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The Hamming space 

If ܶ is a finite alphabet and ݊ is a positive integer, the elements of the set 
ܶ௡ are the words of  length n  formed with the elements of T. Often the 
elements of ܶ௡ are also called vectors of length n.  

The Hamming distance, ݄݀ሺݔ,  ሻ, betweenݕ two words  is  the number of  
indices ݅ in the range 1. . ݊ with ݔ௜ ്   .௜ݕ

The Hamming distance is a distance in the set ܶ௡, which means that it sa‐
tisfies the following properties:  

1. ݄݀ሺݔ, ሻݕ ൌ ݄݀ሺݕ, ,ݔ ሻ for allݔ ݕ א ܶ௡. 
2. ݄݀ሺݔ, ሻݕ ൐ 0 if ݔ ് ,ݔand ݄݀ሺ ݕ ሻݕ ൌ 0 if ݔ ൌ  .ݕ
3. ݄݀ሺݔ, ሻݖ ൑ ݄݀ሺݔ, ሻݕ ൅ ݄݀ሺݕ, ,ݔ ሻ for allݖ ,ݕ ݖ א ܶ௡. 
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Codes 

A (block) ܶ‐code of length ݊ is a subset ܥ of  ܶ௡. If ܯ is the cardinal of ܥ, 
we say that ܥ is of type ሺ݊,   .ሻܯ
 

The  minimum  distance  of   ,ܥ ݀ ൌ ݀஼,  is  the  minimum  of  the  values 
݄݀ሺݔ, ,ݔ Ԣሻ for all pairsݔ ᇱݔ א ݔ such that ܥ ്   .Ԣݔ
 

In block error‐correcting, the stream of symbols output by the compres‐
sor is broken into blocks of length ݇. These blocks are called information 
vectors or messages.  

If the symbols belong to the alphabet ܶ, then the set of messages is 

  ࣧ ൌ ܶ௞.  
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Coders 

A coder of type ሾ݊, ݇ሿ is a one‐to‐one map ݂: ܶ௞ ՜ ܶ௡. The image of this 
map is a subset ܥ of ܶ௡ which will be called the code of ݂.  

If ݀ ൌ ݀஼, we say that ܥ has type ሾ݊, ݇, ݀ሿ, and often we will write  

,ሾ݊ ~ ܥ ݇, ݀ሿ  

to denote this. 

For example, in the case of the repetition code of order 3 we have ݇ ൌ 1, 
ࣧ ൌ  ሼ0,1ሽ, ݊ ൌ 3 and ܥ ൌ  ሼ000,111ሽ. Therefore  ܥ ׽ ሾ3, 1, 3ሿ. 

Similarly,  for  the Hamming  encoder ݂: ସܤ ՜  ଻ weܤ have ݇ ൌ 4, ݊ ൌ 7 
and ݀ ൌ 3, and so the corresponding code has type ሾ7,4,3ሿ. 

 

   



5 
 

Decoders 

A decoder for the coder ݂ is a map  

݃: ܶ௡ ՜ ܥ ׫ ሼ? ሽ  such that ݃ሺݔሻ  ൌ ݔ for all ݔ  א   .ܥ

The vectors in the set  

    ܦ ൌ ݃ିଵሺܥሻ 

are said to be decodable with respect to ݃, while the vectors in the set 

    ܧ ൌ ݃ିଵሺ? ሻ 

are said to be error vectors for ݃.  

We say that ݃ corrects ݏ errors (ݏ a non‐negative integer) if any vector ݕ 
for  which  there  is  an  ݔ א  ܥ such  that  ݄݀ሺݔ, ሻݕ ൑  ݏ is  decodable  and 
݃ሺݕሻ ൌ  ݏ The highest .ݔ for which ݃ corrects ݏ errors  is called  the cor‐
recting capacity of ݃ and usually will be denoted by ݐ.  
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Examples. For the binary repetition code of length 3, any vector of ሼ0,1ሽଷ 
is decodable and ݐ ൌ 1. Similarly, for the binary Hamming code of length 
7, any vector of ሼ0,1ሽ଻ is decodable and ݐ ൌ 1. 

