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a b s t r a c t 

Deep learning models have been particularly successful with image recognition using Convolutional Neu- 

ral Networks (CNN). However, the learning of a contrast invariance and rotation equivariance response 

may fail even with very deep CNNs or by large data augmentations in training. 

We were inspired by the V1 visual features of the mammalian visual system to emulate as much as pos- 

sible the early visual system and add more invariant capacities to the CNN. We present a new quaternion 

local phase convolutional neural network layer encoding three local phases. We present two experimental 

setups: An image classification task with four contrast levels, and a linear regression task that predicts 

the rotation angle of an image. In sum, we obtain new patterns and feature representations for deep 

learning, which capture illumination invariance and a linear response to rotation angles. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Previous works indicate that pattern recognition in a deep

learning classification process does not guarantee the required

equivariance and invariance properties [13,14,26,27] . 

Convolutional Neural Networks (CNN), which were inspired

by neuroscience principles, capture three essential properties of

the primary visual cortex V 1: extraction of features from two-

dimensional data; spatial localization of the receptive field; and

shift equivariance in the position of the feature [18] . 

It is to be stressed, however, that visual neurons of the mam-

malian visual system are also resilient in front of equivariant trans-

formations such as local invariant response to some changes in

lighting and rotations [5,18,19] . 

To emulate as much as possible the early visual system and add

more equivariant capacities to the CNN, we have been inspired by

some physiological experimental results like those reported in [22] ,

including the stronger response to oriented lines and edges (local

even and odd signals, respectively) [5,19] . 

To move forward toward such functionality, namely to be able

to extract contrast invariant local features and to predict rotation
∗ Corresponding author. 
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ngles of images, one idea is to embrace suitable hypercomplex

eometric methods, in the sense of [16,20,24,35] . 

More specifically, in this work we propose what we call a

uaternion Local Phase CNN Layer ( Q 9 in this paper) and explore

he performance boost it provides when it is stacked in front of a

ery simple CNN. What we find is that the compound net features

ontrast invariance and the capability of ascertaining rotation an-

les. 

The remainder of the paper is structured as follows. In

ection 2 we report on recent related work and in Section 3 we

ecall background notions and notations needed later on. Of par-

icular relevance is Section 3.4 , in which we specify our approach

o the application of quaternionic local phases to image processing.

ur main theoretical contribution, namely the quaternionic local

hase layer Q 9, is the subject of Section 4 . The behaviour of Q 9 is

lso illustrated with images. The experimental setup, including the

ata used, is described in Section 4 and a summary of the results,

onclusions and future outlook can be found in Sections 6 and 7 .

he material on quaternionic phases used in the paper, particularly

n Section 3 and 4 , is recalled in the Appendix A . 

. Related work 

The use of hypercomplex NN has been mostly in shallow cases:

4,8,9,32] . 

https://doi.org/10.1016/j.patrec.2019.12.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.12.001&domain=pdf
mailto:dr.ulisesmoya@gmail.com
https://doi.org/10.1016/j.patrec.2019.12.001
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Table 1 

Synopsis of notations and conventions. 

Symbol 

Structure 

Meaning 

x 0 Array R ( M, N, P ) 

Input signal 

x = x l Array R ( M 

l , N l , P l ) 

l -th layer output 

w = w 

l Array R ( M 

l , N l , P l , Q l ) 

l -th layer weights 

b = b l Array R ( M 

l , N l , P l ) 

l -th layer bias 

σ σ : R → R 

Activation function 

C C : R ( M, N, P ) → R ( M 

′ , N ′ , P ′ ) 
Convolutional layer 

F F : R ( M, N ) → R ( M 

′ , N ′ ) 
Fully Connected layer 

Q Q : R ( M, N, P ) → H ( M, N, P ) 

x → x Q (see Eqs. (5) and (6) ) 

Q 9 Q 9: R ( M, N, P ) → R ( M, N , 9 · P ) 

x → [ φRGB , θ RGB , ψ RGB ] (see Eqs. (10) –(12) ) 
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1 See [3] for a Clifford Fourier Transform generalization. 
On the other hand, [17,36] formulate and implement quater-

ion convolution, batch normalization, weight initialization, and

ackpropagation for a deep quaternion CNN. The main difference

etween these references and our work is that we use the local

uaternion phases. In addition, we propose only one CNN layer, not

 full quaternion CNN. In fact, our experimental setup and CNN ar-

hitectures have different objectives. Their CNNs tests aim at clas-

ification tasks and do not consider contrast invariance or linear

esponse to rotations. Our CNNs architecture is designed to favor a

ystematic comparison with the performance of a traditional con-

olutional layer. To note that we care for maintaining the accuracy

cross all contrast degradation levels and not merely for getting

he best accuracy for one degradation. 

