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ABSTRACT

A mathematical model of a quantum computer, or g-
computer, will be presented, together with related concepts
such as g-gates, g-computations and g-algorithms/programs.

Emphasis will be given to examples, such as the g-Fourier
transform and g-algorithm of Shor to factor integers in poly-
nomial time. The possible physical realizations of the model
will be analyzed using an axiomatic version of quantum me-
chanics. At the end, a few lines for future work will be men-
tioned.
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QUANTUM COMPUTATION IN MATHEMATICAL TERMS

Notations
e n positive integer (number of bits or g-bits)

e j positive integer in therange 0 - 2" — 1 fu=a+pic€C,
® j._1Jn_2"J1jo binary expression of j we write i = a — Bi
J=jo+j12+ -+ j,_12™1) (conjugate of u)

e H(™ space of g-vectors of order n: a = Yiaju; =;a;lj), a €C

These are complex vectors of 2™ components:

[ Qg (1 (0 0]

a
a= :1 ) |O>EO;|1>E %'lzn_]‘)E?
_azn_l_ 0 O _1_

o Ifb=);bjlj)isanother g-vector,and ¢ € C,

a+ b= Z](a] ~+ b]) |]> , CA = Z] CClj |]>, (Cllb) = Z] c_l]b]
(Jlk) = 8 (we say that|0), 1), ..., |2 — 1) is an orthonormal basis)



Example (n = 1)

a=ay|0)+ aq,|l) = [?1(1)] = a, [(1)] + a, [(ﬂ

Example (n = 2)

a = ay|0) + a;]|1) + a;|2) + az|3)

= ago|00) + ap,/01) + a,0[10

Ao | oo
_ 91| _ %01
—|az|l 210
as [A11

Proposition. |jk) = |j) ® |k) = |j)|k), where [?1(1)] X [2‘1’] -

In general,

= Qpo
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Jn-1) - lj1)ljo)

HM =~ O ® ... HW




Proof

SCERETHE
em=[lell-
e m=[el}-

wem=[e[]-
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=101)
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g-Computation

IfU = [ujk] is a matrix, its transpose is UT = [ukj] and its adjoint
Ut =[] = UT.

A g-computation of order n is a matrix

U= [ujk]osj,k<2" , Uj € C, such that UUT =1,n_,4

(that is, U is a unitary matrix of order 2" — 1: U € U(2") = U™M).

e IFUVeU™ VU e U™ and UL = UT. In other words,
Composition. The composition of two g-computations of order n is a g-
computation of order n; and
Reversibility. The inverse of a g-computation of order n is a g-
computation of order n.
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A g-input for a g-computation U is a vector a € H™ such that (ala) = 1
(unitary vector).

Example: (Y = (|0) + 1) + - + |2 — 1)) /v/27
The g-output of a g-computation U is the (unitary) vector b = Ua.

Examples (n = 1). A g-computation of order 1 is a matrix
U e UD ie. amatrix of the form

Ug Uq

— Sl
U=¢e —,

], a € IR, Ug, Uq S (C, uoao + ulﬂl = 1.

U [ao] _ pia[ Yo% + 7v_l1a1]
by —Uq Ay + Ugaq

Note. It is easy to check that e [—ﬂ1 'L_lo] is unitary. The claim is that

any unitary matrix of order 2 has this form.
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Special cases: a) Pauli matrices

e i e

= X[0)= 1), X|1)=|0) [X=NOT =N

Note. The Pauli matrices are self-adjoint: X? = Y? = Z? = 1.

b) Hadamard matrix

=zl

c) Fase matrices

B 1 0  ial? e—ia/Z 0
Ua_[O eia]_ela/ [ 0 eiOl/Z]

{|0> ~ ([0) + [1)/V2
11) > (]0) — [1))/V2

In particular, Urj2 = [(1) (l)] and Urja = [(1) i70r/4]

e



Examples n = 2

Let U € UMV, The we define Cy;(U) € U™ as follows:
Co1(U)|0a) =[0a), Co1(U)|1a) =[1)U]a).

