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PRELIMINARES

Computacion clasica
Numeros binarios (Leibnitz, Boole, Shannon,...)
B = {0,1} (bits). T+ 1 =0
3310 = 100001, = 2° 4 20
» Toda informacion se puede representar por una cadena de bits.
Textos

‘A" — 6510 = 1000001, ...,°z" - 1221, = 1111010, ... (ascii-7)

(otros cddigos: ascii-8, Unicode, utf-8, utf-16, ...)

Sonido

44100 valores de presion por segundo, expresados en 16 bits (p. ej.).

1s de musica (sin comprimir) = 88 Kb
Bach




Imagen

Figura 256 x 256 pixeles, 256 niveles de gris (8 bits).
(matriz cuadrada X de orden 256 con valores enteros
entre Oy 255, =~ 65536 Kb). Por ejemplo:

X(100:110,100:110) =

105 108 109 107 109 104 106 108 108 108 108
103 168 104 109 105 112 105 107 107 107 1607
101 1063 109 105 107 110 108 106 107 106 106
102 100 114 105 107 105 108 107 107 106 106
116 1060 109 110 102 108 105 108 107 106 107
156 101 103 107 105 108 107 107 107 107 107
194 109 103 104 110 106 109 106 107 106 106
223 121 101 110 106 108 107 108 106 105 1605
221 165 104 102 107 105 105 105 104 105 102
182 220 105 107 109 101 105 104 105 107 107
162 233 137 100 102 109 101 104 105 109 1160




Una computacion clasica es una aplicacion

1-1

f:B™ - B™ (tipon — m). x| fif2f3|]a

_lolo 101

El nimero de computaciones de tipon » mes (2™)%". [1o o |1 |1

Por ejemplo: #{8 — 8} = 2562%°° (617 cifras decimales). 0 x x|1
2—-1

x YV filfolfs | falfs | felf7fe| fo |frolfa1| frz |f13 | f1a|fi5 | fr6

co00j2,0/0/01|j/2/2{0|0]0] 1 |1|]1 |01

1/,00,0/1/0{0}12/0/0/ 21 2/0, 1 1,011

10 6,0(1/0/0{2/0{12 /01 1 |O0O}|1 |1 1

1/1/0/,0/0/0{1/0/0j1/ 0|1 1 0 1 (11 1

0\ xy xy|xy|lxy|y x|+ + | x|y | Xy xy|xy | k)l 0

XOR NAND 1

+(x,y) =xyviy=xyxy, +(xy)=xyxy

|

Ley de Morgan
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» Toda computacion se puede resolver en una secuencia de operaciones
booleanas.

: ., i e
Ejemplo. Consideremos la computacion
OR
f:B® - B, AN
111,011,101,110 -1 AND AND

/N /N
y z £  OR
N

(descodificador del codigo [1,3] de repeti- Ain AND

cién). Entonces / \ / \

f(xyz) =xyz V Xyz V xyz V xyz Nor =z y NoT

000,100,010,001 » O

=yzVx(yz V yZ)

R
O




» Toda computacion se puede resolver

en una secuencia de puertas logicas elementales:

NoT[j1(by, ..., by) = b;

NAND[j, k] (bl, e bn) = Bj . Bk = 5] VvV Bk

» Toda computacion se puede incrustar en una
computacion de tipo n = n reversible (biyectiva).

Ejemplo.

OR(x,y)

NoT

AND

N

NoT

X

NoT

x 001011011

AND| O 1 O] 0|1
x [000/010/100/110/001(/011/101|111
AND|000/010/100|111/001/011(101111

AND(x,y,z) = (x,y,xy) if z =0,
=(x,y,z)ifz=1.




Notaciones

R, (C eic,o

SiE=a+bie€C,&=a— bieselconjugado de §. o \1

» (& = (a— bi)(a + bi) = a? + b? = |&|?,
siendo |€| = Va? + b2 el médulo de €.

» Los numeros complejos de mddulo 1 tienen la forma (Euler)
e'? = cosg + isin@, @ € R (factores de fase, o fasores).
Forman un grupo con el producto (el grupo U(1) = S?):
el® . o9’ — pilpt+e")
» Si ¢ € C— {0}, existe un unico @ € [0,2m), el argumento de ¢, tal que
& = |&|e*® (forma polar de §).



Espacio Hermitico

Es un espacio vectorial complejo E dotado de un producto escalar (x|y)
tal que

1. (x|&y +&y") = &xly) + Ex|y'), §,& e C
2. (x|y) = (ylx)
= (Ex + &x'|y) = Exly) + (X |y);
(x|x) € R
3. (x|x) > 0, conigualdadsiy sdlosix = 0.

La norma |x| de un vector x € E se define como W Asi, pues,
x| >0six=0y|0] =0.
» Sié € Cyx € E, entonces |&Ex| = |€]]x].
En efecto, [§x]? = (§x|¢x) = &&(x|x) = []*|x]?. O
Cuando |x| = 1, decimos que x es unitario.

» Six € E—{0},y ponemos X = x/|x|, entonces X es unitario. O
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Ejemplo. C", con el producto escalar
(El") — 5_1771 Tt Sgnrln -
En este caso,

1§12 = &8 + -+ &8 = [&E 17+ + &, ]2

C? (espacio de espinores) tiene un papel destacado en lo que sigue.

