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ABSTRACT 

A  mathematical  model  of  a  quantum  computer,  or  q‐
computer, will  be  presented,  together with  related  concepts 
such as q‐gates, q‐computations and q‐algorithms/programs.  

Emphasis  will  be  given  to  examples,  such  as  the  q‐Fourier 
transform and q‐algorithm of  Shor  to  factor  integers  in poly‐
nomial  time.  The  possible  physical  realizations  of  the model 
will  be  analyzed  using  an  axiomatic  version  of  quantum me‐
chanics. At  the end, a  few  lines  for  future work will be men‐
tioned.    
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INTRODUCTION 

 

  COMPUTACIÓN 
Level  CLASSICAL  QUANTUM 
Mathematical  Mathematical logic  

     Turing machine 
    Boole algebra (Shannon) 
     von Neumann machines 
     Algorithmic theory 
     Parallel computing  

Linear algebra 
    Vectors  
     Matrices   

Physical theory  Mechanics  
Electromagnetism 

Quantum Mechanics  
(basic  axioms) 

Technology  Circuits, transistors, …  Ionic  traps, … 
Economics  Ubiquity of processors 

    computers 
    mobile phones 
    digital cameras, … 

Future 
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QUANTUM COMPUTATION IN MATHEMATICAL TERMS 
 
Notations 

 ݊ positive integer (number of bits or q‐bits) 

 ݆ positive integer in the range 0 ∙∙ 2௡ െ 1 
 ݆௡ିଵ݆௡ିଶ ڮ ݆ଵ݆଴ binary expression of ݆  

(݆ ൌ ݆଴ ൅ ݆ଵ2 ൅ ڮ ൅ ݆௡ିଵ2௡ିଵ) 

 ܪሺ௡ሻ space of ݍ‐vectors of order ݊: ࢇ ൌ ∑ ௝ܽ ௝࢛௝ ൌ ∑ ௝ܽ௝  ,ۄ݆| ௝ܽ א ԧ  
    These are complex vectors of 2௡ components: 

    ࢇ ؠ ൦

ܽ଴
ܽଵ
ڭ

ܽଶ೙ିଵ

൪;      |0ۄ ؠ ൦

1
0
ڭ
0

൪, |1ۄ ؠ ൦

0
1
ڭ
0

൪, |2௡ െ ۄ1 ؠ ൦

0
0
ڭ
1

൪ 

 If ࢈ ൌ ∑ ௝ܾ௝ ܿ  vector, and‐ݍ is another ۄ݆| א ԧ, 
ࢇ ൅ ࢈ ൌ ∑ ൫ ௝ܽ ൅ ௝ܾ൯௝ ࢇܿ , ۄ݆| ൌ ∑ ܿ ௝ܽ௝ ۧ࢈|ࢇۦ ,ۄ݆| ൌ ∑ തܽ௝ ௝ܾ௝ . 

ۧ݇|݆ۦ      ൌ 2௡| ,… ,ۄ1| ,ۄ௝௞ (we say  that |0ߜ െ   (is an orthonormal basis ۄ1

If ݑ ൌ ߙ ൅ ݅ߚ א ԧ, 
we write ݑത ൌ ߙ െ  ݅ߚ
(conjugate of ݑ) 
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Example (݊ ൌ 1) 

ࢇ ൌ ܽ଴|0ۄ ൅ ܽଵ|1ۄ ؠ ቂ
ܽ଴
ܽଵ

ቃ ൌ ܽ଴ ቂ1
0ቃ ൅ ܽଵ ቂ0

1ቃ.  

Example (݊ ൌ 2) 
ࢇ ൌ ܽ଴|0ۄ ൅ ܽଵ|1ۄ ൅ ܽଶ|2ۄ ൅ ܽଷ|3ۄ  
    ൌ ܽ଴଴|00ۄ ൅ ܽ଴ଵ|01ۄ ൅ ܽଵ଴|10ۄ ൅ ܽଵଵ|11ۄ  

ؠ     ൦

ܽ଴
ܽଵ
ܽଶ
ܽଷ

൪ ൌ ൦

ܽ଴଴
ܽ଴ଵ
ܽଵ଴
ܽଵଵ

൪ ൌ ܽ଴଴ ൦

1
0
0
0

൪ ൅ ܽ଴ଵ ൦

0
1
0
0

൪ ൅ ܽଵ଴ ൦

0
0
1
0

൪ ൅ ܽଵଵ ൦

0
0
0
1

൪  

Proposition. |݆݇ۄ ൌ ۄ݆| ٔ ۄ݇| ؠ where ቂ ,ۄ݇|ۄ݆|
ܽ଴
ܽଵ

ቃ ٔ ൤ܾ଴
ܾଵ

൨ ൌ ൦

ܽ଴ܾ଴
ܽ଴ܾଵ
ܽଵܾ଴
ܽଵܾଵ

൪. 