. Background 

.1. Equivariance and invariance 

The term equivariance tends to be used to refer to the pre-

ictable way in which features of a signal change under certain

ransformations: [14] . More formally, a function f : X → X is equiv-

riant with respect to a group of transformations G of X if 

f (g(x )) = g( f (x )) , (1)

or all x ∈ X and g ∈ G . 

For instance, one of the most important equivariant properties

f the mammalian visual system (measured by [22] ) is its equiv-

riance under rotations. Subsequently, many authors have been in-

erested in extending this property to NNs and CNNs: [7,13,14,21] . 

On the other hand, by invariance of a feature map f : X → Y we

nderstand (see [16] ) that 

f (g(x )) = f (x ) (2)

or all x ∈ X and g ∈ G . 

.2. Bio-inspired CNN 

For convenience, in this section we borrow from [31, Sec-

ion II.B; see also the references therein] the main properties of

he V1 simple cells: 

1. The V1 cells form the first layer of the hierarchical cortical pro-

cessing. 

2. They are insensitive to the color of the light falling on their

receptive fields. 

3. These neurons respond vigorously only to edges (odd-signal)

and lines (even-signal) at a particular spatial direction through

the orientation columns. 

In this work we use four main bio-inspired tools: the local

hase, (Quaternion) Gabor functions, the HSV color space and the

rtificial neural networks. Altogether, the proposed layer emulates

ome properties of V1 cells, as detecting edges (odd-signal) and

ines (even-signal) at a particular direction. In addition, our ap-

roach exhibits translation equivariance and contrast invariance in

bject recognition. 

.3. Notations 

The notations, structure and terminology we are going to use

re as in [31, Sections II.C and IV.C] . We define 1D (resp. 2D) mul-

ivectorial signals as C 1 maps U → G from an interval U ⊂ R (a re-

ion U ⊂ R 

2 ) into a geometric algebra G (see [35] ). For G = R ( G = C ,

 = H ) we say that the signal is scalar ( complex, quaternionic ). For

echnical reasons, we also assume that signals are in L 2 (that is,

he modulus is square-integrable). 
Table 1 presents a synopsis of the notation, structure and mean-

ng of the most important variables and functions concurring in a

eep CNN. See also [2,18,33] . 

.4. Quaternion local phase 

A quaternion local phase array x Q ( x, y ) ∈ H is associated to a 2D

ignal x = x (x, y ) ∈ R (where x, y ∈ U, U a region of R 

2 ). The com-

utation of x Q is inspired on the version of the Quaternion Fourier

ransform (QFT) proposed in [11] . 1 To explain how it works, it is

onvenient to introduce a few notations. 

A Gaussian filter g ( u 1 , u 2 ) in the frequency domain, rotated by

n angle α and with standard deviations σ 1 and σ 2 in the u 1 and

 2 directions, respectively, is defined by the formula 

(u 1 , u 2 ) = exp 

(
− u 

′ 2 
1 

2 σ 2 
1 

− u 

′ 2 
2 

2 σ 2 
2 

)
(3) 

here u ′ 1 = u 1 cos (α) + u 2 sin (α) and u ′ 2 = −u 1 sin (α) + u 2 cos (α) . 

Given a function f ( u 1 , u 2 ), which we regard as a filter in the

requency domain, we will also use the expression 

 � f (u 1 , u 2 ) = F 

−1 ((Fx ) · f (u 1 , u 2 )) , (4)

here F denotes the Fourier transform from the space variables ( x,

 ) to the frequency variables ( u 1 , u 2 ). 