 

Basic scheme for using a coder/decoder  

A coder ݂ of  type  ሾ݊, ݇ሿ and an ݂‐decoder ݃ with correcting capacity   ݐ
can be used in a communications system as follows: 

1. The information stream output by the compressor is broken into blocks   
 .of length ݇ (messages) ݑ    
2. For each information block ݑ, calculate the code vector ݔ ൌ ݂ሺݑሻ. This   
     vector is sent through the channel. 
3. If ݕ is the received vector, find ݔ´ ൌ ݃ሺݕሻ. 
4.  If  ´ݔ ൌ ?,  return  an  error message;  otherwise  return   which ,´ݔ is  a   
     vector in ܥ. 
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It is clear, directly from the definitions, that if ݄݀ሺݔ, ሻݕ ൑  this condition) ݐ
means that the number of errors produced by the channel is not greater 
than ݐ), then ݔ´ ൌ ‐Consequently, the coding/decoding scheme guaran .ݔ
tees that any error pattern with at most ݐ errors is corrected. 

Note that if the number of errors is ൐ ‐is de ݕ then it can happen that ,ݐ
codable but with ݔᇱ ്  .In this case we speak of an undetectable error .ݔ
For example,  if 000  is  the vector sent  in  the binary  repetition code and 
the received vector is 011, then the decoded symbol is 1, which does not 
agree with the information symbol 0. 

Minimum distance decoding 

Notation. Given ݓ א ܶ௡ and a non‐negative integer ݎ, we set 
    ,ݓሺܤ ሻݎ ൌ ሼݖ א ܶ௡|݄݀ሺݓ, ሻݖ ൑  .ሽݎ
The set ܤሺݓ,  .ݎ and radius ݓ ሻ is called the (Hamming) ball of centerݎ
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Lemma.    ,ݓሺܤ| |ሻݎ ൌ vol௤ሺ݊,  ሻ, whereݎ vol௤ሺ݊, ሻݎ ൌ ∑ ቀ݊
݅ ቁ௥

௜ୀ଴ ሺݍ െ 1ሻ௜. 

For ݍ ൌ 2, volଶሺ݊, ሻݎ ൌ ∑ ቀ݊
݅ ቁ௥

௜ୀ଴ . 

Proof. Exercise. 

If ܥ ൌ ሼݔଵ, … ,  ,ெሽݔ let ܦ௜ ൌ ,௜ݔሺܤ ݐ ሻ, whereݐ ൌ ሺ݀ہ െ 1ሻ/2ۂ, with ݀ the 
minimum distance of ܥ. It is clear that ܥ ת ௜ܦ ൌ ሼݔ௜ሽ and that ܦ௜ ת ௝ܦ ൌ
݅ if ׎ ് ݆ (by definition of ݐ and the triangular inequality of the Hamming 
distance). Therefore, if we set ܦ஼ ൌ ח ஼א௜௫೔ܦ , there is a unique map  

    ݃: ஼ܦ ՜  ܥ

such that ݃ሺݕሻ ൌ ݕ ௜ for allݔ א ሻݕ௜. We extend ݃ to ܶ௡ by setting ݃ሺܦ ൌ? 
if ݕ ב  ݃ ,஼. By constructionܦ is a decoder of ܥ and  it corrects   .errors ݐ
This decoder ݃ is called the minimum distance decoder of ܥ. 
 
 ݃ሺݕሻ  is  the word ݔԢ א  ܥ such  that ݄݀ሺݕ, ᇱሻݔ ൑  ,ݐ if  such  an ݔԢ exists, 
and otherwise ݕ is non‐decodable for ݃.  

 If ݕ is decodable and ݃ሺݕሻ ൌ ,ݔԢ, then ݄݀ሺݔ ሻݕ ൐ ݔ for all ݐ א ܥ െ ሼݔԢሽ. 
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Remark.  The  usefulness  of  the minimum  distance  decoder  arises  from 
the fact that we can hope, in most ordinary situations, that the transmis‐
sions ݔ հ  that ݕ lead to a decoder error (ݕ ב ‐or to undetectable er ,(ܦ
rors  ݕ) א  ,ܦ but  ݄݀ሺݕ, ሻݔ ൐  (ݐ will  in  general  be  less  likely  than  the 
transmissions ݔ հ ሻݕis decodable and ݃ሺ ݕ for which ݕ ൌ  .ݔ

To be more precise, the minimum distance decoder maximizes the  like‐
lihood of correcting errors if all the transmission symbols have the same 
probability of being altered by the channel noise and if the ݍ െ 1 possible 
errors for a given symbol are equally  likely.  If these conditions are satis‐
fied, the channel is said to be a (ݍ‐ary) symmetric channel. Unless other‐
wise  declared,  henceforth  we  will  understand  that  ‘channel’  means 
‘symmetric channel’. 

