Since in this case $f(u) = uG = (u | uP)$, for all $u \in F^k$, we see that the coding of u amounts to appending the vector $uP \in F^{n-k}$ to the vector u (we may think of uP as a “redundancy” vector appended to the “information vector” u).

The codes C (this time not necessarily linear) of dimension k for which there are k positions in which appear, when we let x run in C , all sequences of k symbols, are said to be *systematic* (with respect to those k positions). According to the preceding paragraph, each linear code of dimension k is equivalent to a systematic code with respect to the first k positions.

Example (Reed–Solomon codes). Let $\alpha = \alpha_1, \dots, \alpha_n \in F$ a sequence of n distinct elements of F ($1 \leq n \leq q$).

For every integer $k > 0$, let $F[X]_k$ be the F -vector space whose elements are polynomials of degree $< k$ with coefficients in F . We have

$$F[X]_k = \langle 1, X, \dots, X^{k-1} \rangle_F, \quad \dim(F[X]_k) = k.$$

If $k \leq n$, the map

$$\varepsilon : F[X]_k \rightarrow F^n, \quad f \mapsto (f(\alpha_1), \dots, f(\alpha_n))$$

is injective, since the existence of a non-zero polynomial of degree $< k$ vanishing on all the α_i implies $n \leq k - 1$. The image of ε is therefore a linear code C of type $[n, k]$.

Proposition. The minimum distance of C is $n - k + 1$.

Proof. Indeed, a non-zero polynomial f of degree $< k$ can vanish on at most $k - 1$ of the elements α_i and hence the weight of $(f(\alpha_1), \dots, f(\alpha_n))$ is not less than $n - (k - 1) = n - k + 1$. Thus

$d_C = w_C \geq n - k + 1$. On the other hand, $d_C \leq n - k + 1$ by the Singleton bound. Notice that it is also easy to produce an f such that $\varepsilon(f)$ has weight $n - k + 1$, as for instance $f = (X - \alpha_1) \cdots (X - \alpha_{k-1})$.

We will say that C is a Reed—Solomon (*RS*) code of length n and dimension k , and will be denoted $RS_\alpha(k)$.

When the α_i can be understood from the context, we will simply write $RS(k)$, or $RS(n, k)$ if we want to display the length n .

It is clear that the *RS* codes satisfy the equality in the Singleton bound, and so they are examples of MDS codes. On the other hand we have $n \leq q$, and so we will have to take high values of q to obtain interesting codes.

Since $1, X, \dots, X^{k-1}$ is a basis of $F[X]_k$, the *Vandermonde matrix*

$$V_k(\alpha_1, \dots, \alpha_n) = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \vdots & \vdots & & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \dots & \alpha_n^{k-1} \end{pmatrix}$$

is a generating matrix for $RS_{\alpha}(k)$. Notice that

$$V_k(\alpha_1, \dots, \alpha_n) = (\alpha_i^j), \quad 1 \leq i \leq n, \quad 0 \leq j < k$$

Dual code

The linear subspace of F^n orthogonal to a subset $Z \subseteq F^n$ will be denoted Z^\perp .

Let us recall that $Z^\perp = \{x \in F^n \mid \langle x|z \rangle = 0 \text{ for all } z \in Z\}$, where

$$\langle x|z \rangle = x_1 z_1 + \cdots + x_n z_n .$$

If C is a code, the code C^\perp is called the *dual code* of C .

Since the scalar product $\langle \cdot | \cdot \rangle$ is non-degenerate, by linear algebra we know that C^\perp has dimension $n - k$ if C has dimension k . In other words, C^\perp is of type $[n, n - k]$ if C is of type $[n, k]$.

As $C \subseteq C^{\perp\perp}$, tautologically, and both sides of this inclusion have dimension k , we infer that $C^{\perp\perp} = C$.

It often happens that C and C^\perp have a non-zero intersection. Even more, it can happen that $C \subseteq C^\perp$, including $C = C^\perp$. In the latter case we say that C is *self-dual*.

Note that in order to be self-dual it is necessary that $n = 2k$.

Example. If C is the length n repetition code over \mathbb{C} , C^\perp is the zero-parity code of length n .

Example. If G is a generating matrix of C , then $C \subseteq C^\perp$ is equivalent to the relation $GG^T = 0$. If in addition we have $n = 2k$, the relation $GG^T = 0$ is equivalent to $C = C^\perp$.

