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Introduccio matematica a la computacio quantica

JUANJO RUE I SEBASTIA XAMBO

Resum: El proposit d’aquest article és exposar les nocions essencials de la compu-
tacio quantica en termes purament matematics. En particular, definim les nocions
de g-computacio, g-mesura, g-procediment, g-computador i g-algorisme, i cadascuna
s'illustra amb diversos exemples. A més d’alguns g-algorismes de baix nivell, discutim
en detall una bona mostra dels més rellevants que s’han descobert. Aquests inclouen
un g-algorisme per a la transformada de Fourier discreta i els g-algorismes de Deutsch
(que resol un problema de decisi6 per a certes funcions booleanes), de Grover (cerca
en una base de dades), de Kitaev (per estimar la fase d’un valor propi d’'un vector
propi d’'un operador unitari), i els celebrats g-algorismes de Shor (per trobar I'ordre
multiplicatiu d’'un enter modul un altre i per factoritzar nombres enters). Les possibles
realitzacions fisiques del model, i el seu Us potencial per a obtenir guanys respecte
de la computacié classica (en ocasions fins i tot guanys exponencials), s’analitzen en
termes d’'una formulaci6 axiomatica de la teoria quantica per a espais hermitics de
dimensio finita.

Paraules clau: computacié quantica, algorismica, factoritzacié de nombres enters.
Classificacio MSC2010: 68Q12, 81P15, 81P68, 15A23.
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Introduccio

El substrat matematic del «processament quantic», que aqui en diem g-proces-
sament, sera presentat com un canvi de llenguatge en parlar de certes nocions
matematiques, i molt prominentment de nocions d’algebra lineal complexa
(sobre els nombres complexos) i de teoria elemental de probabilitats. El nostre
proposit és cobrir des dels conceptes més basics fins a ’expressi6 i analisi
d’una bona mostra dels remarcables g-algorismes descoberts en els darrers
vint-i-cinc anys.

Encara que del contingut fisic no se’n parla fins a la secci6 9, la significacio
fisica de la presentaci6 sera manifesta per als fisics, mentre que els matematics
hi trobaran, si s’escau, una base per a apreciar més facilment algunes de les
idees fisiques de fons.

En els primers estadis, la ra6 més visible per a la robustesa del paradigma, i
també per al seu interes, rau en l’estreta relacié amb la cara matematica de la
computacio classica, és a dir, ’algebra de Boole. L’arrel d’aquesta relacio6 és el
fet que el terreny del g-processament és I’espai vectorial complex H™ generat
pel conjunt B™ dels vectors binaris de longitud », que és el marc en el qual es
produeix la computaci6 classica.

Posteriorment, quan la g de g-processament s’interpreta com una caracte-
ristica quantica genuina, I’esquema s’interpreta com un model matematic de
fenomens fisics interessants que s’estan explorant intensament en laboratoris
d’arreu del mén. Amb un flux creixent de resultats publicats a revistes del
més alt impacte, tot apunta a un ampli ventall de possibilitats cientifiques i
tecnologiques per als anys a venir.

Si la computacié amb bits classics s’ha manifestat com el que anomenem
era digital (basada en la teoria de la computacié de Turing, la teoria de la
informaci6é de Shannon i en els desenvolupaments teorics, cientifics i tecnolo-
gics a qué donaren lloc), pot tenir interes reflexionar que el desenvolupament
del g-processament, fabulosament més ampli, possiblement sera tant o més
extraordinari i sens dubte no menys interessant.

1 Preliminars
Comencem establint diversos simbols i convencions que usarem d’ara endavant.

» 71, Un nombre enter positiu. Diem que n és el nombre de q-bits.

s j, k,... nombres enters positius de I'interval 0,...,2" — 1.

mj = j1j2- - - jn, 'expressié binaria de j (i analogament per a k). En altres
paraules,

Jiyeesdn €40,1F 1 j= 12" 4 222 4 oo 4 fg2 4 j 20

Vectors binaris. Sigui B = {0, 1}, que és el conjunt de digits binaris (bits).
Llavors el conjunt dels vectors binaris de longitud n és B™. Els seus elements
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s’escriuen usualment com a cadenes de bits. Per exemple,
B3 = {000,001,010,011,100,101,110,111}.

Les cadenes constants 0 . 0il ol seran denotades per 0, i 1,, respectiva-
ment.

La representacié binaria dels nombres enters ens permet identificar els
vectors binaris de longitud n amb els nombres enters de l'interval 0,...,2" — 1:
J = Jijz2c .

Com que la informacio (classica) es pot representar per elements de B™, per
aalgun n,! els conjunts B” son el terreny en el qual tenen lloc les computacions
classiques. De fet, una computacio classica es pot entendre com una aplicaci6
f:B"™ — B™, Si aquesta aplicaci6 és bijectiva (cosa que comporta m = n),
es diu que la computacio és reversible. Com que tota computacio classica es
pot incrustar en una computacio reversible (> 1),> sempre suposarem que les
computacions classiques sén reversibles llevat que diguem explicitament el
contrari. Adonem-nos que el nombre de computacions B"* — B™ és (2™)2" {
que el nombre de computacions reversibles de n bits és (2™)!.

g-vectors. Escrivim H™ = C2" (C el cos dels nombres complexos), i diem que
és ’espai dels g-vectors d’ordre n. Com veurem a la seccio 3, els espais H™ son
I’ambit en el qual tenen lloc els g-procediments, d’'una manera analoga a com
els conjunts B™ sén ’ambit en el qual tenen lloc les computacions classiques.
En notacié matematica usual, els elements a € H™ es presenten com vectors
columna (amb components complexos) de dimensio (o longitud) 2™:

ao

ay
a= . , ajeC

aArn_q

El g-vector a es pot escriure en la forma

1 0 0

0 1 0
a=aop|.|+tar|.|+---+amm

0 0 1

1 Un text és una cadena de caracters d'un determinat alfabet, i els caracters es poden convertir
en una cadena de bits mitjancant una codificaci6 apropiada, com ara la utf-8. Una imatge es
pot entendre com una cadena de pixels (diguem N), cada pixel es pot representar com una
combinaci6 de tres coloracions (vermell, verd i blau), i cada coloracio6 es pot representar per [ bits
si el nombre de nivells considerats és 2!. Un so es pot considerar com una cadena de N valors
de pressio, i aquests valors es poden representar per [ bits si el nombre de nivells de pressio
considerats és 2!. Aixi, doncs, texts, imatges i sons es poden representar mitjancant cadenes de
bits (diem que es poden digitalitzar). En el cas d’imatges i sons, la digitalitzacié és només una
aproximacio, pero es poden escollir N i [ de manera que la diferencia amb el senyal real sigui
imperceptible a la vista i ’oida, respectivament.

2 p>n fa referéncia a la nota nimero n de la secci6 10 (Remarques i demostracions), p. 224.
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En forma comprimida, a = > ja;uj, on u; és el g-vector que té un 1 a la
posicio j i zeros en la resta de posicions.

Notacié de Dirac. Consisteix a escriure |j) en lloc de u;. Aixi, doncs, a =
2.jajlj). Si considerem j com a un vector binari de longitud n, veiem que
H™ és ’espai vectorial complex amb base B™.

EXEMPLE 1.1 (n = 1: Un g-bit).

1 0
a = |:Z(1):| =6l0|0>+0l1|1) = ag [0:| + aq |:1i|

EXEMPLE 1.2 (n = 2: Dos g-bits).

a = apl0) +aill) +az|2) + azl3)
= apo|00) + ao1101) + a10/10) + a11111)

ag aono 1 0 0 0
ax aol 0 1 0 0
= . = @10 = aoo 0 +aol 0 +ao 1 +an 0
as all 0 0 0 1

Adonem-nos que el 0 de |0) és un enter, mentre que els de |00) so6n bits. Aquest
abus de notaci6 és acceptable, ja que el context ens permet inferir de quin ts
es tracta. Fixem-nos també que |1) (1 enter)i |01) (0 i 1 bits) designen el mateix
vector, i que és obligat escriure el bit 0 a ’esquerra.

EXEMPLE 1.3 (q-vector d’'Hadamard d’ordre n). El g-vector d’Hadamard d’or-
dre n es defineix com

h™ = p"(]0) + [1) + - - - + [2" = 1)),

on p = 1/+/2 (usarem aquesta notacio en tot l'article).

Aplicacions lineals. Recordem que una apliacié C-lineal T: H™ — H™ (tam-
bé en diem un operador) queda determinada per les 2" imatges t; = T|j), ja
que

T (z ajm) =3 a;T(j) = Y ajt;.
j J J

A més, donat un conjunt de g-vectors {t;}o<j<2», existeix una unica aplicacio
lineal T: H™ — H™ que compleix T|j) = t;. Aquesta observacié sera el
metode basic que usarem per definir operadors. Les propietats de T usualment
es poden inferir de propietats dels vectors t;. Per exemple, l'aplicacio T és
bijectiva si i nomeés si els vectors t; son linealment independents.
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Producte escalar i norma. Siaib son g-vectors, el producte escalar dea i b,
(a|b), es defineix per la férmula

(alb) = > a;b;.
J

El producte escalar és lineal en b i lineal conjugat en a. Si {(a|b) = 0, diem que
a i b so6n ortogonals. Observem que (ala) = |a 12, on

2 2 2 2
lal” = laol” + |la1|” + - - - + [azm_1]

(la norma del vector a al quadrat). Si |a| =1, diem que a és un vector unitari. Do-
nat un g-vector no nul x, X/ | x| és un g-vector unitari que denotem per X o u (x).
Per exemple, (u;jluyx) = 6k (0 (jlk) = d;k en la notaci6 de Dirac). Aixo
significa que els u; son vectors unitaris ortogonals dos a dos, propietat que
expressem dient que els vectors {u j} formen una base ortonormal.

Producte tensorial. El producte tensorial dels vectorsa € H™ ia’ € H™),
que denotem per a®a’, és el vector de H™*") les components del qual son

14

aja’;, amb (j,j") ordenats lexicograficament.
Per exemple,
apa,
ao | ~ [ag apa)
® 4 = 4
(11 al alao
a,a

PROPOSICIO 1.4. Sia = > ajlj)ia’ =X a;., "), lavors

asga' = aja|j-2" +j').
JJ

PROVA. L’index j € {0,...,2" — 1} del component a; del vector a és el nombre
de components que el precedeixen (aquests components son ap, a1, ..., a;-1).
Si apliquem aquesta observacio al component a ja;-, del'element a®a’, efectiva-

ment trobem que el nombre de components que el precedeixen és j' + j - 2.0

Fixem-nos que si j i j* son nombres binaris, llavors j - 2" + j’ és el nombre
binari obtingut concatenant les representacions binaries de j i j'. En la practica
aquest nombre s’escriu simplement jj’, de manera que obtenim la relacio

asa' =Y aja|jj’).
JJ

El producte tensorial | j)®|j’) també es denota |j)|j’), de manera que tenim
Y81 =101 = 144"
En particular podem escriure

J1®1j2)® - - - ®1jn) = [j1)]j2) - - - Lin) = j1j2 - - - Jin)-
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EXEMPLE 1.5. Sigui h™ el g-vector d’Hadamard d’ordre n (vegeu I'exemple 1.3).
Aleshores,

h™ = p"(]0) + [1))®(L[0) + [1))& - - - &(]0) + |1)).

De fet, I'expressio del segon membre de la igualtat és igual a

Pt > ) lind =p™ > 1) =h™.
Ji,njn€B jeBn

REMARCA 1.6. L’aplicaci6 H™ x H™) — H"+") (g aq') — a®a’ és bilineal i,
per tant, indueix una aplicacio lineal

HM™ g H™) H(n+n’)’ ava — ada’.

Aquesta aplicaci6 és un isomorfisme, ja que transforma la base {[j)[j’)}; ;- del
primer espai en labase {|jj')}; j del segon. En particular, tenim un isomorfisme

H™ ~«gU gV, o gO.

Podem, doncs, identificar a ® a’ i a®a’, de manera que en el que segueix nomeés
emprarem el simbol ®.

Com veurem a la secci6 9, I'isomorfisme anterior estableix que els vectors no
nuls de H™ representen estats quantics d’un sistema format per n particules
d’espin 1/2 (com ara electrons o protons). Aqui pot resultar escaient, per als
qui desconeguin I'axiomatica de la fisica quantica, prendre un primer contacte
amb les subseccions 1 i 4 de la secci6 9.