El adjunto de un operador lineal A: E = E es el operador AT: E = E defi-
nido por (x|ATy) = (Ax|y). Si AT = A, decimos que es autoadjunto. Un
operador lineal U: E — E es unitario si (Ux|Uy) = (x|y) (& UTU = Id).

» Si FF € E es un subespacio vectorial y x € E, existe un unico vector
x' € Ftalque x' = x —x' € Ft, es decir, (x"|y) = 0 paratodoy € F.
El vector x' (denotado z(x)) se llama proyeccion ortogonal de x en F.

» El operador my: E — E es autoadjunto.
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PRESENTACION AXIOMATICA DE LA FiSICA CUANTICA

Q1 (g-Estados). » Un sistema cuantico X queda caracterizado por un es-
pacio vectorial hermitico E. Los vectores x € E — {0} representan esta-
dos (puros) de X. Dos vectores x,y € E — {0} representan el mismo es-
tado siy sélo si existe ¢ € Ctal que y = ¢éx. O

Nota. Para los sistemas requeridos en este abecé de la computacion
cuantica, podemos suponer (y supondremos) que E es de dimension fini-
ta.

En términos matematicos, el espacio de estados de X es el espacio pro-
yectivo asociado a E, PE, y el estado (punto) correspondiente a x se sue-
le denotar [x]. En fisica se suele denotar |x) (notacién “ket” de Dirac).

» Six € E— {0}, |x) = |x). Es decir, todo estado se puede representar
por un vector unitario u = X.

» Dos vectores unitarios uy u’ representan el mismo estado siy sélo si
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u' = e'Pu paraalgin ¢ € R.
Superposicion cuantica
Siu,u' € E —{0}, el estado
[Su+S'u)
se suele denotar (jabuso de notacion!)
$lu) + &'u’)
y se dice que es superposicion de |u) y |u’) (con coeficientes & y &').
Por ejemplo, siu; (j =0,..,n — 1) es la base estandar de C", y § € C",
podemos poner
1§) = 1Soto + -+ n_1Upn_q)
= &olwg) + -+ &1 |Upn_1)
=$0[0) + -+ $pqln — 1)

(usualmente se escribe |/} en lugar de |u;)).
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Q2 (g-Observables)

» Un g-observable de X es un conjunto de pares
A= {aj,Ej},j =1, ...,r, tales que:
Los a; son numeros reales distintos (valores del observable); y
Los E; son subespacios vectoriales de E, 2 a 2 ortogonales, con
E =@, E. O

Una observacion o medida de A, cuando el estado de X es |u), consiste en

2
(i)  seleccionar un valor a; con probabilidad p; = ‘nEju‘ , Y

(ii) cambiar el estado |u) de X al estado | nEju)).

En particular, si u € E;, entonces la observacion suministra a; con proba-

bilidad 1y X permanece en el estado |u).

2 2
Nota. 3;p; = 3; |mpu| = |S;mpul = ul? =1.



14

» A cada observable A se le pueden asignar el operador autoadjunto

A= Zj ajPEj. Reciprocamente (teorema de representacion espectral),

todo operador autoadjunto A : E — E da lugar a un observable formado
con sus valores propios distintos a; y los correspondientes subespacios

Ei = Eaj de vectores propios. O

En lo que sigue no distinguiremos entre las dos representaciones.
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Ejemplo (Eventualidades). Si F es a subespacio de E, la proyeccidon orto-
gonal Pr: E - F es un observable con valores 1y 0: E; =F,E, = F*.
Los observables de esta forma se denominan eventualidades. También
son importantes los observables de la forma {{1,F},{—1,F*}}, o
Pr — Pp1.

Z
X
Ag Horno

\
E

Campo magnético

no uniforme

lzquierda:Experimento de Stern-Gerlach (1922).
Derecha, arriba: Polarizacion de la luz. Abajo: Espectro del He
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Q3 (Dinamica unitaria)

» Si X esta en un ambiente no-reactivo (i.e., el ambiente no es afectado
por X) en el intervalo temporal [0, t], existe un operator unitario

Ui E > E

tal que u; = Usuy representa el estado de X en el instantetsiuy € E
representa el estado de X en el instante £t = 0. ]

Si U, = e "t siendo H un observable, decimos que la evolucién es ha-
miltoniana, y que H es el hamiltoniano del sistema.

. ot . .
Nota. U U = e~ iHt(g=iH)T = g-iHtp+iHTt — Ig
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Q4 (Entrelazamiento)

» Si X' es un segundo sistema cudntico, y E' es el espacio que lo caracte-
riza, entonces E ® E’ es el espacio que caracteriza el sistema compuesto

Y x Y, O

De los estados de la forma |[u @ u') = |u)|u') se dice que son estados
compuestos. Los otros estados de X * X' son estados entrelazados (en-
tangled). Por ejemplo, si |u,) y |u,) son estados ortogonales de X, y |ug)
y |u}) estados ortogonales de X', entonces

[uy @ up +uy Q uy) = |ug)lug) + [ug)luy)

es un estado entrelazado.
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g-bits (qubits)

Los estados de una particula de espin % (sistema (1) se pueden pensar
como los puntos de una esfera S? de radio 1 (en unidades apropiadas).