__ [Hoo Uo1
If U = [u1o u11] , then
1 0 0 0 7
O 1 0 0 ]
Co1(U) = 0 0 uyy Ugq |'1)
L 0 0 uyp uqqd |10>

In particular we set Cy; = Cy1(N):

Co1l0a) =[0a), Cyilla) =[1)|1 + a):
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1000 Leaves the second bit unchanged or negates
Cor = 8 (1) 8 (1) it according to whether the first bit is O or 1.
0010 It is a conditional negation (CONTROLED-NOT)




C10(U) is defined in an analogous way. For example,

01 0 O]
1 000
C].O — C].O(N) = 0010
0 0 0 1.

C10,a — ClO(Ua) —

®
)
_ o O O

==
o o

13



g-Computer
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A g-computer of order n is a system that allows to perform the following

operations:
1. I(a) Initialization or Input a
Selects the unitary vector a € H™.

2. Ry, UeUW Action U on the j-th bit
|-+ Bj =) =+ |bj} e > - Ulby)

3. ik Negationof the k-th bit if the j-th bit is |1)

(see examples Cy ; and C; o, above for n = 2)

[EZS TIRTRN1 PIRTES W P FRRPTS PARER)
[EZD TR PARTED W P FRRPRY | ARRR

4. O(b), b € H™ unitary Observation of b

Returns j € 0 -+ (2™ — 1) with probability |b; 2 and resets as I([j)).
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A g-algorithm is a sequence Uy, ..., U, € U™ such that each U, is either
of Rj y or of type Cj, and we say that it performs the g-computation

U= U, U (riscalled the complexity 1 00 0]
of the algorithm). 10010
SWAP[0,1]= 0100
Example 000 1
Swap (trasposition of 2 bits)
SWAP(j, k]
7 k) |)) k)

SR e e
Indeed,
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Theorem

Any g-computation can be realized by a g-algorithm.

A g-algorithm is said to be special or restricted if the operations R; ;; ap-

peraring in it are such that U is one of the following three matrices:

S R A S R
Theorem

For any g-computation there exists a special g-algorithm that performs
the computation with as much approximation as wanted.

The basic idea of the proof is that any U € U can be approximated to
any wanted degree by products formed with matrices taken from

{Hy, U /o, Un s}



Example

The discrete Fourier transform of H™ is the linear operator
. 1 :
F:H™ —> H™, Flj) = Z= 5§ k),

27i /2™ i /21

whereé =¢, = e =e
Observe that F € UM
1if j' =

NTELTY Y = & (j’—j)kz{
(FINTEY) =572k 0if j' £

for, if L # 0, Y20st et = ((¢)* —1)/@E - 1) = 0.

Let us give an idea of how to produce a g-algorithm to obtain F.

17



After some calculations we get that

Flj) =

1
=\/T_n(

0) + ™I [1))([0) + e™/2[1)) - ([0) + e™/2" |1))

0) + enijo|1))(|0) n eﬂi(1'1+jo/2)|1))

(Joy + eTiUn-1%jn-2/2++jo/2"" 1))

== (H|]o>) (R1H|]1>) (Rn—1 - RyR 1 Hljn—1)),

where Ry = Ry—j-1,1(Up /51) -
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This shows that F can be computed by a g-algorithm of complexity

n+n-1)+--

Tl+1) ~ln2_

+1=( 2 2
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g-Programs

A [restricted] g-program has the following structure:
INITILAZATION
I(a)
[RESTRICTED] Q-ALGORITHM
Uy, ..., U,
OuTPUT
Thevectorb =U,U,_; - U a
OBSERVATION [Optional]
O(b)

Complexity. As measure of the complexity of a g-program we take the
number r (the complexity of the algorithm). We say that an algorithm is
polynomial if its complexity is bounded by a polynomial in n.
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Example

Generator of random numbers in the range 0 -- (2™ — 1) with uniform
distribution:

RANDOM
I(h("))
0(h™)

Note that (j|h("))2 =1/2™".
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COMMENTS ABOUT SOME POLYNOMIAL Q-ALGORITHMS

e g-Fourier transform.

e Estimate of the phase ¢ of the eigenvalue e?™? of a unitary operator
U given the eigenvector |u) and the operators Cj(Uzk).