Now letting ω 1 and ω 2 denote positive constant frequencies, x Q 
s defined as follows: 

 Q = x Qcc + i x Qsc + jx Qcs + k x Qss (5)

here 

 Qcc = x � g(u 1 , u 2 ) cos (σ1 ω 1 u 1 ) cos (σ2 ω 2 u 2 ) 

x Qsc = x � g(u 1 , u 2 ) sin (σ1 ω 1 u 1 ) cos (σ2 ω 2 u 2 ) 

x Qcs = x � g(u 1 , u 2 ) cos (σ1 ω 1 u 1 ) sin (σ2 ω 2 u 2 ) 

x Qss = x � g(u 1 , u 2 ) sin (σ1 ω 1 u 1 ) sin (σ2 ω 2 u 2 ) 

As a result, we have rotated Quaternion Gabor filters (see [11] )

hich also depend on the parameters α, σ 1 , σ 2 , ω 1 , ω 2 . The Ga-

or filters are well known bio-inspired feature extractors: [11,28–

0,32] . See Fig. 1 for an illustration. 

Now based on the Eqs. (A .7) –(A .10) of Appendix A , we can

ewrite the equation 5 as follows: 

 Q = | x Q | e iφx e kψ x e jθx , (6)
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Fig. 1. Quaternion filters from Eq. (5) . From left to right g ( u 1 , u 2 )cos ( σ 1 ω 1 u 1 ) 

cos ( σ 2 ω 2 u 2 ), ig ( u 1 , u 2 )sin ( σ 1 ω 1 x )cos ( σ 2 ω 2 y ), jg ( u 1 , u 2 )cos ( σ 1 ω 1 x )sin ( σ 2 ω 2 y ), 

kg ( u 1 , u 2 )sin ( σ 1 ω 1 x )sin ( σ 2 ω 2 y ). 

Fig. 2. From left to right: Original image, φRGB , θRGB , ψ RGB . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. In the first column φRGB , θRGB and ψ RGB . Each row presents the three com- 

ponents of each RGB phase representation. 

Fig. 4. In the first column ψ RGB with 0, 15, 30 and 45 degrees. Each row depicts 

the components of each ψ RGB . 

Table 2 

Comparison of the main characteristics of a standard convolutional layer C and 

our layer Q 9. Although Q 9 is not itself trainable, the learning is carried out, in 

any particular application, by the net to which it is coupled. 

Convolution Layer Comparison 

Characteristics C Q 9 

Hyperparameters 3 5 

Kernel shape α, σ 1 , σ 2 , ω 1 , ω 2 

Convolution domain space frequency 

Output domain space space 

Padding zero –

Nonlinear function ReLU arctan , arcsin 

Layer position Any First hidden 

Learning Yes No 

5

 

a  

b  

t  

c  

r  
where ( φx , ψ x , θx ) are the phases of the unit quaternion x Q /| x Q |. 

It is important to remark that the frequency domain convolu-

tion is scarcely used on CNN. There are two main reasons for this:

i) for N training weights, the complexity is of order N 

2 ; ii) the

Fourier transform is a global transformation, and it is not possi-

ble to correctly localize the features [6] . Previous works such as

[34] try to use the cosine transform in order to avoid the local

problem and [15] propose a Spectrum pooling and return to the

spatial domain to avoid both drawbacks for 3D data. 

4. Quaternion local phase layer Q 9 

The proposed convolution layer, Q 9, a quaternion local phase

layer, is described as follows: 

1. Create a Hue Saturation Value (HSV) array using the quaternion

phases, magnitude and constant 1 : 

φHSV = (φx , | x Q | , 1 ) , (7)

θHSV = (θx , | x Q | , 1 ) , (8)

ψ HSV = (ψ x , | x Q | , 1 ) . (9)

where 1 is an [ m, n ] array with all entries equal to 1. 

2. Transform the HSV images into RGB images: 

φHSV → φRGB , (10)

θHSV → θRGB (11)

ψ HSV → ψ RGB (12)

according to the standard conventions (cf. [1] , p. 304). See 

Fig. 2 for an illustration. Remark that φRGB enhances vertical

lines (yellow), that θRGB enhances horizontal lines (yellow), and

that ψ RGB features a dark blue all over the image. Fig. 3 illus-

trates the nine feature maps of φRGB , θRGB and ψ RGB . 

