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Deep learning models have been particularly successful with image recognition using Convolutional Neu-
ral Networks (CNN). However, the learning of a contrast invariance and rotation equivariance response
may fail even with very deep CNNs or by large data augmentations in training.

We were inspired by the V1 visual features of the mammalian visual system to emulate as much as pos-

MSC: sible the early visual system and add more invariant capacities to the CNN. We present a new quaternion
41A05 local phase convolutional neural network layer encoding three local phases. We present two experimental
41A10 setups: An image classification task with four contrast levels, and a linear regression task that predicts
65D05 the rotation angle of an image. In sum, we obtain new patterns and feature representations for deep
65D17 learning, which capture illumination invariance and a linear response to rotation angles.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Previous works indicate that pattern recognition in a deep
learning classification process does not guarantee the required
equivariance and invariance properties [13,14,26,27].

Convolutional Neural Networks (CNN), which were inspired
by neuroscience principles, capture three essential properties of
the primary visual cortex V1: extraction of features from two-
dimensional data; spatial localization of the receptive field; and
shift equivariance in the position of the feature [18].

It is to be stressed, however, that visual neurons of the mam-
malian visual system are also resilient in front of equivariant trans-
formations such as local invariant response to some changes in
lighting and rotations [5,18,19].

To emulate as much as possible the early visual system and add
more equivariant capacities to the CNN, we have been inspired by
some physiological experimental results like those reported in [22],
including the stronger response to oriented lines and edges (local
even and odd signals, respectively) [5,19].

To move forward toward such functionality, namely to be able
to extract contrast invariant local features and to predict rotation
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angles of images, one idea is to embrace suitable hypercomplex
geometric methods, in the sense of [16,20,24,35].

More specifically, in this work we propose what we call a
Quaternion Local Phase CNN Layer (Q9 in this paper) and explore
the performance boost it provides when it is stacked in front of a
very simple CNN. What we find is that the compound net features
contrast invariance and the capability of ascertaining rotation an-
gles.

The remainder of the paper is structured as follows. In
Section 2 we report on recent related work and in Section 3 we
recall background notions and notations needed later on. Of par-
ticular relevance is Section 3.4, in which we specify our approach
to the application of quaternionic local phases to image processing.
Our main theoretical contribution, namely the quaternionic local
phase layer Q9, is the subject of Section 4. The behaviour of Q9 is
also illustrated with images. The experimental setup, including the
data used, is described in Section 4 and a summary of the results,
conclusions and future outlook can be found in Sections 6 and 7.
The material on quaternionic phases used in the paper, particularly
in Section 3 and 4, is recalled in the Appendix A.

2. Related work

The use of hypercomplex NN has been mostly in shallow cases:
[4,8,9,32].
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On the other hand, [17,36] formulate and implement quater-
nion convolution, batch normalization, weight initialization, and
backpropagation for a deep quaternion CNN. The main difference
between these references and our work is that we use the local
quaternion phases. In addition, we propose only one CNN layer, not
a full quaternion CNN. In fact, our experimental setup and CNN ar-
chitectures have different objectives. Their CNNs tests aim at clas-
sification tasks and do not consider contrast invariance or linear
response to rotations. Our CNNs architecture is designed to favor a
systematic comparison with the performance of a traditional con-
volutional layer. To note that we care for maintaining the accuracy
across all contrast degradation levels and not merely for getting
the best accuracy for one degradation.

3. Background
3.1. Equivariance and invariance

The term equivariance tends to be used to refer to the pre-
dictable way in which features of a signal change under certain
transformations: [14]. More formally, a function f: X — X is equiv-
ariant with respect to a group of transformations G of X if

fgx) =g(fx). (1)

forallx e Xand g € G.

For instance, one of the most important equivariant properties
of the mammalian visual system (measured by [22]) is its equiv-
ariance under rotations. Subsequently, many authors have been in-
terested in extending this property to NNs and CNNs: [7,13,14,21].

On the other hand, by invariance of a feature map f: X — Y we
understand (see [16]) that

fg(x)) = f(x) (2)
forallx e Xand g € G.

3.2. Bio-inspired CNN

For convenience, in this section we borrow from [31, Sec-
tion IL.B; see also the references therein| the main properties of
the V1 simple cells:

1. The V1 cells form the first layer of the hierarchical cortical pro-
cessing.

2. They are insensitive to the color of the light falling on their
receptive fields.

3. These neurons respond vigorously only to edges (odd-signal)
and lines (even-signal) at a particular spatial direction through
the orientation columns.