REMARCA 1.7. D’un g-vector d’ordre n delaformaa®- - -®an,, a; € HYV, diem
que és descomponible. Els vectors de labase |j1jo - -+ ju) = |j1)|Jj2) -+ + |jn) SON
exemples de g-vectors descomponibles. Pero, en general, els g-vectors no
son descomponibles. Es facil comprovar, per exemple, que [00) + |11) € H®
no es pot escriure com un producte (ag|0)+ai|1)) (bg|0)+b;|1)). Usant una ter-
minologia originada en la fisica (vegeu la p. 220), dels g-vectors descomponibles
(no descomponibles) també en diem g-vectors compostos (entrellacats).

2 g-computacions

Si U = [u k] és una matriu, la seva transposada és UT = [uk;]ila seva adjunta,
Ut = [tikj] = UT.

Una g-computacio d’ordre n és una matriu unitaria U de dimensio 2™. Aixo
significa que
U = [ujklo<jk<on, Uk €C i UU' = Iom,

on I>» denota la matriu identitat de dimensio 2™.
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El conjunt de les matrius unitaries de dimensio 2", U(2"), sera denotat
per U™, Amb el producte ordinari de matrius, U™ és un grup. En detall, aixo
significa el segiient:

» (Identitat) I»» € U™ _ En altres paraules, la matriu identitat de dimensi6 2"
és una g-computaci6 d’ordre n.

= (Composicid) Si U,V € U™ llavors VU € U™, Aixi, doncs, la composicié de
dues g-computacions d’ordre n és una g-computacio d’ordre n.

= (Reversibilitat) SiU € U™, aleshores U~! € U™ (adonem-nos que U~} = U").
La inversa d’'una g-computacié d’ordre n és una g-computacio d’ordre n.

Sia € H™ és un vector unitari i U una g-computacio, llavors b = Ua és
també un vector unitari. Com en el cas de les computacions classiques, diem
que b és el g-output de U amb g-input a.

EXEMPLE 2.1. SiU € U™ i U’ € U™, considerem I'aplicacio lineal

UeU': H™™) — g )
tal que |jj’) = |j)|j') — Ulj) U’|j"). Es facil comprovar que U ® U’ € U™+ §
que de fet es compleix la relaci6 |a)|a’) — Ula) U'|a’) qualssevol que siguin

acH™ia e H™),
Similarment, si U € UV, podem definir U®" € U™ per la relacio

Ue™lj) = Ulj) Ulj2) -+ - Uljn)-.

EXEMPLE 2.2 (Computacions classiques reversibles). Si f: B™ — B™ ésuna com-
putacié classica d’ordre n, podem definir I'aplicacio lineal Us: H™ — H™ per
les relacions

Urld) = 1F ().

Si f és reversible, llavors Uy és una g-computacio, ja que transforma la base
ortonormal {|j)} en la base ortonormal {|f(j))} (és una simple permutaci6 de
la primera). Diem que Uy és la g-computacio associada a la computacio classica
reversible f.

Alguns dels exemples que segueixen son casos especials de ’exemple general
anterior.

REMARCA 2.3. Les g-computacions d’ordre n s6n molt més abundants que les
computacions classiques reversibles d’ordre n. Aixo ja és manifest quan n = 1,
ja que en aquest cas NOT? (la negacio) és, fora de la identitat, 'inica computacio
classica reversible d’ordre 1, mentre que les g-computacions d’ordre 1 depenen,
com veurem, de quatre parametres reals continus (cf. 'exemple 2.4).

3 Per als operadors logics mantenim la notaci6 estandard dels texts en angles: NOT, AND, NAND,
OR, XOR, SWAP...
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Representacio grafica

Una g-computacié U d’ordre n se sol representar per un diagrama de ’'estil

seglient:
n{ ol

Les n linies horitzontals s’anomenen g-fils.
Si hom vol representar el g-input a i el g-output b, el diagrama es modifica

com segueix:
I

‘a
Enelcasenquea = |j1) - - - |jn), €l g-input es representa com en I'’esquema
que segueix:
j1)
|j2)
Un*1>
|3n)

EXEMPLE 2.4 (n = 1). Es facil comprovar que la matriu

U= ei“[ o ul} ., XER, upu; €C, ugo+uii =1
—Uuir Uo

és una g-computacié d’ordre 1. De fet, qualsevol U € UV té aquesta forma, ja

que podem posar U = e!*U’ amb det(U’) = 1 (aix0 segueix de la relacio UUT = I,

de la qual es dedueix que det(U) és un nombre complex unitari), i aleshores

U’ € UW té necessariament la forma [_Z? L‘é ] si la seva inversa ha de coincidir

amb la seva adjunta.

REMARCA 2.5. Per a ulteriors usos, considerem una construccié més explicita

de les g-computacions d’ordre 1. Amb les notacions de I’exemple precedent,

la relacié ugpiig + w11, = 1 implica que existeix un tnic 0 € [0, r] que com-

pleix |ug| = Cosg ilupl = sing. D’aix0 se segueix que ug = e i Cosg i

u; = —ett sin g, A, 4 € R (I'elecci6 de signes obeeix a conveniencies de calculs
posteriors), i aixi

—iA 0 Lipgin @

[ o u1]_ e~ cos 3 et sin 5

—u1 Ug e"sing  eircos?

2

4 Aqui, i en el que resta de la seccio, seguim molt de prop la secci6 4.2 de [16].
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Si fem les substitucions A = (B + y) /2, u = (y — B)/2 (B,y € R), llavors podem
escriure
e Mcosd —eitsin$
i i 0 i ol = Rz(B)Ry (0)Rz(y),
e sin 5 e'' cos 5

on definim
e—up/Z 0 cos; —Siny
Rel@) = [ 0 ei‘p/Z] (0 = [sin‘z9 cos |

Podem, doncs, concloure que I'element general del grup SUY (és el subgrup
del grup UV format pels elements de determinant 1) té la forma

U(0,B,y) = Rz(B)Ry (O)R-(y).
El significat geometric d’aquest enunciat, molt estretament relacionat amb les
rotacions de I’espai euclidia, el considerem a la secci6 9.

Casos especials

a) Matrius de Pauli

N 2 N K o O I I |
2Tlo 1" T ool T T i ot “T%F T o -1

Les matrius de Pauli son autoadjuntes i unitaries: X2 = Y2 = 72 =
La matriu X es pot definir per les relacions

X10) = 11),X[1) = [0).

Aixo significa que X és la g-computacio corresponent a I'operador boolea clas-
sic NOT:

X1j) = INOT(j)).

En termes de la suma booleana de bits, NOT(j) = 1 + j,jaque 1 +0 =11
1+ 1 =0.Breument, X|j) = |1 + j).

REMARCA 2.6. Amb les notacions de la remarca 2.5, tenim

.. _i®
R:(p) =cos T, —isin%z =e 127

. e
R, (0) = cos glz - Lsng = e t2Y,
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Aix0 suggereix definir

Y _ien¥
v W Ly cos isin

Rx (@) =cos 5 —isin5X =e '2% = '
—isin¥  cos¥

Una altra observacio és que cada U € UV es pot expressar com
U = e!*AXBXC,

amb A,B,C € SUWY 1 ABC = I, (d’aquesta relacio en diem descomposicio d’Euler
de U). En efecte, si U = e'*R,(B)R, (0)R,(y), basta posar (> 2)

A=R:(B)Ry ()
B = Ry (-§)R-(-53Y)

C=R.(%5D).

b) La matriu d’Hadamard H
La matriu [{ _1] és autoadjuntai [} _} 1°=2 [§9]- En resulta que la matriu

Hzp[l 1} {|o>~p(|0>+|1>>
1 -1] (1D = p10) - 1)

és una g-computaci6 d’ordre 1. Per a escriure H en la forma de I’exemple 2.4,
notem que H = (—i)(iH) i que iH té la forma [ “o ”1] amb ug = up = i.

-1 Ug

La g-computacio H®" (vegeu la segona part de I'’exemple 2.1) apareixera
sovint en el que segueix. Convé adonar-se que, usant la notacio de I'exemple 1.3,
es compleix la identitat

HE™(10,)) = h™.

¢) Matrius de canvi de fase

Sén les matrius que tenen la forma

1 0 o [emi2
Sa = |:0 ei(x:| =e'z |: 0 eig‘:|
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En particular, definim

1 0 ) 1 0

Adonem-nos que T4 = $2 = X, que hom podria escriure, si tingués algun
proposit més enlla de 'acudit, S = +/NOT.

El 7]

EXEMPLE 2.7 (n = 2). Sigui U € UW., Definim C2(U) € U@ per les relacions
Cr2(U)10j2) = 10j2), Ci2(U)I1j2) = 11Ul j2).

En forma de matriu tenim, si U = [ % 3% |,

1 0 O 0
01 O 0

Ci2(U) =
12(U) 0 0 ww oL
0 0 uw un

Es tracta, doncs, d’'un U controlat, o C-U, atés que U actua sobre |j2) només

quan j; = 1.
1)
M

En particular posem N> = C12(X) (NOT controlat, o CNOT):
N1210j2) = [0j2), Nizllj2) = [1)[1 + j2),
que es pot escriure d’'una manera més compacta com
Nizljij2) = [j)jr + je)-

Aix0 mostra que Nio: H? — H® és la g-computacio corresponent a la com-
putacio classica CNOT: B2 — B? tal que

00~ 00, 01~-01, 10~11, 11+~10
o CNOT(j1, j2) = (J1,J1 + J2). Com que aix0 equival a negar el segon g-bit si i

nomeés si el primer g-bit és 1, es tracta d'un NOT sobre el segon g-bit «controlat»
pel primer g-bit, i aix0 explica la notacio.



194 Juanjo Rué i Sebastia Xambo

En forma de matriu,

Nip =

|j1>£ J1)
|J2> |]1 + ]2>

La g-computacio C;(U) es defineix d’'una manera analoga. Per exemple, la
matriu de N»; = C21(X) és

S O O
o O = O
_ o O O
o = O O

Ny =

71) i |71+ Ja2)
|72) |72)

Més generalment, en el cas d’ordre n, podem definir les g-computacions
Crs(U),onr,s € {1,...,n} son dos indexs diferents, d'una manera similar.
Aquesta g-computacio actua com U sobre el g-bit s-ésim quan el g-bit -ésim
és 1, i altrament és la identitat. En el cas especial U = X, posem N, s = Gy (X)),

que nega el g-bit s-ésim si i només si el g-bit r-ésim és 1. Vegem-ne alguns
exemples:

S O = O
S O O
oS = O O
— o O O

N41110101) = [10101), C41(U)[10101) = [10101)
N41110111) = [00111), C4,(U)|10111) = (U]1))]0111).

EXEMPLE 2.8. La g-computacié Ci2(U) és diferent de I> ® U. De fet, la matriu
d’aquesta darrera és
Uoo uor O 0
uw unp 0 0
0 0 Uoo U1
0 0 Ui U1l

Aixi, (I ® U)|00) = [0) U|0) = up0l0)|0) +110/0)|1), mentre que C12(U)[00) =
[00).

EXEMPLE 2.9 (La g-clonaci6 no és possible). En la seva forma basica, el teorema
de no-clonacié6 és I'afirmaci6 que no existeix cap g-computacié U d’ordre 2 que
satisfaci

U(Ib)10}) = |b)|b),
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b € {0,1}. En efecte, considerem |x) = p(|b) + |b")), amb b’ = 1 + b. Aleshores
tenim
Ix)|x) = p2(Ib)|b) + |b)|D") + |b")|b) + |b')|D")),

vibalon = {PU(IMIO) +1b")10)) = p(Ib)|b) + [b")|D")),

que és una contradiccio.

