

Vector functions	
Function signature	Description
<code>vector = row_vector = create_vector</code> <code>vector(X), vector(K,X)</code> <code>col_vector(X) = vector(X,'c'), col_vector(K, X) = vector(K,X,'c')</code> <code>vec(x,K)</code> <code>vec(x)</code>	The function <code>vector(X)</code> transforms a list <code>X</code> to a Vector. If a field or ring <code>K</code> is supplied as a the first parameter, the elements of <code>X</code> are pushed to elements of it. The parameter ' <code>c</code> ' is to indicate that the constructed vector be a column vector.
<code>eps(n,j)</code> <code>eps(m,n,j,k)</code>	It returns <code>vector(K,x)</code> . By default <code>K = Zn(2)</code>
<code>vector_append(x,a)</code> <code>error_vector(n,E)</code>	If <code>n</code> is a positive integer and $0 \leq j < n$, <code>eps(n,j)</code> is the length <code>n</code> list whose j -th entry is 1 and all other entries are 0. If j is out of the indicated range, <code>eps(n,j)</code> is the length <code>n</code> list whose entries are all 0. Similarly, given positive integers <code>m</code> and <code>n</code> , and integers <code>j</code> and <code>k</code> such that $0 \leq j < m$ and $0 \leq k < n$, <code>eps(m,n,j,k)</code> creates an $m \times n$ matrix with all entries 0 except 1 in the (j,k) entry. If either j or k is not in the stated range, the call returns the $m \times n$ null matrix. Examples: <code>eps(4,1) ⇒ [0, 1, 0, 0]</code> <code>eps(3,4,2,2) ⇒</code> $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} :: \text{Matrix}[ZZ]$
<code>wt(x)</code> <code>hd(x,y)</code>	If <code>x</code> is a vector, this function is equivalent to <code>vector(list(X)+[a])</code>
<code>cyclic_shift(x)</code> <code>cyclic_shifts(x)</code>	If <code>E</code> is a list of pairs (j,v) , j in $0..n-1$, it creates a lenght <code>n</code> vector with values <code>v</code> at the positions <code>j</code> .
<code>reverse(x)</code> <code>support(x)</code> <code>pattern(x)</code> <code>histogram(x)</code>	If <code>x</code> is a list or vector, <code>wt(x)</code> is equivalent to <code>len(support(x))</code> . If <code>y</code> is another list or vector of the same length as <code>x</code> , <code>hd(x,y)</code> supplies the Hamming distance between <code>x</code> and <code>y</code> , which by definition is the cardinal of the set of indices <code>j</code> in the range of the lists/vectors such that $x_j \neq y_j$. If both <code>x</code> and <code>y</code> are vectors, it is equivalent to <code>wt(x-y)</code> . Given <code>x</code> a vector $[x_1 \dots x_n]$, <code>cyclic_shift(x)</code> returns $[x_n, x_1 \dots x_{n-1}]$. <code>cyclic_shifts(x)</code> return a list with all the different cycles of <code>x</code> . If <code>x = [x_1, \dots, x_n]</code> is a list or a vector, it return the reverse element $x' = [x_n, \dots, x_1]$
<code>convolution(a,b,k)</code> <code>convolution(a,b)</code>	If <code>x</code> is a list or vector, <code>support(x)</code> yields the list of the indices <code>i</code> in the range of <code>x</code> such that $x_i \neq 0$. The function <code>pattern(x)</code> and <code>histogram</code> returns a pair (s,v) , with <code>s = support(x)</code> and <code>v = vector([x[j] for j in s])</code>
<code>geometric_series (x, n, s0)</code> <code>geometric_series (x, n)</code>	If <code>a</code> and <code>b</code> are vectors or lists and <code>k</code> is an integer, this function returns the <code>k</code> -th coefficient of the convolution of <code>a</code> and <code>b</code> , namely the sum of the terms $a_j \cdot b_{k-j}$ for $j = 0, \dots, k$, with the conention that $a_j = 0$ if $j \geq \text{len}(a)$ and $b_{k-j} = 0$ if $k-j \geq \text{len}(b)$. Thus <code>convolution(a,b,k) = 0</code> if $k < 0$ or $k \geq \text{len}(a) + \text{len}(b)$. If <code>a</code> and <code>b</code> are lists, <code>convolution(a,b)</code> is the list $[\text{convolution}(a,b,k) \text{ for } k \text{ in range}(n)]$, where $n = \text{len}(a) + \text{len}(b) - 1$. For vectors, <code>convolution(a,b)</code> is equivalent to <code>vector(convolution(list(a),list(b)))</code> . The first call produces the vector $[s_0, s_0 \cdot x, \dots, s_0 \cdot x^{(n-1)}]$. The second is defined as <code>geometric_series(x,n,1)</code> , which therefore supplies the vector $[1, x, \dots, x^{(n-1)}]$.

Vector functions	
Function signature	Description
flip(x) flip(x,k)	<p>The first form transforms a list or a vector x into the list or vector whose components are $1-x[j]$, j in the range of x. For a binary list or vector, it concides with the result of swaping 0 and 1 (this explains the name given to the function). In the second form, k may be an index in the range of x, or a list/tuple/set of such indices and only the kth component, or the components with index in k, undergo the trasformation $1-x[j]$.</p> <p>Examples:</p> <pre> x = rd_vector(Zn(2),7) ⇒ [1, 0, 0, 1, 0, 0, 1] :: Vector[Z2] flip(x) ⇒ [1, 0, 1, 1, 0, 0, 1] :: Vector[Z2] flip(x) ⇒ [1, 0, 0, 1, 0, 0, 1] :: Vector[Z2] R = vector(Zn(5), list(range(9))) ⇒ [0,1,2,3,4,0,1,2,3] :: Vector(Z5) flip(R,(1,6)) ⇒ [0, 0, 2, 3, 4, 0, 0, 2, 3] :: Vector[Z5] flip(R) ⇒ [1, 1, 4, 3, 2, 1, 1, 4, 3] :: Vector[Z5] </pre>
invert_entries (a)	If a is a vector with no zero entries, it returns the vector $[1/a_1, \dots, 1/a_n]$.
prod (x, y) dot (x, y)	If x and y are lists or vectors of the same length n, prod(x, y) constructs the vector $[x_1 \cdot y_1, \dots, x_n \cdot y_n]$ and dot(x, y) yields the sum $x_1 \cdot y_1 + \dots + x_n \cdot y_n$
rd_vector(K,n)	Given a domain K and a integer n, it returns a vector of n elements in K.
rd_nonzero_vector(K,n)	Given a domain K and a integer n, it returns a vector of n elements in K with not all elements equal to zero.
null_vector() null_vector(K)	It returns a vector of length 0. If a domain K is given, the null vector will have domain K.
subs_element(A,x,y)	Given a vector or matrix A, it changes all the entries equal to x by the element y.
rd_error_vector (K, n, s) rd_error_vector (K, s)	If n and s are positive integers, $s \leq n$, and K is a field (or a ring), rd_error_vector(K, n, s) produces a vector in K^n of weight s whose non-zero positions and the corresponding values have been chosen randomly. The function rd_error_vector(K, s) is defined as rd_error_vector(K, q-1, s), where q is the cardinal of K.
bin_(x)	Given a list or a vector x, it returns a vector v equal to x changing the -1 elements by 0.
unbin_(x)	Given a list or a vector x, it returns a vector v equal to x changing the 0 elements by -1.
is_vector(v)	It returns if v is of type vector.
vector_resultant(v,w)	Given two vectors, it returns the resultant of the two vectors.
append_vector(*V)	Given a list of vectors it concatenates all the elements.