

Geometric Algebra functions	
Function signature	Description: Examples in GA-tests/GA-main.ipynb
GA(domain,symbol,n,pos="", neg = "", order = (1,-1,0), i0=1)	Creates a Geometric Algebra over $K = \text{'domain'}$ of a linear geometric space of dimension n and signature (r,s,t) , $r = \text{'pos'}$, $s = \text{'neg'}$, $t = n - r - s$. The basis of linear space is denoted e_j , where $e = \text{'symbol'}$ and j runs in the range $i0 \cdot i0 + (n-1)$, with $i0=1$ by default. By default the order of this basis is positive vectors first, then negative, and finally null vectors.
scalar(x)	Yields the scalar coefficient of the multivector x .
dual(x)	In the non-degenerate case, it gives the dual of the multivector x , i.e., x^*I , where I is the pseudoscalar (I is the product of the basis elements).
hat(x) reverse(x)	These functions give the grade and reverse involutions of the multivector x , respectively.
evaluate(f,pos,value)	This function evaluates the coefficients (which may be polynomials) of the multivector f . In other words, it returns $\sum \text{evaluate}(f_I, \text{pos}, \text{value})e_I$.
scalar_product(x,y) = $x \wedge y$	If x and y are multivectors, this function computes its scalar product, namely the natural extension of the scalar product of the linear geometric space to the whole geometric algebra. It is equal to $\text{scalar}(x^*\text{reverse}(y))$.
dot(x,y) = $x y$	Gets the inner product of multivectors x and y .
algebra(domain, T,symbols,i0=1)	Constructs an algebra over $D = \text{'domain'}$ with product table given by the dictionary T , and with bases specified as the list of 'symbols'.
nalgebra(domain,T,symbol,n,i0=1,scalar=True)	