» £l espacio asociado a este sistema (Q1) es HY = C2 (espinores).

Este hecho se puede argumentar como sigue.
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= |dentifiquemos & = x + iy € C con el punto (x,y,0) € R3 y conside-
remos el punto P = P¢ de

2 ={(x,vy,z) € R3|x* +y? + z? = 1}

obtenido por proyeccion estereografica desde N = (0,0,1):

2x 2 x2+y2-1
p= ( Y Y )

X2+y241 x2+y24+1" x2+y2+1

Poniendo P, = N, se tiene una biyeccion entre C = C U {0}y S2.
La aplicacion inversa viene dada por

(x,v,2) |—>—+l—
y

—Z 1—z

Si ponemos x + iy = /x2 + y2e'? =1 — z2¢'%, entonces

= +i = /1+Ze“P = el® Cot— (6 = PN).
1-z 1-z 1-z
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= Por otra parte también tenemos C =~ PC? = P(é, pues cualquier
(&o,¢,) € C? es proporcional a un unico vector de la forma (1,¢)

cuando &g =0 (& =¢&,/&), y a(0,1)siéy =0, con lo cual tenemos
una aplicacion

C-Pc,&Em [(1,8)=10)+¢|1), o~ ](0,1)=]1).
La aplicacion inversa es la aplicacion dada por

|(S(0: 51» — fo|0) - §1|1> — {9(1/50 Sl fo #+ 0

OOSif():O

Finalmente, la identificacion S? =~ C = P(é queda descrita por las relacio-

nes:

X . v
(x,y,z)|—>|0)+(—+i 4 )|1)=|0)+el‘Pcot§|1)

1—2z 1—2z
= sin§|0)+ei‘Pcos§|1) L, siz # 1;

N = (0,0,1) ~ |1).
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Comentario. La esfera S#, con la estructura de P@1, se conoce como la es-
fera de Riemann. En la literatura sobre computacion cuantica se suele
llamar esfera de Bloch.

o 0) +il1)

0)
p = e 72sin(2)]0) + '/ cos(4)|1)
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» £n C?, dos puntos antipodades de S? son ortogonales.

Hemos visto que el punto P = (x,y,z) € S? considerado como un esta-
do (punto de P(é), es representado por el vector

p — (S,gC),S = Sin€/2’ cC = COSH/Z,f — ei(p.

La misma regla nos da que el punto antipoda P* = (—x,—y, —Zz) es re-
presentado por el vector pt = (¢, —¢s), y (p| pt) = sc —sc = 0. O

Comentario. El observable m, — m,1 nos indica que la probabilidad de

p
hallar que el espin es |p), cuando el estado de £V es |p’), es

! 2 !
7" = [p'Ip)I? = cos®

. . a 1+cosa  1+xx'+yy'+zz
siendo cosa = P - P’ (es decir, cos? =, = Zyy ). Estas

afirmaciones se comprueban sin dificultad con simples calculos.
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g-Registros

Por el axioma Q4 el espacio H™W =~ HO ® .. Q@ HD =~ 2" es el espa-
cio asociado al sistema 2 = ¥ « ... x 31 (n términos) compuesto de

n sistemas (1. Diremos que () es un g-registro de orden n.

Por el axioma Q3, la evolucién temporal de ™ viene dada por una ma-
triz unitaria de orden 2™.

S W Juan lIgnacio Cirac. Fisico espafiol (Manresa,

= | 1965) que trabaja en Alemania. Lider mundial en
el campo de la informacidn cuantica y sus apli-
caciones. ...

http://www.arbolmat.com/juan-ignacio-cirac/
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COMPUTACION CUANTICA EN TERMINOS MATEMATICOS

e n numero entero positivo (numero de bits o g-bits)
e j numero entero positivoen 0+ (2" — 1)
® jijo * Jn—1Jn €Xpresion binaria de j
U=5j2"" + -t jno12 + jn)
e HM™ = C2": espacio de g-vectores de orden n .
Son vectores complejos @ = };; a;u; = },; a; |j) (notacién de Dirac) de

2™ componentes:

[ Ao ] (1] (0] 0]
a
a= E1 : uo — E) — |0>’ ul — % — |1>’ uzn_l — ? — |2Tl — 1)
| dpn_1] 10 10_ 1.

e Sib=)b;j|j)esotrog-vector,y c € C,

a+ b = Z](a] + b]) |]> , CA = Z] Caj |]>, (Cllb) = Z] C_l]b]
(Jlk) = 6 (|0}, [1), ..., |2™ — 1) es una base ortonormal )



Ejemplo (n = 1)
a=ay|0)+ aq|l) = [ZS] = a [(1)] + a4 [(1)]

Ejemplo (n = 2)
a = ay|0) + a{|1) + a;|2) + az|3)
= a0o|00) + a01|01)_+_ a10|10_) + a11|1_1?

(A | Aoo 1 0 0
_ a1 _ |Qo1| _ 0 1 0
— az - alO - a’OO 0 + a’Ol 0 + alO 1 + all
as | A11 10 0] 10
Proposicion

b
jaJ2) = ljn) ® lj2) = n)lj>), donde [7] @ | 2] =

Corolario. H® ~ HO Q HD .