As an application, check that the parity extension of the Hamming code $[7,4,3]$ is a self-dual code.

Parity-check matrix

If H is a generating matrix of C^\perp (in which case H is an $(n - k) \times n$ matrix) we have that

$$x \in C \text{ if and only if } xH^T = 0,$$

because if h is a row of H we have

$$xh^T = \langle x | h \rangle.$$

Said in other words, the elements $x \in C$ are exactly those that satisfy the $n - k$ linear equations $\langle x | h \rangle = 0$, where h runs through the rows of H .

Given $h \in C^\perp$, the linear equation $\langle x | h \rangle = 0$, which is satisfied for all $x \in C$, is called the *check equation* of C corresponding to h . By the previous paragraph, C is determined by the $n - k$ check equations corresponding to the rows of H , and this is why the matrix H is said to be a *check matrix*, or *control matrix*, of C .

The relation

$$C = \{x \in F^n | xH^T = 0\}$$

can also be interpreted by saying that

C is the set of linear relations satisfied by the rows of H^T ,

that is, by the columns of H .

In particular we have the following prescription for finding the minimum distance of a linear code in terms of a check matrix:

Proposition. *If any $r - 1$ columns of H are linearly independent, then the minimum distance of C is at least r , and conversely.*

Example (A check matrix for RS codes)

Let $C = RS_{\alpha}(k)$, where $\alpha = \alpha_1, \dots, \alpha_n$ are distinct nonzero elements of a finite field F . Then we know that

$$G = V_k(\alpha_1, \dots, \alpha_n)$$

is a generating matrix of C (p. 12). Note that the rows of G have the form

$$(\alpha_1^i, \dots, \alpha_n^i), \text{ with } i = 0, \dots, k-1.$$

Now we are going to describe a check matrix H of C , that is, a generating matrix of C^\perp .

Recall that if we define the *Vandermonde determinant* as the determinant $D(\alpha_1, \dots, \alpha_n)$ of the Vandermonde matrix $V_n(\alpha_1, \dots, \alpha_n)$, then

$$D(\alpha_1, \dots, \alpha_n) = \prod_{i < j} (\alpha_j - \alpha_i).$$

Define the vector

$$\mathbf{h} = (h_1, \dots, h_n)$$

by the formula

$$\begin{aligned} h_i &= (-1)^{i-1} D(\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_n) / D(\alpha_1, \dots, \alpha_n) \\ &= 1 / \prod_{j \neq i} (\alpha_j - \alpha_i). \end{aligned}$$

(Remark that in the last product there are precisely $i - 1$ factors with the indices in reverse order, namely the $\alpha_j - \alpha_i$ with $j < i$).

Theorem. The matrix

$$H = V_{n-k}(\alpha_1, \dots, \alpha_n) \text{diag}(h_1, \dots, h_n)$$

is a check matrix of C .

Proof. To see this, it is enough to show that any row of G is orthogonal to any row of H , because H clearly has rank $n - k$.

Since the rows of H have the form

$$(h_1 \alpha_1^j, \dots, h_n \alpha_n^j), \text{ with } j = 0, \dots, n - k - 1,$$

we have to establish that

$$\sum_{l=1}^n \alpha_l^{i+j} h_l = 0 \text{ for } 0 \leq i \leq k-1 \text{ and } 0 \leq j \leq n-k-1.$$

Thus it will be enough to make sure that

$$\sum_{l=1}^n \alpha_l^s h_l = 0 \text{ for } 0 \leq s \leq n-2.$$

To see this, multiply throughout by the (nonzero) determinant

$$D(\alpha_1, \dots, \alpha_n).$$

Taking into account the definition of h_l , we wish to derive that

$$\sum_{l=1}^n \alpha_l^s (-1)^{l-1} D(\alpha_1, \dots, \alpha_{l-1}, \alpha_{l+1}, \dots, \alpha_n) = 0.$$

But finally this is obvious, because the left hand side coincides with the determinant

$$\begin{vmatrix} \alpha_1^s & \cdots & \alpha_n^s \\ 1 & \cdots & 1 \\ \alpha_1 & \cdots & \alpha_n \\ \vdots & & \vdots \\ \alpha_1^{n-2} & \cdots & \alpha_1^{n-2} \end{vmatrix}$$

(developed along the first row), and this determinant has a repeated row.

