
WIT functions

Function signature Description
from wit:
resultant(f,g, var = None) Gives the resultant of the polynomials f and g with respect to var, which by default is the last variable of the the variables of f and g.

discriminant(f,var=None) Gives the discriminant of the polynomial f with respect to var, which by default is the last variable of the variables of f.

resultant_ext(f,g,var = None) Yields a list [R,A,B] where R = resultant(f,g,var) and A, B are polynomials such that R = A*f + B*g

imult(f,g,O=[0,0]) Computes the intersecton multiplicity of the curves f=0 and g=0 (f,g bivariate polynomials) at the point O.

homogenize(f,z='') Homogenizes f using the supplied variable z, which by default is z.
imultinfinity(F,G,O)
himult=imultinfinity

If F and G are homogeneous in 3 variables, it computes the intersection multiplicity of the curves F=0 and G=0 at the projective point O. Otherwise, if
F and G are affine polynomias, it computes the himult of the homogenization of F and G at the point O, which can be affine or projective.

from wit_power:
witdual(c) If c=[c1,c2,c3,...], it returns [-c1,c2,-c3,...]
vprod(x,y,d)
vprod(x,y)

If x and y are lists or vectors, it computes p = ([1]+x)*([1]+y) as if the factors were polynomials and returns d terms p[1:], with d = len(x)+len(y) by
default.

vpower(x,m,d)
vpower(x,m)

If x is a list or vector, it computes p = ([1]+x)**m as if [1]+x were polynomial and returns d terms of p[1:], with d = m*len(x) by default.

invert_vector(c, r)
invert_vector(c)

Given list or vector [c1,c2,...,cn], it computes the list or vector [s1,s2,..,sr] such that 1+s1*t+s2*t**2+...+sr t**r is inverse of 1+c1*t+c2*t**2+...+cr t**r
mod t**(r+1). By default r = len(c).

todd_numbers(n) Taylor coeffs of x/(1-e^{-x}) at 0: 1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600, 0, -3617
/10670622842880000, 0, 43867/5109094217170944000, 0, -174611/802857662698291200000

bernoulli_numbers(N)
BV_ = bernoulli_numbers
bernoulli_number(N)
B_=bernoulli_number

bernoulli_numbers(N) returns the first N+1 Bernoulli numbers, starting with 1, while bernoulli_number(N) given the N-th Bernoulli number.

bernoulli_polynomial(m,x='x') Delivers the m-th Bernoulli polynomial BP_m(x) (it has degre m+1) in the variable x.
high_bernoulli_numbers(N,k)
HBs_=high_bernoulli_numbers
high_bernoulli_number(N,k)

The first N order k Bernoulli numbers and the N-th order k Bernoulli number.

zhe(n,j) Atiyah's number.

s2n(s,,r='')
n2s(n,r='')

For the elementary symmetric polynomials (s) and the Newton sums (n) of the variables [x1,x2,...], s2n expresses the n's in terms of the s's and n2s
goes the other way around. See Fulton, p.56. Examples: s2n([s1,s2])=[s1,s1^2-2s2], n2s([n1,n2])=[n1,(n1^2-n2)/2].

c2p(c,r='')
p2c(p,r='')

If c=[c1,c2,...] and [n1,n2,...] are the elementary symmetric polynomials and the Newton sums of the variables [x1,x2,...], c2p maps c to p=[n1/1!,
n2/2!,...] and p2c goes the other way around. c2p(c:Vector):= c2p(c,length(c)).

monomial(X,E) Monomial on a list or vector of expressions X with given exponents E.

WIT functions

Function signature Description

partitions(n,d)
Given a list or vector d of positive interger, and an integer n, find the list of tuples of non-negative integers [m1,...,mr]
such that m1*d1+...+mr*dr=n (partitions of n with weights d1,...,dr).

monomial_list(X,d,n) Given variables x={x1,x2,...,xr} of degrees d={d1,d2,...,dr}, get the list of monomials x1^m1 ... xr^mr such that m1*d1+...+mr*dr=n. The list of the lists
{m1,...,mr} is returned by partitions(d,n).

symmetric_polynomial(x,k)
symmetric_polynomials(x,K='')

Elementary symmetric polynomial of degree k in the expressions x.
Vector of elementary symmetric polynomials of degree k in K for the expressions x.