In this work we use four main bio-inspired tools: the local
phase, (Quaternion) Gabor functions, the HSV color space and the
artificial neural networks. Altogether, the proposed layer emulates
some properties of V1 cells, as detecting edges (odd-signal) and
lines (even-signal) at a particular direction. In addition, our ap-
proach exhibits translation equivariance and contrast invariance in
object recognition.

3.3. Notations

The notations, structure and terminology we are going to use
are as in [31, Sections II.C and IV.C]. We define 1D (resp. 2D) mul-
tivectorial signals as C! maps U — ¢ from an interval UcR (a re-
gion Uc R?) into a geometric algebra G (see [35]). For G =R (G = C,
G = H) we say that the signal is scalar (complex, quaternionic). For
technical reasons, we also assume that signals are in L? (that is,
the modulus is square-integrable).

Table 1
Synopsis of notations and conventions.
Structure
Symbol -
Meaning
x0 Array R(M, N, P)
Input signal
x=x Array R(M!, N, P)
I-th layer output
w=w Array R(M!, N', P!, Q')
I-th layer weights
b=>b' Array R(M!, NI, P!
I-th layer bias
o o:R—-R
Activation function
C C:R(M, N, P) - R(M', N', P)
Convolutional layer
F F: R(M, N) - R(M’, N')
Fully Connected layer
Q Q: R(M, N, P) - H(M, N, P)
X — Xq (see Egs. (5) and (6))
Q9 Q9: R(M, N, P) - R(M, N, 9 - P)

X — [Pres, Orce, ¥rep] (see Egs. (10)-(12))

Table 1 presents a synopsis of the notation, structure and mean-
ing of the most important variables and functions concurring in a
deep CNN. See also [2,18,33].

3.4. Quaternion local phase

A quaternion local phase array Xq(x, y) € H is associated to a 2D
signal X = x(x,y) € R (where x, y € U, U a region of R?). The com-
putation of X is inspired on the version of the Quaternion Fourier
Transform (QFT) proposed in [11].! To explain how it works, it is
convenient to introduce a few notations.

A Gaussian filter g(uy, uy) in the frequency domain, rotated by
an angle « and with standard deviations oy and o, in the u; and
u, directions, respectively, is defined by the formula

u’? u?
g(uy, uz) = exp <_%‘112_%‘22) o)

where 1} = uq cos(a) + uy sin(a) and uf, = —uy sin(a) + u; cos(a).
Given a function f(uq, u,), which we regard as a filter in the
frequency domain, we will also use the expression

X* f(uy, uz) = FH(FX) - fug, u)), (4)
where F denotes the Fourier transform from the space variables (x,
y) to the frequency variables (uq, uy).

Now letting w; and w, denote positive constant frequencies, Xq
is defined as follows:

XQ = chc + iszc + jXch + kass (5)
where

Xoce = X x g(U1, Up) cOS(01w1U1) COS(02waU3)

Xosc = X* g(Uq, Up) sin(orwquq) os(orwy )

Xocs = Xx g(Uq, Up) cos(orwrUy) Sin(orwyly)

Xgss = X g(uUq, Up) sin(oywi ) sin(orwyz)

As a result, we have rotated Quaternion Gabor filters (see [11])
which also depend on the parameters «, 01, 0, w1, w,. The Ga-
bor filters are well known bio-inspired feature extractors: [11,28-
30,32]. See Fig. 1 for an illustration.

Now based on the Egs. (A.7)-(A.10) of Appendix A, we can
rewrite the equation 5 as follows:

Xq = [xglerekVreis (6)

1 See [3] for a Clifford Fourier Transform generalization.
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Fig. 1. Quaternion filters from Eq. (5). From left to right g(u;, uz)cos(oiwquy)
cos(0awaliz), ig(ur, Uz 511'1(01(017()C05(02w2y) jglw, up)cos(o1wix)sin(orw7y),
kg(uyq, uy)sin (o jw1x)sin(o,w,Y).

Fig. 2. From left to right: Original image, ¢rcp, Orcs, Vros-

where (¢x, ¥x, 0x) are the phases of the unit quaternion Xg/[Xgl.

It is important to remark that the frequency domain convolu-
tion is scarcely used on CNN. There are two main reasons for this:
i) for N training weights, the complexity is of order N?; ii) the
Fourier transform is a global transformation, and it is not possi-
ble to correctly localize the features [6]. Previous works such as
[34] try to use the cosine transform in order to avoid the local
problem and [15] propose a Spectrum pooling and return to the
spatial domain to avoid both drawbacks for 3D data.

