Arithmetical functions

Function signature

even(n)
odd(n)
remainder(n,m)

dlen(n)
blen(n)
convert(n,b)
hohner(D,b)
factorial(n)

fib(N)
fibonacci = fib
gcd(*N)
lcm(*N)
igcd(m,n)
ilcm(m,n)

extended_euclidean_algorithm(m, n)
bezout

test_bezout(r)
test_bezout()

test_gcd(m,n)

test_gcd()

rabin_miller(n, k=25)
strong_probable_prime(n,a)
strong_pseudo_prime(n,a)

is_prime(n)
is_prime_power(n)
is_perfect_power(n)
is_square(n)

primes_less_than(n)

Description

For any integer n, those expressions do what is expected of them: the value of even(n) is True if n is even and False if n is odd. The
expression odd(n) works the other way around. Since these functions can be (and are) defined in terms of the remainder expression n
% 2, the justification for including them is that they make code more readable. The same is true of remainder(n,m), which is defined as
n%m

These expresions deliver the number of decimal and binary digits of the positive integer n.

If nis an integer = 2, convert(n,b) returns the list of digits of the positive integer n relative to the base b. To get the integer n whose list
of digits in the base b is D, we have hohner(D,b) (the name points to the well known generating rule used to find n).

Computes n!
Delivers the Nth Fibonacci number.

The expression gcd(*N) returns the greatest common divisor of a list of elements.
The expression Icm(*N) returns the least common multipler of a list of elements.

The expression igcd(m,n) yields the greatest common divisor of the positive integers m and n. Similarly, their least common multiple is
supplied by the expression ilcm(m,n). Both functions can be applied to a sequence of any number of integers. The names gcd and Icm
can also be used, but they are resolved, when the parameters are integers, by calling igcd and ilcm.

Given integers m and n, this function returns a triple (x,y,d) of integers such that d = igcd(m,n) and d = x m +y n. It also works for
polynomials. Bezout is an alias of extended_euclidean_algorithm.

It computes two random integers of r digits a and b, and then it executes the bezout(a,b). The function returns 'Success' if d==a*x+b*y.
Otherwise, it returns 'Failure'. By default r = 10.

It computes a random integer of m digits a and a random intiger of n digits b. Then, it computes d = gcd(a,b). The function returns
'‘Success' if gcd(a//d,b//d) == 1. Otherwise it returns 'Failure'.

This function implements the Rabin-Miller primality test on the integer n. If it returns False, then n is composite. Otherwise it is prime
with very high probability (not less than p=1-1/4"k, which for the default iteration number k = 25 is p = 0.9999999999999991). The
Rabin-Miller test uses the function strong_probable_prime(n,a) that tells wheter an odd integer n is a strong probable prime to the base
a (cf. Crandall-Pomerance-2005, Algorithm 3.5.2), and strong_pseudo_prime(n,a) tests whether n is a strong probable prime base a
but not prime.

For a positive integer n, is_prime(n) is true if n is prime and false otherwise. By default, the test is based on the rabin_miller method.
We can call is_prime(n,method="BPSW') or is_prime(n,method="miller'), which are equivalent to BPSW(n) and miller(n), respectively
(these functions are described later in this section). Similarly, is_prime_power(n) is true if and only if n is a power of a prime number.
Finally, for an odd integer n > 1, the expression is_perfect_power(n) produces a pair of integers (x,p) with the following properties: If n
is not a perfect power, this pair is equal to (n,1), and otherwise p is prime and n = x"p. Although this function is very fast, its complete
analysis is a bit involved and we refer to the note X180630 for details and references. An interesting exercise is to use it to produce a
faster version of is_prime_power(n). Finally, the function is_square(n) decides whether the positive integer n is a perfect square.

Delivers the list of prime numbers that are less than the integer n.



Arithmetical functions

Function signature

next_q (n)
next_prime(n)
next_p = next_prime

pollard(n)

ifactor(n)
prime_factors(n)

divisors(n)
tau(n)
sigma(n)

phi_euler(n)
lambda_carmichael(n)

mu_moebius(n)
is_square_free_n(x)

Description

For any positive integer n, the first expression gives the first prime power = n. Similarly, the second expression gives the first prime = n.
Since there are more prime powers than primes, we have next_q(x) < next_p(x).