In general, 

   |݆௡ିଵ ڮ ݆ଵ݆଴ۄ ൌ |݆௡ିଵۄ ٔ ڮ ٔ |݆ଵۄ ٔ |݆଴ۄ 

          ؠ     |݆௡ିଵۄ ڮ |݆ଵۄ|݆଴ۄ   ሺ௡ሻܪ ؄ ሺଵሻܪ ٔ ڮ ٔ  ሺଵሻܪ
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Proof 

   ۄ0| ٔ ۄ0| ൌ ቂ1
0ቃ ٔ ቂ1

0ቃ ൌ ൦

1
0
0
0

൪ ൌ  ۄ00|

    ۄ0| ٔ ۄ1| ൌ ቂ1
0ቃ ٔ ቂ0

1ቃ ൌ ൦

0
1
0
0

൪ ൌ  ۄ01|

    ۄ1| ٔ ۄ0| ൌ ቂ0
1ቃ ٔ ቂ1

0ቃ ൌ ൦

0
0
1
0

൪ ൌ  ۄ10|

    ۄ1| ٔ ۄ1| ൌ ቂ0
1ቃ ٔ ቂ0

1ቃ ൌ ൦

0
0
0
1

൪ ൌ  ۄ11|
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q‐Computation  

If ܷ ൌ ்ܷ ௝௞൧ is a matrix, its transpose isݑൣ ൌ   ௞௝൧ and its adjointݑൣ

 ܷற ൌ ത௞௝൧ݑൣ ൌ ்ܷതതതത. 

A ݍ‐computation of order n is a matrix 

   ܷ ൌ ௝௞൧ݑൣ
଴ஸ௝,௞ழଶ೙ ௝௞ݑ ,  א ԧ, such that ܷܷற ൌ    ଶ೙ିଵܫ

(that is, ܷ is a unitary matrix of order 2௡ െ 1: ܷ א ሺ2௡ሻࢁ ൌ  .(ሺ௡ሻࢁ

 If ܷ, ܸ א ܷܸ ,ሺ௡ሻࢁ א ሺ௡ሻ and ܷିଵࢁ ൌ ܷற. In other words, 
Composition. The composition of two q‐computations of order  ݊ is a q‐
computation of order ݊; and 
Reversibility.  The  inverse  of  a  q‐computation  of  order  ݊  is  a  q‐
computation of order  ݊.     
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A q‐input for a q‐computation ܷ  is a vector ࢇ א ۧࢇ|ࢇۦ ௡ such thatܪ ൌ 1 
(unitary vector).  

Example: ࢎሺ௡ሻ ൌ ሺ|0ۄ ൅ ۄ1| ൅ ڮ ൅ |2௡ െ  ሻ/√2௡ۄ1

The q‐output of a q‐computation ܷ is the (unitary) vector ࢈ ൌ   .ࢇܷ

Examples (݊ ൌ 1). A q‐computation of order 1 is a matrix 

ܷ א  ሺଵሻ, i.e., a matrix of the formࢁ

  ܷ ൌ ݁௜ఈ ቂ
ଵݑ   ଴ݑ   
െݑതଵ   ݑത଴

ቃ,  ߙ א Թ,  ݑ଴, ଵݑ א ԧ, ݑ଴ݑത଴ ൅ തଵݑଵݑ ൌ 1.  