4. Quaternion local phase layer Q9

The proposed convolution layer, Q9, a quaternion local phase
layer, is described as follows:

1. Create a Hue Saturation Value (HSV) array using the quaternion
phases, magnitude and constant 1:

Pusv = (¢x. [Xql, 1), (7)
Onsv = (Ox. [Xql. 1), (8)
Yusv = (Y, [Xol, D). 9)

where 1 is an [m, n| array with all entries equal to 1.
2. Transform the HSV images into RGB images:

PHsv = Pros. (10)
Onsv — Ores (11)
Yhsy = Yres (12)

according to the standard conventions (cf. [1], p. 304). See
Fig. 2 for an illustration. Remark that ¢rcp enhances vertical
lines (yellow), that Oggg enhances horizontal lines (yellow), and
that {pgp features a dark blue all over the image. Fig. 3 illus-
trates the nine feature maps of ¢rgp, Orgp and V¥ ggp.

In our experimental setup, we notice that the phase Vggp is
sensitive to rotation. See Fig. 4 for an illustration of the three
channels of 1{rrcg and their response to rotations.

In the Table 2 we can compare a simple convolution layer with
the proposed layer Q9

5. Data and experimental setup

We have used the MNIST dataset, see [25] and CIFAR10 [23],
in two main experimental setups: contrast invariance classification
and regression for equivariance response measurement.

Fig. 3. In the first column ¢gcp, Orge and Y. Each row presents the three com-
ponents of each RGB phase representation.

Fig. 4. In the first column ges with 0, 15, 30 and 45 degrees. Each row depicts
the components of each /ggp.

Table 2

Comparison of the main characteristics of a standard convolutional layer C and
our layer Q9. Although Q9 is not itself trainable, the learning is carried out, in
any particular application, by the net to which it is coupled.

Convolution Layer Comparison

Characteristics C Q9
Hyperparameters 3 5

Kernel shape o, 01, 03, W1, ©
Convolution domain space frequency
Output domain space space
Padding zero -
Nonlinear function ReLU arctan, arcsin
Layer position Any First hidden
Learning Yes No

5.1. Contrast invariance classification

Table 3 shows the main characteristics of the degradation labels
and the contrast values. The contrast reduction process was done
by first normalizing the pixel values from 0 to 1, and then rescaling
the pixel values to an interval [d, 1]c [0, 1], which amounts to a
contrast of (1 —d). For instance, in the case d; the pixel values are
rescaled to the interval [0.3,1], which amounts to a 70% contrast.
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Table 3

Characteristics of datasets (top). Degradation la-
bels and the corresponding contrast values used
in our experiments (bottom).

MNIST CIFAR10
Characteristics Values Values
Training set 50,000 40,000
Validation set 10,000 10,000
Test set 10,000 10,000
Total of images 70,000 60,000
Image shape [28,28,1] [32,32,3]

Degradation Contrast (%)

do 100
d; 70
d, 30
ds 10
Table 4

CNN Architectures for MNIST and CIFAR10
classification task. The C layer and all the F
layers have a ReLU as activation function.

CNN classification architecture

Layer Characteristics

(0) Input Layer Input Image

Shape [28,28,1]or [32,32,3]

(1) First layer C Q9

Parameters [3,3,9] [28,28,4]

Output [28,28,9]  [28,28,9]
Parameters Shape

(2) FL [7056]

(3)F1 [256]

(4)F2 [128]

(5) SMAX [10]

Fig. 5. Example of degradation levels. From left to right: 100% contrast (do); 70%
(dy); 30% (dz); and 10% (ds3).

Fig. 5 provides an illustration of the degradation levels dg, dy, do,
ds for MNIST and CIFAR10 images.

We trained and tested two very simple CNNs, one with a reg-
ular convolutional layer (C) and another with the Q9 layer. Both
CNNs have the same architecture, namely one convolutional layer
(C), a flatten layer (FL), three fully connected layers (F) and a soft-
max function (SMAX). See Table 4 for more details.

Both CNNs were trained with the same hyperparameters: learn-
ing rate, 0.001; number of epochs, 100; loss function, categorical
cross-entropy; and optimizer, ADAM; for Q9, @« =0,01 =4,0; =
4, w1 = 0.5, w, = 0.5. All source code is available at https://github.
com/asp1420/A-Bio-inspired-Quaternion-Local-Phase-CNN. It is
written in the Tensorflow framework with Keras as wrapper (see
[12]).