If n is composite, this function attemps to find a non-trivial factor of n. It is the basis for the factoring function ifactor(n).
The function ifactor(n) computes the prime factorization p1*{e1}-p2*{e2}--- of a positive integer n in the form of a table: {p1:e1, p2:e2,

L)

Note. Whereas in the table delivered by ifactor(n) the prime divisors of n do not appear in increasing order, they do so in the list
produced by prime_factors(n)

For a positive integer n, the first expression supplies the list of positive divisors of n in increasing order. The number of such divisors is
given by tau(n) and their sum by sigma(n).

Computes Euler's totient function of a positive integer n, which is the number of integers in 1,2, ..., n-1 that are coprime to n.
For the Carmichael A-function of n, see Yan-2002, Definition 1.4.7.

It returns O if n has a repeated prime factor, and otherwise 1 or -1 according to whether the number of prime factors is even or odd.

For a positive integer x, it returns True if it is not divisible by any perfect square greater than 1. Equivalenty, if x is not divisible by the
square of any prime, or also mu_moebius(x) # 0. There is a similar function is_square_free(f) that is specific for univariate polynomials
f. The separation of the two makes the computation of either one much more efficient.



Arithmetical functions

Function signature Description

lucas_number(P,Q,x0,x1,N) The main function of this group is lucas_number(P,Q,x0,x1,N), where the parameters are integers, N non-negative. It returns the N-th
lucas_chain_V(P,Q,m,n) Lucas number of the Lucas sequence associated to P, Q, x0, x1. In PyM it is defined as follows:
lucas_U(P,Q,N)

lucas_V(P,Q,N) def lucas_number(P,Q,x0,x1,N):

lucas(N) if N==0: return x0

pell(N) if N==1: return x1

pell_lucas(N) for _in range(2,N+1):

jacobsthal(N) x0, x1 =x1, P*x1-Q*x0

jacobsthal_lucas(N) return x1

mersenne(N)

The function lucas_chain_V(P,Q,m,n) is a variation of the function just described which is used in the BPSW test of primatlity and is
implemented as follows (cf. Crandall-Pomerance-2005, Algorithm 3.6.7):

def lucas_chain_V(P,Q,m,n):
mb = bin(m)[2:] # the binary string representing m
vOo=2;v1=P
j=0
for b in mb:
Qj = power(Q,j,n)
if b=="1"
v0,v1 = (vO*v1)%n-(Qj*P)%n, (v1**2-2*Qj*Q)%n
else:
vO,v1 = (v0**2-2*Qj)%n,(v0*v1)%n-(Qj*P)%n
j = 2%j+int(b)
return (vO,v1)

The other numbers are defined as follows:

lucas_U(P,Q,N) = lucas_number(P,Q,0,1,N)
pell(N) = lucas_U(2,-1,N)
jacobsthal(N) = lucas_U(1,-2,N)

lucas_V(P,Q,N) = lucas_number(P,Q,2,P,N)
lucas(N) = lucas_V(1,-1,N)

pell_lucas(N) = lucas_V(2,-1,N)
jacobsthal_lucas(N) = lucas_V(1,-2,N)

The N-th Mersenne number is 2*N-1 coincides with lucas_U(3,2,N) and can be obtained with mersenne(N).

baillie-pomerance-selfridge-wagstaff(n) This implements the primality test of Baillie, Pomerance, Selfridge, and Wagstaff, as explained in Crandal-Pomerance-2005, Algorithm
BPSW = baillie-pomerance-selfridge-wagstaff  3.6.9.



Arithmetical functions

Function signature
miller(n)

lucas_lehmer(n)
LL = lucas_lehmer

dec2bin(x, nb = 58)
bin2dec(xb)

floor(x)
gfloor(x)
frac(x)

ceiling(x)
gceiling(n,m)
ceil = ceiling

continuous_fraction(x,n)

continuous_fraction_value(F)

power_check(n,x,k)
is_power(n,k)
quo_rem(r0,r1)

bit_product(a,b,r)
bit_product(a,b)
bdot = bit_product

cycle_factors(J)

Modular arithmetic functions

order(k, n)
inverse(k,n)

Description

For an odd number n > 1, this function implements Miller's primality test (Crandall-Pomerance-2005, Algoritm 3.5.13). If it returns
False, then n is composite. Otherwise, n is prime or the GRH is false.