  ܷ ቂ
ܽ଴
ܾ଴

ቃ ൌ ݁௜ఈ ቂ
଴ܽ଴ݑ    ൅ ଵܽଵݑ
െݑതଵܽ଴ ൅ ത଴ܽଵݑ

ቃ 

Note.  It  is easy  to check  that ݁௜ఈ ቂ
ଵݑ   ଴ݑ   
െݑതଵ   ݑത଴

ቃ  is unitary. The claim  is  that 

any unitary matrix of order 2 has this form. 
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Special cases: a) Pauli matrices 

૚ ൌ ቂ1   0
0   1ቃ, ܺ ൌ ௫ߪ ൌ ቂ0   1

1   0ቃ, ܻ ൌ ௬ߪ ൌ ቂ0 െ݅
݅   0ቃ, ܼ ൌ ௭ߪ ൌ ቂ1    0

0 െ1ቃ   

  ۄ0|ܺ  ֥ ൌ ۄ1|ܺ  ,ۄ1| ൌ      ۄ0| ܺ ൌ ܱܰܶ ൌ ܰ  

  Note. The Pauli matrices are self‐adjoint: ܺଶ ൌ ܻଶ ൌ ܼଶ ൌ ૚.  

  b) Hadamard matrix 

    ଵܪ ൌ ଵ
√ଶ

ቂ1    1
1 െ1ቃ             ቊ|0ۄ հ ሺ|0ۄ ൅  ሻ/√2ۄ1|

ۄ1| հ ሺ|0ۄ െ ሻ/√2ۄ1|
   

  c) Fase matrices 

    ܷఈ ൌ ቂ1 0
0 ݁௜ఈቃ ൌ ݁௜ఈ/ଶ ൤݁ି௜ఈ/ଶ 0

0 ݁௜ఈ/ଶ൨   

    In particular,   ܷగ/ଶ ൌ ቂ1 0
0 ݅ ቃ  and   ܷగ/ସ ൌ ቂ1 0

0 ݁௜గ/ସቃ  
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Examples ݊ ൌ 2  

Let ܷ א ଴ଵሺܷሻܥ ሺଵሻ. The we defineࢁ א  :ሺସሻ as followsࢁ

ۄ଴ଵሺܷሻ|0ܽܥ ൌ|0ܽܥ  ,ۄ଴ଵሺܷሻ|1ܽۄ ൌ|1ۄܽ|ܷۄ. 

If  ܷ ൌ ቂ
଴ଵݑ ଴଴ݑ
ଵଵݑ ଵ଴ݑ

ቃ  ,  then       

    ଴ଵሺܷሻܥ ൌ ൦

1      0      0      0
0      1      0      0

଴ଵݑ   ଴଴ݑ    0      0   
ଵଵݑ   ଵ଴ݑ    0      0   

൪ 

In particular we set ܥ଴ଵ ൌ  :଴ଵሺܰሻܥ

ۄ଴ଵ|0ܽܥ ൌ|0ܽܥ  ,ۄ଴ଵ|1ܽۄ ൌ|11|ۄ ൅  : ۄܽ

଴ଵܥ ൌ ൦

1   0   0   0
0   1   0   0
0   0   0   1
0   0   1   0

൪     
Leaves the second bit unchanged or negates 
it according to whether the first bit is 0 or 1. 
It is a conditional negation (CONTROLED‐NOT)  
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  ,ଵ଴ሺܷሻ is defined in an analogous way. For exampleܥ

  ଵ଴ܥ ൌ ଵ଴ሺܰሻܥ ൌ ൦

0   1   0   0
1   0   0   0
0   0   1   0
0   0   0   1

൪ 

 

     ଵ଴,ఈܥ ൌ ଵ଴ሺܷఈሻܥ ൌ ൦

1    0    0    0
0   ݁௜ఈ   0   0
0    0    1    0
0    0    0    1

൪   
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q‐Computer 

A q‐computer of order ݊ is a system that allows to perform the following 
operations:  

  ሻࢇሺܫ .1
Selects the unitary vector ࢇ א    .ሺ௡ሻܪ

2. ௝ܴ,௎, ܷ א    ሺଵሻࢁ

| ڮ ௝ܾ ڮ ۄ ൌ ڮ | ௝ܾۄ ڮ հ ڮ  ܷ| ௝ܾۄ  ڮ  
 

  ௝,௞ܥ .3
 

 
     

   | ڮ 1௝ ڮ  0௞ ڮ ۄ հ  | ڮ 1௝ ڮ  1௞ ڮ   ۄ
    | ڮ 1௝ ڮ  1௞ ڮ ۄ հ  | ڮ 1௝ ڮ  0௞ ڮ   ۄ

4. ܱሺ࢈ሻ, ࢈ א  ሺ௡ሻ unitaryܪ

      Returns ݆ א 0 ൉൉ ሺ2௡ െ 1ሻ with probability |ܾ௝|ଶ and resets as ܫሺ|݆ۄሻ. 