newton_sum(x,k)
newton_sums(x,K)

Newton sum of degree k for the expressions x
Vector of Newton sums for the expressions x of degree k in K

stirling_numbers(n)
stirling_number_1st(n,k)
unsigned_stirling_number_1st(n,k)
stirling_number_2nd(n,k)

Returns the list of signed Stirling numbers of the first kind of order n.
Returns the k-th signed Stirling number of order n.
Returns the k-th unsighed Stirling number of order n.
Returns the k-th Stirling number of the second kind of order n.

wdeg(p,w) Degree of the multivariate polynomial p assuming that its variables have weights w.
chpad(v,r) Padded form of the Chern characters vector of the Chern polynomial v.

from wit_var_sheaf:
SH(r, c, d=None, name = None) Generic constructor of a Sheaf of rank r and chern character c; d is a truncating index; can be given a name using the 4th parameter.
sheaf(r,c,d='', name = '')
bundle(n,c,d='',name='') Vector bundle of rank n with Chern classes c = [c1,c2,...] on variety X
trivial_bundle(n,d='',name='') Creates the trivial bundle of rank n.
o_(d,k='',name='') The line bundle O(d).
O_(d='', name='')
adams(k, x) The k-th Adams operator acting on x
ch(F)
rk(F)

Thes functions supply the chern character and rank of F, respectively.

chern_character(F,T)
change_ch_2_size(F,k)
chern_vector(F, k = '')
chern(F, k, d = None)
segre_vector(F, d = None)
segre(F, k, d = None)
todd_vector(F, d = None)
todd(F, k)
todd_character(F, T)
Td

WIT functions

Function signature Description
Hom(F,G, k = '')
End(F)
hom = Hom
wedge(F, p, d = '')
symm(k,E)
koszul(F)

from wit_mor:
pairing(p,T,v)
codimension(x,X)
vector_bundle(P)
fiber_dim(P)
base_dim(P)
lowerdata(P)
lowerstar(f,x)
section(P)
projective_bundle(X,E,h='h',y=False, name =
'')

inclusion(B)
cl(B)
bundle_section(X,F, name = '')

Class Blowup and its functions
blowup_locus(W)

from wit_chow:
chi(X,F,T='T') Euler characteristic of the sheaf F as a polynomial in T

HRR(X,F,T='T') The Hirzebruch-Riemann-Roch theorem of the sheaf F on the space X as a polynomial in T

WIT functions

Function signature Description
from wit_lie: See witlets/wit_lie.ipynb. Refs: 2009-RichterGeber--Geometriekalküle

2008-Cecil--Lie Sphere Geometry With Applications to Submanifolds
2012-Benz--Classical Geometries in Modern Contexts Geometry of Real Inner Product Spaces
2018-Kisil--Lectures on Moebius-Lie Geometry and its Extension

is_pair = ispair is_pair(x) is True when x is a pair (x=(a,b)), otherwise False.
Lie_vector(M=(0,0),R=0)
LV = lie_vector=Lie_vector

Lie vector of the circle with center [Mittlepunkt] M and radius R in the Euclidean plane. For nonzero R, the orientation of the circle is encoded as the
sign of R. Points are encoded as circles of radius 0. By default, R=0, so it gives the Lie vector of M, which by default is (0,0). For the Lie vector of a
line, M = (a,b) has to be a normal vector and R = (u,v) a point on the line. The line is oriented by the direction vector (-b,a).

orientation(X) If X is the Lie vector of circle, this expression gives the sign of R.
Lie_metric(X,Y)
LM = lie_metric = Lie_metric
Lie_form(X)
LF = lie_form = Lie_form
lie_gram_matrix(*S)
is_lie_vector(X)
lie_type(X)
LT = Lie_type = lie_type
is_point(X)

is_line(X)
is_circle(X)

normalize(A)
reorient(A)
mirror = reorient

Back from Lie objects to Euclidean objects
circle(X)
line(X)
point(X)
Lie_angular_metric(X,Y)
LAM = lie_angular_metric =
Lie_angular_metric
crossing_type(X,Y)
crossing_angle(X,Y)
solve_quadratic(a,b,c)

WIT functions

Function signature Description
Lie_section(A,B,C)
lie_section = Lie_section