Remark. As we will see in a later chapter, the form of the matrix H indicates that $RS_\alpha(k)$ is an **alternant code**, and as a consequence it will be decodable with any of the fast decoders for alternant codes studied in that chapter.

Example (Hamming codes). A q -ary code C of type $[n, n - r]$ is said to be a **Hamming code of codimension r** if the columns of a check matrix $H \in M_n^r(F)$ of C form a maximal set among the subsets of F^r with the

property that any two of its elements are linearly independent (of such a matrix we will say that it is a *q -ary Hamming matrix of codimension r*).

There is a straightforward way of constructing such a matrix. For $i = 1, \dots, r$, let H_i be the matrix whose columns are the vectors of F^r that have the form $(0, \dots, 0, 1, \alpha_{i+1}, \dots, \alpha_r)$, with $\alpha_{i+1}, \dots, \alpha_r \in F^r$ arbitrary. Let $H = H_1 | H_2 | \dots | H_r$. Then H is a q -ary Hamming matrix of codimension r , as any non-zero vector of length r is proportional to exactly one of the columns of H (we will say that such an H is a *normalized q -ary Hamming matrix of codimension r*). Since H_i has q^{r-i} columns, H has $n = (q^r - 1)/(q - 1)$ columns.

It is clear that two Hamming codes of the same codimension are scalar equivalent. We will write $\text{Ham}_q(r)$ to denote any one of them and $\text{Ham}_q^\perp(r)$ to denote the corresponding dual code, that is to say, the code generated by the check matrix H used to define $\text{Ham}_q(r)$. The code $\text{Ham}_q(r)$ has dimension

$$k = n - r = (q^r - 1)/(q - 1) - r .$$

Its codimension, which is the dimension of $\text{Ham}_q^\perp(r)$, is equal to r .

The binary Hamming code of codimension 3, $\text{Ham}_2(3)$, is the code [7,4] defined by (say) the normalized check matrix

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} .$$

Proposition. *If C is any Hamming code, then $d_C = 3$. In particular, the error-correcting capacity of a Hamming code is 1.*

Proof. If H is a check matrix of C , then we know that the elements of C are the linear relations satisfied by the columns of H . Since any two columns of H are linearly independent, the minimum distance of C is at least 3. On the other hand, C has elements of weight 3, because the sum

of two columns of H is linearly independent of them and hence it must be proportional to another column of H (the columns of H contain all non-zero vectors of F^r up to a scalar factor).

Corollary. *The Hamming codes are perfect* (cf. P7).

Proposition. *If $C' = \text{Ham}_q^\perp(r)$ is the dual of a Hamming code $C = \text{Ham}_q(r)$, the weight of any non-zero element of C' is q^{r-1} . In particular, the distance between any pair of distinct elements of C' is q^{r-1} .*

Proof. Let $H = (h_{ij})$ be a check matrix of C . Then the non-zero vectors of C' have the form $z = aH$, $a \in F^r$, $a \neq 0$. So the i -th component of z has the form

$$z_i = a_1 h_{1i} + \cdots + a_r h_{ri} .$$

Therefore the condition $z_i = 0$ is equivalent to say that the point P_i of $\mathbb{P}^{r-1} = \mathbb{P}(F^r)$ defined by the i -th column of H belongs to the hyperplane of \mathbb{P}^{r-1} defined by the equation

$$a_1x_1 + \cdots + a_rx_r = 0.$$

Since $\{P_1, \dots, P_n\} = \mathbb{P}^{r-1}$, it follows that the number of non-zero components of z is the cardinal of the complement of a hyperplane of \mathbb{P}^{r-1} . Since this complement is an affine space \mathbb{A}^{r-1} , its cardinal is q^{r-1} and so any non-zero element of C' has weight q^{r-1} . \square

Codes such that the distance between pairs of distinct elements is a fixed integer d are called *equidistant* of distance d . Thus $\text{Ham}_q^\perp(r)$ is equidistant of distance q^{r-1} .

Syndrome-leader decoding

Let C be an F -linear $[n, k]$ code and H a control matrix of C . Given $y \in F^n$, the element $s = yH^T \in F^{n-k}$ is called *syndrome* of y (with respect to H).

Since $C = \{x \in F^n \mid xH^T = 0\}$, the elements of C are precisely those whose syndrome is 0. If we set $C_s = \{x \in F^n \mid xH^T = s\}$ for any $s \in F^{n-k}$, then in particular we have $C = C_0$.