:Hooo:

_aO bO_

agbyq
aby |

la,b, |




Demostracion

0)®10) =[] ® 5] =
0@ 11 =[] ®}] =
D10 =[;]®]]=

e =[]el]]=

:HOOO: :OHOO: :OOHo: :OOOH:

=100)

=101)

= [10)

= [11)



En general, H™ ® H®) = g+n') con
i) ® (Zjrarli)) = Zjr ajay [j2™ +j')
= Zj,j, a;a;, i’

En particular se tiene

H® ~ O ® ... Q HD Concatenacion de las
expresiones binarias

U1 Jn-1Jn? = J1) Q@ = & ljn-1) & |jn) dejvyj'.

— |]1> |jn—1>|jn>
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g-Computaciones

SiU = [ujk] es una matriz, su traspuesta es UT = [ukj] y su adjunta
Ut = [a,,] = UT.

Una g-computacion de orden n es una matriz

U= [ujk]OSj,an , Ui € C, tal que UUT = [,n

(esto es, U es una matriz unitaria de dimensién 2™: U € U(2™) = U™M).

e SiU,VeU™ VU eU™yU~1 = Ut Enotras palabras,
Identidad. [,» € U™,
Composicion. La composicion de dos g-computaciones de orden n es
una g-computacion de orden n; vy
Reversibilidad. La inversa de una g-computacion de orden n es una g-
computacion de orden n.
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Un g-input para una g-computacion U es un vector a € H™ tal que
(a|la) = 1 (vector unitario).

Ejemplo: h™ = (|0) 4 |1) + - + [2" — 1)) /V/2"
El g-output de una g-computacion U es el vector (unitario) b = Ua.
Ejemplo.SiU e U™y U' € U™ entonces U ® U': UMD donde
WRUHUN'N »UINHUL).
Similarmente, si U € UM, entonces U®™ € UM, donde
U®n|j> — U|j1> U|j2>"‘ U|jn>-

Ejemplo (g-computacion asociada a una computacion clasica). Dada una
computacion cldsica de orden n, f: B* - B™ (B = {0,1}), podemos defi-
nir una aplicacién lineal Us: H™ — H™ por Us|j) = |f(j)). Sif es re-
versible, entonces Ur es una g-computacion. Diremos que Ur es la g-

computacion correspondiente a la computacion clasica reversible f.
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Ejemplos (n = 1). Una g-computacion de orden 1 es una matriz
UeUD, ie. una matrizde la forma

. Ug Uq
—_ K04 7 7 —
U=¢e¢ — 1, L_L()]’ a € R, ug,u; € C, ugug + uquq = 1.
U [Clo] _ pia[ Yo% + 1_‘1“1]
b —Uiag + Uga
7 e ia uO ul . . e o
Nota. Es facil comprobar que e _i;. 17| €s unitariay no es dificil ver
1 Yo

toda matriz unitaria de orden 2 tiene esta forma.

Comentario. Las Unicas computaciones clasicas reversibles1 — 1 son la
identidad (b — b) y la negacion (b — 1 + b).
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Casos especiales: a) Matrices Pauli

w=fy r=o=} Qhr=o=[} JJz=a=[7 I

= X[|0)=11), X[1)=10) [X=NOT =N

Nota. Las matrices de Pauli son auto-adjuntasy X? = Y? = Z? = [,.

b) Matriz de Hadamard
o %H _ﬂ {I0> = (10) + [1)/V2
1) = (10) = 11)/V2
Pondremos HADAMARD[n] = H®™: |j; -+ j,) & Hljy) - H|j,)
c) Matrices de desplazamiento de fase (phase shift)

[ 07_ igple@? 0
S“_[O eioc]_e [ 0 eia/z

En particular, S =S8/, = [(1) (l)] Y T =51,4 = [(1) i2/4]

e
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Ejemplos (n = 2)

Sea U € UMW, Definimos C1,(U) € UP como sigue:

. . . , . [Ugo U
C12(U)10j2) =10j2), Ci2(U)ILj2) =[1)U]j2). Si= ucl’g uiﬂ entonces
1 0 0 0 °
O 1 0 O :
ClZ(U) | 0 0 wuy, ug ‘Jl> ®
L 0 0 uyp uqqd , pS
72) N

En particular ponemos C;, = C;,(N):
C1210j2) =10j2), Ci211j2) =[D[1+ j3) -

No cambia el segundo bit o lo niega segun

que el primer bit sea 0 o 1. Es una negacion
conditional (CONTROLLED-NOT=CNOT)

Co1 =
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C,1(U) se define de manera analoga. Por ejemplo,

0100
_ 11000
CZI_CZI(N)_ O O 1 O
0O 0 0 1.
1 0 0 O]
_ {0 et 00
Cr1(a) = C1(Sy) = 00 1 0
0 0 0 1.

Ejemplo (Teorema de no-clonacion). No existe ninguna g-computacion U
de orden 2 que satisfaga U(|b)|0)) = |b)|b) para cualquier |b) € H.

En efecto, consideremos |h) = p(|b) + |b'), b’ =1+ b, p = 1/32; el
calculo siguiente indica que la existencia de U lleva a una contradiccion:

[k} h) = p?(Ib)|b) + [b) D) + [} D) + |b')|b))

U(|h)|0)) = { pU(|bY|0) + [B')]0)) = p(|b)|B) + |b')|B')).
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g-Observaciones (o medidas)

a € H™ un vector unitario (g-estado actual).

