

| Matrix functions                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function signature                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| matrix(A,m,n)<br>matrix([R])<br>matrix(A,[R])     | <p>matrix(A,m,n) creates the <math>m \times n</math> null matrix with entries in the ring A. If M = matrix(A,m,n), M can be populated by expressions of the form <math>M[j,k] = a</math>, where a is an element of A.</p> <p>If R is a sequence of lists of the same length, matrix([R]) constructs the matrix whose rows are the elements of R.</p> <p>If A is domain, matrix(A, [R]) is like matrix([R]) followed by a projection of its elements to A.</p> <p>Examples:<br/> <math>M = \text{matrix}(\text{Zn}(18), 2, 3) \Rightarrow</math><br/> <math>[[0 \ 0 \ 0]</math><br/> <math>[0 \ 0 \ 0]] \text{ :: Matrix[Z18]}</math></p> <p><math>\text{matrix}(\text{Zn}(17), [[3, 2, 35], [1, 1, 1]]) \Rightarrow</math><br/> <math>[[321]</math><br/> <math>[111]] \text{ :: Matrix[Z17]}</math></p> |
| null_matrix()<br>null_matrix(K)                   | It returns a matrix of 0 elements. If a domain K is given, the null matrix will have domain K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| I_(n,K)<br>I_(n)                                  | Given an integer n and a domain K, it returns the identity matrix of order n over the domain K. The default value of K is Zn(2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| permutation_matrix(p)<br>rd_permutation_matrix(n) | If p is a permutation of 0, 1, ..., n-1, this function creates the $n \times n$ matrix that has 0 everywhere, except at the entries $(j, p[j])$ that are set to 1. If p is an integer n, it agrees with rd_permutation_matrix(n) that selects p at random and returns permutation_matrix(p).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ncols(M)<br>nrows(M)<br>shape(M)                  | If M is an $m \times n$ matrix, we get m with nrows(M), n with ncols(M), and the pair (m,n) with shape(M).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| submatrix (A,J)<br>cosubmatrix(A,i,j)             | If A is a matrix and J is any sequence in range(ncols(A)), submatrix(A,J) constructs the matrix whose columns are the columns $A_{-j}$ for $j \in J$ . It is equivalent to $A[:, J]$ .<br>cosubmatrix(A,i,j) constructs the matrix obtained by deleting row i and column j of the matrix A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| cofactor(A,i,j)                                   | If A is a square matrix, it yields $(-1)^{i+j} * \det(\text{cosubmatrix}(A, i, j))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Matrix functions                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function signature                                                                                                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| splice(A,B)<br>stack(A,B)                                                                                                       | <p>If A and B are matrices and <code>nrows(A) = nrows(B)</code>, then <code>splice(A,B)</code> is the matrix <math>A B</math> obtained by appending each row of B to the corresponding row of A. The expression <code>stack(A,B)</code> is defined when <code>ncols(A) = ncols(B)</code> and it appends the rows of B to the rows of A.</p> <p>Examples:</p> <pre>A = I_(2,Z_); B = permutation_matrix([1,0]) splice(A,B) =&gt;   [[1 0 0 1]    [0 1 1 0]] :: Matrix[ZZ] stack(A,B) =&gt;   [[1 0]    [0 1]    [0 1]    [1 0]] :: Matrix[ZZ]</pre> |
| <code>hankel_matrix(s)</code>                                                                                                   | Given a list or vector S, this function constructs the square Hankel matrix H associated to S, which is defined by $H[i,j] = S[i+j]$ for $0 \leq i, j < (l+1)/2$ , $l = \text{len}(S)$ .                                                                                                                                                                                                                                                                                                                                                           |
| <code>parity_completion (G)</code><br><code>right_parity_completion (G)</code><br><code>left_parity_completion (G)</code>       | If G is a $k \times n$ matrix, it adds to the right of G the column formed by the negatives of the sums of the rows of G. Thus the sum of every row of the matrix so obtained is 0. The form <code>right_parity_completion (G)</code> is an alias of <code>parity_completion (G)</code> . <code>left_parity_completion(G)</code> works as <code>parity_completion(G)</code> , but with the extra column placed on the left of G.                                                                                                                   |
| <code>paley_matrix (F)</code>                                                                                                   | If F is a finite field of q elements, q odd, <code>paley_matrix(F)</code> yields the $q \times q$ matrix $(\text{legendre}(x_i - x_j))$ , where $x_0, \dots, x_{q-1}$ are the elements of F in their standard order.                                                                                                                                                                                                                                                                                                                               |
| <code>vandermonde (a, r)</code><br><code>vandermonde_matrix = vandermonde</code>                                                | If a is a vector, <code>vandermonde(a,r)</code> produces the vandermonde matrix of r rows associated to a.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <code>cyclic_matrix (g, n)</code><br><code>cyclic_generating_matrix(g,n)</code><br><code>cyclic_normalized_matrix (g, n)</code> | If g is a monic univariate polynomial of degree $n-k > 0$ dividing $X^n - 1$ , or its vector of coefficients, <code>cyclic_matrix(g,n)</code> yields the standard generating matrix of the cyclic code $C_g$ .<br><code>cyclic_generating_matrix(g,n)</code> yields the standard generating matrix of the cyclic code $C_g$ .<br><code>cyclic_normalized_matrix(g,n)</code> works like <code>cyclic_matrix(g,n)</code> , but the returned matrix is the normalized generating matrix of the cyclic code $C_g$ .                                    |