® Given positive integers a and n, a < n, such that gcd(a,n) =1, to
find the least positive integer r such that a” = 1 mod n (Shor)

® Given a positive integer, to find its factorization (Shor)

® (Discrete logarithm): Given positive integers a, b and n (a,b < n) to
find the least positive integer s such that a = b® mod n, if it exists
(Shor).

® (Grover’s algorithm). To finding an arbitrary element in a database of
order n (complexity 0(vn)).
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QUANTUM COMPUTATION IN PHYSICAL TERMS

1. A quantum system X is characterized by a complex vector space E en-
dowed with a Hermitian scalar product (x|y) (i.e., linear in y and linear-
conjugate in x). For the purposes of quantum computation we may also
asume that E has finite dimension.

The non-zero vectores x € E represent states of X, and two non-zero
vectors x,y € E represent the same state if and only if there exists ¢ € C
such that y = cx.

In particular, any state can be represented by a unitary vector u (deter-

mined up to a phase factor e'¥). Thus the state space of X is PE (the pro-
jective space associated to E).

Following Dirac, we will write |u) to denote the state corresponding to u
(in projective geometry it is denoted [u]).

Quantum superposition: (a + Li)|u) + (a' + B'i)|u’) .
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2. (Observables) An observable of X is a linear map A: E — E such that

(Ax|y) = (x|Ay) .
If we express A with respect to an orthonormal basis, it is easy to check

that this condition is equivalentto A = AT
observable = self-adjoint operator

If a4,...,a, are the distinct eigenvalues of A, then a4, ...,a, € Rand
A=) ajPaj, where Paj: E - Eaj is the orthogonal projection E onto the

space Eaj = {x € E|Ax = ajx} of eigenvectors of A with eigenvalue q;.

The result of an observation or measure of A when X is in the state |u) is

one of the eigenvalues a;, with probability Pa; = <u Paju>, and also that

Y is reset to the state Paju (or, more precisely, to | Paju)).

In particular, if u € Eaj, then the observation yields a; with certainty and

Y remains in the state |u).
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Example (Eventualities). If F is a subspace of E, the orthogonal projection
Pr:E = F is an observable with eigenvalues 1 and 0: E; = F, E, = F*.
The observables of this form are called eventualities.

3. (Unitary dynamics) If X lies in a non-reactive environment (i.e., the en-
vironment is not affected by X) in the time interval [0, t], there exists a
unitary operator

U E - FE
such that
b=Ua

represents the state of X at time t if a € E represents the state of X at
time 0.

4. (Entanglement) If X' is a second quantum system with associated space
E’, then the associated space of the composite system%; + X, isE Q E'.
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g-bits (qubits)

The states of a spin % particle (system (1) can be thought as points lying
on the sphere S? of radius 1 (with suitable units).

The complex space associated to this system according to axiom 1 is C?

(spinor space).

This fact can be argued as follows.
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= |dentify z = x + iy € C with the point (x,y,0) € R3 and consider the
point P = P, of
S22 ={(x,y,z) € R3|x? + y? + z%2 = 1}

obtained by stereographic projection from N = (0,0,1):

p— ( 2x 2y x2+y2—1)
x2+y2+1° x2+y2+1° x2+y2+1)°

Setting P.,, = N, we get a bijection between C = C U {0} and S2. The
inverse map is given by

Y

X .
(X,y,Z) I_)E-I_ll—z'
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= On the other hand we also have C =~ PC? = P, for any element
[z1,2,] € C* is proportional to a unique vector of the form [1,z]
when z; # 0, and to [0,1] if z;y = 0. Thus we have a map

C-Pl,zw [1,2], 0 - [1,0].

The inverse map is given by
Zo [z if zy 0
(2,,2,] |—>{ 2/71 it 24

0.0 lf Zl —_ O
Therefore S? ~ C = P¢.
This shows that the space associated to X is C?.

Note. The sphere S?, with the structure of P(%, is called the Riemann
sphere. In quantum computation references, it is called the Bloch sphere.
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g-Registers

By axiom 4 and the formula H®W ~ HD ® ... ® HD, the space H™ is
the associated space of 2 = x( 4 ... 4 (M) (n summands), the sys-
tem composed of n g-bits (and which is called a g-register of order n).