L={l,.. L }c{],.. n}

SiM = m;m,--m, es un vector binario de ordenr, sea Eyy € H™ el
subespacio generado por los |j) tales que j, =M, j, = jiji, = ji.- En-

tonces el conjunto de pares {M,Ey}, M € B", es un observable A4; .

Una g-observacion de los g-bits de las posiciones L es una g-observacion
de 4;, que denotaremos M, (a). Dado que al!: = 2j,=m 4j|j) = g, a,
M; (a) queda definida por dos efectos: (i) Seleccién de un M € B" con
probabilidad p,, = |aﬁ4|2 y, (ii) si M es el resultado obtenido, el g-estado

a se cambia por el g-estado |aﬁ”).

s . N1
Los vectores a}’ serdn denominados colapsos de M, (a).
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Ejemplos. Consideremos el cason = 3. En la observacion del g-bit 3,
M5 (a), hay dos valores posibles, 0y 1, sus colapsos son

ag = Zjljz a;j. j,0lj1J20)y as = Zjljz aj. j,1lj1J21) (a = ag + az)
2 2
y sus probabilidades p, = |a3|” yp, = |ad]".

Similarmente, para M;3(a) se tienen cuatro resultados posibles y los co-
rrespondientes colapsos son

ai% — aTOSerS> + a?"lSlrlS> (r)S € B)/

con probabilidades

—_ rs|2
prs = |aizl
Nétese que a = aj§ + ai3 + al3 + a3 = Y, s als.

Ejemplo. En el caso de medir todos los g-bits, M¢; (@), los valores po-

sibles son los 2™ numeros m € B™, los colapsos son los vectores a,,,|m)y
la probabilidad del resultado m es p,, = |a,,|°.
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g-Procedimientos

Un g-procedimiento es una secuencia de acciones, cada una de las cuales
es 0 una g-computacion o una g-observacion, que se aplican sucesiva-
mente al g-estado, inicialmente |0 ... 0).

Puesto que los g-procedimientos se disefian para producir resultados,
usualmente la ultima accion es una g-observacion.

Comentarios. Siendo las g-observaciones procesos aleatorios, en general
los g-procedimientos son probabilisticos. Esto conlleva que se ha de
comprobar si el resultado suministrado satisface las condiciones requeri-
das y repetir el g-procedimiento mientras no las cumpla.

En algunos casos puede ser exacto, en el sentido que la probabilidad del
resultado es 1.



g-Procedimientos elementales

0.

qg-Memoria

Para el g-estado a. Input: I(a). Por defecto, |0 ... 0).

. Rotaciones de un qg-bit, R;(U), U € UM (puertas U)

R,(U)]011) = [0) U[1) |1).

. Negaciones controladas N,  (puertas CNOT)

| ool o Ogeee Yo |l ooedgee)
| ool 1) |ee 1, o0 -ee)

. M;(a)

Suministra un M € B” con probabilidad p,, = |a¥
memoria en el g-estado u(al?).

|2

37

y pone la g-
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g-Algoritmos

Un g-algoritmo es un g-procedimiento formado uUnicamente con g-
procedimientos elementales. La complejidad de un g-algoritmo es el nu-
mero de g-procedimientos (elementales) que lo componen.

De un g-algoritmo se dice que es interno si no contiene g-observaciones.

Un g-algoritmo es exacto si la probabilidad de su output es 1, y probabi-
lista en otro caso.

Ejemplo (Trasposicion de 2 g-bits)

SwWAP[j, k] ) I k) j)—e
|

Cixr Ck,j» G - "

Comentario. SWAP es interno y su complejidad es 3.
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Teorema (Universalidad de las g-puertas U y CNOT)
Toda g-computacion se puede realizar mediante un g-algoritmo interno.

Diremos que un g-algoritmo es restringido si las operaciones R;(U) que
aparecen sélousan U € {H, S, T}, siendo

_ 111 1 _ 1 o _ 1 0
H = ﬁ[1 _1]' S = Sz = [() i]’ I'=5n/4 = [0 ein/4] '
Teorema (Universalidad aproximada de las g-puertas H,S, T y CNOT)

Toda g-computacion se puede realizar, con tanta aproximacion como
deseemos, mediante un g-algoritmo interno restringido.

La idea basica de la demostracion es que toda U € U™ se puede aproxi-
mar, con cualquier precision que deseemos, por un producto cuyos facto-
res son matrices de {H, S, T}.

Comentario. Todo algoritmo clasico se puede traducir de manera sencilla
en un g-algoritmo con la misma complejidad.
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COMPUTADORES CUANTICOS

De las observaciones precedentes se sigue que para ejecutar g-
programas de orden n en un soporte fisico basta disponer de un registro

cuantico 2™ e “implementaciones” de las operaciones

M, (a)

Ci(U)[conU =H, S =S5;/2, T = 5;/4 en el caso restringido]

Ci
Un computador cudntico (de orden n) es un registro cuantico £(™ dotado
de capacidad para efectuar tales operaciones. Un computador de esta

naturaleza permite realizar (o aproximar tanto como queramos) cualquier
g-computacion.