| <code>cyclic_control_matrix (g,n)</code><br><code>cyclic_normalized_control_matrix (g, n)</code>                                | If h is a monic univariate polynomial of degree $k > 0$ dividing $X^n - 1$ , or its vector of coefficients, <code>cyclic_control_matrix(g,n)</code> yields the standard control matrix of the cyclic code $C_g$ , $g = (X^n - 1) / h$ .<br><code>cyclic_normalized_control_matrix(g,n)</code> is the standard control matrix associated to <code>cyclic_normalized_matrix(g,n)</code> .                                                                                                                                                            |
| <code>components (x, F)</code><br><code>blow (h, F)</code>                                                                      | If F is a finite field and x an element of F, <code>components(x,F)</code> is the vector of components of x with respect to the standard basis of F over <code>base(F)</code> .<br>If F is a finite field and $h \in F^n$ , <code>blow(h,F)</code> delivers the vector obtained by replacing each element of h by the sequence of its components with respect to the standard basis of F over <code>base(F)</code> .                                                                                                                               |
| <code>blow (H, F)</code><br><code>prune (H, F)</code>                                                                           | If F is a finite field and H is an $r \times n$ matrix with entries in F, <code>blow(H,F)</code> constructs the matrix obtained by replacing each entry of H by the column of its components with respect to the standard basis of F over <code>base(F)</code> .<br>If H is any matrix, <code>prune(H)</code> eliminates each row of H that is a linear combination of the preceding ones.                                                                                                                                                         |
| <code>alternant_matrix (h, a, r)</code><br><code>alternant_matrix (P, A)</code>                                                 | The call <code>alternant_matrix (h, a, r)</code> provides the alternant control matrix of order r associated to the vectors h and a.<br>The call <code>alternant_matrix(P,A)</code> , where $P = [p_1, \dots, p_r]$ is assumed to be a vector of univariate polynomials and $A = [a_1, \dots, a_n]$ a vector, constructs the matrix $(p_i(a_j))$ .                                                                                                                                                                                                 |

| Matrix functions                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function signature                                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| scramble_matrix(A,k)                                                        | It returns a random $k \times k$ matrix M with elements in A with $ \det(M)  = 1$                                                                                                                                                                                                                                                                                                                                                            |
| rd_GL(n)<br>rd_GL(n,F)                                                      | It returns a random $k \times k$ invertible matrix M with elements in F. By default F is $\mathbb{Z}_n(2)$ .                                                                                                                                                                                                                                                                                                                                 |
| hadamard_matrix_recursive(n)                                                | It returns the hadamard matrix of order n computed recursively.                                                                                                                                                                                                                                                                                                                                                                              |
| hadamard(r)                                                                 | It returns the hadamard matrix of order n computed using the bdot function.                                                                                                                                                                                                                                                                                                                                                                  |
| paley_matrix (F)                                                            | If F is a finite field of q elements, q odd, paley_matrix(F) yields the $q \times q$ matrix $(\text{legendre}(x_i - x_j))$ , where $x_0, \dots, x_{q-1}$ are the elements of F in some order.                                                                                                                                                                                                                                                |
| hadamard_matrix_paley(K)                                                    | It computes a hadamard matrix with elements in K using the Paley construction.                                                                                                                                                                                                                                                                                                                                                               |
| conference_matrix(K)                                                        | It computes a conference matrix over a domain K.                                                                                                                                                                                                                                                                                                                                                                                             |
| hadamard_matrix_finite_field(K)                                             | It computes the hadamard matrix of the finite field K.                                                                                                                                                                                                                                                                                                                                                                                       |
