Matrix functions

Function signature

matrix(A,m,n)
matrix([R])
matrix(A,[R])

null_matrix()
null_matrix(K)

I_(n,K)

I_(n)
permutation_matrix(p)
rd_permutation_matrix(n)

ncols(M)
nrows(M)
shape(M)

submatrix (A,J)
cosubmatrix(A,i,j)

cofactor(A,ij)

Description

matrix(A,m,n) creates the m x n null matrix with entries in the ring A. If M = matrix(A,m,n), M can be populated by expressions of the form M[j,k] =
a, where a is an element of A.

If Ris a sequence of lists of the same length, matrix([R]) constructs the matrix whose rows are the elements of R.
If Ais domain, matrix(A, [R]) is like matrix([R]) followed by a projection of its elements to A.

Examples:

M = matrix(Zn(18),2,3) =

[[0 0 0]

[0 O 0O]] :: Matrix[Z18]

matrix(Zn(17),[[3, 2,35],[1,1,1]]) =

[1321]
[111]] :: Matrix[217]

It returns a matrix of 0 elements. If a domain K is given, the null matrix will have domain K.
Given an integer n and a domain K, it returns the identity matrix of order n over the domain K. The default value of K is Zn(2).

If p is a permutation of 0, 1, ..., n-1, this function creates the n x n matrix that has 0 everywhere, except at the entries (j,p[j]) that are setto 1. If p
is an integer n, it agrees with rd_permutation_matrix(n) that selects p at random and returns permutation_matrix(p).

If M is an m x n matrix, we get m with nrows(M), n with ncols(M), and the pair (m,n) with shape(M).

If Ais a matrix and J is any sequence in range(ncols(A)), submatrix(A,J) constructs the matrix whose colums are the columns A_jforj € J. Itis
equivalent to A[:,J].
cosubmatrix(A,i,j) constructs the matrix obtained by deleting row i and column j of the matrix A.

If Ais a square matrix, it yields (-1)**(i+j) * det(cosubmatrix(A,i,j))



Matrix functions

Function signature

splice(A,B)
stack(A,B)

hankel_matrix(s)

parity_completion (G)
right_parity_completion (G)
left_parity_completion (G)

paley_matrix (F)

vandermonde (a, r)
vandermonde_matrix = vandermonde
cyclic_matrix (g, n)
cyclic_generating_matrix(g,n)
cyclic_normalized_matrix (g, n)

cyclic_control_matrix (g,n)
cyclic_normalized_control_matrix (g, n)

components (x, F)
blow (h, F)

blow (H, F)
prune (H, F)

alternant_matrix (h, a, r)
alternant_matrix (P ,A)

Description

If A and B are matrices and nrows(A) = nrows(B), then splice(A,B) is the matrix A|B obtained by appending each row of B to the corresponding
row of A. The expression stack(A,B) is defined when ncols(A) = ncols(B) and it appends the rows of B to the rows of A.

Examples:
A=1_(2,Z_); B = permutation_matrix([1,0])
splice(A,B) =
[[1001]
[0 11 0]] :: Matrix[ZZ]
stack(A,B) =
(1 0]
[01]
[01]
[1 0]] :: Matrix[ZZ]
Given a list or vector S, this function constructs the square Hankel matrix H associated to S, which is defined by
H[j,k] = S[i+j] for 0 < i, j < (I+1)//2, ] = len(S).
If G is a k x n matrix, it adds to the right of G the colum formed by the negatives of the sums of the rows of G. Thus the sum of every row of the
matrix so obtained is 0. The form right_parity _completion (G) is an alias of parity_completion (G). left_parity_completion(G) works as
parity_completion(G), but with the extra column placed on the left of G.

If F is a finite field of q elements, q odd, paley_matrix(F) yields the q x g matrix (legendre(x_i—x_j)), where x_0,...,x_{q—1} are the elements of F in
their standard order.

If a is a vector, vandermonde(a,r) produces the vandermonde matrix of r rows associated to a.

If g is @ monic univariate polynomial of degree n—k > 0 dividing X*n-1, or its vector of coefficents, cyclic_matrix(g,n) yields the standard
generating matrix of the cyclic code C_g.

cyclic_generating_matrix(g,n) yields the standard generating matrix of the cyclic code C_g.

cyclic_normalized_matrix(g,n) works like cyclic_matrix(g,n), but the returned matrix is the normalized generating matrix of the cyclic code C_g.

