

Arithmetical functions	
Function signature	Description
even(n) odd(n) remainder(n,m)	For any integer n, those expressions do what is expected of them: the value of even(n) is True if n is even and False if n is odd. The expression odd(n) works the other way around. Since these functions can be (and are) defined in terms of the remainder expression $n \% 2$, the justification for including them is that they make code more readable. The same is true of remainder(n,m), which is defined as $n \% m$
dlen(n) blen(n)	These expressions deliver the number of decimal and binary digits of the positive integer n.
convert(n,b) hohner(D,b)	If n is an integer ≥ 2 , convert(n,b) returns the list of digits of the positive integer n relative to the base b. To get the integer n whose list of digits in the base b is D, we have hohner(D,b) (the name points to the well known generating rule used to find n).
factorial(n)	Computes $n!$
fib(N) fibonacci = fib	Delivers the Nth Fibonacci number.
gcd(*N) lcm(*N)	The expression gcd(*N) returns the greatest common divisor of a list of elements. The expression lcm(*N) returns the least common multiple of a list of elements.
igcd(m,n) ilcm(m,n)	The expression igcd(m,n) yields the greatest common divisor of the positive integers m and n. Similarly, their least common multiple is supplied by the expression ilcm(m,n). Both functions can be applied to a sequence of any number of integers. The names gcd and lcm can also be used, but they are resolved, when the parameters are integers, by calling igcd and ilcm.
extended_euclidean_algorithm(m, n) bezout	Given integers m and n, this function returns a triple (x,y,d) of integers such that $d = \text{igcd}(m,n)$ and $d = x \cdot m + y \cdot n$. It also works for polynomials. Bezout is an alias of extended_euclidean_algorithm.
test_bezout(r) test_bezout()	It computes two random integers of r digits a and b, and then it executes the bezout(a,b). The function returns 'Success' if $d == a \cdot x + b \cdot y$. Otherwise, it returns 'Failure'. By default r = 10.
test_gcd(m,n) test_gcd()	It computes a random integer of m digits a and a random integer of n digits b. Then, it computes $d = \text{gcd}(a,b)$. The function returns 'Success' if $\text{gcd}(a//d, b//d) == 1$. Otherwise it returns 'Failure'.
rabin_miller(n, k=25) strong_probable_prime(n,a) strong_pseudo_prime(n,a)	This function implements the Rabin-Miller primality test on the integer n. If it returns False, then n is composite. Otherwise it is prime with very high probability (not less than $p=1-1/4^k$, which for the default iteration number k = 25 is $p = 0.9999999999999991$). The Rabin-Miller test uses the function strong_probable_prime(n,a) that tells whether an odd integer n is a strong probable prime to the base a (cf. Crandall-Pomerance-2005, Algorithm 3.5.2), and strong_pseudo_prime(n,a) tests whether n is a strong probable prime base a but not prime.
is_prime(n) is_prime_power(n) is_perfect_power(n) is_square(n)	For a positive integer n, is_prime(n) is true if n is prime and false otherwise. By default, the test is based on the rabin_miller method. We can call is_prime(n,method='BPSW') or is_prime(n,method='miller'), which are equivalent to BPSW(n) and miller(n), respectively (these functions are described later in this section). Similarly, is_prime_power(n) is true if and only if n is a power of a prime number. Finally, for an odd integer n > 1, the expression is_perfect_power(n) produces a pair of integers (x,p) with the following properties: If n is not a perfect power, this pair is equal to (n,1), and otherwise p is prime and $n = x^p$. Although this function is very fast, its complete analysis is a bit involved and we refer to the note X180630 for details and references. An interesting exercise is to use it to produce a faster version of is_prime_power(n). Finally, the function is_square(n) decides whether the positive integer n is a perfect square.
primes_less_than(n)	Delivers the list of prime numbers that are less than the integer n.