| normalized_hamming_matrix(r,F)<br>normalized_hamming_matrix(r)              | It returns the normalized hamming matrix of rank r of elements in F. By default F is $\mathbb{Z}_n(2)$                                                                                                                                                                                                                                                                                                                                       |
| transpose(M)                                                                | If M is a matrix, with this expression we get the transpose of M.                                                                                                                                                                                                                                                                                                                                                                            |
| subs_element(A,x,y)                                                         | Given a vector or matrix A, it changes all the entries equal to x by the element y.                                                                                                                                                                                                                                                                                                                                                          |
| row_index(h,H)<br>col_index(h',H)<br>get_row=row_index<br>get_col=col_index | Let H be an $m \times n$ matrix. If h is one of the rows of H, row_index(h,H) gives the index of h in H (H seen as a list of vectors). If h is not a row of H, the returned value is [ ]. The expression col_index(h',H) works similarly for a column h' of H.                                                                                                                                                                               |
| rank(M)                                                                     | This expression yields the rank of a matrix M with entries in a field. It agrees with the dimension of the space spanned by the rows of M.                                                                                                                                                                                                                                                                                                   |
| det(M)<br>trace(M)                                                          | If M is a square matrix, these expressions deliver the determinant and the trace of M, respectively.                                                                                                                                                                                                                                                                                                                                         |
| GJ(S)                                                                       | It computes the special Gauss-Jordan of the matrix S.                                                                                                                                                                                                                                                                                                                                                                                        |
| kernel(H)<br>right_kernel(H)<br>left_kernel(H)                              | Let H be an $m \times n$ matrix with entries in a field F. The expression kernel(H) returns an $n \times k$ matrix whose columns form a basis of the space of column vectors x of length n such that $Hx = 0$ . This is also called the right_kernel(H). The space of row vectors x of length m such that $xH = 0$ is obtained by the function left_kernel(H), which produces an $r \times m$ matrix whose rows form a basis of left_kernel. |
| rd_linear_combination(G)<br>rd_linear_combination(G,K)                      | If G is matrix and K is a field (or a ring), rd_linear_combination(G, K) returns a linear combination of the rows of G with coefficients randomly chosen in K.                                                                                                                                                                                                                                                                               |
| rd_insert(A,r)                                                              | Auxiliary function for rd_GL: Given a list L, returns (e,r,a) where e = e_r, r is a random index of the list L and a is vector [0...0,rd nonzero(K), rd_vector(K,n-r-1)]                                                                                                                                                                                                                                                                     |
| rd_extend(A)                                                                | Auxiliary function for rd_GL: Given a $k \times k$ matrix A of rank k, it returns a $(k+1) \times (k+1)$ matrix of rank k+1.                                                                                                                                                                                                                                                                                                                 |

| Matrix functions                            |                                                                                                                                                   |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Function signature                          | Description                                                                                                                                       |
| <code>solve_linear_system(G,a)</code>       | Given a matrix G and a vector a, it returns the vector x that fulfills $Gx = a$ . <code>solve_linear_system</code> uses the LU descomposition and |
| <code>solve_pivot_matrix_system(G,a)</code> | <code>solve_pivot_matrix_system</code> uses the Gauss pivoting algorithm.                                                                         |
| <code>tensor(A,B)</code>                    | Given matrices A,B, it returns the matrix given by the Kronecker product of A and B.                                                              |