EXEMPLE 2.10. La porta transposicio («swap» en anglés) és la g-computacio
d’ordre 2 corresponent a la transposicio classica ji j2 — j2Jji:

lJ172) = 1j2J1)-

Atés que la porta anterior deixa |00) i |11) fixos i intercanvia |01) i |10), la seva

matriu és
0

o O O
S = O O
_ o O O

1
0
0

1) ———— l2)

|2) ——%—— i)

EXEMPLE 2.11. La porta de Toffoli és la g-computacié d’ordre 3 corresponent
a la computacio classica ji1j2j3 — (j1 - j2) + Jj3, la qual nega el g-bit j3 exacta-
ment quan j; = jo = 1, de manera que és una negacié doblement controlada.
Intercanvia [110) i |[111) ensems que deixa fixos tots els altres g-vectors de la
base. La seva matriu és

10000000
01000000
00100000
00010000
00001000
00000100
00000001

0000001 0

71) l71)
|72) £ |j2)
|j3) |(J1 - 2) + j3)

La porta de Toffoli coincideix amb la g-computacié d’ordre 3 corresponent a
una versio reversible de la computacio6 classica d’ordre 3 NAND (> 1).
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EXEMPLE 2.12. La porta de Fredkin és la g-computacio d’ordre 3 corresponent a
la computacio classica 0j2j3 — 0j2j3 i 1j2j3 — 1j3j2. En altres paraules, és un
SWAP controlat. Intercanvia |110) i |[101), i deixa tots els altres vectors de la
base fixos. Per tant, la seva matriu és

0 0

O O O O O O O
O R OO O O O O
SO O O O o O O
_ o O O O O o o

SO O OO O o O+
O O OO OO -
O O OO = O O O

S O O o o+~ O

|71) |71)
i
|73) |72)

Si j3 = 0, llavors j; = AND(j1, j2). Siamés j» = 1, aleshores j5 = NOT(j;). Aixi,
doncs, la porta de Fredkin també es pot usar per a implementar una versio
reversible de la computaci6 classica.

3 g-mesures i g-procediments

A més de g-computacions, a fi de produir un model matematic de la computacio
quantica, ens cal incloure una prescripcio per a I’operacié de mesurar (també
en diem observar) un conjunt L = {l,...,l,} € {1,...,n} de g-bits. En el que
segueix, @ € H™ denota un g-vector unitari que representa l’estat corrent
d’un g-registre de longitud n (la g-memoria).

g-mesures. Per atotvector binaride longitud v, diguem M = m; - - - m,, € B™,
podem formar el subespai vectorial Ey; € H™ generat pels vectors | j) tals que
jr =M, on jr =ji, - - ji,.Ladimensio de Ey és 27" ila projecci6 ortogonal
de a sobre Ey; és el vector

ay' = > ajli.

JjL=M

Com que els espais Ex;, M € B™, s6n ortogonals dos a dos i @y Ey = H™, es
compleix que

Soal i 1=lal*= ‘a N ‘
MeBn
Aix0 significa que els nombres py = ’a I ‘ defineixen una distribuci6 de

probabilitat sobre {M} = B" i ens porta a definir la g-mesura, o g-observacio,
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dels g-bits de les posicions ly,..., L, com 'operacié6 M; (a) que produeix els
dos efectes segiients:

(i) Extreure un vector M € B" aleatoriament segons la distribucio py;.

(ii) Canviar I'estat a de la g-memoria en u(a?), on u(x) = X denota el vector
unitari definit pel g-vector no nul x.

Fixem-nos que si M és un resultat observat, llavors py # 0 i, per tant, aﬁf + 0.

Dels g-vectors aﬁ/f en diem que soOn els collapses de a respecte de les posi-
cions L.

Com que una g-mesura produeix un vector binari classic M i un nou estat
de la g-memoria, M; es representa graficament amb un fil que porta M (linia
gruixuda) i un g-fil que porta I'estat definit pel corresponent collapse:

M
ar

A M—

EXEMPLE 3.1. Com aillustraci6, mirem un parell de casos especials. Considerem
el cas n = 3. Si mesurem el tercer g-bit, M3 (a ), llavors hi ha dos valors possibles,
0i1, el collapse corresponentam € B és a§' = 2 jk Ajkm|jkm) ila probabilitat

de m és py,, = |a¥ 2, Similarment, els resultats possibles de M;3(a) son
rs € B? i el collapse de s és a'§ = a,os|70s) + a,15/r1s), amb probabilitat

2
_ rs
prs = laii|”.

En el cas en que L = {1,...,n}, escrivim simplement M (a). Els resultats
possibles son els j € B™ i el collapse de j és a;|j) amb probabilitat |a;|%.
En aquest context, usualment el coeficient a; es coneix com a amplitud (de
probabilitat) de | j), i la probabilitat del resultat j és p; = |a|?: la probabilitat és
el quadrat de la norma de l'amplitud. Si n = 3, per exemple, els 23 = 8 resultats
possibles per a M(a) = Mj23(a) son rst € B3 i el collapses de rst és a3} =

arst|vst) amb probabilitat p,g = st |2

Un g-procediment és una seqiieéncia d’accions que so6n o bé una g-compu-
tacio o bé una g-mesura. L’execuci6 del g-procediment consisteix a aplicar
successivament les accions de que consta a |0---0) (d’aquest g-vector en
diem estat inicial per defecte de la g-memoria). Atés que la funcio6 ultima dels
g-procediments és produir resultats, la darrera accio sol ser una g-mesura.

EXEMPLE 3.2 (Generador de nombres aleatoris). El g-procediment que segueix
produeix nombres aleatoris de n bits amb distribucié de probabilitat uniforme:
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RANDOM
a=H®"0---0)=H|0)---H|0), M(a)w=

En efecte, des de 'exemple 1.3 sabem que a és el g-vector d’Hadamard h ™.
Per tant, 'amplitud de qualsevol vector binari de longitud n és 1/p" ila seva
probabilitat és (1/p™)2 = 1/(p2)" = 1/2™.

4 g-computadors i g-algorismes

Un g-computador d’ordre n és un sistema equipat amb implementacions dels
quatre elements segiients:

1. g-memoria. Capacitat per a contenir qualsevol g-vector unitari a € H™.
Diem que a és 'estat de la g-memoria o simplement I’estat.

De les operacions 2, 314 que descrivim a continuacio en diem g-procediments
elementals. Els g-procediments elementals son els ingredients basics dels g-al-
gorismes que presentem a la seccié seglient.

2. Rotacions d’un g-bit, R;(U). Aquesta acci6 consisteix a aplicar U € UV
al g-bit l-esim, i aix0 ha de ser possible per a qualssevol U i L. Més precisament,
R;(U) ésla g-computacio definida per

R e R N A EEES e RRRS ¥ (1} TH RN

Per a n = 2, per exemple, R»(U) = I> ® U (cf. exemple 2.8).

Ens referim als g-procediments elementals R;(U) com a U-portes. També
diem que una U-porta és restringida quan U és una de les tres matrius segiients:
H (Hadamard), S = Sr/2 0 T = Sny4.

3. Negacions controlades N, s. Aquest accio nega el g-bit s-ésim si i només
si el g-bit r-ésim és |1), i aix0 ha de ser possible per a qualsevol parell d'indexs
diferents 7 i s. Es, doncs, una implementacié de I’aplicacio lineal que és la
identitat sobre els g-vectors de la base que tenen la forma |---0, ---)iquea
més compleix

oo edyeneOgere)m [erelype-elgn-n)
|eeedypeeedgeos)m|enely-e0g---).

D’aquesta mena de g-procediments elementals, en diem portes CNOT.

4.MesuraMjp(a),L = {l; <--- <L} € {1,...,n}. Aquestg-procediment
elemental s’ha explicat detalladament a la secci6é anterior.
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q-algorismes

Un g-algorisme és un g-procediment en el qual només s’'usen g-procediments
elementals. Diem que un g-algorisme és intern si no conté g-mesures. Un
g-algorisme (intern o no) es diu restringit si totes les U-portes que empra son
U-portes restringides.

Com a mesura de la complexitat d’'un g-algorisme prenem el nombre de
portes elementals que conté. Un g-algorisme és polinomic si la seva complexitat
es pot fitar per una funci6 polinomica de n.

EXEMPLE 4.1 (SWAP[7, s]). Aquest g-algorisme intern es pot descriure com se-
gueix:
SWAP[7, s]
Nr,s,Ns,r,Nr,s L]

) ———— k) 1) )

k) ———— 1)) k) — & 7)

La g-computacié que produeix aquest g-algorisme intercanvia els g-bits
r-esim i s-esim, la qual cosa significa que implementa I’aplicacio lineal definida
per

[ PR R Wt N A A
Aquesta afirmaci6 és una conseqiiéncia directa del fet que es compleix per a
computacions classiques: per a qualsevol parell de bits, (x,y), tenim:

Nip2(x,y) = (x,x + ),
Noj(x,x+y)=x+x+y,x+y)=(,x+y),
Nl,Z(y!X+y) = (y’y+x+y) = (ylx)

EXEMPLE 4.2 (H multiple). Consisteix a aplicar la porta d’Hadamard H a qual-
sevol index d'una llista de posicions diferents L < {1,...,n}:

HADAMARD|L]
forle LdoR;(H) u

Adonem-nos que sim € {1,...,n}, HADAMARDI[{1,..., m}] proporciona un
g-algorisme per al g-procediment |j) — (H®™|j; -« - jm)) | jm+1 - - - jn)- Aquest
algorisme sera denotat per HADAMARD[m]. En el cas m = n, és un g-algorisme
per a H®" i en lloc de HADAMARD[n] simplement escriurem HADAMARD.

Es pot procedir analogament per a obtenir g-algorismes en els quals en lloc
de H usem qualsevol U € UV Per exemple, U®" es pot calcular pel g-algorisme
seguent:

forle {1,...,.n} doR;(U) =
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EXEMPLE 4.3 (g-algorisme associat a un algorisme classic). Si f: B"® — B" és
una computacio reversible, llavors existeix un algorisme classic que computa f.
Aquest algorisme és una seqiiencia de portes logiques NOT o NAND. Afegint
bits si és necessari, podem a més suposar que les NAND son reversibles, amb la
qual cosa podem traduir 1’algorisme en un g-procediment format amb g-portes
que sén o bé la X de Pauli o bé la g-porta de Toffoli. Aquest g-procediment
esdevindra un g-algorisme si podem trobar un g-algorisme per a la g-porta de
Toffoli. Una soluci6 a aquesta qiiestio es pot expressar en el diagrama segiient
(cf. [16, exercici 4.24]):

TOFFOLI

R3(H), N23, R3(T1), N1 3, R3(T), N23, R3(TT), N1 3, R3(T), R3(H),
R2(T?), Naj3, Ro(T1), N12, Ro(S), Ri(T) m

EXEMPLE 4.4. Un algorisme per al g-procediment C,(U), U € UV, r,s €
{1,...,n} indexs diferents (vegeu I'’exemple 2.7 per a la definici6). Usarem una
descomposicié d’Euler de U (vegeu la remarca 2.6):
U =e"“AXBXC, ABC =I,.

Amb aquestes notacions, el g-algorisme és com segueix:

CONTROL[7, s, U]

Rs(C),Nr,s,Rs(B),Nr,SyRS(A);Rr(So() L]

Suposarem que ¥ = 11 s = 2, ja que 'argument es pot adaptar facilment

al cas general. Fixem-nos que si j; = 0, llavors Nj» i R;(Sx) actuen com la

identitat i, atés que ABC = I, CONTROL també actua com la identitat. Si j; =1,
aleshores I'accio sobre |j2) és AXBXC|j2)i|j1) = |1) queda multiplicat per e'®:

11)]j2) = e™*|1) AXBXC|j2) = |1) U|j2).

EXEMPLE 4.5 (U-portes multicontrolades). En aquest exemple indiquem com
obtenir un g-algorisme per al g-procediment Cyi,. nin+1(U) definit per les
relacions

.....

L) |1 + jne1) Sij =1y,
1) | jne1) altrament.

|7 [ Jns1 = {
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SiprenemV € UV tal que U = V2, llavors 'algorisme es basa en el procediment
recursiu seguent:

CONTROL[{1,...,n},n+ 1,U]
CONTROL[{2,...,n},n+ 1,V]
CONTROL[{1,...,n —1},n,X]
CONTROL[{2,...,n},n+ 1,V
CONTROL[{1,...,n —1},n,X]
CONTROL[{1,...,n—1},n+1,V]x
En altres paraules, una U-porta n-controlada es redueix a cinc U-portes

(n — 1)-controlades. Aquesta prescripcié es copsa més rapidament amb un
grafic, que dibuixem per al cas n = 3:

—Ul- Vi

Si el primer g-bit és |0), aleshores ’accio sobre el tercer g-bit és VVT = I,. Si
el segon g-bit és |0), llavors I’accié sobre el tercer g-bit és I». Si el tercer g-bit
és 0}, 1el primeri el segon son |1}, aleshores 'accio del tercer g-bit és V1V = I,.
Finalment, si els tres g-bits son |1), 'acci6 sobre el tercer g-bit és V2 = U.