As the linear map $s : F^n \rightarrow F^{n-k}$, $y \mapsto yH^T$, is surjective (for H has rank $n - k$) and its kernel is $C_0 = C$, we see that $C_s \neq \emptyset$. Moreover, if we pick any $z_s \in C_s$, then $C_s = z_s + C$. In other words, C_s is a coset modulo C , and we say that C_s is *the coset of the syndrome s* .

Lemma. If $2t < d$, C_s contains at most one vector e such that $|e| \leq t$.

For if $e' \in C_s$ and $|e'| \leq t$, then $x = e - e' \in C_0 = C$, $|x| < d$. So $x = 0$.

Let g be the minimum distance decoder of C , $x \in C$ (sent vector) and $y \in F^n$ (received vector). Then we have, if t is the correcting capacity of C :

Proposition. *The vector y is g -decodable if and only if there exists $e \in F^n$ such that $yH^T = eH^T$ and $|e| \leq t$. If this is the case, then e is unique (by the lemma) and $g(y) = y - e$.*

Proof. If y is g -decodable, let $x' = g(y) \in C$ and $e = y - x'$. Then

$$yH^T = (x' + e)H^T = eH^T \text{ and } |e| = \text{hd}(x', y) \leq t.$$

Conversely, let $e \in F^n$ be such that $yH^T = eH^T$ and $|e| \leq t$. Let $x' = y - e$. Then $x'H^T = yH^T - eH^T = 0$, so $x' \in C$, and

$$\text{hd}(x', y) = |y - x'| = |e| \leq t,$$

which shows that y is g -decodable and that $g(y) = x' = y - e$. □

The proposition above suggests the following decoding scheme. First form a table

$$E = \{s \rightarrow e_s\}_{s \in F^{n-k}}, \text{ with } e_s \in C_s \text{ of minimum weight}$$

(The element e_s is said to be a *leader* of the class C_s and E a *leader's table* for C . Note that e_s is unique if $|e_s| \leq t$; otherwise it has to be selected among the vectors of C_s that have minimum weight. Now the *syndrome decoder* can be described as follows:

SYNDROME-LEADER DECODER (SLD)

Input: $y \in F^n$ [received vector]

1. Set $s = yH^T$ [the syndrome of y]
2. Let $e = E(s)$ [the leader of C_s]
3. Return $y - e$.

Proposition. If $D = \bigsqcup_{x \in C} B(x, t)$ is the set of vectors that are decodable by the minimum distance decoder g , then SLD coincides with g for all $y \in D$.

Proof. It is an immediate consequence of the previous proposition.

The Gilbert–Varshamov existence condition

Theorem. Fix positive integers

n, k, d such that $k \leq n$ and $2 \leq d \leq n + 1$.

If the relation

$$\text{vol}_q(n - 1, d - 2) < q^{n-k}$$

is satisfied (this is called the Gilbert–Varshamov condition), then there exists a linear code of type $[n, k, d']$ with $d' \geq d$.

Proof. A) It is sufficient to see that the condition allows us to construct a matrix $H \in M_n^{n-k}(F)$ of rank $n - k$ with the property that any $d - 1$ of its columns are linearly independent. Indeed, if this is the case, then the code C defined as the orthogonal space of the rows of H has length n , dimension k (from $n - (n - k) = k$), and minimum weight $d' \geq d$ (since there are no linear relations of length less than d among the columns of H , which is a check matrix of C).

B) Before constructing H , we first establish that the Gilbert–Varshamov condition implies that $d - 1 \leq n - k$ (note that this is the Singleton bound for the parameters d and k).

Indeed,

$$\begin{aligned} \text{vol}_q(n - 1, d - 2) &= \sum_{j=0}^{d-2} \binom{n - 1}{j} (q - 1)^j \\ &\geq \sum_{j=0}^{d-2} \binom{d - 2}{j} (q - 1)^j \\ &= (1 + (q - 1))^{d-2} = q^{d-2} \end{aligned}$$

and hence $q^{d-2} < q^{n-k}$ if the Gilbert–Varshamov condition is satisfied. Therefore $d - 2 < n - k$, or $d - 1 \leq n - k$.

