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The Hamming space

If T is a finite alphabet and n is a positive integer, the elements of the set
T™ are the words of length n formed with the elements of T. Often the
elements of T™ are also called vectors of length n.

The Hamming distance, hd(x,y), between two words is the number of
indices i in the range 1..n with x; # y;.

The Hamming distance is a distance in the set T", which means that it sa-
tisfies the following properties:

1. hd(x,y) = hd(y,x) forallx,y € T".
2. hd(x,y)>0ifx+yandhd(x,y) =0ifx =y.
3. hd(x,z) < hd(x,y) + hd(y,z) forallx,y,z € T".



Codes

A (block) T-code of length n is a subset C of T™. If M is the cardinal of C,
we say that C is of type (n, M).

The minimum distance of C, d = d., is the minimum of the values
hd(x,x") for all pairs x,x" € C such that x # x'.

In block error-correcting, the stream of symbols output by the compres-
sor is broken into blocks of length k. These blocks are called information
vectors or messages.

If the symbols belong to the alphabet T, then the set of messages is
M =Tk,



Coders

A coder of type [n, k] is a one-to-one map f:T* — T™. The image of this
map is a subset C of T™ which will be called the code of f.

If d = d., we say that C has type [n, k, d], and often we will write
C~|[nkd]
to denote this.

For example, in the case of the repetition code of order 3 we have k = 1,
M = {0,1},n=3and C = {000,111}. Therefore C ~ [3,1, 3].

Similarly, for the Hamming encoder f:B* - B” we have k=4, n=7
and d = 3, and so the corresponding code has type [7,4,3].



Decoders
A decoder for the coder f is a map
g:T" > CU{?} suchthat g(x) = xforallx € C.

The vectors in the set

D=g""(0)
are said to be decodable with respect to g, while the vectors in the set
E=g7'(7)

are said to be error vectors for g.

We say that g corrects s errors (s a non-negative integer) if any vector y
for which there is an x € C such that hd(x,y) < s is decodable and
g(y) = x. The highest s for which g corrects s errors is called the cor-
recting capacity of g and usually will be denoted by t.
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Examples. For the binary repetition code of length 3, any vector of {0,1}3
is decodable and t = 1. Similarly, for the binary Hamming code of length
7, any vector of {0,1}” is decodable and t = 1.

Basic scheme for using a coder/decoder

A coder f of type [n, k] and an f-decoder g with correcting capacity t
can be used in a communications system as follows:

1. The information stream output by the compressor is broken into blocks
u of length k (messages).

2. For each information block u, calculate the code vector x = f(u). This
vector is sent through the channel.

3. If yis the received vector, find x” = g(y).

4. If x" =7, return an error message; otherwise return x’, which is a
vectorin C.
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It is clear, directly from the definitions, that if hd(x,y) < t (this condition
means that the number of errors produced by the channel is not greater
than t), then x” = x. Consequently, the coding/decoding scheme guaran-
tees that any error pattern with at most t errors is corrected.

Note that if the number of errors is > t, then it can happen that y is de-
codable but with x" # x. In this case we speak of an undetectable error.
For example, if 000 is the vector sent in the binary repetition code and
the received vector is 011, then the decoded symbol is 1, which does not
agree with the information symbol 0.

Minimum distance decoding

Notation. Given w € T™ and a non-negative integer r, we set
B(w,r) ={z € T"|hd(w,z) < r}.
The set B(w, 1) is called the (Hamming) ball of center w and radius .
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Lemma. |[B(w,r)| = vol,(n,1), where vol,(n,7) = Xi_, (Tll) (g — 1)

Forq = 2,vol,(n,7r) = XYi_, (7:)

Proof. Exercise.

If C = {xq,...,xy}, let D; = B(x;,t), where t = |(d — 1)/2], with d the
minimum distance of C. It is clear that C N D; = {x;} and that D; N D; =

@ if i # j (by definition of t and the triangular inequality of the Hamming
distance). Therefore, if we set D¢ = |l,ec D;, there is a unique map

g:DC_)C

such that g(y) = x; for all y € D;. We extend g to T™ by setting g(y) =?
if y € D.. By construction, g is a decoder of C and it corrects t errors.
This decoder g is called the minimum distance decoder of C.

e g(v) is the word x' € C such that hd(y,x") <t, if such an x’ exists,
and otherwise y is non-decodable for g.

e If y is decodable and g(y) = x', then hd(x,y) > tforallx € C — {x'}.



9

Remark. The usefulness of the minimum distance decoder arises from
the fact that we can hope, in most ordinary situations, that the transmis-
sions x — y that lead to a decoder error (y € D), or to undetectable er-
rors (y € D, but hd(y,x) > t) will in general be less likely than the
transmissions x — y for which y is decodable and g(y) = x.

To be more precise, the minimum distance decoder maximizes the like-
lihood of correcting errors if all the transmission symbols have the same
probability of being altered by the channel noise and if the g — 1 possible
errors for a given symbol are equally likely. If these conditions are satis-
fied, the channel is said to be a (g-ary) symmetric channel. Unless other-
wise declared, henceforth we will understand that ‘channel’ means
‘symmetric channel’.