EXEMPLE 4.6 (Accio d'un U € SUW sobre un pla). Sigui P = [|j), |k)] el pla ge-
nerat per dos vectors de la base diferents |j) i |k). Aleshores podem fer actuar
U = [[a,b],[c,d]] € SUDY sobre P de la manera obvia: U|j) = alj) + blk) i
Ulk) = c|j) + d|k). A més, podem estendre aquesta acci6 a tot H™ de manera
que U|l) = |I) per atot Il # j, k. Com que |l) és ortogonal a P, aquesta accio és
una g-computacio, i escrivim U i per a denotar-la. Per exemple, si j = 11k = 2,
llavors la matriu de la g-computacio Uy 2 és U & Ion_.

L’objecte d’aquest exemple és indicar com obtenir un g-algorisme per a Uj k.
De fet, és suficient veure, per I'exemple anterior, com resoldre Uj; , mitjancant
U-portes simples i multicontrol. El cas més simple és quan |j) i |k) tenen la
forma

7Y =1x)10)1),  |k) = [x)1)|>).

En efecte, en aquest cas es compleix
Ulj) = alj) + blk) = |x)(al0) + b[1))[y) = |x}(UI[0)) |y},

iUlk)=1x)(Ul1))|y) (un calcul similar). Per tant, Uj és una U-porta multicon-
trol, en el sentit que si [I) =|x")|b)|y"), Havors Ujkll) =) six#x" 0o y #y’, i
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altrament ésigual a |x)(U|b))|y). Notem que si el valor del bit controlador és 0,
llavors el podem reduir al valor 1 del bit de control i dues portes X, com ho
mostra la illustracio6 (el cercle blanc és per indicar que el valor de control és 0):

—o0— = —X|

[771
—‘ U }— U

Si j i k difereixen en v > 2 posicions, escollim j' € B™ tal que j’ difereix de j
en una posicio i de k en ¥—1 posicions. Per induccio, podem suposar que existeix
un g-algorisme per a calcular Uj x, donat que el cas » =1 ja s’ha establert, i
aleshores es pot obtenir un g-algorisme per a Uj x observant que coincideix amb
X Ui kXj, i, on X es defineix de manera que X j|j) =1j"), X; i 1j")=1j) i
Xl =Il)y sil+j,j. Atés que Xj j és una (mena de) NOT multicontrolat, es
pot calcular mitjancant un g-algorisme i, per tant, el mateix es pot fer amb Uj k.
EXEMPLE 4.7 (Transformada de Fourier). La transformada de Fourier (TF) de
H™ és l'operador lineal

F:H™ — H™ |j) — f; = p" > &Xk),
k

.2 . T < . .
oné=¢&, = eiam = o'm-T (una arrel primitiva 2"-ésima de la unitat).
Observem que F € U™):

1 L
(Filfj) = 2725” k=50,
K

jaque,sil =0,

2n-1
Z Elk (E ) — O
(E-1)
Vegem com es pot obtemr un q-algonsme intern per a calcular F. Tenim,
posant p = 1/+/2,
an-1

Fljy=p" Y e k)

:pn Z eZnij(];—l+’;—2+ +’2‘—”)|k1 ky)
ki,...kn€B
no mijiy
=" Y Qe k)
ki,...kn€B 1=1
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Pero ) ) ) )

J _Jn  Jn-1 Jn-(-1) (. - on-l-1
21_21+21—1+"'+ > +(jl+---+j12 )

Ateés que la part entre parentesis és un enter, el factor tensorial [-esim de
I’expressié anterior és igual a

0) + &3 . .. eiMin-a1| ),

Com a conseqiiéncia,

FIjy = " (10) + €™ [1) (10} + ¥ efmintjny ) .
(10 e ey )

Si aquest producte tensorial I’escrivim en ordre invers, amb un p per a cada
factor,

p (IO) 4TI L iR i |1>) p (|0> el -ei"jz|1>> e

- p (10) + efmin/2eimin (1)) p (10) + e™in 1)),
aleshores per al factor l-ésim tenim
p (100 + ™ e e 1)) = Ry RUHL),

on R; significa, per al g-bit l-esim, Cj,,(Sirr/2s). Per tant, tenim l’algorisme

seguent:

QFT
forle {1,...,n} do
Ri(H)
fors e {1,...,n -1} do Ci4,1(Sim/2s)
forle {1,...,In/2]} doSwaAaP[,n -1+ 1]m

Aixo mostra que QFT computa F amb complexitat O (n?). La funcio dels SWAPS
és restaurar I'ordre original. En el diagrama que segueix illustrem el cas n = 4.

o ‘ JHHR1

)

|j2) | H Ry
) ‘
) —e ® &
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REMARCA 4.8. Assenyalem, per a ulterior referencia, que la formula (x) es pot
escriure en la forma

F.lj) = p™(10) + e*™ 07 [1))(|0) + *™ 0 n1/n 1)) - - - (|O) + e THONI 1)),

on, donats els bits by, bo, ..., és

b1 b
0.b1by - - - = > +22+
Els g-algorismes que hem presentat fins ara illustren bé el resultat general
seguent:

TEOREMA 4.9 (Universalitat de les portes U i CNOT).

1) Qualsevol q-computacio es pot realitzar mitjancant un q-algorisme.

2) Per a qualsevol q-computacio U, i qualsevol € > 0, existeix un q-algorisme
intern restringit que aproxima U amb un error inferior a €.

PROVA. >3 pera l)il>4 pera2). O

5 g-algorismes de Deutsch i Grover

En aquesta seccié presentem dos g-algorismes arquetipics. El primer, degut
a Deutsch-Jozsa [5], decideix, donada una funcié booleana f: B" — B de la
qual se sap que és constant o equilibrada, quina de les dues possibilitats és
la correcta. Aquest g-algorisme és remarcable per almenys dues raons: d'una
banda, és categoric (també es diu que és exacte), en el sentit que el resultat
de la decisio és segur, quan en general els g-algorismes s6n intrinsecament
probabilistics, i de I’altra, la seva complexitat és O (n), en contrast amb el fet que
la decisi6 classica pot menester, com veurem tot seguit, fins a 2”1 + 1 passos.

El segon g-algorisme, degut a Grover [7], cerca un element en una llista no
ordenada de longitud N en O(+/N) passos. En aquest cas, la reduccio de la
complexitat també és significativa, encara que no sigui una reduccié exponencial,
ja que la complexitat de I’algorisme classic és O (N). Cal dir, pero, que la solucio
pot ser incorrecta amb una petita probabilitat, un fet que és menys problematic
del que pugui semblar a primera vista, ja que es pot repetir la cerca si I’element
retornat no és el que cercavem.

El problema de Deutsch

Sigui f: B™ — B una aplicacio de la qual sabem que és constant o equilibrada
(aix0 significa que els conjunts f~1(0) i f~1(1) tenen el mateix cardinal). El
problema de Deutsch consisteix a decidir a quina de les dues categories pertany

La soluci6 classica es basa en avaluar f en successius elements de B™. Aquest
procés s’atura tan aviat com trobem un valor diferent de ’anterior, cas en el
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qual f és equilibrada, o, altrament, quan el nombre d’avaluacions és superior
a 2" ! en el qual cas f és constant. D’aix0 es desprén que la complexitat del
procediment és d’ordre exponencial en n.

El g-procediment de Deutsch. El g-procediment que segueix, dit de Deutsch-
Jozsa, resol el problema de Deutsch:

1. Inicialitzem un g-computador d’ordre n + 1 amb |u1) = [0)7).]0)|1).
2. Usem I'’exemple 4.2 per a obtenir

2n-1
lup) = H®" Y |ygy) = pntl z [7)(10) —[1}).
j=0

3. Sigui UJ: la g-computaci6 corresponent a la computacio classica (reversible)
B" xB - B" X B, (x,b) - (x,b + f(x)),1isigui |usz) = UJ;qu). Ates que

U(lj) b)) = 1j)Ib + f(j))

obtenim -
luz) = p"™ DT INULG) = 11+ £,
j=0
que es pot escriure com
2n-1
P S (=DFD [ (10) = 1)) = pmtE DT (=) Ui ) (10) = (1)),
j=0 Jr€B

4. Calculem |u4) = (H®" ® I) |u3). Com que

(H®" ® Ip)[j1 - - - jn) (10) = [1)) = (H[j1)) - - - (H|jn)) (10) = 1))

=p" [TU0) + (=1)7711))(10) — |1))

r=1
=p" > (=1)7K[ky - kn)(10) = [1)),
kseB
onj-k=jiky +---+ jukn és el producte escalar dels vectors binaris j i k,

trobem

lug) = p2mt T S (1)K Ry k) (10 = (1)),
kseB jr<B

que es pot expressar com

p2n+l Z(_l)j'k+f(j)|k)(|0) —|1)).
J.k
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Mirem ara, en aquesta expressio, el coeficient ay = p?"+! 3 ;(—=1)7"k+/) de
[k)(]0) — |1)). Si f és constant, ax = p2"*1(-1)f© > ;(=1)J%, de manera
que ap = (-1)/©piar = 0 perak = 0.Si f és equilibrada, llavors ag =
p2tl 3 (=1)/W) =0, i és clar que ay = 0 per a algun k = 0. Aquestes conclu-
sions es poden resumir com segueix:

) = p10) (10) —11)) si f és constant,
il = k=0 aklk) (10) — 1)) si f és equilibrada.

5. El darrer pas consisteix a mesurar els n primers g-bits. El resultat és 0 amb
certesa si f és constant i diferent de zero, també amb certesa, si f és equilibrada.
Per tant, I'algorisme decideix categoricament si f és constant o equilibrada.

g-algorisme de Deutsch. Donada una aplicacio f: B" — B que és constant o
equilibrada, aquest q-alNgorisme retorna O siinomés si f és constant. Treballem
amb n + 1 bitsiposem f per a denotar la computacio6 classica reversible definida
per (x,b) —» (x,b + f(x)),x € B™, b € B.

DEUTSCH] f]
- 10,)10)
Ryp+1(X) - 10---0)I1)
HADAMARD[n] - p"*1 35201 (7)(10) — 1))
Uj ~ P S DD ) (10) - 1)

HADAMARD[n]  — p?™* 1 3, 35 (= 1)/ %+ D]k) (]0) - 1))
//p10,)(10) — 1)) si f és constant, i

//2j+0ajlj)(10) —[1)) si f és equilibrada.

..... n} -M

si M = 0 llavors Constant altrament Equilibrada =

Cerca de Grover

Suposemque {j — x; | j=0,...,N—1} ésunabase de dades amb N = 2" items.
Si hem de cercar el j tal que x; satisfa una certa condicio, com ara trobar la
posicié d'un nombre de teléfon en una llista aleatoria, en el pitjor dels casos
haurem d’examinar N items. De mitjana, el nombre d’elements que cal examinar
per a trobar un item escollit a I’atzar és N/2.

El remarcable descobriment de Grover [7, 8] és que existeix un g-algorisme
que troba un x satisfent la condicié amb complexitat O (\/N/M), on M és el
nombre de solucions possibles a la cerca.’

5 El g-algorisme de Grover és probabilistic, en el sentit que existeix una petita probabilitat p
d’obtenir un resultat que no satisfaci la condici6. Com és costum en aquests casos, I'execucio
de l'algorisme un nombre fixat de vegades, diguem-ne k (la qual cosa no canvia 'ordre de la
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q-procediment de Grover. Sigui J; (Jo) el subconjunt de {0,1,...,N — 1}

format pels j tals que x; satisfa (no satisfa) la condicio en qiiestio. Considerem
I’aplicacio tal que
, 0 sijeljo,
FGy =1, SIE
1 sije];.