C) In order to construct H , we first select a basis $c_1, \dots, c_{n-k} \in F^{n-k}$. Since $d - 1 \leq n - k$, any $d - 1$ vectors extracted from this basis are li-

nearly independent. Also, any matrix H of type $(n - k) \times m$ with entries in F which contains the columns c_j^T ($j = 1, \dots, n - k$), has rank $n - k$.

Now assume that we have constructed, for some $i \in [n - k, n]$, vectors $c_1, \dots, c_i \in F^{n-k}$ with the property that any $d - 1$ of them

are linearly independent. If $i = n$, it is sufficient to take $H = (c_1^T, \dots, c_n^T)$ and by part A our question is answered.

Otherwise we will have $i < n$. In this case, the number of linear combinations that can be formed with at most $d - 2$ vectors from among c_1, \dots, c_i is not greater than $\text{vol}_q(i, d - 2)$ (see **P6**). Since $i \leq n - 1$, $\text{vol}_q(i, d - 2) \leq \text{vol}_q(n - 1, d - 2)$. If the Gilbert–Varshamov condition is satisfied, then there is a vector $c_{i+1} \in F^{n-k}$ which is not a linear combination of any subset of $d - 2$ vectors extracted from the list c_1, \dots, c_i , and our claim follows by induction. \square

Remark. Since $A_q(n, d) \geq A_q(n, d')$ if $d' \geq d$, the Gilbert--Varshamov condition shows that $A_q(n, d) \geq q^k$. This lower bound, called the Gilbert--Varshamov bound, often can be used to improve the Gilbert bound.

Example. $\text{Gilbert}(10,3)=19$, as in this case

$$q^n/\text{vol}_q(n, d - 1) = 2^{10}/\text{vol}_2(10,2) = 2^{10}/56 \simeq 18.3.$$

And $\text{GilbertVarshamov}(10,3)=64$, as $\text{vol}_2(9,1) = 10$ and $10 < 2^{10-6} = 16$ while $2^{10-7} = 8 < 10$.

The MacWilliams identities

The *weight enumerator* of a code C is defined as the polynomial

$$A(t) = \sum_{i=0}^n A_i t^i,$$

where A_i is the number of elements of C that have weight i .

It is clear that $A(t)$ can be expressed in the form

$$A(t) = \sum_{x \in C} t^{|x|}$$

for the term t^i appears in this sum as many times as the number of solutions of the equation $|x| = i, x \in C$.

Remark. $A_0 = 1$, since $\mathbf{0}_n$ is the unique element of C with weight 0. On the other hand $A_i = 0$ if $0 < i < d$, where d is the minimum distance of C . The determination of the other A_i is not easy in general and it is one of the basic problems of coding theory.

Theorem (F. J. MacWilliams).¹ *The weight enumerator $B(t)$ of the dual code C^\perp of a code C of type $[n, k]$ can be determined from the weight enumerator $A(t)$ of C according to the following identity:*

$$q^k B(t) = (1 + (q - 1)t)^n A\left(\frac{1-t}{1+(q-1)t}\right).$$

Remark. In the proof of the theorem we need the notion of *character* of a group G , which by definition is a group homomorphism of G to $U(1) = \{z \in \mathbb{C} \mid |z| = 1\}$, the group of complex numbers of modulus 1.

The constant map $g \mapsto 1$ is a character, called the *unit character*. A character different from the unit character is said to be *non-trivial* and the main fact we will need is that the additive group of finite field \mathbb{F}_q has non-trivial characters. Actually any finite abelian group has non-trivial characters. Let us sketch how this can be established.

It is known that any finite abelian group G is isomorphic to a product of the form

$$\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$$

with k a positive integer and n_1, \dots, n_k integers greater than 1. For example, in the case of a finite field \mathbb{F}_q , we have (if $q = p^r$, p prime), $\mathbb{F}_q \cong (\mathbb{Z}_p)^r$, since \mathbb{F}_q is a vector space of dimension r over \mathbb{Z}_p .

In any case, it is clear that if we know how to find a non-trivial character of \mathbb{Z}_{n_1} , then we also know how to find a non-trivial character of G (the composition of the non-trivial character of \mathbb{Z}_{n_1} with the projection of $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$ onto \mathbb{Z}_{n_1} gives a non-trivial character of G).

Finally note that if n is an integer greater than 1 and $\xi \neq 1$ is an n -th root of unity then the map $\chi : \mathbb{Z}_n \rightarrow U(1)$ such that $\chi(k) = \xi^k$ is well defined and is a non-trivial character of \mathbb{Z}_n .