Negationof the k‐th bit if the j‐th bit is |1ۄ 
(see examples ܥ଴,ଵ and ܥଵ,଴ above for  ݊ ൌ 2) 

Initialization or Input ࢇ

Action ܷ on the j‐th bit

Observation of  ࢈ 
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A q‐algorithm is a sequence  ଵܷ, … , ௥ܷ א  ሺ௡ሻ such that eachࢁ ௦ܷ is either 
of  ௝ܴ,௎ or of  type ܥ௝,௞,  and we  say  that  it performs  the q‐computation 

ܷ ൌ ܷ௥ ڮ ଵܷ (ݎ is called the complexity  
of the algorithm). 

Example 

Swap (trasposition of 2 bits) 

  SWAPሾ݆, ݇ሿ 

    ,௝,௞ܥ ,௞,௝ܥ  ௝,௞ܥ

Indeed, 

  :௝,௞ܥ ڮ| ௝ܾ ڮ ܾ௞ ڮ ۄ հ ڮ| ௝ܾ ڮ ௝ܾ ൅ ܾ௞ ڮ  ۄ

  :௞,௝ܥ ڮ| ௝ܾ ڮ ௝ܾ ൅ ܾ௞ ڮ ۄ հ ڮ| ௝ܾ ൅ ሺ ௝ܾ ൅ ܾ௞ሻ ڮ ௝ܾ ൅ ܾ௞ ڮ  ۄ

                    ൌ ڮ| ܾ௞ ڮ ௝ܾ ൅ ܾ௞ ڮ  ۄ  

  :௝,௞ܥ ڮ| ܾ௞ ڮ ௝ܾ ൅ ܾ௞ ڮ ۄ հ ڮ| ܾ௞ ڮ ௝ܾ ڮ  ۄ

SWAP[0,1]ൌ ൦

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

൪ 
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Theorem 

Any q‐computation can be realized by a q‐algorithm. 

 

A q‐algorithm is said to be special or restricted if the operations  ௝ܴ,௎ ap‐

peraring in it are such that ܷ is one of the following three matrices: 

    ଵܪ ൌ ଵ
√ଶ

ቂ1    1
1 െ1ቃ ,  ܷగ/ଶ ൌ ቂ1 0

0 ݅ ቃ ,  ܷగ/ସ ൌ ቂ1 0
0 ݁௜గ/ସቃ . 

Theorem 

For any q‐computation  there  exists a  special q‐algorithm  that performs 
the computation with as much approximation as wanted. 

The basic  idea of the proof is that any ܷ א  ሺଵሻ can be approximated toࢁ
any  wanted  degree  by  products  formed  with  matrices  taken  from 

൛ܪଵ, ܷగ/ଶ, ܷగ/ସൟ. 
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Example 

The discrete Fourier transform of ࡴሺ௡ሻ is the linear operator  

    :ܨ ሺ௡ሻࡴ ՜ ۄ݆|ܨ  , ሺ௡ሻࡴ ൌ ଵ
√ଶ೙ ∑ ௞ۄ݇|௝௞ߦ  , 

where ߦ ൌ ௡ߦ ൌ ݁ଶగ௜/ଶ೙ ൌ ݁గ௜/ଶ೙షభ
.  

Observe that ܨ א  :ሺ௡ሻࢁ

    ۧ ۄᇱ݆|ܨ | ۄ݆|ܨ ۦ ൌ ଵ
ଶ೙ ∑ ሺ௝ᇲି௝ሻ௞ߦ

௞ ൌ ൜1  if  ݆ᇱ ൌ ݆
0  if  ݆ᇱ ് ݆   ,  

for, if ݈ ് 0,  ∑ ௟௞ଶ೙ିଵߦ
௞ୀ଴ ൌ ሺ൫ߦ௟൯ଶ೙

െ 1ሻ/ሺߦ௟ െ 1ሻ  ൌ 0. 