Arithmetical functions	
Function signature	Description
next_q(n) next_prime(n) next_p = next_prime	For any positive integer n , the first expression gives the first prime power $\geq n$. Similarly, the second expression gives the first prime $\geq n$. Since there are more prime powers than primes, we have $\text{next}_q(x) \leq \text{next}_p(x)$.
pollard(n)	If n is composite, this function attempts to find a non-trivial factor of n . It is the basis for the factoring function ifactor(n).
ifactor(n) prime_factors(n)	The function ifactor(n) computes the prime factorization $p_1^{e_1} \cdot p_2^{e_2} \cdots$ of a positive integer n in the form of a table: {p1:e1, p2:e2, ...}.
	Note. Whereas in the table delivered by ifactor(n) the prime divisors of n do not appear in increasing order, they do so in the list produced by prime_factors(n)
divisors(n) tau(n) sigma(n)	For a positive integer n , the first expression supplies the list of positive divisors of n in increasing order. The number of such divisors is given by tau(n) and their sum by sigma(n).
phi_euler(n) lambda_carmichael(n)	Computes Euler's totient function of a positive integer n , which is the number of integers in $1, 2, \dots, n-1$ that are coprime to n . For the Carmichael λ -function of n , see Yan-2002, Definition 1.4.7.
mu_moebius(n)	It returns 0 if n has a repeated prime factor, and otherwise 1 or -1 according to whether the number of prime factors is even or odd.
is_square_free_n(x)	For a positive integer x , it returns True if it is not divisible by any perfect square greater than 1. Equivalently, if x is not divisible by the square of any prime, or also $\text{mu_moebius}(x) \neq 0$. There is a similar function is_square_free(f) that is specific for univariate polynomials f . The separation of the two makes the computation of either one much more efficient.

Arithmetical functions	
Function signature	Description
<pre>lucas_number(P,Q,x0,x1,N) lucas_chain_V(P,Q,m,n) lucas_U(P,Q,N) lucas_V(P,Q,N) lucas(N) pell(N) pell_lucas(N) jacobsthal(N) jacobsthal_lucas(N) mersenne(N)</pre>	<p>The main function of this group is <code>lucas_number(P,Q,x0,x1,N)</code>, where the parameters are integers, N non-negative. It returns the N-th Lucas number of the Lucas sequence associated to P, Q, x_0, x_1. In PyM it is defined as follows:</p> <pre>def lucas_number(P,Q,x0,x1,N): if N==0: return x0 if N==1: return x1 for _ in range(2,N+1): x0, x1 = x1, P*x1-Q*x0 return x1</pre> <p>The function <code>lucas_chain_V(P,Q,m,n)</code> is a variation of the function just described which is used in the BPSW test of primality and is implemented as follows (cf. Crandall-Pomerance-2005, Algorithm 3.6.7):</p> <pre>def lucas_chain_V(P,Q,m,n): mb = bin(m)[2:] # the binary string representing m v0 = 2; v1 = P j = 0 for b in mb: Qj = power(Q,j,n) if b == '1': v0,v1 = (v0*v1)%n-(Qj*P)%n, (v1**2-2*Qj*Q)%n else: v0,v1 = (v0**2-2*Qj)%n,(v0*v1)%n-(Qj*P)%n j = 2*j+int(b) return (v0,v1)</pre> <p>The other numbers are defined as follows:</p> <pre>lucas_U(P,Q,N) = lucas_number(P,Q,0,1,N) pell(N) = lucas_U(2,-1,N) jacobsthal(N) = lucas_U(1,-2,N) lucas_V(P,Q,N) = lucas_number(P,Q,2,P,N) lucas(N) = lucas_V(1,-1,N) pell_lucas(N) = lucas_V(2,-1,N) jacobsthal_lucas(N) = lucas_V(1,-2,N)</pre> <p>The N-th Mersenne number is 2^N-1 coincides with <code>lucas_U(3,2,N)</code> and can be obtained with <code>mersenne(N)</code>.</p>
<pre>baillie-pomerance-selfridge-wagstaff(n) BPSW = baillie-pomerance-selfridge-wagstaff</pre>	<p>This implements the primality test of Baillie, Pomerance, Selfridge, and Wagstaff, as explained in Crandall-Pomerance-2005, Algorithm 3.6.9.</p>