Proof. Let χ be a non-trivial character of the additive group of $F = \mathbb{F}_q$ (see the preceding Remark). Thus we have a map

$$\chi : F \rightarrow U(1)$$

such that $\chi(\alpha + \beta) = \chi(\alpha)\chi(\beta)$ for any $\alpha, \beta \in F$ with $\chi(\gamma) \neq 1$ for some $\gamma \in F$. Observe that $\sum_{\alpha \in F} \chi(\alpha) = 0$, since

$$\chi(\gamma) \sum_{\alpha \in F} \chi(\alpha) = \sum_{\alpha \in F} \chi(\alpha + \gamma) = \sum_{\alpha \in F} \chi(\alpha)$$

and $\chi(\gamma) \neq 1$.

Now consider the sum

$$S = \sum_{x \in C} \sum_{y \in F^n} \chi(x, y) t^{|y|}$$

where $\chi(x, y) = \chi(\langle x | y \rangle) = \prod_{i=1}^n \chi(x_i y_i)$. After reordering we have

$$S = \sum_{y \in F^n} t^{|y|} \sum_{x \in C} \chi(x, y)$$

If $y \in C^\perp$, then $\langle x | y \rangle = 0$ for all $x \in C$ and so $\chi(\langle x | y \rangle) = 1$ for all $x \in C$, and in this case $\sum_{x \in C} \chi(x, y) = |C| = q^k$.

If $y \notin C^\perp$, then the linear map $C \rightarrow F$ such that $x \mapsto \langle x | y \rangle$ takes each value of F the same number of times, say r , and hence, using that $\sum_{\alpha \in F} \chi(\alpha) = 0$, we have that $\sum_{x \in C} \chi(x, y) = r \sum_{\alpha \in F} \chi(\alpha) = 0$. Putting the two cases together we have that

$$S = |C| \sum_{y \in C^\perp} t^{|y|} = q^k B(t).$$

On the other hand, for any given $x \in C$, and making the convention, for all $\alpha \in F$, that $|\alpha| = \begin{cases} 1 & \text{if } \alpha \neq 0 \\ 0 & \text{if } \alpha = 0 \end{cases}$, we have

$$\begin{aligned}
\sum_{y \in F^n} \chi(x, y) t^{|y|} &= \sum_{y_1, \dots, y_n \in F} \chi(x_1 y_1 + \dots + x_n y_n) t^{|y_1| + \dots + |y_n|} \\
&= \sum_{y_1, \dots, y_n \in F} \prod_{i=1}^n \chi(x_i y_i) t^{|y_i|} \\
&= \prod_{i=1}^n (\sum_{\alpha \in F} \chi(x_i \alpha) t^{|\alpha|}).
\end{aligned}$$

But $\sum_{\alpha \in F} \chi(x_i \alpha) t^{|\alpha|} = \begin{cases} 1 + (q-1)t & \text{if } x_i = 0 \\ 1 - t & \text{if } x_i \neq 0 \end{cases}$

because $\sum_{\beta \in F^*} \chi(\beta) = -1$. Consequently

$$\prod_{i=1}^n \sum_{\alpha \in F} \chi(x_i \alpha) t^{|\alpha|} = (1 + (q-1)t)^n \left(\frac{1-t}{1+(q-1)t} \right)^{|x|}$$

and summing with respect to $x \in C$ it is clear that

$$S = (1 + (q-1)t)^n A \left(\frac{1-t}{1+(q-1)t} \right).$$

□

Example (Weight enumerator of the zero-parity code). The zero-parity code of length n is the dual of the repetition code C of length n . Since the weight enumerator of C is $A(t) = 1 + (q-1)t^n$, the weight enumerator $B(t)$ of the zero-parity code is given by the relation

$$\begin{aligned}
qB(t) &= (1 + (q - 1)t)^n \left(1 + (q - 1) \frac{1-t}{1+(q-1)t}\right)^n \\
&= (1 + (q - 1)t)^n + (q - 1)(1 - t)^n
\end{aligned}$$

In the binary case we have

$$2B(t) = (1 + t)^n + (1 - t)^n,$$

and therefore

$$B(t) = \sum_{i=0}^{i \leq n/2} \binom{n}{2i} t^{2i}.$$

Note that this could have been written directly, for the binary zero-parity code of length n has only even-weight words and the number of those having weight $2i$ is $\binom{n}{2i}$.