 

Let us give an idea of how to produce a ݍ‐algorithm to obtain ܨ.  
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After some calculations we get that 

  ۄ݆|ܨ ൌ ଵ
√ଶ೙ ൫ห0ۄ ൅ ݁గ௜௝ห1ۄ൯൫ห0ۄ ൅ ݁గ௜௝/ଶห1ۄ൯ ڮ ൫ห0ۄ ൅ ݁గ௜௝/ଶ೙షభ ห1ۄ൯ 

      ൌ ଵ
√ଶ೙ ൫ห0ۄ ൅ ݁గ௜௝బห1ۄ൯൫ห0ۄ ൅ ݁గ௜ሺ௝భା௝బ/ଶ ሻห1ۄ൯  ڮ

              ൫ห0ۄ ൅ ݁గ௜ሺ௝೙షభା௝೙షమ/ଶାڮା௝బ/ଶ೙షభ ห1ۄ൯ 

      ൌ ଵ
√ଶ

ሺܪ|݆଴ۄሻ ଵ
√ଶ

ሺܴଵܪ|݆ଵۄሻ ڮ ଵ
√ଶ

ሺܴ௡ିଵ ڮ ܴଶܴଵܪ|݆௡ିଵۄሻ, 

where ܴ௟ ൌ ܴ௡ି௟ିଵ,௟ሺܷగ/ଶ೗ሻ .  

This  shows  that   ܨ can  be  computed  by  a   algorithm‐ݍ of  complexity 

݊ ൅ ሺ݊ െ 1ሻ ൅ ڮ ൅ 1 ൌ ቀ݊ ൅ 1
2 ቁ ׽ ଵ

ଶ
݊ଶ. 

 

 

   



19 
 

q‐Programs 

A [restricted] q‐program  has the following structure: 

  INITILAZATION   

     ሻࢇሺܫ

  [RESTRICTED] Q‐ALGORITHM    

    ଵܷ, … , ௥ܷ   

  OUTPUT    

The vector ࢈ ൌ ௥ܷ ௥ܷିଵ ڮ ଵܷࢇ  

  OBSERVATION [Optional] 

    ܱሺ࢈ሻ    

Complexity. As   measure of  the complexity of a q‐program we  take  the 
number ݎ (the complexity of the algorithm). We say that an algorithm is 
polynomial if its complexity is bounded by a polynomial in ݊. 
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Example  

Generator of  random numbers  in  the  range 0 ൉൉ ሺ2௡ െ 1ሻ with uniform 
distribution: 

  RANDOM 

     ሺ௡ሻሻࢎሺܫ

    ܱ൫ࢎሺ௡ሻ൯ 

Note that ൻ݆หࢎሺ௡ሻൿ
ଶ

ൌ 1/2௡. 
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COMMENTS ABOUT SOME POLYNOMIAL Q‐ALGORITHMS 

 ݍ‐Fourier transform. 

 Estimate of the phase ߮ of the eigenvalue ݁ଶగ௜ఝ of a unitary operator 

ܷ given the eigenvector |ۄݑ and the operators ܥ௝ሺܷଶೖሻ. 

 Given  positive  integers  ܽ  and ݊,  ܽ ൏ ݊,  such  that  gcdሺܽ, ݊ሻ ൌ 1,  to 
find the least positive integer ݎ such that ܽ௥ ൌ 1 mod ݊ (Shor) 

 Given a positive integer, to find its factorization (Shor) 
 (Discrete  logarithm): Given positive  integers ܽ, ܾ and ݊  (ܽ, ܾ ൏ ݊)  to 

find  the  least  positive  integer   ݏ such  that  ܽ ൌ ܾ௦ mod ݊,  if  it  exists 
(Shor).  

 (Grover’s algorithm). To finding an arbitrary element  in a database of 

order ݊ (complexity ܱሺ√݊ሻ).  
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QUANTUM COMPUTATION IN PHYSICAL TERMS 

1. A quantum system Σ is characterized by a complex vector space ܧ en‐
dowed with a Hermitian scalar product ࢞ۦ|࢟ۧ (i.e., linear in ࢟ and linear‐
conjugate  in ࢞). For the purposes of quantum computation we may also 
asume that ܧ has finite dimension. 

The  non‐zero  vectores  ࢞ א  ܧ represent  states  of  Σ,  and  two  non‐zero 
vectors ࢞, ࢟ א ܿ represent the same state if and only if there exists ܧ א ԧ 
such that ࢟ ൌ ܿ࢞.   