Definim els g-vectors unitaris

1 N 1 .
w2

j<Jo Jjen

Els sumands no nuls de b (respectivament a) son els vectors de la base corres-
ponents a les solucions (no solucions) de la cerca. Notem també que

h™ =1/¥a+1/%b = CoS <%)a+sin<£> b,

2
on la darrera igualtat defineix @ € (0, 17) univocament: @ = 2 arcsin(./M/N).
b
R
a
©/2

REMARCA 5.1. Usant les formules trigonometriques de ’angle doble, obtenim

. 2J/M\/N -M N - 2M
sin(@) = — N cos(p) = N m|

Per a explicar com funciona el g-procediment de Grover, ens cal introduir

dues g-computacions d’ordre n, que denotem per Gy i K. La definici6 de G és
com segueix (j € B"):

(i) sijen
G”“”‘{|ﬁ sij € Jo.

En altres paraules, Gy ¢és la simetria respecte de I'espai generat per les no-

solucions. En particular, Gg(a) = a i Gg(b) = —b. Per tant, també tenim
Gf(h<n)) =Gy (cos (%) a + sin (?) b) = CoS ((g) a — sin (%) b.

La g-computacio6 K, que no depeén de f, es defineix com

K(x) = > (2x — x;)1j),
i

complexitat), produira una resposta incorrecta en tots els casos amb probabilitat p*, un valor

que usualment és negligible fins i tot per a valors petits de k, amb la qual cosa la probabilitat
d’obtenir la resposta buscada en algun dels passos és 1 — pk ~ 1.
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on x = % 2.j Xj, la mitjana de les amplituds x; de x (diem que K ¢és la inversio
respecte de la mitjana). Aquesta aplicacio lineal és realment una g-computacio,
ja que preserva la norma:

IK(x)|? = Y (2x — xj) (2% - X;)
J
=4NX)_C—2)_CZXJ' —ZXZ)_CJ'—F ZXJ')_CJ'
J J J
= 4NxX — 2Nxx — 2NxX + | x|
= |x|%.
Ara el g-procediment de Grover es pot descriure aixi:

1. Sigui ug = h™ = cos (%) a + sin (%) b.

, 0
2.Peraj=1,....m-= [ZmJ’ poseuuj =K(Gr(uj_1)).
3. Retorneu M (u,).

La ra6 principal per a provar que aquest procediment és correcte és que en el
pla generat per a i b 'aplicacio KGy és una rotacio d’amplitud @. De fet, és
suficient mostrar que

Ka = cos(p)a + sin(p)b

K(-b) = —sin(p)a + cos(@)b.

Pero aquestes relacions s6n una conseqiiéncia immediata de la definici6 de K i
de la férmula usada a la remarca 5.1 (I> 5). En particular,

2j+1 2j+1
ujzacos<%cp)+hsin< J2+ cp).

Aix0 mostra que l'eleccié optima del nombre m d’iteracions en el pas 2 és el
més petit enter positiu que minimitza la distancia de u,, a b, i aixo es compleix
quan m és el nombre enter més proper a

(G-35)/w-ap 12

Q) 6 — 1T = ™ 6
aixo és, quan m = lz(pJ = {4arcsin(\/W)J'

REMARCA 5.2. Atés que arcsin(x) > x per a x € (0, %), tenim

T T
m<-———<—+/N/M.
4 arcsin /M /N 4 /

6 Usem que el nombre enter més proper a x — % és | x].
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Per tant, també es compleix m < [%«/N/MJ, i com que % < 1Dper

_ T
4 arcsin(

atotx € (0,1), [%«/N/MJ < m + 1. Un estudi més detallat mostra que quan
x — 0, els intervals en els quals [ﬁj = [mJ + 1 esdevenen negligibles

en comparacio amb els intervals en els quals [%J = [mJ Aixi, doncs,

si iterem [%\/N /M J vegades el bucle del pas 2 del g-procediment de Grover,

obtenim el nombre correcte de rotacions gairebé sempre, i altrament anem un
pas enlla de I’0ptim, que a la practica dona un g-vector que és quasi tan bo com
el precedent.

La probabilitat d’obtenir la resposta correcta en una passada del g-proce-
diment de Grover és p = Sinz(zrg”(p), ja que Sin(zw‘l;l(p)iM és I'amplitud
a U, de qualsevol de les M solucions. Similarment, la probabilitat d’obtenir una
resposta erronia és q = cosz(zm%l(p). Com que 'especificacié de m comporta

que ZmZHCp _ % + &, amb |g] < @ /2, veiem que

p = sinz(g + &) = cos®(g) = cos®(|])

> cos’® (%) = cos? (arcsin (x/M/N>) =1- %

Per tant,q=1—-p < M/N.

EXEMPLE 5.3. Illustrem les idees anteriors en el cas n = 8 i M = 1. Tenim
N =256, p = 7.166643°, m = 12. L’argument del vector u, és 89.583 042° i
la probabilitat d'un resultat correcte és p = 0.999947. Notem que p és molt
més propera a 1 que la fita inferior 1 - M/N =1 — 1/256 = 0.996094. La
probabilitat d’error és g = 0.000 053, de nou molt més propera a 0 que la fita
superior M/N =1/256 = 0.003 906.
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g-algorisme de Grover. Donada una aplicacié f: B" — B de la qual sabem
que M = | f~1(1)] > 0, el g-algorisme en qiiestio computa el g-procediment de
Grover per a f. Treballem amb un g-computador d’ordre n + 1 i posem f per a
denotar la computacio6 classica reversible definida per (x,b) — (x,b + f(x)),
X € B", b € B. Posem Uj per a denotar la g-computaci6 associada i usem les
notacions miu; (j =0,1,...,m) de la discussio precedent.

Es facil formular el g-algorisme que cerquem, GROVER[ f], en termes de
q-algorismes GROVERG( f] i GROVERK per a computar G i K:

GROVER[f, m]

- |0n)
HADAMARD —ug=h"
forje {1,...,m} do
GROVERK GROVERG/ f] |uj_1) - luj)
M(uy,) —~Ma

Per a descriure GROVERG] f'], també treballem amb un g-computador d’or-
dre n + 1, on el darrer g-bit fa un paper auxiliar, amb valor inicial |1). Com que
al final acaba tenint el mateix valor, el resultat util de GROVERG][ f] és I'estat
final dels altres g-bits.

GROVERG]( f]
- [x)[1)
// Setx =x%+x!, xt =3 ;. xilj), i=0,1.
Ry+1(H) - p(1x9)[0) + [x1)[0) — [x°)[1) — [x1)1))
Uy - p(1x9)[0) + [x1)[1) — [x°)[1) — [x1)|0))
= (1x% — |x1)(H[1))
Ry+1(H) = |Grx)|1) m
Per a descriure GROVERK, és suficient treballar amb els n primers g-bits
partint de I'estat y = G ¢(x) produit pel g-algorisme anterior:

GROVERK
- y)

HADAMARD
forle {1,...,n} do
R (X)
//Aquest bucle actua com X®"
C2,..n11(Z)
//Z al primer g-bit controlat per tots els altres.
forle {1,...,n} do
R (X)
//X@‘I’l
HADAMARD - |K(y)) =
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La justificacio que aquest g-algorisme computa K es basa en les observacions
seguents:

1) K = 2P,m — In, on P, denota la projeccié ortogonal sobre a (per a un
vector unitari a, P;x = (a|x)a). En efecte, I'afirmaci6 resulta directament de
la definici6 de K i la relaci6

Ppowx = (W™ [x)h™ = p? (> x;) > 1j) = u(x) > 1j).

2)K = H®"(2P)p,) — In)H®™. Aix0 és una conseqiiéncia de la formula UP,U~! =
Pyga, on U és una g-computacié arbitraria i a qualsevol g-vector, i de la formula
anterior. Fixem-nos que, si apliquem UP,U~! a Ux, obtenim Ua si x = a i 0 si
X és ortogonal a a.

3) IN — 2Pjp,) = X®"Cy2,..m1,1(Z)X®™. Notem que Iy — 2Pp,) canvia el signe
de 10;,) i és la identitat per als | j) amb j # 0,. En relacié amb I’expressio de la
dreta de la formula, observem que Cyp.. »3,1(Z), i, per tant, tota la composicio
no fa res sobre |j) llevat quan j»,..., j, son tots 0. Si j» = - - - j, = 0, llavors
,,,,, ny1(Z) aplica Z a |71), i, per la definici6 de Z (Z]0) = |0), Z|1) = —|1)),
I’acci6é no fa res si j; = 11ili canvia el signe si j; = 0.

4) ’analisi del g-algorisme de Grover s’ha de completar amb un g-algoritme
per computar Cy,. n},1(Z). Pero aquest g-algorisme es pot obtenir tal com s’ha
indicat a 'exemple 4.5.

6 Estimacio de la fase d’un valor propi

Sigui U una g-computaci6é d’ordre n, i sigui u € H™ un vector propi de U.
El valor propi corresponent a u té la forma e2™% amb @ € [0, 1). Suposant
que U i u s6n coneguts, llavors el problema d’estimacio de la fase consisteix
a obtenir 7 bits @1,..., @,, per a qualsevol r > 0 fixat, del desenvolupament
binari 0. > - - - de @.

L’objecte d’aquesta seccio és formular i analitzar un g-algorisme interessant
descobert per Kitaev [11] per a resoldre aquest problema. Com que hem de
menester alguns g-bits auxiliars, diguem m, treballem a H ™ x H™  1’algorisme
pressuposa que podem inicialitzar H™ amb el g-vector u i també que podem
efectuar les g-computacions «controlades» Cpm_r+1(U% ") definides a H™ x
H™ com segueix (L = 1,...,n):

@1 @m)lu) Si @m-141 =0,

Cn1s1 (U2 e Om - o
141 ( ) (I @Pm)u)) {|(P1"'(Pm> (Uzl |u>> si Prm_ieq = L.
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q-algorisme de Kitaev

KiTAEV[U, u]
0. - |0m>|u>
1. HADAMARD[m]  — |h™)|u)
2.forlel.mdo
Cm-1+1(U?™)
3. QFTt[m]

L’analisi d’aquest algorisme, el farem en dues parts, A iB. Enla primera, suposem
que @ = 0. - - - P, 1, en la segona, considerem el cas general. El diagrama
segiient illustra els passos 0-2.

10) —{] . 0) + 272" o)1)
- |0> @ e - ——T— |0 +62m'(22¢)‘1>

0) — ] 10) + €27 9)|1)

0) —H] — [0) +e2mi))
n{ lw o

A. L’accio de U2"" sobre |u) es redueix a multiplicar-lo per 1 0 e2™2"'® gegons
que el g-bit de control sigui |0) o |1). Aquest factor es pot moure just davant
del g-bit de control, de manera que l'estat al final del bucle 2 es pot escriure en
la forma

p™ (10) + ™21 1)) (10) + €221 ) - - (10) + 2TEOID) . (1)
Aix0, emprant la notacié dels desenvolupaments binaris, adopta la forma

pm(|0>+e2ﬂi0.cpm|1>>(|0>+e27'ri0.(pm71(pm|1>) . <|0>+321Ti0.(p1---(pm|1>>’ (2)

ja que e2™k = 1 per a tot nombre enter k. Pero per la remarca 4.8, aquesta
expressio és igual a F|@), que és el g-output del g-algorisme QFT (exemple 4.7).
Es clar, per tant, que podem recuperar I'estat |@)|u) aplicant FT ® I»», on
F1 éslainversa de F, inversa que es pot calcular amb el g-algorisme QFT[m]
consistent a efectuar QFT en ordre invers. Aixi, doncs, KITAEV subministra ¢
exactament en el cas en queé @ es pot expressar amb m bits.
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B. El raonament és una mica més teécnic quan @ no es pot expressar amb m bits.
En aquest cas, FT ® I»» no produeix el g-vector |@)|u), siné una superposicio
delaforma > a;|l)|u). Com veurem tot seguit, aquesta dificultat es pot superar
i obtenir els primers 7 bits de ¢ sempre que r < m.

Desenvolupant el producte (2), veiem que es pot escriure en la forma

m Z eZﬂi(pk|k)|u>_

Llavors, el resultat del pas 3 és

_ 2m—1 2m—
Z 2mipk FT|k))|H)— 2m Z p2mipk Z e_;THHHLl)
k=0 k=0 1=0
om_1 fom_1
" (Z i@y >|l>|u>
=0 k=0
2m—1

n 2mi(p—1/2™M)2m
_pem s LTy
1 _ e2mile—1/2m) .