In our experimental setup, we notice that the phase ψ RGB is

sensitive to rotation. See Fig. 4 for an illustration of the three

channels of ψ RGB and their response to rotations. 

In the Table 2 we can compare a simple convolution layer with

the proposed layer Q 9 

5. Data and experimental setup 

We have used the MNIST dataset, see [25] and CIFAR10 [23] ,

in two main experimental setups: contrast invariance classification

and regression for equivariance response measurement. 
.1. Contrast invariance classification 

Table 3 shows the main characteristics of the degradation labels

nd the contrast values. The contrast reduction process was done

y first normalizing the pixel values from 0 to 1, and then rescaling

he pixel values to an interval [ d , 1] ⊂ [0, 1], which amounts to a

ontrast of (1 − d) . For instance, in the case d 1 the pixel values are

escaled to the interval [0.3,1], which amounts to a 70% contrast.
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Table 3 

Characteristics of datasets ( top ). Degradation la- 

bels and the corresponding contrast values used 

in our experiments ( bottom ). 

MNIST CIFAR10 

Characteristics Values Values 

Training set 50,000 40,000 

Validation set 10,000 10,000 

Test set 10,000 10,000 

Total of images 70,000 60,000 

Image shape [28,28,1] [32,32,3] 

Degradation Contrast (%) 

d 0 100 

d 1 70 

d 2 30 

d 3 10 

Table 4 

CNN Architectures for MNIST and CIFAR10 

classification task. The C layer and all the F 

layers have a ReLU as activation function. 

CNN classification architecture 

Layer Characteristics 

(0) Input Layer Input Image 

Shape [28,28,1]or [32,32,3] 

(1) First layer C Q 9 

Parameters [3, 3, 9] [28,28,4] 

Output [28,28,9] [28,28,9] 

Parameters Shape 

(2) FL [7056] 

(3) F 1 [256] 

(4) F 2 [128] 

(5) SMAX [10] 

Fig. 5. Example of degradation levels. From left to right: 100% contrast ( d 0 ); 70% 

( d 1 ); 30% ( d 2 ); and 10% ( d 3 ). 
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Table 5 

Experimental scheme for the classifica- 

tion task. 

Experimental set up 

Trained and Contrast Tested 

d 0 d 0 , d 1 , d 2 , d 3 
d 1 d 0 , d 1 , d 2 , d 3 
d 2 d 0 , d 1 , d 2 , d 3 
d 3 d 0 , d 1 , d 2 , d 3 

Table 6 

Experimental scheme for rotation 

for each image. 

Experimental rotation set up 

Set Angles (Degree) 

Train [0, 46] steps = 3 

Validation [1, 46] steps = 3 

Test [2, 46] steps = 3 

Table 7 

CNN Architectures for a regression task to get the 

rotation angle. The C and all the F layers have a 

sigmoid as activation function. 

CNN regression architecture 

Layer Characteristics 

(0) Input Layer Image 

Shape [28,28,1] or [32,32,3] 

(1) First layer C Q 9 

Parameters [3, 3, 9] [28,28,4] 

Output [28,28,9] or [28,28,9] or 

[32,32,9] [32,32,9] 

Parameters Shape 

(2) FL [7056] 

(3) F 1 [1000] 

(4) F 2 [64] 

(5) F 3 [32] 

(6) F 4 [8] 

(7) SG [1] 

o  

t

5

 

c  

1  

C

 

t  

l  

Fig. 6. Rotation examples for regression experimental setup from MNIST and CI- 

FAR10. The value of the angle in degrees. 
ig. 5 provides an illustration of the degradation levels d 0 , d 1 , d 2 ,

 3 for MNIST and CIFAR10 images. 

We trained and tested two very simple CNNs, one with a reg-

lar convolutional layer (C) and another with the Q 9 layer. Both

NNs have the same architecture, namely one convolutional layer

C), a flatten layer (FL), three fully connected layers (F) and a soft-

ax function (SMAX). See Table 4 for more details. 