In particular, any state can be represented by a unitary vector ࢛ (deter‐
mined up to a phase factor ݁௜ఈ). Thus the state space of Σ is ܧ۾ (the pro‐
jective space associated to ܧ).  

Following Dirac, we will write |࢛ۄ to denote the state corresponding to ࢛ 
(in projective geometry it is denoted ሾ࢛ሿ). 

Quantum superposition: ሺߙ ൅ ۄ࢛|ሻ݅ߚ ൅ ሺߙԢ ൅  . ۄԢ݅ሻ|࢛Ԣߚ
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2. (Observables) An observable of Σ is a linear map ܣ: ܧ ՜  such that ܧ

ۧ࢟|࢞ܣۦ  ൌ  . ۧ࢟ܣ|࢞ۦ

If we express ܣ with respect to an orthonormal basis,  it  is easy to check 

that this condition is equivalent to ܣ ൌ   றܣ
observable ؠ self‐adjoint operator 

If  ܽଵ, … , ܽ௥  are  the  distinct  eigenvalues  of   ,ܣ then  ܽଵ, … , ܽ௥ א Թ and 
ܣ ൌ ∑ ௝ܽ ௔ܲೕ௝ , where  ௔ܲೕ: ܧ ՜ ௔ೕܧ  is the orthogonal projection ܧ onto the 

space ܧ௔ೕ ൌ ൛࢞ א ࢞ܣ|ܧ ൌ ௝ܽ࢞ൟ of eigenvectors of ܣ with eigenvalue  ௝ܽ. 

The result of an observation or measure of ܣ when Σ is in the state |࢛ۄ is 

one of the eigenvalues  ௝ܽ, with probability ݌௔ೕ ൌ ർ࢛ቚܲ௔ೕ࢛඀, and also that 

Σ is reset to the state  ௔ܲೕ࢛ (or, more precisely, to | ௔ܲೕ࢛ۄ). 

In particular, if  ࢛ א  ௔ೕ, then the observation yieldsܧ ௝ܽ  with certainty and 

Σ remains in the state |࢛ۄ. 



24 
 

Example (Eventualities). If ܨ is a subspace of ܧ, the orthogonal projection 
ிܲ: ܧ ՜  ܨ is an observable with eigenvalues 1 and 0: ܧଵ ൌ ଴ܧ ,ܨ ൌ  .ୄܨ

The observables of this form are called eventualities.  

3. (Unitary dynamics) If Σ lies in a non‐reactive environment (i.e., the en‐
vironment  is not affected by Σ)  in the time  interval ሾ0,  ሿ, there exists aݐ
unitary operator  

    ܷ: ܧ ՜   ܧ

such that  

    ࢈ ൌ   ࢇܷ

represents the state of Σ at time ݐ  if ࢇ א  represents the state of Σ at ܧ
time 0. 

4. (Entanglement) If ΣԢ is a second quantum system with associated space 
Ԣ, then the associated space of the composite system Σଵܧ ൅ Σଶ is ܧ ٔ  .Ԣܧ
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q‐bits (qubits) 

The states of a spin ½ particle (system Σሺଵሻ) can be thought as points lying 
on the sphere ܵଶ of radius 1 (with suitable units). 

The complex space associated to this system according to axiom 1  is ԧଶ 
(spinor space).  

This fact can be argued as follows. 

 

ݔ

ݕ

ݖ

ݖ ൌ ݔ ൅ ݕ݅

௭ܲ 

ܰ
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 Identify ݖ ൌ ݔ ൅ ݕ݅ א ԧ with the point ሺݔ, ,ݕ 0ሻ א Թଷ and consider the 
point ܲ ൌ ௭ܲ of 

ܵଶ ൌ ሼሺݔ, ,ݕ ሻݖ א Թଷ|ݔଶ ൅ ଶݕ ൅ ଶݖ ൌ 1ሽ 

  obtained by stereographic projection from ܰ ൌ ሺ0,0,1ሻ: 

      ܲ ൌ ቀ ଶ௫
௫మା௬మାଵ

, ଶ௬
௫మା௬మାଵ

, ௫మା௬మିଵ
௫మା௬మାଵ

ቁ. 