The experimental setup is organized according to the scheme
summarized in Table 5, where d; (i=0, 1, 2,3) means a degrada-
tion degree. It is important to note that we tested the generaliza-
tion capacity of each of the trained models by running them not

Table 5
Experimental scheme for the classifica-
tion task.

Experimental set up

Trained and Contrast  Tested

do do, dy, dy, d3
d; do, dy, dy, d3
d> do, di, dy, d3
ds do, dy, dy, d3

Table 6
Experimental scheme for rotation
for each image.

Experimental rotation set up

Set Angles (Degree)
Train [0, 46] steps=3
Validation  [1, 46] steps=3
Test [2, 46] steps=3

Table 7

CNN Architectures for a regression task to get the
rotation angle. The C and all the F layers have a
sigmoid as activation function.

CNN regression architecture

Layer Characteristics

(0) Input Layer Image

Shape [28,28,1] or [32,32,3]

(1) First layer C Q9

Parameters [3, 3, 9] [28,28,4]

Output [28,28,9] or [28,28,9] or
[32,32,9] [32,32,9]

Parameters Shape

(2) FL [7056]

(3)F1 [1000]

(4)F2 [64]

(5)F3 [32]

(6) F 4 [8]

(7) SG [1]

only on the corresponding degradation level set, but also on the
three modified versions of it.

5.2. Regression for rotational response

We created 100 data-sets (one for each image), by rotating ac-
cording to Table 6. We trained, validated and tested with the first
100 (nonzero digits) from the MNIST and the first 100 images from
CIFAR10. Fig. 6 presents an example of rotation data.

We have used the CNN architecture presented in Table 7. We
trained both CNNs for regression with the same hyperparameters:
learning rate, 0.001; number of epochs, 1000; loss function, mean

Train
Train

Ul o

1

¥
>_Jff.:l' ] i

Fig. 6. Rotation examples for regression experimental setup from MNIST and CI-
FAR10. The value of the angle in degrees.

Validation
Validation

ff'.‘"

Test
Test
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Table 8
Experimental results on the classification task for all degradation labels on
MNIST images. The last row displays the average accuracy.

Test
Train  d d; d, ds
C Q9 C Q9 C Q9 C Q9

do 987 984 928 984 108 983 89 98.3
dq 870 985 984 985 114 984 114 985
d, 86.1 985 915 985 983 985 21.0 985
ds 816 984 821 984 91.7 984 978 984
Avg 883 984 912 984 530 984 348 984

Table 9
Experimental results on the classification task for all degradation labels
with CIFAR10. The last row displays the average accuracy.

Test
Train  dy d; d, ds
C Q9 C Q9 C Q9 C Q9

do 571 472 365 466 157 457 100 453
dq 415 469 569 473 256 473 100 469
d; 23.0 432 302 459 545 471 236 47.2
ds3 136 382 163 425 270 468 438 475
Avg 338 439 349 456 307 467 219 46.7

squared error; optimizer, rmsprop; activation function, sigmoid;
and for Q9 we chose ¢« =0,01 =4,0, =4, w; =0.5, w; =0.5.

6. Results and analysis

6.1. Contrast invariance (classification)

Tables 8 and 9 show the best accuracy reached in the classifi-
cation tasks by the C and Q9 nets for MNIST and CIFAR10, respec-
tively. Each row shows the performance of both CNNs with dif-
ferent testing samples for a given training sample. As mentioned
previously, samples are grouped according to the different con-
trast levels. The values in bold indicate the best result. As seen
in Table 8, the superiority of Q9 over C is conspicuous on MNIST
images for its high and virtually uniform accuracy. The gains for
CIFAR10 images are also quite uniform and, except for the diago-
nal slots dg —dgy, di —dq and d, — d,, very appreciable (Table 9).
In sum, Q9 exhibits invariance under contrast degradation while C
does not.

Loss Mean and Variance

012
—— C Train MNIST —+— C Train CIFAR1O0
—f= CVal MNIST C Val CIFAR10
010 —- Q9 Train MNIST -+~ Q9 Train CIFAR10
f == Q3 Val MNIST Q9 Val CIFAR10
008
w
4 006
]
004
002 N
N,
e e
a0 - — = R
[i 200 400 00 800 1000
Epochs

Fig. 7. Error plot with the mean value per epoch of the loss function in the training
process for each layer. We again see the superior performance of Q9 versus C. The
narrow curves show that variance for Q9 is much smaller than for C.