Both CNNs were trained with the same hyperparameters: learn-

ng rate, 0.001; number of epochs, 100; loss function, categorical

ross-entropy; and optimizer, ADAM; for Q 9, α = 0 , σ1 = 4 , σ2 =
 , ω 1 = 0 . 5 , ω 2 = 0 . 5 . All source code is available at https://github.

om/asp1420/A- Bio- inspired- Quaternion- Local- Phase- CNN . It is

ritten in the Tensorflow framework with Keras as wrapper (see

12] ). 

The experimental setup is organized according to the scheme

ummarized in Table 5 , where d i ( i = 0 , 1 , 2 , 3 ) means a degrada-

ion degree. It is important to note that we tested the generaliza-

ion capacity of each of the trained models by running them not
nly on the corresponding degradation level set, but also on the

hree modified versions of it. 

.2. Regression for rotational response 

We created 100 data-sets (one for each image), by rotating ac-

ording to Table 6 . We trained, validated and tested with the first

00 (nonzero digits) from the MNIST and the first 100 images from

IFAR10. Fig. 6 presents an example of rotation data. 

We have used the CNN architecture presented in Table 7 . We

rained both CNNs for regression with the same hyperparameters:

earning rate, 0.001; number of epochs, 10 0 0; loss function, mean

https://github.com/asp1420/A-Bio-inspired-Quaternion-Local-Phase-CNN
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Table 8 

Experimental results on the classification task for all degradation labels on 

MNIST images. The last row displays the average accuracy. 

Test 

Train d 0 d 1 d 2 d 3 

C Q 9 C Q 9 C Q 9 C Q 9 

d 0 98.7 98.4 92.8 98.4 10.8 98.3 8.9 98.3 

d 1 87.0 98.5 98.4 98.5 11.4 98.4 11.4 98.5 

d 2 86.1 98.5 91.5 98.5 98.3 98.5 21.0 98.5 

d 3 81.6 98.4 82.1 98.4 91.7 98.4 97.8 98.4 

Avg 88.3 98.4 91.2 98.4 53.0 98.4 34.8 98.4 

Table 9 

Experimental results on the classification task for all degradation labels 

with CIFAR10. The last row displays the average accuracy. 

Test 

Train d 0 d 1 d 2 d 3 

C Q 9 C Q 9 C Q 9 C Q 9 

d 0 57.1 47.2 36.5 46.6 15.7 45.7 10.0 45.3 

d 1 41.5 46.9 56.9 47.3 25.6 47.3 10.0 46.9 

d 2 23.0 43.2 30.2 45.9 54.5 47.1 23.6 47.2 

d 3 13.6 38.2 16.3 42.5 27.0 46.8 43.8 47.5 

Avg 33.8 43.9 34.9 45.6 30.7 46.7 21.9 46.7 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Prediction of the rotation angle in steps of 3 degrees, from 0 to 45, over 100 

MNIST images at epoch 10 0 0. Note the low variance for Q 9. 

Fig. 9. Prediction of the rotation angle in steps of 3 degrees, from 0 to 45, over 100 

CIFAR10 images at epoch 10 0 0. 
squared error; optimizer, rmsprop ; activation function, sigmoid;

and for Q 9 we chose α = 0 , σ1 = 4 , σ2 = 4 , ω 1 = 0 . 5 , ω 2 = 0 . 5 . 

6. Results and analysis 

6.1. Contrast invariance (classification) 

Tables 8 and 9 show the best accuracy reached in the classifi-

cation tasks by the C and Q9 nets for MNIST and CIFAR10, respec-

tively. Each row shows the performance of both CNNs with dif-

ferent testing samples for a given training sample. As mentioned

previously, samples are grouped according to the different con-

trast levels. The values in bold indicate the best result. As seen

in Table 8 , the superiority of Q9 over C is conspicuous on MNIST

images for its high and virtually uniform accuracy. The gains for

CIFAR10 images are also quite uniform and, except for the diago-

nal slots d 0 − d 0 , d 1 − d 1 and d 2 − d 2 , very appreciable ( Table 9 ).