Finalment, el resultat del pas 4, la g-mesura dels m primers g-bits, també
és clar: sera un nombre enter [ de m bits extret amb probabilitat”

pr = pim 1 _ e2milg-1/2m)2m |2 _ pim sin’ 1t (@ — 1/2™)2™ ()
! 1 — e2mi(p-1/2m) sin® (@ — 1/2m)

Amb aquesta llei de distribucié podem estimar quines sén les possibilitats que
els primers 7 bits de L (0 < ¥ < m) coincideixin amb f = @; - - - @,. En efecte,
usant les probabilitats p; es pot veure (> 6) que
1
2" -1l >2MT) < Y. * ok

p (12" — 1 ) 22mT —2) (%)
Per tant, podem garantir que » bits son correctes amb probabilitat 1 — & si
m < &, una relacié que és equivalent a

1
>r +1 24+ —.
m=r 0g2( 25)

7 Ordre modular d’'un nombre enter

El proposit d’aquesta secci6 és presentar el g-algorisme de Shor per a trobar
¥ = ordy(a),on N ia son nombres enters positius amb (a, N) = 1. Per definicio,

e o2
7 Usem la formula ( 1-—el& | = 4sin®(x/2), que és una conseqiiéncia de larelacié ( 1 - el | =
(1 —ei®)(1 —e i®) =2 — (eI® 4 ¢~1%) = 2(1 — cOS X).
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¥ és el menor nombre enter positiu tal que a” =1 mod N o, en altres paraules,
I'ordre de a vist com un element del grup Zj.

Des d'un punt de vista classic, el calcul de » esta relacionat amb la cerca dels
divisors de ¢(N),® un problema que té complexitat exponencial en log, (N)
(vegeu [1]). Per contrast, el g-algorisme de Shor subministra una soluci6 proba-
bilista en un temps que és polinomic en log, (N).

Fixem primer unes notacions. Posem n = [log,(N)] i definim la g-computa-
ci6 U, = Uy N d’ordre n per la relacio

, l[ajmod N) sij<N
Ua| >: . . . n-
|7 SiN <j<?2

Es efectivament una g-computacio, ja que ’aplicacio Zy — Zy tal que j — aj
mod N és bijectiva. La g-computacio inversa és U,-1 y. Finalment, posem ug,
per acada s € {0,...,v — 1}, per a denotar el g-vector d’ordre n
r—1 s )
us = > e *™ir g/ mod N).
j=0
Aplicant 'operador U, a u,, obtenim
r-1 P . .5
Uguis = > e 27 |a/" mod N) = ™ uy,
j=0
la qual cosa significa que u; és un vector propi de U, y amb valor propi ™
En aquest punt podria semblar natural aplicar el g-algorisme de Kitaev
per a estimar la fase s/7 de e*™'r, amb la idea que la informacié obtinguda
d’aquesta manera podria ser una bona pista per a trobar 7. El problema és que el

coneixement del vector propi u pressuposa el coneixement de 7. Sortosament,
aquest problema es pot eludir observant que

1 r—1
Nz g lus) = [1n).

En efecte, si en el g-algorisme de Kitaev posem m = 2n+1+ [2 + %], ipartim de
I'estat inicial |04, ) |14 ), aleshores, amb probabilitat 1 — &, obtenim una estimaci6
@ =~ s/r amb 2n + 1 bits correctes. Amb aixo,
' s . ‘ 1 1
i posant s/¥ = s’ /¥' amb (s’,7’) = 1, la desigualtat
' s’ 1
21”2

8 ¢ denota l'indicador d’Euler, és a dir, el nombre d’enters positius k € {1,...,N — 1} tals que
(k,N) =1.
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també es compleix. Ara, per un resultat ben conegut de fraccions continues
(vegeu [9]), s’ /7’ és una convergent de . Atés que @ és un nombre racional,
el seu conjunt de convergents és finit i es pot calcular amb l’algorisme de les
fraccions continues. En resum, 1'eleccié de m en el procediment d’estimaci6 de
fase assegura que, amb probabilitat 1 — &, existeix una convergent ¢ tal que el
seu denominador és 7 si (s,7) = 1 o un divisor de » si (s,7) = 1.

Si (s,7) = 1, llavors ¥ és l'ordre de a. Aquest fet es pot comprovar direc-
tament calculant a’™ mod N, on s, /7y, és una convergent de @. Si (s,r) # 1,
llavors a” mod N és diferent d’1, i cal repetir ’estimacio de fase fins a obtenir
un v tal que (s,7) = 1. Amb el teorema dels nombres primers (vegeu [1]), hom
pot mostrar que la repeticié O (n) vegades dona una estimacié @ que, amb una
alta probabilitat, és una convergent s/» que compleix (s,7) = 1 (> 7).

El nombre de passos del g-algorisme complet és O (n#). La part més com-
plexa és la relacionada amb l’algorisme de les fraccions continues, que té
complexitat O (n?), i que s’ha de repetir O (n) vegades per a obtenir, amb una
alta probabilitat, una convergent s/v tal que (s,v) = 1.

Amb millores addicionals d’aquestes idees (vegeu [16]), la complexitat es
pot reduir fins a O (n?).

Determinacié de I'ordre amb el g-algorisme de Shor. Sigui a un nombre
entertalque 1 <a < Ni(a,N)=1,i¢& > 0un nombre real (petit). L’algorisme
que es descriu a continuaci6 troba v = ordy(a) amb probabilitat 1 — € en
un nombre mitja d’iteracions que és O(n). La complexitat total és O(n*).
L’algorisme ContFrac subministra, donat un nombre racional, la llista dels
denominadors de les seves convergents (> 8).

SHOR-ORDER|[a, N, €]
n = [log,(N)], m = 2n + 1 + log, (2 + %)
//q-espai de treball: H™ @ H™

0. = [0m)[0n)

1. HADAMARD[m ] — p™ S 1)100)

2. Uan — BE S X5l e ) lu )
3. QFT*[m] ~ 315 | sTr) )

4. M =Mq,. . - -677/’

5. ContFrac - D

6. for v’ € D do

if a” mod N = 1, return v’
7. return Test fallit
//r|r,irv’ =7 en O(n) iteracions »
Ateés que la condicio v’ = v es compleix en O (n) iteracions, obtenim 1'ordre

correcte ¥ amb un temps mitja que és O (n*). Aquest és l'algorisme que usem
a la propera secci6 i que denotem per SHOR-ORDER(a, N).
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8 g-algorisme de factoritzacio de Shor

Un problema fonamental de la teoria computacional de nombres és la deter-
minaci6é d'un divisor propi d’'un nombre enter positiu gran N (problema de
factoritzacio). La dificultat d’aquest problema, segons els algorismes classics,
és la base d’algorismes criptografics eficients i emprats profusament [19]. Sor-
prenentment, existeix un g-algorisme que troba un divisor propi de N en un
temps que és polinomic en n = log,(N). La idea clau és reduir el problema
de factoritzacio, emprant un procediment conegut, al problema de determinar
I'ordre d’'un enter positiu modul un altre, i aplicar aleshores el g-algorisme
SHOR-ORDER estudiat a la secci6 anterior.

Aixi, doncs, primer recordem com es redueix el problema de la factoritzacio
a un problema de determinar 1'ordre d’'un nombre enter positiu modul un altre.

Factoritzacio basada en el calcul de 'ordre. Sigui N un nombre enter positiu.
Ates que hi ha algorismes classics eficients per a decidir si N és la poténcia
d’un nombre primer,? podem suposar que N té almenys dos divisors primers
distints. També podem suposar que N és senar. Per a factoritzar N, basta saber
trobar un divisor propi d de N, ja que aleshores N = d - (N/d) i podem iterar
el procediment amb els factors d i N/d.

Ara l'observacio principal és que podem obtenir un factor propi de N si
podem trobar un nombre enter x € {2,...,N — 1} tal que

1. (x,N) =1;
2. ¥ = ordy(x) és parell;
3. x"/?2 + 1 no és divisible per N.

En efecte, v és el menor enter positiu tal que x” = 1 mod N (la condici6 1
implica que aquest nombre existeix) i, per tant, usant la condici6 2, x" —1 =
(x"/2 = 1) (x"/? + 1) és divisible per N. Com que x"/? — 1 no és divisible per N,
per la definici6 de 7, i x"/2 + 1 no és divisible per N, per la condici6 3, és clar
que tot divisor primer de N divideix un dels factors x*/2 —1 o x"/?2 + 1. En
resulta que o bé mcd (x"/2 — 1,N) o bé mcd (x"/2 + 1,N) és un divisor propi
del nombre N.

Aixi, doncs, la qiiestié s’ha reconduit a trobar un x que satisfaci les condi-
cions 1, 2 i 3. Sorprenentment, aixo es pot aconseguir escollint x aleatoriament
a{2,...,N — 1}. De fet, si resulta que (x,N) > 1, llavors d = (x,N) és un
divisor propi de N. Altrament, (x, N) = 1 i, per tant, ¥ = ordy (x) existeix. Pero,
quines possibilitats tenim que ¥ sigui parell i x”/2 + 1 no sigui divisible per N?
La proposicié que segueix ens déna la resposta que necessitem.

9Si N =m", m > 1, llavors r < log,(N). Per a cada r > 1 que satisfa aquesta condicié, posem
m = [N 1 TJ i comprovem si m" = N. Si la igualtat es compleix, N és una poténcia de m i la
factoritzacio de N es redueix a la factoritzacié de m. Altrament, N no és poténcia d'un nombre
enter i, per tant, tampoc és poténcia d’'un nombre primer.
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PROPOSICIO 8.1. Si N és un nombre enter positiu amb m > 2 factors primers
diferents, llavors la densitat a Z5; del conjunt

r/2

{x € Z}, | r = ordn(x) és parell i x"'= + 1 no és divisible per N }

és més gran o igual que 1 — 1/2™L,
PrOvVA. >9. O

EXEMPLE 8.2. Considerem el nombre N = 904 279, que és senar i no és potencia
d’un nombre primer. Escollim aleatoriament x € {1,...,N — 1} (podem pensar
que és el valor d’una crida random(N)). Posem x = 743 579. Comprovem que
(x,N) =1 (gcd(x,N)—1), de manera que * = ordy (x) existeix. Ara order(x,N)
ens dona r = 150 396. Es un nombre parell i (x"/2 — 1, N) ens proporciona el
divisor 907, que és primer, i (x"/2 + 1,N), el divisor 997, que també és primer.
Finalment, comprovem que N = 907 - 997.

El g-algorisme de Shor per a factoritzar nombres enters. Tal com hem
explicat a la secci6 precedent, suposem que N > 1 és un nombre enter senar
que no és poténcia d'un nombre primer.

SHOR-FACTOR[N]

x,v,d

1. random(N) - X
2.ifd=(x,N) > 1, returnd

3. SHOR-ORDER(x,N) -7

4. if r =1 mod 2, goto 1.

5.ifd = (xg — 1,N) > 1returnd
6.if xz + 1 mod N = 0, goto 1.

7.return d = <x§ + 1,N> "
La complexitat de SHOR-FACTOR depeén de la del pas 3, de manera que el cost
mitja total és O(n?), n = log,(N).

Una analisi més detallada (> 10) mostra que el nombre mitja de goto en els
passos 416 és O(1).

9 Interpretacio fisica

En aquesta secci6 expliquem quin és el contrapunt fisic de les g-computacions.
Per a aprofundir en la comprensié d’aquests aspectes fisics, vegeu, per exemple,
[21, 12, 24].

1. Estats quantics. Un sistema quantic X té associat un espai vectorial complex E
dotat d'un producte escalar hermitic (x|y) (és a dir, lineal en y i lineal-conjugat
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en x). Per als proposits de la computacioé quantica, podem suposar que E té
dimensio finita.

Els vectors no nuls x € E representen estats (purs) de 2, i dos vectors no
nuls x,y € F representen el mateix estat si i només si existeix & € C tal que
y = &x. En particular, qualsevol estat es pot representar per un vector unitari u
determinat tret d'un factor e'® (factor de fase o fasor). Podem, doncs, dir que
I’espai d’estats (purs) de X és I’espai projectiu associat a E i que usualment es
denota per PE.

Seguint les notacions de Dirac, escrivim |u) per a designar I’estat correspo-
nent a u (en geometria projectiva se sol denotar per [u]). Si v € E és arbitrari,
pero no nul, tenim |v) = |V), on v és el vector unitari v/ |v|.