MNIST

45
m @ == Q9 MeanandVar

,_\40 e C == C Mean and Var
D B
=}
o 0
25
==
<C e 0 0 0 0O e 0 0 0 0 0
- Y|ie o o o
[}
=
o 1

5

0

0 20 5 0 K] 4 48

Angle (Deg)

Fig. 8. Prediction of the rotation angle in steps of 3 degrees, from 0 to 45, over 100
MNIST images at epoch 1000. Note the low variance for Q9.

- CIFAR10
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Fig. 9. Prediction of the rotation angle in steps of 3 degrees, from 0 to 45, over 100
CIFAR10 images at epoch 1000.

6.2. Rotational response (regression)

The first comparison we can try on the performance of C and
Q9 is the behaviour of the loss function. Fig. 7 is an error plot to
show the evolution of the mean value and the variance (as ver-
tical line of each point) of the loss function, respectively, for both
CNNs across epochs. These figures show that the loss function con-
verges faster, and that it is more stable, for Q9 than for C. Faster
convergence and higher stability are desirable properties that have
a bearing, in particular, on a more efficient use of computing re-
sources.

Figs. 8 and 9 show the rotation predictions over the 100 images
of each CNN at epoch 1000. In addition a mean value of the pre-
diction and its variance are represented by an error curve. We see
that the CNN with the normal convolution layer C has more out-
liers in the ranges (0-20) and (25-45) degrees than Q9. In other
words, the dispersion of the predictions is substantially lower for
Q9 than for C. This result motivates us to explore in a future work
whether Q9, or some variation of it, achieves an equivariant re-
sponse with respect to plane rotations.
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7. Conclusions and outlook

The main objective of the article has been to propose a
new bio-inspired quaternionic layer, Q9, based on the kernel of
the quaternionic Fourier transform proposed by Thomas Biilow
[11] and to compare its performance to that of a regular convo-
lutional layer in two types of computational experiments, one fo-
cused on classification tasks and another on rotation prediction by
regression. Our layer has 9 channels and insures an invariant re-
sponse to high contrast changes with almost constant performance
in classification tasks even when the CNN is trained with quite dif-
ferent contrasts. The Q9 layer also features a faster learning of im-
age rotation angles than a regular convolution layer. We believe
that the proposed layer could be useful to recognize or classify im-
ages in outdoor scenarios with haze with no data augmentation.
One current drawback is that the C layer has a better performance
for CIFAR10 images in the case when the test set has the same
degradation level (with the exception of d3) than the training set.

Let us mention two lines of future inquiry: To seek how to in-
sure that the hyperparameters of the layer are learned automati-
cally, and to explore how to obtain an equivariant response to im-
age rotations.
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Appendix A. Quaternions

The quaternion algebra H is a four dimensional real vector
space with basis 1, i, j, k,
H=Rl1a@Ri®oRj®d Rk (A1)

endowed with the bilinear product (multiplication) defined by
Hamilton’s relations, namely

2= =k =ijk=-1. (A2)
As it is easily seen, these relations imply that
ij=—ji=k, jk=-kj=1i, ki=—ik=]. (A.3)

The elements of H are called quaternions, and i, j, k, quaternionic
units. By definition, a quaternion q can be written in a unique way
in the form

g=a+bi+cj+dk, ab,c,deR. (A.4)
Its conjugate, q, is defined as
qg=a— (bi+cj+dk), (A.5)
and its modulus, |q|, by |q| = \/ﬁ

A polar representation of q is defined by
q=|qle®e Vel (A6)

where
o ctnm < [55) - [57]

are the phases of q as defined in [10] and [11]. For a unit g, the
phase v is found to be

arcsin(2(bc — ad))

Y=— 5 (A7)
If{=+Z, set & =0 and
;1 2(—cd + ab)
¢ = 2araan2<az—bZ—c2+d2)' (A.8)
Else,
;1 2(cd + ab)
¢ = 3 arctan 2 Z-pia-a) (A.9)
1 2(bd + ab)
6= 5 arctan2(az+b262dz). (A10)

With this, ei®’ek¥ ei® = +q and if it is —q, set ¢ = ¢’ + 7 mod 27.
Here, arctan 2 is the four quadrant arctan (see [11]).
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