ALGUNOS EJEMPLOS DE Q-ALGORITMOS
QFT
La transformada de Fourier discreta de H™ es el operador lineal

F:H™ - H®, Flj) = =5, £¥k)

. j/on i /on—1 . .
siendo & = &, = e?™/2" = ¢™/27 " En forma matricial,

'1 1 - 1 7
K m

szn% f : St: ,p=1/\/2m=2"—1,
1 fm fmz_

Proposicién. F € U™,

Demostracion:

] . =i (j’—j)k ={1 Si j’ =]
(FINFID ) = 52§ 0Sij %]

vaque,sil #0, Y2 o1&tk = ((fl)zn -1)/(¢'-1) =0.

41
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QFT™
FOR [ € {1, ...,n}
R;(H)
FORs € {1,..,n — [}
Cras1(Sn/25)
ForRl € {1,...,[n/2]}
swap[l,n — [ + 1].

Teorema. QFT computa F." Su complejidad es 0(n?).

Nota. La clasica transformada de Fourier rapida, para vectores de dimen-
sion 2", tiene complejidad 0 (n2™).



Ejemplos. a)n = 1. En este casoé =e™ =—1,F =p E
que coincide con el valor suministrado por QFT.
b)n = 2. Tenemos & = e™/?
Fljij2) = p* Dk k, iUr24i2)kazrka) ) k)
— pZ Zkl k, j2J1kat2]2k t)2k; |k1>|k2>
— pZ Zkl,kz(_l)jlkz (_1)j2k1ij2k2|k1>|k2>
= PZ(Zkl(—l)jzkl|k1>)(2k2(—1)j1k2ij2k2|k2>)
= p2(10) + (=1)72|1))(]0) + (=1)/2i/2|1)).
Por otra parte, QFT equivale a |la secuencia

Ri(H),R.2,R,(H), SWAP[1,2],

= [y por tanto

la cual transforma |jj,) = |j1)|j2) como sigue:
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Uiz = p(10) + (=1)71|1))1j2) = p(|0) + (—1)J1iJ2|1))|),)

= p([0) + (=1)72i%2|1)) p(]0) + (=1)72]1))
= p?(10) + (=1)72[1))([0) + (=1)72i72|1)).

El siguiente diagrama es una representacion grafica de la QFT de orden 4:

.
[

wo ()

S~ S~ T ——

H

Ry

R

R3

.

%

]
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Generador aleatorio de nimeros en el intervalo 0 -- (2" — 1) con
distribucion uniforme

RANDOM
1(h™) = H®"|0 ... 0)
M(h™) ™

Notese que (j|h(””'))2 =1/2".

Comentario. H®™|0 ...0) = H|0) - H|0) = %H’f(m) + 1))

1 . .
= m Ljyjnlft) o lin)

1 .
= =il = h(™,
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g-algoritmo de Deutsch

Sea f:B"™ — B una aplicacién, y supongamos que sabemos que es o bien
constante o bien equilibrada (esto significa que los conjuntos f~1(0)y
f~1(1) tienen el mismo cardinal). El Problema de Deutsch consiste en
decidir cual de las dos posibilidades es la que realmente se da.

Comentario. En el procedimiento clasico pueden ser necesarios hasta
2"~1 + 1 pasos para la decision (complejidad exponencial).

El g-algoritmo de Deutsch es exacto y su complejidad es lineal:

DeuTscH[f] " |la) =HADAMARD[N] |a)
a) = Np41/0...0)[0) M = M{l,...,n}l“)
a) =HADAMARD|a) IEM =0
a) = Ufla) THEN Constante
ELSE Equilibrada.

Uss HM x HD — H® x HO por |j)b) = )b + f())).
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g-algoritmo de Grover

Supongamos que f: B™ — B es una aplicacion, y que f(j) = 0 para todo
J excepto para un valor desconocido j = t. Con un algoritmo clasico, la
complejidad de hallar t es O(2™). El g-algoritmo de Grover halla t con

una complejidad 0(+/2™).

Si Uz es la g-computacion definida en el g-algoritmo de Deutsch y pone-
0)Sij=0

— g®n Rdn
—1j) Sij£0 yD = H<"GyH*", entonces

s Gl - |

GROVER[f]"*°
la) = H®(n+1)Nn+1(|0 ..0)[0))
// la)y = p™(X;1))(10) — 1))

REPEAT EVZ"‘
la) = D Uf |a)

M{l,...,n} |a>
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g-algoritmo KITAEV (Estimacion de fase)

Dado un operador unitario Uy un vector propio |u) de U, este g-
algoritmo halla una buena aproximaciéon @ de la fase ¢ del correspon-
diente valor propio e?™¢,

Kitaev[U, u] ™’
0. - [0,,)|u)
1. HADAMARD[m] - |h™)|u)

2. forlel..mdo
-1
Cm—l+1(U2 )
3. QFTT[m]



49
g-algoritmo SHOR-FACTOR[N] (1994)

Se basa en una idea clasica (recuadro) que se puede ilustrar con un ejem-
plo. Sea N = 86896487673559693. Comox” = 1mod N, x" — 1