If h is a monic univariate polynomial of degree k > 0 dividing X*n-1, or its vector of coefficents, cyclic_control_matrix(g,n) yields the standard
control matrix of the cyclic code C_g, g = (X*n-1)/ h.
cyclic_normalized_control_matrix(g,n) is the standard control matrix associated to cyclic_normalized_matrix(g,n).

If F is a finite field and x an element of F, components(x,F) is the vector of components of x with respect to the standard basis of F over base(F).
If F is a finite field and h € F*n, blow(h,F) delivers the vector obtained by replacing each element of h by the sequence of its components with
respect to the standard basis of F over base(F).

If F is a finite field and H is an rxn matrix with entries in F, blow(H,F) constructs the matrix obtained by replacing each entry of H by the column of
its components with respect to the standard basis of F over base(F).
If H is any matrix, prune(H) eliminates each row of H that is a linear combination of the preceding ones.

The call alternant_matrix (h, a, r) provides the alternant control matrix of order r associated to the vectors h and a.
The call alternant_matrix(P,A), where P=[p_1, ..., p_r] is assumed to be a vector of univariate polynomials and A=[a_1, ..., a_n] a vector,
constructs the matrix (p_i(a_j)).



Matrix functions

Function signature
scramble_matrix(A,k)

rd_GL(n)
rd_GL(n,F)

hadamard_matrix_recursive(n)
hadamard(r)
paley_matrix (F)

hadamard_matrix_paley(K)
conference_matrix(K)
hadamard_matrix_finite_field(K)

normalized_hamming_matrix(r,F)
normalized_hamming_matrix(r)

transpose(M)

subs_element(A,x,y)
row_index(h,H)
col_index(h',H)
get_row=row_index
get_col=col_index
rank(M)

det(M)

trace(M)

GJ(S)

kernel(H)

right_kernel(H)
left_kernel(H)
rd_linear_combination(G)
rd_linear_combination(G,K)
rd_insert(A,r)

rd_extend(A)

Description
It returns a random kxk matrix M with elements in A with |det(M)| = 1
It returns a random kxk invertible matrix M with elements in F. By default F is Zn(2).

It returns the hadamard matrix of order n computed recursively.
It returns the hadamard matrix of order n computed using the bdot function.

If F is a finite field of q elements, q odd, paley_matrix(F) yields the q x q matrix (legendre(xi—xj)), where x0,...,xq—1 are the elements of F in some
order.

It computes a hadamard matrix with elements in K using the Paley construction.

It computes a conference matrix over a domain K.

It computes the hadamard matrix of the finite field K.

It returns the normalized hamming matrix of rank r of elements in F. By default F is Zn(2)

If M is a matrix, with this expresion we get the transpose of M.

Given a vector or matrix A, it changes all the entries equal to x by the elemnt y.

Let H be an m x n matrix. If h is one of the rows of H, row_index(h,H) gives de index of h in H (H seen as a list of vectors). If h is not a row of H,
the returned value is [ ]. The expression col_index(h',H) works similarly for a column h' of H.

This expression yields the rank of a matrix M with entries in a field. It agrees with the dimension of the space spanned by the rows of M.
If M is a square matrix, these expressions deliver the determinant and the trace of M, respectively.

It computes the special Gauss-Jordan of the matrix S.

Let H be an m x n matrix with entries in a field F. The expression kernel(H) returns an n x k matrix whose columns form a basis of the space of
column vectors x of length n such that Hx = 0. This is also called the right_kernel(H). The space of row vectors x of length m such that xH =0 is
obtained by the function left_kernel(H), which produces an r x m matrix whose rows form a basis of left_kernel.

If G is matrix and K is a field (or a ring), rd_linear_combination(G, K) returns a linear combination of the rows of G with coefficients randomly
chosen in K.

Auxiliary function for rd_GL: Given a list L, returns (e,r,a) where e = e_r, ris a random index of the list L and a is vector [0...0,rdnonzero(K),
rd_vector(K,n-r-1)]

Auxiliary function for rd_GL: Given a kxk matrix A of rank k, it returns a (k+1)x(k+1) matrix of rank k+1.



Matrix functions

Function signature

solve_linear_system(G,a)
solve_pivot_matrix_system(G,a)

tensor(A,B)

Description

Given a matrix G and a vector a, it returns the vector x that fullfills Gx = a. solve_linear_system uses the LU descomposition and
solve_pivot_matrix_system uses the Gauss pivoting algorithm.

Given matrices A,B, it returns the matrix given by the Kronecker product of A and B.