Superposicio quantica. Donats dos estats |u) i |u’), i nombres complexos a
ia’, podem formar l'estat |au + a’u’), del qual es diu que és una superposicio
quantica dels estats |u) i |u’) i que sovint denotem, amb un abus ben clar
de notacio, per alu) + a’|u’). Aquest abus resulta innocu, ja que, en tots els
casos en que el cometem, els vectors u i u’ son explicits. En termes geometrics,
les superposicions de |u) i |u’) sén els punts de la recta determinada per |u)
ilua’).

2. Observables. Un observable de 3. és una aplicacio6 lineal A: E — E autoadjunta
(At = A), 1a qual cosa vol dir que compleix

(Ax|y) = (x|Ay),

qualssevol que siguin x,y € E, ja que A’ és I'aplicacio lineal definida per la
relacio
(ATx|y) = (x|Ay).

Si (a;j) denota la matriu de A respecte d’'una base ortonormal, és immediat
comprovar que A és autoadjunta siinomés si aj; = a;j, és a dir, si i només si
la matriu és autoadjunta.

Siai,...,a, son els valors propis diferents de A, aleshores aq,...,a, € Ri

A:Zaij, (3)
J

on P;: E — E;j és la projeccio ortogonal de E sobre I’espai de vectors propis
de A amb valor propi aj, aixo €s

Ei={x €cE| Ax = a;x}.

El resultat d’'una observacio o mesura de A, quan I'estat de X és |u ), és un
valor propi a;, amb probabilitat

2
Pj = ‘Pju‘ = (uleu),
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i, ensems, €s la mutacio de 'estat de X a I'estat Pju (o, més precisament, a
|Pju)). Adonem-nos que u = ; P;u i, per tant,

2
L=luP =Y |Pu| =Y p;
J J
ja que els E; son dos-a-dos ortogonals. Fixem-nos també que

wlPu) - [P |” = (wIPu) - (PulPyu) = (u - PulPyu) =0,

ates que u — P;ju és ortogonal a E; per definicio de P;. En particular, si u € Ej,
llavors 'observacio subministra a; amb certesa i = roman en l'estat |u).

EXEMPLE 9.1. Si F és subespai de E, la projeccié ortogonal Pr: E — F és un
observable amb valors propis 11 0: E; = Fi Eg = Ft. Els observables d’aquesta
mena s’anomenen proposicions o eventualitats. La probabilitat d’observar 1, si
el sistema es troba en l'estat u € E, és |Pr(u)|°.

REMARCA 9.2. La formula (3) mostra que tot observable és una combinaci6
lineal, amb coeficients reals (els valors a ;) d’eventualitats (la projeccio P,; €s
I'eventualitat corresponent a I'espai Ej = Eg;). Vist aixi, un observable es pot
identificar amb la llista de parells {(a1, E1),..., (ar,Ey)},0onas,...,a, € R (els
valors possibles de I'observable) i on Ey,...,E, < E sOn subespais vectorials
deEtalsque E=E; ®---®E,1E; L E pera j + k. Els vectors no nuls de E;
representen estats per als quals el valor mesurat és a; amb certesa, mentre
que els vectors no nuls de I'espai ortogonal E j = ®+;Ex representen estats
per als quals el valor mesurat és # a; amb certesa. Notem que la probabilitat
d’obtenir a; coincideix amb la probabilitat d’observar 1 per a l'eventualitat
definida per Ej;.

3. Dinamica unitaria. Si 3 esta en un ambient no reactiu (és a dir, que I'ambient
no és afectat per %) en l'interval [0, t], existeix un operador unitari
U:E-E

tal que
b=Ua

representa l'estat de X en el temps £, si a € E representa ’estat de X en el
temps O.

EXEMPLE 9.3. Si H és un observable, I'operador
U = eth

és unitari, ja que Ut = e 't = ¢~iHt — [J-1_[g costum dir que U = eiH! és
I’evoluci6 temporal definida pel hamiltonia H.
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4. Entrellacament. Si 3’ és un segon sistema quantic i el seu espai associat és E’,
aleshores I’espai associat al sistema conjunt X + X’ és E ® E’, amb el producte
escalar hermitic definit per la relaci6

(xex'ly®y’) =(xly)-(x'Iy").

Siu € Eiu’ € E' sén vectors unitaris, 'estat |u ® u’) també es denota
per |u)|u'’), o simplement [uu'), i el mirem com l'estat del sistema conjunt
corresponent a 'estat |u) de 2 i |u’) de X'. D’aquests estats, en diem estats
compostos. Es important observar que els estats del sistema conjunt no sé6n
en general estats compostos. Un exemple simple és |u; ® u}) + |u ® us) si
ui,u; € E (respectivament u, u), € E’) son vectors ortogonals unitaris (> 11).
Tanmateix tot estat del sistema conjunt és superposicié d’estats compostos
(tot vector de E ® E’ és una suma de vectors composots), i és per aixo que dels
estats no compostos en diem estats entrellacats.

EXEMPLE 9.4 (g-bits). Els estats d’una particula d’espin % (sistema =) es poden
pensar com a punts de I’esfera S? de radi 1 (en unitats apropiades) i resulta
que I'espai complex associat a aquest sistema, d’acord amb I’axioma 1 (estats
quantics), és C? (espai d’espinors). Aquesta afirmacio es pot justificar amb els
arguments que segueixen.

» Identifiquem € = x + iy € C amb el punt (x,y,0) € R? i considerem el punt
P = P(&) de I'esfera

S2={(x,y,2) e R} | x>+ y? + 22 =1}
obtingut per la projecci6 estereografica amb centre N = (0,0, 1):

2x 2y x2+y%2-1
X24+92+1'x2+y2+1"'x2+y2+1)°




Computacio quantica 221

Posant P(w) = N, obtenim una bijecci6 entre C=Cu {co} i §2. L’aplicacio
inversa és

X . %
(x,v,2z) 1-2 +171 — perz <1,
i,peraz=1,N=1[0,0,1] — 0.
» Per altra banda també tenim
C=PC? =P},

ja que qualsevol element [&g, &1] € C? és proporcional a un unic vector de la
forma [1,&]si & # 0,ia [0,1] si & = 0. Tenim, doncs, una aplicacié bijectiva

C-PL, E~[LE], o~I[01]
L’aplicaci6 inversa és

E=81/& si& =0
[€0, 811 {oo SiE =0
Aquestes consideracions indiquen que podem prendre C2 com I’espai associat
a>h,

REMARCA 9.5. L’esfera §2, amb l'estructura de P{, es coneix com a esfera de
Riemann. Es 1la més simple de les superficies de Riemann compactes (és 1'inica
que és simplement connexa), pero en referéncies de computacié quantica és
costum dir-ne esfera de Bloch o fins i tot esfera de Poincaré-Bloch.

REMARCA 9.6. Sigui P = (x,y,z) un punt de S? i definim ¢ com I'argument
de x +iy i 0 com I'angle entre OP i ON, on O és el centre de 'esfera. La relacio
entre les coordenades esfériques (g, 0) i les coordenades cartesianes (x, y, z)
esta donada per les férmules

x =sinfcosp, Yy =sinfsingp, =z =coso. 4)

El punt de C corresponent a P(x, y,z) és

£ X .y _sinfcos@ .sinfsing  sind

+ - - ip _ ,ip 9
1-z 1-z 1—cos@ ' “1—coso 1—coso® coty

Com que aquest punt correspon a
[1,e? cot §] ~ [e7i?/?sin &, e!?/? cos §] € P,
la conclusi6 és que
p:e*“p/zsingIO)+eiq’/zcosg|1) € Pt (5)

és el punt corresponent a P segons la identificacio S = P%:. El grafic que segueix
illustra aquesta relacié i mostra alguns casos especials (llevat d'un factor de
normalitzacio).



222 Juanjo Rué i Sebastia Xambo

o)~ il o o o) + i)

p= g0} + 2 cos()

REMARCA 9.7. La formula (5) mostra que R, («x)(p) correspon a p,(«x)(P), on
pz(x) denota la rotacio d’eix Oz i amplitud «. Aixo és un cas especial d'una
relaci6 ben coneguda entre matrius U € SU i rotacions de S2. Aquesta relacio
es pot explicar com segueix.

Una matriu U = [ %o

—i uo] € SUY es pot veure com una aplicacio lineal

C? - C% [g‘f] -~ U [g?] Aquesta aplicacié indueix una aplicacié projectiva
de P{ en si mateix

[E0,&1] = [wo&o + u1&1, —1&0 + o1
i, per tant, una aplicacio U:C-C,

£ o€ — 1

o - Ug/Uj.
u1§ +uo’

Al seu torn, aquesta aplicaci6é indueix I'aplicacio U7: 82 - 52 tal que ] (P(&)) =
P (U%).
Si ara prenem com U una de les matrius
e-i®I2 ] cos 2 sind cos ¥ —isin¥
Rz(p) = ; , Ry(0) = y Re(y) =
2P [ 0 eiwr2| Y ~sin$ cos$ s —isin%  cos¥
(vegeu la secci6 2, p. 191), resulta que

p2(@) = R (@), py(0) =Ry (0) i px(y)=Ry(@)

son les rotacions d’amplitud @, 0 i ¢ i eixos z, ¥ i x, respectivament. Aixo,
junt amb les relacions

p=e?? sin%lO) +e®/? cosgll) = R:(Q)R,(0)]1),
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mostra que, en termes de S2, és

P= pz((P),Dy(Q)N,

una relaci6 consistent amb el contingut geometric de les definicions de ¢ i 0.
Inversament, aquesta relacio, junt amb la interpretacio de R; i Ry, forneix una
prova de I'expressié de p donada.

EXEMPLE 9.8 (g-registres). Per ’axioma 4 (entrellacament) i la formula H™ ~
HY @ ... @ HY Tespai H™ és l'espai associat a =™ = 1) 4 ... 4 5D
(n sumands), el sistema compost de n g-bits. Per analogia amb els registres de
bits classics, en diem un g-registre d’ordre n.

Ara l'axioma 3 (dinamica unitaria) ens diu que I’evolucié temporal de =™
esta donada per una matriu unitaria d’ordre 2”. En altres paraules, I’evoluci6
temporal de =™ és una g-computacio.

Finalment, I’axioma 2 (observables) indica que 'operaci6 [opcional] M(b) al
final dels g-programes correspon a I'operacié de mesurar I'observable (diago-
nal) L tal que

L|k) = k|k) per a tot k
quan l'estat de =™ és |b). Notem que (H("))j = Clj), don Pjb = bjlj) i
2
pi = |bi|".

Computadors quantics

De les observacions precedents es desprén que, per a efectuar g-programes
d’ordre n en un suport fisic, és suficient disposar d’un registre quantic i «im-
plementacions» de les operacions

M(b)
R;(U) [amb U € {H, Ur 2, Ur4} en el cas restringit]
CJ,k

Un computador quantic (d’ordre n) és un registre quantic =™ dotat d’a-
questes implementacions. La seva significacié principal rau en el fet que permet
efectuar [o aproximar] qualsevol g-computacio.

Una caracteristica interessant d’'un computador quantic és que incorpora
I’'anomenat parallelisme quantic. Es tracta de la possibilitat d’inicialitzar-lo en
estats com ara el g-vector d’'Hadamard

i

hm =
Mo

(10) +11) + - -~ 12" = 1)),

del qual podem dir que:
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s Conté (de fet, és una suma normalitzada de) tots els nombres de n bits, per
tant,

» Qualsevol operacié del computador quantic actua sobre tots els nombres
simultaniament. Aixo «explica» per que el computador quantic pot ser molt
més rapid que un computador classic.

» En general, la utilitat dels algorismes (com ara el de Shor per a trobar I'ordre
d'un nombre enter modul un altre) es basa en el fet que, després de la seva
execucio, les amplituds dels nombres «tils» son altes i la resta son petites.

També és oportu esmentar el «problema de la decoheréncia», que sorgeix
pel fet que les interaccions amb I’entorn poden «pertorbar» rapidament els
estats de =™ (entrellacament incontrolat entre els estats de 'entorn i els estats
de =), Aquests problemes en el cami envers la construcci6 de computadors
quantics son de natura fisica i tecnologica. Les recerques en molts laboratoris
d’arreu del moén estan dirigides a superar aquestes dificultats i el progrés en
moltes direccions és continu (> 12).