Setting  ஶܲ ൌ ܰ, we get a bijection between ԧ෠ ൌ ԧ ׫ ሼ∞ሽ and ܵଶ. The 
inverse map is given by    

   ሺݔ, ,ݕ ሻݖ հ ௫
ଵି௭

൅ ݅ ௬
ଵି௭

 .  
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 On  the  other  hand  we  also  have  ԧ෠ ؄ ԧଶ۾ ൌ ԧ۾
ଵ,  for  any  element 

ሾݖଵ, ଶሿݖ א ԧଶ  is  proportional  to  a  unique  vector  of  the  form  ሾ1,  ሿݖ
when ݖଵ ് 0, and to ሾ0,1ሿ if ݖଵ ൌ 0. Thus we have a map 

                 ԧ෠ ՜ ԧ۾
ଵ , ݖ հ ሾ1, ∞ ,ሿݖ հ ሾ1,0ሿ.  

    The inverse map is given by  

ሾݖଵ, ଶሿݖ հ ൜ݖଶ/ݖଵ if  ݖଵ ് 0
∞  if  ݖଵ ൌ 0   

Therefore ܵଶ ؄ ԧ෠ ؄ ԧ۾
ଵ.  

This shows that the space associated to Σ is ԧଶ. 

Note.  The  sphere  ܵଶ, with  the  structure  of  ԧ۾
ଵ,  is  called  the  Riemann 

sphere. In quantum computation references, it is called the Bloch sphere. 
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q‐Registers  

By axiom 4 and the formula ܪሺ௡ሻ ؄ ሺଵሻܪ ٔ ڮ ٔ  ሺ௡ሻ isܪ ሺଵሻ, the spaceܪ

the associated  space of Σሺ௡ሻ ൌ Σሺଵሻ ൅ ڮ ൅ Σሺଵሻ  (݊  summands),  the  sys‐
tem composed of ݊ q‐bits (and which is called a q‐register of order ݊).  

Then axiom 3 tells us that the time evolution of  Σሺ௡ሻ is given by a unitary 

matrix  of  order  2௡.  In  other words,  the  time  evolution  of  Σሺ௡ሻ  is  a  q‐
computation. 

Finally, axiom 2 indicates that the [optional] operation ܱሺ࢈ሻ at the end of 
q‐programs corresponds to the operation of measuring the (diagonal) ob‐
servable 

    ܮ ൌ ∑ ௝|݆ۃۄ݆|݆    (that is, ۄ݇|ܮ հ  (ۄ݇|݇

when Σሺ௡ሻ is in the state |ۄ࢈.  

Note that ൫ܪሺ௡ሻ൯௝ ൌ ԧ |݆ۄ, hence  ௝ܲ࢈ ൌ ௝ܾ|݆ۄ and ݌௝ ൌ ห ௝ܾหଶ
. 
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Example (EPR states). A possible state of a ݍ‐register of order 2 is 

ۄ࢛|  ൌ ଵ
√ଶ

ሺ|00ۄ ൅   .ሻۄ11|

Such states are called EPR states (also called entangled states). 

Suppose the first ݍ‐bit is located at ܣ and the other at ܤ. Then  if an ob‐
server at ܣ measures the first ݍ‐bit and then and observer at ܤ measures 
the second ݍ‐bit, we note that they get the same value:   

ܣ State  ܤ
0 ۄ00| 0 
1 ۄ11| 1 

Indeed, the EPR state |࢛ۄ “collapses” to |00ۄ or |11ۄ if ܣ measures 0 or 1, 
respectively (ie, the projection of |࢛ۄ to the space ሼ|0ܾۄሽ  is |00ۄ, and to 
the space ሼ|1ܾۄሽ is |11ۄ).  

 



30 
 

QUANTUM COMPUTERS 

From the preceding observations it follows that it is sufficient, in order to 
execute q‐programs of order ݊ on a physical support, to have a quantum 

register Σሺ௡ሻ and  “implementations” of the operations  

 ሻ࢈ሻ , ܱሺࢇሺܫ

ܷ ௝ሺܷሻ [withܥ      ൌ  [ଶ ,  ܷగ/ଶ, ܷగ/ସ in the restricted caseܪ

  ௝,௞ܥ

 

A quantum  computer  (of order ݊)  is  a quantum  register Σሺ௡ሻ endowed 
with such implementations.  
 