Example (Weight enumerator of the Hamming codes). We know that the dual Hamming code $\text{Ham}_q^{\perp}(r)$ is *equidistant*, with minimum distance q^{r-1} . This means that its weight enumerator, say $B(t)$, is the polynomial

$$B(t) = 1 + (q^r - 1)t^{q^{r-1}},$$

because $q^r - 1$ is the number of non-zero vectors in $\text{Ham}_q^\perp(r)$ and each of these has weight q^{r-1} . Now the MacWilliams identity allows us to determine the weight enumerator $A(t)$ of $\text{Ham}_q(r)$. Setting $\hat{q} = q - 1$, we have:

$$\begin{aligned} q^r A(t) &= (1 + \hat{q}t)^n B\left(\frac{1-t}{1+\hat{q}t}\right) \\ &= (1 + \hat{q}t)^n + (q^r - 1)(1 + \hat{q}t)^n \frac{(1+t)^{q^{r-1}}}{(1+\hat{q}t)^{q^{r-1}}} \\ &= (1 + \hat{q}t)^n + (q^r - 1)(1 + \hat{q}t)^{n-q^{r-1}} (1+t)^{q^{r-1}} \\ &= (1 + \hat{q}t)^{n-q^{r-1}} \left((1 + \hat{q}t)^{q^{r-1}} + (q^r - 1)(1-t)^{q^{r-1}} \right) \\ &= (1 + \hat{q}t)^{\frac{q^{r-1}-1}{q-1}} \left((1 + \hat{q}t)^{q^{r-1}} + (q^r - 1)(1-t)^{q^{r-1}} \right) \end{aligned}$$

since $n = (q^r - 1)/(q - 1)$ and $n - q^{r-1} = (q^{r-1} - 1)/(q - 1)$.

In the binary case the previous formula yields that the weight enumerator $A(t)$ of $\text{Ham}(r)$ satisfies

$$2^r A(t) = (1+t)^{(2^{r-1}-1)} \left((1+t)^{(2^r-1)} + (2^r - 1)(1-t)^{2^{r-1}} \right)$$

For $r = 3$, $\text{Ham}(3)$ has type $[7,4]$ and

$$8A(t) = (1+t)^3((1+t)^4 + 7(1-t)^4),$$

$$A(t) = 1 + 7t^3 + 7t^4 + t^7.$$

So $A_0 = A_7 = 1$, $A_3 = A_4 = 7$, $A_1 = A_2 = A_5 = A_6 = 0$.

Actually it is easy to find, using the description of this code, that the weight 3 vectors of $\text{Ham}(3)$ are

$$\begin{aligned} & [1,1,0,1,0,0,0], [0,1,1,0,1,0,0], [1,0,1,0,0,1,0], [0,0,1,1,0,0,1], \\ & [1,0,0,0,1,0,1], [0,1,0,0,0,1,1], [0,0,0,1,1,1,0] \end{aligned}$$

and the weight 4 vectors are

$$\begin{aligned} & [1,1,1,0,0,0,1], [1,0,1,1,1,0,0], [0,1,1,1,0,1,0], [1,1,0,0,1,1,0], \\ & [0,1,0,1,1,0,1], [1,0,0,1,0,1,1], [0,0,1,0,1,1,1] \end{aligned}$$

Note that the latter are obtained from the former, in reverse order, by interchanging 0 and 1.

Notes

1. <http://www.awm-math.org/noetherbrochure/TOC.html>

Notes

N1. Two codes $C, C' \subseteq T^n$ of length n are said to be *equivalent* if there is a permutation σ of $1, \dots, n$ and permutations τ_1, \dots, τ_n of T such that the map $\rho : T^n \rightarrow T^n$ given by

$$(x_1, \dots, x_n) \mapsto (\tau_1(x_{\sigma(1)}), \dots, \tau_n(x_{\sigma(n)}))$$

induces a 1-to-1 map between C and C' . Note that equivalent codes have the same parameters, as $hd(x, y) = hd(\rho x, \rho y)$ for any $x, y \in C$. If we can choose $\tau_1 = \dots = \tau_n = Id$, then C and C' are called *permutationally equivalent*. If T is a finite field and

$$\tau_j(t) = \alpha_j t$$

for some non-zero α_j , then we say that C and C' are *scalarly equivalent*.