In sum, Q 9 exhibits invariance under contrast degradation while C

does not. 
Fig. 7. Error plot with the mean value per epoch of the loss function in the training 

process for each layer. We again see the superior performance of Q 9 versus C . The 

narrow curves show that variance for Q 9 is much smaller than for C . 
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.2. Rotational response (regression) 

The first comparison we can try on the performance of C and

 9 is the behaviour of the loss function. Fig. 7 is an error plot to

how the evolution of the mean value and the variance (as ver-

ical line of each point) of the loss function, respectively, for both

NNs across epochs. These figures show that the loss function con-

erges faster, and that it is more stable, for Q 9 than for C . Faster

onvergence and higher stability are desirable properties that have

 bearing, in particular, on a more efficient use of computing re-

ources. 

Figs. 8 and 9 show the rotation predictions over the 100 images

f each CNN at epoch 10 0 0. In addition a mean value of the pre-

iction and its variance are represented by an error curve. We see

hat the CNN with the normal convolution layer C has more out-

iers in the ranges (0–20) and (25–45) degrees than Q 9. In other

ords, the dispersion of the predictions is substantially lower for

 9 than for C . This result motivates us to explore in a future work

hether Q 9, or some variation of it, achieves an equivariant re-

ponse with respect to plane rotations. 
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. Conclusions and outlook 

The main objective of the article has been to propose a

ew bio-inspired quaternionic layer, Q 9, based on the kernel of

he quaternionic Fourier transform proposed by Thomas Bülow

11] and to compare its performance to that of a regular convo- 

utional layer in two types of computational experiments, one fo-

used on classification tasks and another on rotation prediction by

egression. Our layer has 9 channels and insures an invariant re-

ponse to high contrast changes with almost constant performance

n classification tasks even when the CNN is trained with quite dif-

erent contrasts. The Q9 layer also features a faster learning of im-

ge rotation angles than a regular convolution layer. We believe

hat the proposed layer could be useful to recognize or classify im-

ges in outdoor scenarios with haze with no data augmentation.

ne current drawback is that the C layer has a better performance

or CIFAR10 images in the case when the test set has the same

egradation level (with the exception of d 3 ) than the training set. 

Let us mention two lines of future inquiry: To seek how to in-

ure that the hyperparameters of the layer are learned automati-

ally, and to explore how to obtain an equivariant response to im-

ge rotations. 
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ppendix A. Quaternions 

The quaternion algebra H is a four dimensional real vector

pace with basis 1, i, j, k , 

 = R 1 � R i � R j � R k (A.1)

ndowed with the bilinear product (multiplication) defined by

amilton’s relations, namely 

 

2 = j 2 = k 2 = i jk = −1 . (A.2)

s it is easily seen, these relations imply that 

j = − ji = k, jk = −k j = i, ki = −ik = j. (A.3)

he elements of H are called quaternions , and i, j, k, quaternionic

nits . By definition, a quaternion q can be written in a unique way

n the form 

 = a + bi + c j + dk, a, b, c, d ∈ R . (A.4)

ts conjugate , q̄ , is defined as 

¯
 = a − (bi + c j + dk ) , (A.5)

nd its modulus , | q |, by | q | = 

√ 

q ̄q . 

A polar representation of q is defined by 

 = | q | e iφe kψ e jθ , (A.6)
here 

(φ, θ, ψ) ∈ [ −π, π) ×
[ 
−π

2 

, 
π

2 

)
×

[ 
−π

4 

, 
π

4 

] 
re the phases of q as defined in [10] and [11] . For a unit q , the

hase ψ is found to be 

 = −arcsin (2(bc − ad)) 

2 

. (A.7) 

f ψ = ±π
4 , set θ = 0 and 

′ = 

1 

2 

arctan 2 

(
2(−cd + ab) 

a 2 − b 2 − c 2 + d 2 

)
. (A.8) 

lse, 

′ = 

1 

2 

arctan 2 

(
2(cd + ab) 

a 2 − b 2 + c 2 − d 2 

)
, (A.9) 

= 

1 

2 

arctan 2 

(
2(bd + ab) 

a 2 + b 2 − c 2 − d 2 

)
. (A.10) 

ith this, e iφ
′ 
e kψ e jθ = ±q and if it is −q, set φ = φ′ + π mod 2 π .

ere, arctan 2 is the four quadrant arctan (see [11] ). 
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