Arithmetical functions	
Function signature	Description
miller(n)	For an odd number $n > 1$, this function implements Miller's primality test (Crandall-Pomerance-2005, Algorithm 3.5.13). If it returns False, then n is composite. Otherwise, n is prime or the GRH is false.
lucas_lehmer(n) LL = lucas_lehmer	An implementation of the Lucas-Lehmer test (Crandall-Pomerance-2005, Algorithm 4.2.98697) to decide whether the n -th Mersenne number $2^n - 1$ is prime or not.
dec2bin(x, nb = 58) bin2dec(xb)	Let x be a real number, $x \in [0, 1]$. The function dec2bin(x, nb) returns the binary expansion of x up to nb bits. The default value of nb is 58, which encompasses the machine precision of Python floats. Conversely, bin2dec(xb) converts a string of bits into a real number in the interval $[0, 1]$ by interpreting that the k th bit b contributes with $b/2^k$.
floor(x) qfloor(x) frac(x)	If x is a real number, floor(x) or qfloor(x) is the greatest integer $\leq x$. In mathematics, it is often denoted $\lfloor x \rfloor$.
ceiling(x) qceiling(n,m) ceil = ceiling	If x is a real number, ceiling(x) is the least integer $\geq x$. Since it relies on the Python double precision floats, it is not indicated when higher precision is needed. An alternative is qceiling(n,m), n and m integers, $m \neq 0$, which returns the (exact) ceiling of the rational number n/m .
continuous_fraction(x,n)	If x is a positive real number, this function returns the n-term continuous fraction of x in the form of a list $[f_0, f_1, \dots, f_{n-1}]$, so that setting $x_0 = x$ we have $f_0 = \text{floor}(x_0)$ and then, for $j = 1, \dots, n-1$, $f_j = \text{floor}(x_j)$ with $x_j = 1/(x_{j-1} - f_{j-1})$. Si $x_{j-1} - f_{j-1} = 0$, la iteració s'atura i la funció retorna $[f_0, f_1, \dots, f_{j-1}]$. Example: continuous_fraction(π ,4) \Rightarrow [3,7,15,1].
continuous_fraction_value(F)	If F is a list of positive integers, this function computes the rational number corresponding to F regarded as a continuous fraction. Example: continuous_fraction_value([3,7,15,1]) \Rightarrow 355/113 :: Q. Note that 355/113 \Rightarrow 3.1415929 ..., whereas $\pi = 3.1415926 \dots$
power_check(n,x,k)	fast check whether $n == x^{**k}$
is_power(n,k)	Checks whether an odd integer n is a k -th power. Ex.: is_power(125,3) \Rightarrow 5
quo_rem(r0,r1)	It returns the quotient and residus of the division $r0/r1$
bit_product(a,b,r) bit_product(a,b) bdot = bit_product	Computes the scalar product of the first r -digits of the binary representation of a and b . By default r is the minimum between the binary digits of a and b .
cycle_factors(J)	Given a list of integers, it returns the cycles in the list.
Modular arithmetic functions	
order(k, n)	If $\text{gcd}(k,n) = 1$, the order of k in Z_n^* . Otherwise 'Error'
inverse(k,n)	If $\text{gcd}(k,n) = 1$, inverse(k,n) computes a positive integer k' such that $k' < n$ and $k'k \equiv 1 \pmod{n}$. Otherwise, "Error"

Arithmetical functions	
Function signature	Description
mult(n,k,b) bpow(n,k,b) quot(n,k,b) power(n,k,m)	The value of these expressions is $n \cdot k \bmod 2^b$, $n^k \bmod 2^b$ and $(m / k) \bmod 2^b$, respectively. In the latter case, k has to be odd. The function <code>bpow(n,k,b)</code> coincides with <code>power(n,k,2^b)</code> , as <code>power(n,k,m)</code> computes $n^k \bmod m$. These functions are used, for example, in the definition of the next two.
jacobi(a,n) legendre(a,n)	Computes the Jacobi symbol (a/n) of two integers a and n, which must be odd and positive. The PyM implementation is based on Algorithm 2.3.5 of Crandall-Pomerance-2005. If n is prime, it coincides with the Legendre symbol (a/n) , which is 0 if a is divisible by n and otherwise it is +1 or -1 according to whether a is or is not a quadratic residue mod n. It coincides with <code>legendre(a,Z_n)</code>
nroot(n,k,b) nsqrroot(n,b) sqrroot(a,F)	If n is an odd integer and k is either odd or 2, <code>nroot(n,k,b)</code> computes an integer r < 2^b such that $r^k \equiv 1 \bmod 2^b$, which is a kth root of $n^{\{-1\}} \bmod 2^b$. The function <code>nsqrroot(n,b)</code> is equivalent to <code>nroot(n,2,b)</code> . These funtions are used in the definition of <code>is_perfect_power(n)</code> . <code>sqrroot(a,F)</code> returns an element b in the domain F, such that $b^2 = a$ in the domain F.
cyclotomic_class (k, n, q) cyclotomic_class (k, n)	Assuming that q and n are positive integers and that $\gcd(q,n)=1$, the call <code>cyclotomic_class(k,n,q)</code> supplies the q-cyclotomic class of k mod n, which by definition is the list $[k, q \cdot k, q^2 \cdot k, \dots, q^{\{r-1 \cdot k\}}]$, where the operations are done mod n and r is the least positive integer such that $q^r \cdot k = 1$.
cycloctomic_classes (n, q) cycloctomic_classes (n)	Assuming that q and n are positive integers and that $\gcd(q,n)=1$, the function <code>cycloctomic_classes(n,q)</code> furnishes the list of all the q-cyclotomic classes mod n. Finally, <code>cycloctomic_classes(n)</code> is defined as <code>cycloctomic_classes(n,2)</code> .
product(X)	Given a list X, it computes the product of all the elements in X.