Més referencies

A més de les referéencies esmentades fins ara, consignem aqui alguns llibres
addicionals, per ordre de I’any de publicacio, que poden interessar tothom que
desitgi aprofundir en I’estudi de la computacié quantica o, més generalment,
en el processament de la informaci6é quantica: [18], [13, 14], [20], [3, 4], [15],
[10], [2].

Un tema relacionat, en certa manera a mig cami entre la computacio classica
i la quantica, és el de la simulaci6é quantica. Algunes referéncies actuals son
[6], [23], [22] (amb una magnifica introducci6 de J. Ignacio Cirac i Peter Zoller
titulada «Goals and opportunities in quantum simulations») i [25].

10 Remarques i demostracions

» 1 (p. 185, p. 195). Es un fet ben conegut que tota computaci6 classica es pot
realitzar amb una successio finita de portes logiques que sén o bé NOT actuant
sobre un bit arbitrari o bé NAND actuant sobre dos bits qualssevol.1? Es, doncs,
suficient inserir NAND en una computacio reversible f. Aixo es pot aconseguir
amb f: B3 — B3 definida com I'aplicacio que intercanvia 1101 111 i altrament
és la identitat. En efecte, mirant els quatre vectors binaris x que acaben amb 1
a la taula de f que segueix,

10 L'observacio6 clau, i facil de comprovar, és que qualsevol aplicacié f: B™ — B coincideix amb
la donada per I'expressié booleana Zf(x):l T1X1 -« Tp™ onles T; sén variables booleanes i on

T;(‘i denota T si x; = 11T (negacio6 de T}) si xj = 0. D'aixo, en resulta que f es pot obtenir
combinant NOT, AND i OR. Atés que OR(p,q) = NOT (AND (p, q)), NOT i AND son suficients. Un

argument similar mostra que NOT i OR, o NOT i NAND, son també suficients. L’elecci6 de NAND
és una simple qliesti6 de conveniéencia per a la nostra presentacio.
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X 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
f(x) | 000 | 001 | 010 | O11 | 100 | 101 | 111 | 110
veiem que inclou NAND (bits en negreta). Explicitament, ij1 — ijNAND(i, j) =
ij(1+1i-j).

» 2 (p. 192). Per a la demostracio, seguim les indicacions donades a [17, sec-
ci6 2.2.4]. Usarem les relacions

XRy(0)X = Ry(~6), XR:(9)X = R.(~@).

Notem que XM (respectivament MX) intercanvia les files (columnes) de M.
L’afirmaci6 es desprén d’aixo i de les definicions de R, (6) i R,(@). Per tant,
podem escriure (la @ de la tercera igualtat és un angle auxiliar arbitrari):

Rz(B)Ry (0)Rz(y) = Rz(B)Ry (6/2)Ry (0/2)R-(y)
= Rz(B)Ry (0/2)XR, (-0/2)XR:(y)
= RZ(B)Ry(Q/Z)XRy(_Q/Z)Rz((p)Rz(_(p)XRz(y)
= Rz(B)Ry (0/2)XRy (-0/2)Rz (@) XRz(p + y)
= AXBXC

amb
A=R;(B)Ry(0/2), B=Ry(-0/2)R(p), C=R(p+Yy).

Finalment, ates que ABC = R, (2@ + B + y), basta escollir p = —(f+ y)/2,la
qual cosa significa que

A=R:B)Ry (8), B=Ry(-%)R-(-3¥), C=R.(%3E).

» 3 (p. 204). Aquest resultat no s’'usa en aquest article, pero la seva demostraci6
és un exercici interessant d’algebra lineal que eshossem tot seguit.

Sigui U = [ujx] € U™ iposem N = 2" Llavors U = e!*UU; - - - Uy-1,
amb 0 € Rion U = Ups1 - - - Uy, amb Uy j un element de SUV actuant en
el pla [|I),|j)] de la manera estandard (és a dir, usant la referéncia |I) i |j)) i
deixant fixos tots els |k) per a k # 1, j.

Aquesta expressio de U es pot construir com segueix. Definim U; » com la
identitat si u»; = 0 o, altrament, com

ut/A —uo1/A > >
, A=+|u +|u ,
[um/)\ ftu/?\} lu11l® + lugzl
de manera que I'entrada 21 de la matriu Uf,ZU és 0. Definint Uy 3,..., U; v d'una
manera similar, aconseguim que les entrades 21, 31,...,n1 de la matriu

U =Ufy---U,U
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siguin 0. Ates que U’ és unitaria, de manera que les seves columnes séon ortogo-
nals dues a dues, veiem que les entrades 12,13,...,1n de la matriu U’ també
son 0. Essent ’entrada 11 de U’ necessariament un nombre complex unitari,
veiem que existeix «; € R tal que e~ Uf,N s Uf’ZU té la forma

]. On
, VeuW-b,
ot V]

Ara, per induccié, V = efU,---Uy_1,amb B € Rion U; = Uiis1---UnN
amb U j un elementde S U queactuaenelpla[|l),]j)] delamaneraestandard
i deixa fixos tots els |k) per k # [, j. Finalment, I'afirmacié queda provada
definint « = &y + iUy = U1 2U;13 - - - Ur,n. Notem que el nombre de les U ;
diferents de la identitat és com a molt N(N — 1)/2.

Per a completar la demostracio basta adonar-se que a I’exemple 4.6 hem
establert que les U j es poden expressar com a producte de portes U i Ny .

» 4 (p. 204). Us remetem a la secci6 4.5.3 de [16], on podeu trobar un esbhos de la
prova. Tanmateix fins i tot en aquesta obra enciclopédica es diu que fornir tots
els detalls «is a little beyond our scope» (p. 198). Trobareu una demostracié més
completa, que inclou els detalls matematics més subtils, a [17, Lemma 3.1.8],
com ara una demostracié completa del fet clau segiient: si cos x = cos?(1/8),
llavors /7t és irracional.

» 5 (p. 208). Com que u(a) = %% =+N—-M/N,

K@) =S @N-M/N-1/JN-M)j)+ > L}‘Mm

J€Jo Jjeh
- N -2M Dy 2\/]\7[\/N—M|_>
J’eJoNvN_MJ Jj€n NVM !

= cos(p)a + sin(p)b.

Analogament, com que u(v) = M/N+M = ~/M/N,

Kby = S (2]@) he S (W—l) 7

J€Jo Jen N VM
B 2VyMJN-M 1 , 2M =N\ | .
-3 (I ) 3 ()

= sin(p)a — cos(p)b.

Observem que les dues relacions precedents impliquen que K és, en el
pla generat per a i b, la reflexio respecte de h™ = cos(@/2)a + sin(p/2)b.
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En efecte, sigui u, = cos(x)a + sin(x)b (aixi hm = Ugp,2) i posem Ry per
a denotar la rotaci6 d’amplitud @. Aleshores, K = Ry, G (ja que KG = Ry i
G’ =1d)i

K(h™) = Re(G(Ug2)) = Rp(U_g2) = ugp = h™,
mentre que si k™ = —sin(@/2)a + cos(9/2)b = Ugp /2412, llavors

= Rp-mj2l-g/2 = Ugpp2-m2 = k™.

» 6 (p. 213). La probabilitat p (|2™@ — | > 2™"7") ésigual a

_(Zm—r+1) zm—l
> pit+ > P
l=—2m-14] [=(2m-7r+1)

Ara la fita de Kitaev (x*), p. 213, es pot deduir de I'’expressio explicita (x) de
p1 (p. 213). Per a més detalls, vegeu [16].

» 7 (p. 215). El teorema dels nombres primers afirma que la quantitat de
nombres primers inferiors a un nombre real ¥ és asimptoticament igual a log%'
D’aqui que la probabilitat p d’escollir (uniformement) un nombre primer s a

I'atzar, 0 < s < v és asimptoticament igual a

1
>

p(0 <s <r,s és primer) ~ logr ~ logN’

En resulta que el nombre esperat d’iteracions per tal de trobar un nombre
primer s < v és

o]

._1‘—1_00._1-_1_#_l~
i:zll(l p) P—Pizzll(l p) “a-a-p)? p log(r) < log(N).

Per tant, esperem trobar un nombre primer s, s < n, amb log(N) = O(n)
iteracions.

» 8 (p. 215). La representacio en fraccié continua d'un nombre racional x és un

vector de nombres enters [xo,x1,...,Xn], amb x; > Opera j = 1,...,n. Es
costum representar la relacié entre x i [xo, x1,...,Xn] en forma de «fracci6
continua»:
1
X = X0+
0 1
X1 +
1
anl + —
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Per abus de notacio, també escrivim x = [xp, X1,...,Xn]. D’aquesta manera, la
fraccié continua es pot expressar recursivament per la formula

[X0,X1,...,Xn] = X0 +

[Xls---sxn] )
Dels nombres racionals c;j =[xo, x1,...,x;1, j=0,1,...,n, en diem (fraccions)
convergents del nombre x. La llista dels denominadors {dg, d1,...,d,} d’aques-

tes convergents es pot calcular recursivament com segueix:
do =1, dl = X1, dj = dejfl + dj,Z (J =2,...,M).

De fet, és facil provar per induccio que ¢; = m;/d;, on

moy = Xg, M1 =X1X0+ 1, mj=Xxjmij_1+m;j_; (J =2,...,M).
En resulta que la llista {dg,d1,...,d,} es pot calcular mitjancant I’algorisme
seguent:
ContFrac(x) :=

a=terra(x),j=1,d =1{0,1}
mentre x! = a fer
x=1/(x—-a)
a = terra(x)
d=dl{axd.(j—1)+d.(j—2)}
j=j+1
retornar cua(d)

» 9 (p. 217). Demostrem que

, r e 1
12} (x € ZY | v =ordy(x) és senar o0 x2 + 1 és divisible per N) > o
Comencem escrivint N = p' ... pp", on py,..., Pm sOn nombres primers dife-

rents. Aleshores Zj; = Z:ul X oo X Z:am. Posem x; per a denotar la reduccié x
1 m

mod p;‘j, i 7j per a denotar I'ordre de x; a Z*«;. Sigui d; el major exponent
Pj
tal que 2% divideix 7; i d el major exponent tal que 24 divideix 7. Es facil veure

que si ¥ és senar o si v és parell i x2 = -1 mod N, llavors d;j = d per a tot j.
Pgr concloure, usem que si 24 és la més gran poténcia de 2 que divideix
(p(pjj), aleshores

p (x € 755 | 2% divideix ordqu(x)) = %

J

» 10 (p. 217). Denotem per p la probabilitat de '’esdeveniment

{x € Z} | r = ordn(x) és parell i x? + 1 no és divisible per N},
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quan x s’escull (uniformement) a I'atzar a Z]’C,. Llavors, el nombre esperat
d’iteracions de I'algorisme és

[ee]

2m—1

) o ) 1
: _ i-1, _ : _ i-1 _ = _
i:zll(l p)p pizzllu p) i T R T

Com que m > 1, veiem que aquest nombre d’iteracions és O (1).

» 11 (p. 220). Si uy,...,u, és una base ortonormal de E, i u’y,...,u’, una
base ortonormal de E’, llavors un vector general de I'espai E ® E’ té la forma
2.j.j aj,juj ® uj. D’altra banda, el vector compost x ® x" té la forma

. . ’
dajajujeujysix=>aujix’ =>aju;.
JJ’ J J

Pero aquest vector no pot coincidir amb u; ® u} + u2 ® us, ja que de la coinci-
deéncia es desprendrien les relacions inconsistents

apap =1, ayay =1, apa)=0.

» 12 (p. 224). Hi ha una explosio d’activitat en els darrers anys, i especialment

des del ’any 2006, com es pot veure, per exemple, a
http://en.wikipedia.org/wiki/Timeline_of_quantum_computing
http://en.wikipedia.org/wiki/Quantum_computer

En la darrera es consignen, en particular, més d'una dotzena de linies d’investi-
gacio dirigides a la realitzaci6 d’'un computador quantic.

Agraiments

El primer autor ha tingut el suport d’un ajut JAE-DOC de la Junta para la
Ampliacion de Estudios (CSIC), de I'ajut MTM2011-22851 i del projecte Severo
Ochoa SEV-2011-0087 de 'ICMAT.
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