Then axiom 3 tells us that the time evolution of (™ is given by a unitary

matrix of order 2™. In other words, the time evolution of (™ is a g-
computation.

Finally, axiom 2 indicates that the [optional] operation O (b) at the end of
g-programs corresponds to the operation of measuring the (diagonal) ob-
servable

L=3;jl4| (thatis, L|k) > k|k))

when (" is in the state |b).

Note that (H("))j = C|j), hence P;b = bj|j)and p; = |bj|2.
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Example (EPR states). A possible state of a g-register of order 2 is

1
[u) = 7 (100) +[11)).
Such states are called EPR states (also called entangled states).

Suppose the first g-bit is located at A and the other at B. Then if an ob-
server at A measures the first g-bit and then and observer at B measures
the second g-bit, we note that they get the same value:

A |State|B
0[]00)|0
1)111) |1

Indeed, the EPR state |u) “collapses” to |00) or [11) if A measures 0 or 1,
respectively (ie, the projection of |u) to the space {|0b)} is |00), and to

the space {|1b)}is |11)).
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QUANTUM COMPUTERS

From the preceding observations it follows that it is sufficient, in order to
execute g-programs of order n on a physical support, to have a quantum

register 2™ and “implementations” of the operations
I(a), 0(b)
C;(U) [with U = Hy , U/, Uy 4 in the restricted case]

Ci k

A quantum computer (of order n) is a quantum register (™ endowed
with such implementations.

Its main beauty is that such a computer allows us to perform (or approx-
imate) any g-computation.
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ENDING REMARKS

Quantum parallelism
This feature stems from the possibility of initializing the g-computation in
states such as R = (J0) + |1) + - + |2 — 1)) /A/2™:

m This state contains (actually is the normalized sum of) all numbers of

n bits.

B Hence, any operation of the quantum computer acts on all numbers
simultaneously. This “explains” why the quantum computer can be
much faster than a classical computer.

B In general, the usefulness of the algorithms (as Shor’s factorization,
for instance) is based in the fact that after its execution the ampli-
tudes of “useful numbers” are high and the others are small.
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The problem of decoherence

This difficulty arises from the fact that interactions with the environment
can quickly “perturb” the states of 2™ (uncontrolled “entanglement” be-

tween states of the environment and of (™).

Such problems in the road of building quantum computers are of a “phys-

I”

ical” nature. Research in many labs around the world is focussed on those
guestions, with continuous progress and in many direction:

http://en.wikipedia.org/wiki/Timeline of quantum computing

(we see an explosion of activity in the last years, and especially since
2006).

See http://en.wikipedia.org/wiki/Quantum computer for over a dozen

lines of inquiry toward the realization of a quantum computer.

(On 24 February 2009 D-Wave Systems announced a 128 g-bits QC)
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Teleportation

The techniques of guantum computation allow to transfer the state of g-
bit at A to the same state of a g-bit at B (the state disappears at A and
appears at B). Here is a sketch of the procedure.

Let [) = a|0) + £|1) be the (unknown) state of a g-bit to be tele-
ported from A to B.

Let |u) = — (]|00) + |11)) be an EPR pair shared by A and B.
V2

= A applies C21 to the state
) u) = [a|0> (100) +|11)) + B[1) (|00) + |11))], to get
Tz[au» (100} + 1)) + BI1) (|10} + [01)]
Next A applies H to the first bit, to get
~[ (|0} + 1)) (|00} + [11)) + B(|0) — [1))(|10) + [01))]

And collecting with respect to the first two g-bits,
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1[100) («|0) + B[1)) + |01) («]|1) + B|0)) +
21 10) («]|0) — B|1)) +[11) (a|1) — B|0})
" Now A measures the first two g-bits. The values and the corresponding
state of the g-bit at B are given in the following table:

Value 00 01 10 11

State B a|0) + B|1) | a|1)+ B|0) | «|0) — B|1) | a|1) — B]|0)

* So B can reproduce the state |y) in its g-bit if he knows the two clas-
sical bits produced by the measures of A by applying the gates
1,X,7Z, X7,
respectively.

Recently this possibility has been demostrated with Yb atoms at a dis-
tance of 1m (Olmschenk et al. 2009).

This opens great potential for quantum networks.
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