An implementation of the Lucas-Lehmer test (Crandall-Pomerance-2005, Algorithm 4.2.98697) to decide whether the n-th Mersenne
number 2*n-1 is prime or not.

Let x be a real number, x € [0,1]. The function dec2bin(x, nb) returns the binary expansion of x up to nb bits. The default value of nb is
58, which encompasses the machine precesion of Python floats. Conversely, bin2dec(xb) converts a string of bits into a real number in
the interval [0,1] by interpreting that the kth bit b contributes with b/2”k.

If x is a real number, floor(x) or gfloor(x) is the greatest integer < x. In mathematics, it is often denoted LxJ.

If x is a real number, ceiling(x) is the least integer = x. Since it relies on the Pyhton double precesion floats, it is not indicated when
higher precesion is needed. An alternative is gceiling(n,m), n and m integers, m # 0, which returns the (exact) ceiling of the rational
number n/m.

If x is a positive real number, this funtion returns the n-term continuous fraction of x in the form of a list [fO, f1, ..., fn-1], so that setting
x0 = x we have f0 = floor(x0) and then, for j = 1, ..., n-1, fj = floor(xj) with xj = 1/(xj-1 - fj-1). Si xj-1 - fj-1 = 0, la iteraci6 s'atura i la funcio
retorna [fO, f1, ..., fj-1].

Example:

continuous_fraction(m,4) = [3,7,15,1].

If F is a list of positive integers, this function computes the rational number corresponding to F regarded as a continuous fraction.
Example:

continuous_fraction_value([3,7,15,1]) = 355/113 :: Q.

Note that 355/113 = 3.1415929 ..., whereas 1 = 3.1415926 ....

fast check whether n==x**k
Checks whether an odd integer n is a k-th power. Ex.: is_power(125.3) = 5
It returns the quocient and residus of the division r0/r1

Computes the scalar product of the first r-digits of the binary representation of a and b. By default r is the mininum between the binary
digits of a and b.

Given a list of integers, it returns the cycles in the list.

If gcd(k,n) = 1, the order of k in Zn*. Otherwise 'Error’
If gcd(k,n) = 1, inverse(k,n) computes a positive integer k' such that k' < n and k'k = 1 mod n. Otherwise, "Error"



Arithmetical functions

Function signature
mult(n,k,b)
bpow(n,k,b)
quot(n,k,b)
power(n,k,m)
jacobi(a,n)
legendre(a,n)

nroot(n,k,b)
nsqroot(n,b)
sqroot(a,F)

cyclotomic_class (k, n, q)
cyclotomic_class (k, n)

cycloctomic_classes (n, q)
cycloctomic_classes (n)

product(X)

Description

The value of these expressions is n - k mod 24b, n*k mod 2*b and (m / k) mod 2"b, respectively. In the latter case, k has to be odd.
The function bpow(n,k,b) coincides with power(n,k,2”b), as power(n,k,m) computes n*k mod m. These functions are used, for
example, in the definition of the next two.

Computes the Jacobi symbol (a/n) of two integers a and n, which must be odd and positive. The PyM implementation is based on
Algorithm 2.3.5 of Crandall-Pomerance-2005. If n is prime, it coincides with the Legendre symbol (a/n), which is 0 if a is divisible by n
and otherwise it is +1 or -1 according to whether a is or is not a quadratic residue mod n. It coincides with legendre(a,Z_n)

If n is an odd integer and k is either odd or 2, nroot(n,k,b) computes an integer r < 2*b such that r*kn = 1 mod 2”b, which is a kth root
of n"{-1} mod 2*b. The function nsqgroot(n,b) is equivalent to nroot(n,2,b). These funtions are used in the definition of is_perfect_power
(n).

sqgroot(a,F) returns an element b in the domain F, such that b*b = a in the domain F.

Assuming that g and n are positive integers and that gcd(q,n)=1, the call cyclotomic_class(k,n,q) supplies the g-cyclotomic class of k
mod n, which by definition is the list [k, q-k,q*2-k,...,q"{r—1-k}], where the operations are done mod n and r is the least positive integer
such that gr-k=1.

Assuming that q and n are positive integers and that gcd(q,n)=1, the function cycloctomic_classes(n,q) furnishes the list of all the g-
cyclotomic classes mod n. Finally, cycloctomic_classes(n) is defined as cycloctomic_classes(n,2).

Given a list X, it computes the product of all the elements in X.