Buscamos un numero al azaren 1.. N: es divisible por N. Siendo
x =random(N)-> 69813111236634346 |x" — 1= (x"/2 — 1)(x"/2 + 1)
_ /2 _
y calculamos (sid = mcd(x, N) > 1, d|N) |° d = mcd(x”/ 1,N) > 1
— r/2
r = ordy(x)-> 14482747786857258 | ° d =med(x™/2 +1,N) > 1.
) o Sid < N, d esundivisorde N.
(r es el menor niUmero entero positivo

Encasod = N, se repite el
tal que a” = 1 mod N; si r es impar, proceso.

repetir el proceso). Ahora hallamos
X =x"? —1mod N ->43106655282912388 y
d = mcd(X, N)->102205879

es un divisor. De hecho es un divisor primoy N/d = 850210267 también
lo es: |la factorizacion de N es 102205879 * 850210267.
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En el g-algoritmo SHOR-FACTOR[N] todo funciona como en el algoritmo an-
terior, excepto que ordy(x), que es exponencial en el nimero n de bits
de N (n = [log, N]), se calcula con el g-algoritmo SHOR-ORDER (polindmi-
co enn). A su vez, el elemento esencial de este algoritmo es el g-

. . . s N8
algoritmo de estimacion de fase.

Peter W. Shor (1959).
Nevanlinna Prize (1998)
| Godel Prize (1999)

/A , . Polynomial-time algorithms for prime factorization and
-
W discrete logarithms on a quantum computer

= SIAM Journal of Computing 26 (1997), 1484-1509.
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Ejemplo (Estados EPR). Un estado posible de un g-registro de orden 2 es

@) = % (100) +]11)).

Tales estados son entrelazados y se llaman estados EPR. (Einstein, Podo-

Isky, Rolfsen, 1935).

Supongamos que el primer g-bit esta en Ay el otro en B. Si Ay B miden

sucesivamente su g-bit, resulta que obtienen el mismo resultado:

En efecto, el estado |a) colapsa en |00) o en |11) seglin que
A mida 0 o 1, respectivamente (i.e., la proyeccion ortogonal

normalizada de |a) en el espacio {|0b)} es |00), y en el espa-
cio {|1b)} es |11)).

Al a |B
0/]00)|0
1/]11)|1

Comentario. Esta situacion desconcertdé a sus descubridores, Einstein,

Podolski y Rolfsen (y a cualquier desde entonces) por aparecer como ‘ac-

cion fantasmal a distancia’ (‘spooky action at a distance’).
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Teleportacion

Las técnicas de computacion cuantica permiten transferir el estado de un
g-bit en A al mismo estado de un g-bit en B (el estado desaparece en Ay
aparece en B). He agui un esbozo de del procedimiento.

= Sea |u) = a|0) + B|1) el estado (desconocido) de un g-bit en A que
deseamos teleportara B.

* Sea |a) = \/%(|OO) + |11)) un estado EPR compartido por Ay B.

= A aplica C12 al estado
lu)|a) = [aIO) (]J00) + |11)) + B|1) (J0O) + |11))], obteniendo

ﬁ[oz|0> (]00) + [11)) + BI1) (J10) + [01))].

= Seguidamente A aplica H al primer bit y obtiene

%[a(|0) + (1)) (]00) +11)) + B(|0) — 1) (]10) + |01))],

qgue se puede escribir en la forma,



2

1[|00> (a|0) + B|1)) + |01) (a|1) + B|0)) + ]
110) («|0) — B|1)) + |11) (a|1) — B]|0))
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= Ahora A mide los g-bits 1 y 2. La tabla que sigue muestra, para cada
uno de los resultados posibles, el estado del g-bit en B:

Resultado 00 01 10 11
Estado B a|0) + B|1) | a|1)+ B|0) | «|0) — B|1) | a|1l)— B|0)
Accion en B I X YA XZ

= Finalmente B puede reproducir el estado |u) en su g-bit si conoce el
resultado de la medicion efectuada por A (00, 01, 10 0 11) sin mas que

aplicar las acciones I, X, Z o XZ, respectivamente.
1 [)
u){

2
3

N9

b—e

"o,

Os

W:0> W:ﬁ |¢:2>

X2z |¥)
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COMENTARIOS FINALES

Paralelismo cuantico

Esta caracteristica es la posibilidad de inicializar una g-computacion en
estados tales como h™ = (|0) + |1} + - + | 2" — 1)) /+/2":

B Este estado contiene (de hecho es una suma normalizada de) todos
los nuUmeros de n bits.

B Por tanto, cualquier operacion del computador cuantico actua sobre
todos los numeros simultaneamente. Esto “explica” por qué un
computador cuantico puede ser mucho mas rapido que un compu-
tador clasico.

B En general, el éxito de los g-algoritmos (como el de factorizacion de
Shor, por ejemplo) se basa en que, tras su ejecucion, las amplitudes
de los “numeros utiles” son grandes, al tiempo que las de los demas
son peguenas.
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El problema de la decoherencia
Esta dificultad tiene su raiz en el hecho que las interacciones con el en-
torno pueden “perturbar” rapidamente los estados de (™ (“entrelaza-

miento” incontrolado entre los estados del entorno y de (™).