From the computational point of view, the minimum distance decoder, as
defined above, is inefficient in general, even if d. is known, for it has to
calculate hd(y,x), for x € C, until hd(y,x) <t, so that the average
number of distances that have to be calculated is of the order of |C| =
g". Note also that this requires having generated the g* elements of C.
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But we also have to say that the progress in block coding theory in the
last sixty years can be seen, to a considerable extent, as a series of miles-
tones that signal conceptual and algorithmic improvements that make
possible to deal with the minimum distance decoder, for large classes of
codes, in ever more efficient ways.

The Singleton bound. MDS codes
Proposition (Singleton bound). 1) For any code of type (n, M, d),
M < qn—d+1.

2) For any code of type [n, k,d], k+d <n+ 1.

Proof. Indeed, if C is any code of type (n, M, d), let us write C' € T"4+1
to denote the subset obtained by discarding the last d — 1 symbols of
each vector of C. Then C' has the same cardinal as C, by definition of d,
and so gf = |C| = |C'| € g™ 9*1. Hence k < n —d + 1, which is equiva-
lent to the stated inequality.



11

MDS codes. Codes that satisfy the equality in the Singleton inequality are
called maximum distance separable codes, or MDS codes for short. The
binary repetition code Rep(3) is MDS, while the Hamming code [7,4,3] is
not.

Remark. For a given length n, the code rate is proportional to k, and the
correcting capacity is ~ d/2. We seek, therefore, that k and d are as high
as possible. The Singleton bound shows that these two requirements
cannot be met simultaneously. In practice, a compromise is required.

The Hamming upper bound

Theorem. Let C be a T-code of type (n,M,d). Lett = |(d — 1)/2]. Then

n

q
M < :
volg(n,t)

Proof. The Hamming balls of radius t and center in the elements of C are
pair-wise disjoint and hence
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dixec|B(x, )| < |T"| = q™.

On the other hand |B(x, t)| = vol,(n,t) and so we have
dxeclB(x, t)| = M -vol,(n,t).

The conclusion is now obvious.

Remark. The Hamming upper bound is also called sphere-packing upper
bound, or simply sphere upper bound.

Perfect codes

In general D is a proper subset of T™, which means that there are ele-
ments y € T™ for which thereis no x € C with hd(y,x) < t.

If D = T", then C is said to be perfect. In this case, for every y € T"
there is a (necessarily unique) x € C such that hd(y,x) < t.
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Taking into account the reasoning involved in proving the sphere-bound,
we see that the necessary and sufficient condition for a code C to be per-
fect is that

n : _
o (D) @@= Di=q/M (=g,
where M = |C| = g (this will be called the sphere or perfect condition).

Examples. The total code T™ and the binary repetition code of odd length
are examples of perfect codes, with parameters

(n,q™,1)and 2m+1,2,2m+ 1),
respectively. Such codes are said to be trivial perfect codes. We have also

seen that the Hamming code [7,4,3] is perfect (actually this is a direct
check).

Optimal codes. The function A;(n,d). A code C ~ (n,M, d) is said to be

optimal if M > M’ for any code (n, M',d). The cardinal M of an optimal
code depends only of n and d, and it is denoted A4, (n, d).
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Examples. A;(n,d) < g™~ %*1 by the Singleton bound,* and A;(n,d) <
q"/vol,(n,t), by the Hamming bound."?

q" N3

voly(n,d—1)°

Theorem (Gilbert lower bound). Aq(n, d) >

Proof. If C ~ (n,M,d) is optimal, any element of T" lies at a distance
< d — 1 of an element of C, for otherwise there would be a word y € T"
lying at a distance = d from all elements of C and C U {y} would be a
code of length n, minimum distance d and with a greater cardinal than
m = |C|, contradicting the optimality of C. This means that the union of
the balls of radius d — 1 with center the elements of C is the whole T™. It
follows that M -vol,(n,d —1) =q", and this ends the proof as

M = Aq(n,d).



Some values of A,(n, d)
n| d=3 d=5|d=7
5 4 2 --
6 8 2 --
7 16 2 2
8 20 4 2
9 40 6 2
10| 72-79 12 2
11| 144-158 24 4
12 256 32 4
13 512 64 3
14 1024 128 16
15| 2048 256 32
16|2720-3276|256-340| 36-37

This table gives the values of A,(n, d), or the best known bounds, for

15

5<n<16and 3 <d < 8. The values for d even (4 and 6 in this table) are de-
termined by the relation A,(n + 1,d) = A,(n,d — 1).



Notes

N1. # Singleton upper-bound
ub_singleton(n,d,q):= g*(n-d+1);
ub_singleton(n,d):= 2*(n-d+1);
ub_singleton(8,3) — 64

N2. # Sphere-packing upper-bound
ub_sphere(n,d,q):= floor(g”n/volume(n,(d-1)//2,9))
ub_sphere(n,d):= floor(2”~n/volume(n,(d-1)//2))
ub_sphere(8,20) — 28

N3. # Gilbert lower bound
Ib_gilbert(n,d,q) := ceil(g”n/volume(n,d-1,q))

lb_gilbert(n,d) := ceil(2*n/volume(n,d-1))
lb_gilbert(8,20) — 7
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