From the computational point of view, the minimum distance decoder, as 
defined above,  is  inefficient  in general, even  if ݀஼   is known, for  it has to 
calculate  ݄݀ሺݕ,  ,ሻݔ for  ݔ א  ,ܥ until  ݄݀ሺݕ, ሻݔ ൑  ,ݐ so  that  the  average 
number of distances  that have  to be calculated  is of  the order of  |ܥ| ൌ
 .ܥ ௞ elements ofݍ ௞. Note also that this requires having generated theݍ
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But we also have  to say  that  the progress  in block coding  theory  in  the 
last sixty years can be seen, to a considerable extent, as a series of miles‐
tones  that  signal  conceptual  and  algorithmic  improvements  that make 
possible to deal with the minimum distance decoder, for large classes of 
codes, in ever more efficient ways.  
 

The Singleton bound. MDS codes 

Proposition (Singleton bound). 1) For any code of type ሺ݊, ,ܯ ݀ሻ, 

ܯ  ൑  .௡ିௗାଵݍ

2) For any code of type ሾ݊, ݇, ݀ሿ,  ݇ ൅ ݀ ൑ ݊ ൅ 1. 
 
Proof. Indeed, if ܥ is any code of type ሺ݊, ,ܯ ݀ሻ, let us write ܥᇱ ك ܶ௡ିௗାଵ 
to denote  the  subset obtained by discarding  the  last ݀ െ 1  symbols of 
each vector of ܥ. Then ܥԢ has the same cardinal as ܥ, by definition of ݀, 
and so ݍ௞ ൌ |ܥ| ൌ |Ԣܥ| ൑ ݇ ௡ିௗାଵ. Henceݍ ൑ ݊ െ ݀ ൅ 1, which is equiva‐
lent to the stated inequality. 
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MDS codes. Codes that satisfy the equality in the Singleton inequality are 
called maximum distance separable codes, or MDS codes  for short. The 
binary repetition code Repሺ3ሻ is MDS, while the Hamming code ሾ7,4,3ሿ is 
not.  

Remark. For a given length ݊, the code rate is proportional to ݇, and the 
correcting capacity is ׽ ݀/2. We seek, therefore, that ݇ and ݀ are as high 
as  possible.  The  Singleton  bound  shows  that  these  two  requirements 
cannot be met simultaneously. In practice, a compromise is required. 
 

The Hamming upper bound 

Theorem. Let ܥ be a ܶ‐code of type ሺ݊, ,ܯ ݀ሻ. Let ݐ ൌ ሺ݀ہ െ 1ሻ/2ۂ. Then 

    ܯ ൑ ௤೙

୴୭୪೜ሺ௡,௧ሻ
. 

Proof. The Hamming balls of radius ݐ and center in the elements of ܥ are 
pair‐wise disjoint and hence 
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    ∑ ,ݔሺܤ| ஼אሻ|௫ݐ ൑ |ܶ௡| ൌ  .௡ݍ

On the other hand |ܤሺݔ, |ሻݐ ൌ vol௤ሺ݊,  ሻ and so we haveݐ

    ∑ ,ݔሺܤ| ஼אሻ|௫ݐ ൌ ܯ ൉ vol௤ሺ݊,  .ሻݐ

The conclusion is now obvious. 

Remark. The Hamming upper bound is also called sphere‐packing upper 
bound, or simply sphere upper bound. 

 

Perfect codes 

In general ܦ஼   is a proper subset of ܶ௡, which means that there are ele‐
ments ݕ א ܶ௡ for which there is no ݔ א ,ݕwith ݄݀ሺ ܥ ሻݔ ൑   .ݐ

If ܦ஼ ൌ ܶ௡,  then ܥ  is  said  to be perfect.  In  this  case,  for every ݕ א ܶ௡ 
there is a (necessarily unique) ݔ א ,ݕsuch that ݄݀ሺ ܥ ሻݔ ൑  .ݐ
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Taking into account the reasoning involved in proving the sphere‐bound, 
we see that the necessary and sufficient condition for a code ܥ to be per‐
fect is that  