Tales dificultades en la ruta hacia la construccion de computadores cuan-
ticos son de naturaleza fisica y tecnoldgica. La investigacion de muchos
laboratorios de todo el mundo esta enfocada a estos problemas, con
progresos continuos en muchas direcciones:
http://en.wikipedia.org/wiki/Timeline of quantum computing

(se puede percibir una explosion de actividades en los ultimos anos, y
muy especialmente desde 2006).

Véase también http://en.wikipedia.org/wiki/Quantum computer para

una descripcion de mas de una docena de lineas de investigacion dirigi-
das a la realizacion de computadores cuanticos.


http://en.wikipedia.org/wiki/Timeline_of_quantum_computing
http://en.wikipedia.org/wiki/Quantum_computer
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NOTAS

N1 (p. 35) Observemos que:
1) Los M € B" son los valores propios del operador (diagonal) A; definido por
ALljYy = jLli)
2) El espacio de vectores propios correspondiente a M es
Hﬁ",& = espacio generado por {|j) | j, = M};
3) a! es la proyeccién ortogonal de a sobre Hﬁ",&

Por tanto, una g-observacion es un caso particular de la nocién general de g-medida de
un g-observable.

N2 (p. 42) La complejidad de QFT es 0(n?). Si ponemos
Rim = Cni(Sy/pm-)y m=1+1,..,n,
entonces QFT equivale a la siguiente sucesion de acciones:
Ri(H),Ry3, ..., Ry p,
R,(H),Ry3,....,R, p,



’

Rn—l(H)i Rn—l,n'
Ry (H),
sWAP[1,n], swapP[2,n — 1], ...,swAP[v, V'],

dondev = |n/2]yVv' =[n/2]+ 1.

Las trasposiciones finales invierten el orden de los g-bits:

|i1 in) - |in i1>-
N3 (p. 42) La demostracion es un calculo:

2mijk

Flj) = p" Eiste o |k)

..(k1  k k
= " Sy ien € R k)

Zﬂijkl
=p" Zkl,...,knEB Qi=1e 2 |kp)

2mij

= PP @4 ([0) + e T [1)).
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] ] ] — j - l_l 7 7 .
Peroé = ]2—';+]2’;_i + - +%)+ numero entero, con lo cual el l-ésimo factor del

producto tensorial en la expresion es igual a
|0) + eimUn/2' 7)) .. giMin-q-1)|1)
En consecuencia
Flj) = p™(10) + e™/r|1))(]0) + e™n/2e™n-1]1)) -
= (]0) + eTijn/2"70 .. emiz/2gmii1)
Si escribimos este producto en orden inverso, con un p para cada factor, obtenemos
p(]0) + emin/2" 7t .. omif2/2gmiin) p(|0) 4 eTn/Z"TE .. gTil2) ...
p(10) + emn/Zemin=1[1)) p(]0) + e™n|1}),
con lo cual el factor [-ésimo es igual a
P (|0) + emiin/2" 7t eﬂijl+1/28ﬂijz|1>) —R,_, R H|j,)

donde Rg significa, para el [-ésimo g-bit, C;g;(Sr/25 ).
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N4 (p. 45) La relacidon entre fisica cuantica y aleatoriedad es también objeto de trabajos
tedricos y experimentales. Una muestra reciente:

S. Pironio, A. Acin, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, S.
Olmschenk, D. Hayes, L. Luo, T. A. Manning , C. Monroe:

Random numbers certified by Bell’s theorem.

Nature 464, 15 April 2010.

N5 (p. 46) Veamoslo con mas detenimiento. Consideremos un g-computador de orden
n + 1y consideremos las acciones siguientes:

1. la) = Npy1(10) - [0)[0)) = [0) - [0}[1) .
2. |x) = HOMDq) = pn*1 327010 )(|0) — [1)).
3. Definimos Uz: H™ x H® — H™ x HO por |j)|b) = |j)|b + f(j)), esto es, el g-
procedimiento correspondiente a f(j, b) = (j,b + f(]')).
Sea |y) = Uslx) = p™* 1 225N AFG)) — 11+ F()))
= P (Z5 =D/ A0) — 1)),

4. |z)=(H®"®12)|y). Después de algunos calculos obtenemos que |z) =

PP (T k(DT DIk ) (10) — [1)).
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Sea aj = p?"*1Y(—=1)/*H0), el coeficiente de |k)(|0) —[1)). Sif es constante,

a, =0parak #0ya, = (—1)Dp. Sif es equilibrada, entoncesa, = 0. En conse-
cuencia
1z) = {aOIO)(IO) — 1)) Si f es constante
Y0 Ak lk)([0) — 1)) Si f es equilibrada

5. Observemos los n g-bits. Si f es constante, el resultado es 0 con probabilidad 1, y si f
es equilibrada, entonces obtenemos un numero # 0.

N6 (p. 47) Para la fundamentacion de este algoritmo, que es bastante extensa, el lector
puede consultar el articulo online

J. Rué, S. Xambod
Mathematical essentials of quantum computing
Para otras presentaciones, consultese la Bibliografia.

N7 (p. 48) V. referencia N6.
N8 (p. 50) V. referencia N6.

N9 (p. 53) Recently this possibility has been demostrated with Yb atoms at a distance de
1m (Olmschenk et al. 2009). This opens great potential for quantum networks.



	c) Matrices de desplazamiento de fase (phase shift)