Its main beauty is that such a computer allows us to perform (or approx‐
imate) any ݍ‐computation.  
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ENDING REMARKS 

Quantum parallelism  

This feature stems from the possibility of initializing the ݍ‐computation in 

states such as ࢎሺ௡ሻ ൌ ሺ|0ۄ ൅ ۄ1| ൅ ڮ ൅ |2௡ െ  :ሻ/√2௡ۄ1

 This state contains (actually is the normalized sum of) all numbers of   
 ݊ bits.  

 Hence, any operation of the quantum computer acts on all numbers   
 simultaneously. This  “explains” why  the quantum  computer  can be 
much faster than a classical computer. 

 In general,  the usefulness of  the algorithms  (as Shor’s  factorization, 
for  instance)  is based  in  the  fact  that after  its execution  the ampli‐
tudes of “useful numbers” are high and the others are small.  

 
 



32 
 

The problem of decoherence  

This difficulty arises from the fact that interactions with the environment 

can quickly “perturb” the states of Σሺ௡ሻ (uncontrolled “entanglement” be‐

tween states of the environment and of Σሺ௡ሻ).  
 
Such problems in the road of building quantum computers are of a “phys‐
ical” nature. Research in many labs around the world is focussed on those 
questions, with continuous progress and in many direction: 

http://en.wikipedia.org/wiki/Timeline_of_quantum_computing 
(we  see  an  explosion  of  activity  in  the  last  years,  and  especially  since 
2006). 
 
See  http://en.wikipedia.org/wiki/Quantum_computer  for  over  a  dozen 
lines of inquiry toward the realization of a quantum computer. 

(On 24 February 2009 D‐Wave Systems announced a 128 q‐bits QC)
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Teleportation 

The techniques of quantum computation allow to transfer the state of q‐
bit at ܣ to the same state of a ݍ‐bit at ܤ (the state disappears at ܣ and 
appears at ܤ). Here is a sketch of the procedure. 

 Let  ۄ߰| ൌ ۄ0|ߙ ൅  ۄ1|ߚ be  the  (unknown)  state  of  a   bit‐ݍ to  be  tele‐
ported from ܣ to ܤ. 
 Let |࢛ۄ ൌ ଵ

√ଶ
ሺ|00ۄ ൅  .ܤ and ܣ ሻ be an EPR pair shared byۄ11|

 ܣ applies ܥଶଵ to the state  

ۄ࢛|ۄ߰|   ൌ ଵ
√ଶ

ሾ ۄ0|ߙ ሺ|00ۄ ൅ ሻۄ11|  ൅ ۄሺ|00 ۄ1|ߚ ൅  ሻሿ, to getۄ11|

         
ଵ

√ଶ
ሾ ۄ0|ߙ ሺ|00ۄ ൅ ሻۄ11|  ൅ ۄሺ|10 ۄ1|ߚ ൅  .ሻሿۄ01|

 Next ܣ applies ܪ to the first bit, to get 

ଵ
ଶ

ሾ ߙሺ|0ۄ ൅ ۄሻ ሺ|00ۄ1| ൅ ሻۄ11|  ൅ ۄሺ|0ߚ  െ ۄሻሺ|10ۄ1| ൅   ሻሿۄ01|

    And collecting with respect to the first two ݍ‐bits, 
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ଵ
ଶ

൤|00ۄ ሺۄ0|ߙ ൅ ሻۄ1|ߚ ൅ ۄ01| ሺۄ1|ߙ ൅ ሻۄ0|ߚ ൅
ۄ0|ߙሺ ۄ10| െ ሻۄ1|ߚ  ൅ ۄ1|ߙሺ ۄ11| െ ሻۄ0|ߚ ൨ 

 Now ܣ measures the first two ݍ‐bits. The values and the corresponding 
state of the ݍ‐bit at ܤ are given in the following table: 

  

Value  00 01 10 11
State ܤ  ۄ0|ߙ ൅ ۄ1|ߚ ۄ1|ߙ ൅  ۄ0|ߚ ۄ0|ߙ െ ۄ1|ߚ ۄ1|ߙ െ  ۄ0|ߚ

 

 So ܤ can reproduce the state |߰ۄ  in  its ݍ‐bit  if he knows the two clas‐
sical bits produced by the measures of ܣ by applying the gates  

 ,ܼܺ ,ܼ ,ܺ ,ܫ
respectively. 

Recently  this possibility has been demostrated with  Yb  atoms  at  a dis‐
tance of 1m (Olmschenk et al. 2009).  

This opens great potential for quantum networks. 
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