    ∑ ቀ݊
݅ ቁ௧

௜ୀ଴ ሺݍ െ 1ሻ௜ ൌ ሺൌ  ܯ/௡ݍ   ,௡ି௞ሻݍ
where ܯ ൌ |ܥ| ൌ  .௞ (this will be called the sphere or perfect condition)ݍ
 
Examples. The total code ܶ௡ and the binary repetition code of odd length 
are examples of perfect codes, with parameters  

   ሺ݊, ,௡ݍ 1ሻ and  ሺ2݉ ൅ 1, 2, 2݉ ൅ 1ሻ, 
respectively. Such codes are said to be trivial perfect codes. We have also 
seen  that  the Hamming  code  ሾ7,4,3ሿ  is perfect  (actually  this  is  a direct 
check). 

Optimal codes. The function ܣ௤ሺ݊, ݀ሻ. A code ܥ ׽ ሺ݊, ,ܯ ݀ሻ is said to be 
optimal  if ܯ ൒ ,Ԣ for any code ሺ݊ܯ ,ᇱܯ ݀ሻ. The cardinal ܯ of an optimal 
code depends only of ݊ and ݀, and it is denoted ܣ௤ሺ݊, ݀ሻ.  
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Examples. ܣ௤ሺ݊, ݀ሻ ൑ ,௤ሺ݊ܣ ௡ିௗାଵ, by the Singleton bound,N1 andݍ ݀ሻ ൑
௡ݍ vol௤ሺ݊, ⁄ሻݐ , by the Hamming bound.N2 

Theorem (Gilbert lower bound). ܣ௤ሺ݊, ݀ሻ ൒ ௤೙

୴୭୪೜ሺ௡,ௗିଵሻ
.N3 

Proof.  If ܥ ׽ ሺ݊, ,ܯ ݀ሻ  is optimal,  any element of ܶ௡  lies  at  a distance 
൑ ݀ െ 1 of an element of ܥ, for otherwise there would be a word ݕ א ܶ௡ 
lying at a distance ൒ ݀  from all elements of ܥ and ܥ ׫ ሼݕሽ would be a 
code of  length ݊, minimum distance ݀ and with a greater cardinal than 
݉ ൌ  This means that the union of .ܥ contradicting the optimality of ,|ܥ|
the balls of radius ݀ െ 1 with center the elements of ܥ is the whole ܶ௡. It 
follows  that  ܯ ൉ vol௤ሺ݊, ݀ െ 1ሻ ൒  ,௡ݍ and  this  ends  the  proof  as 

ܯ ൌ ,௤ሺ݊ܣ ݀ሻ.  
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Some values of ܣଶሺ݊, ݀ሻ 
n ݀ ൌ 3 ݀ ൌ 5  ݀ ൌ 7
5 4  2  ‐‐ 
6 8 2  ‐‐
7 16  2  2 
8 20 4  2
9 40 6  2
10 72‐79 12  2
11 144‐158 24  4
12 256 32  4
13 512 64  8
14 1024 128  16
15 2048 256  32
16 2720‐3276 256‐340 36‐37

This table gives the values of ܣଶሺ݊, ݀ሻ, or the best known bounds, for 
5 ൑ ݊ ൑ 16 and 3 ൑ ݀ ൑ 8. The values for ݀ even (4 and 6 in this table) are de‐
termined by the relation ܣଶሺ݊ ൅ 1, ݀ሻ ൌ ,ଶሺ݊ܣ ݀ െ 1ሻ. 
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Notes 

N1. # Singleton upper‐bound 
ub_singleton(n,d,q):= q^(n‐d+1); 
ub_singleton(n,d):= 2^(n‐d+1); 
ub_singleton(8,3) ՜ 64 

N2. # Sphere‐packing upper‐bound 
       ub_sphere(n,d,q):= floor(q^n/volume(n,(d‐1)//2,q)) 
       ub_sphere(n,d):= floor(2^n/volume(n,(d‐1)//2)) 
  ub_sphere(8,20) ՜ 28 

N3. # Gilbert lower bound 
lb_gilbert(n,d,q) := ceil(q^n/volume(n,d‐1,q)) 
lb_gilbert(n,d) := ceil(2^n/volume(n,d‐1)) 
lb_gilbert(8,20) ՜ 7 


