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Resumen
En una primera parte se considerará la recta proyectiva compleja y
sus conexiones con la topoloǵıa, el electromagnetismo, la relatividad,
y la computación cuántica.

La segunda parte estará enfocada a la recta proyectiva sobre una
cuerpo finito y sus conexiones con la combinatoria, la teoŕıa de
códigos correctores de errores (de bloques y convolucionales) y la
criptograf́ıa pos-cuántica.

Dedicada a la memoria de José Maŕıa Muñoz-Porras, cuya
sapiencia, ingenio y entusiasmo siempre presidieron las innumerables
discusiones sobre estos y muchos otros temas en cualquier parte
donde coincidimos.
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P1
C
α' Ĉ

σ' S2 and the Hopf
fibration

Pauli spinors, π : S3 → P1
C, P1

C

α' Ĉ
The spinor involution ⊥
Stereographic projection

The Hopf fibration
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P1
C

α
' Ĉ

σ
' S2 Pauli spinors, π : S3 → P1

C, P1
C

α
' Ĉ

In P1
K (K a field, possibly non-commutative), [ξ0, ξ1] = [1, ξ−1

0 ξ1] if
ξ0 6= 0, = [0, 1] otherwise. In sum,

P1
K = {[1, ξ]}ξ∈K t {[0, 1]} α' K t {∞} = K̂ .

In particular, P1
C

α' Ĉ.
In C2 we have the Hermitian metric

〈ψ|ψ′〉 = ψ̄0ψ
′
0 + ψ̄1ψ

′
1.

If ψ = (ψ0, ψ1) ∈ C2, |ψ|2 = 〈ψ|ψ〉 = |ψ0|2 + |ψ1|2 defines the
Hermitian norm |ψ| of ψ.
{ψ ∈ C2 : |ψ| = 1} = S3 ⊂ C2 ' R4 (Pauli spinors).
The map π : S3 → P1

C, ψ 7→ [ψ], is surjective and the fibers are
isomorphic to S1 = {e2πit : 0 6 t < 1}. In fact, [ψ′] = [ψ] if and only
if ψ′ = e2πitψ for some (unique) t.
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P1
C

α
' Ĉ

σ
' S2 Involution ⊥

Given ψ = (ψ0, ψ1) ∈ C2, define ψ⊥ = (ψ̄1,−ψ̄0), so that
〈ψ⊥|ψ〉 = 0. The map ψ 7→ ψ⊥ is an antilinear involution that
satisfies |ψ| = |ψ⊥|. Thus ψ, ψ⊥ form an orthogonal basis of C2 if ψ
is non-zero, hence and orthonormal basis if ψ is unitary .

The involution ⊥ descends to an involution in P1
C that we will

denote with the same symbol:

[ψ0, ψ1]⊥ = [ψ̄1,−ψ̄0] = [−ψ̄1, ψ̄0].

⊥ maps the fiber of S3 → P1
C over [ψ] to the fiber over [ψ]⊥.

For example, the fiber over ∞ is {(0, e2πit) : 0 6 t < 1}, the fiber
over [1, 0] =∞⊥ is {(e2πit , 0) : 0 6 t < 1}, and
(0, e2πit)⊥ = (e2πit , 0).
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P1
C

α
' Ĉ

σ
' S2 Stereographic projection

ξ = a+ ib = p(u)

u = (x, y, z) = σ(ξ)

x

y

z

N = (0, 0, 1)

S = (0, 0,−1)

i−i

1

−1

O

ϕ

θ

x = 2a
1+a2+b2 =

ξ+ξ∗

1+ξξ∗ ,

y = 2b
1+a2+b2 = −i ξ−ξ∗1+ξξ∗ ,

z = 1−a2−b2
1+a2+b2 =

ξξ∗−1
ξξ∗+1

a = x
1−z , b =

y
1−z

(cosϕ sin θ, sinϕ sin θ, cos θ)

u = uϕ,θ =
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P1
C

α
' Ĉ

σ
' S2 The Hopf fibration

The Hopf fibration is the map h : S3 → S2 defined by the
composition

S3 π−→ P1
C

α−→ Ĉ
σ−→ S2,

where u = σ(ξ) is the inverse of the stereographic projection

S2 p−→ Ĉ, ξ = p(u) (see page 7).

h(ψ) =
(
ψ1ψ̄0 + ψ̄1ψ0,−i(ψ1ψ̄0 − ψ̄1ψ0), ψ1ψ̄1 − ψ0ψ̄0

)
.

Let ψϕ,θ = (e−iϕ/2 sin θ
2
, e iϕ/2 cos θ

2
) (0 6 φ < 2π, 0 6 θ 6 π).

Then
h(ψϕ,θ) = uϕ,θ,

where uϕ,θ ∈ S2 is the point whose spherical coordinates are ϕ, θ (in
the sense explained on page 7).

h(ψ⊥) = −h(ψ). Thus the involution ⊥ on S3 induces the
antipodal involution of S2.
(cf.[1], Spinoranalyse).
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Pauli’s model
of the electron spin

The quantum nature of spin: Stern Gerlach (SG)
experiments. q-bits (or qubits). The Bloch sphere.

q-measurements.
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Pauli’s model of the electron spin The quantum nature of spin: Stern-Gerlach experiments

Stern-Gerlach experiment, which uncovered the quantum nature of
the electron spin. It suggests that the space of spin states is S2.
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Pauli’s model of the electron spin q-bits

To move from classical to quantum computation, replace
B = {0, 1}, the set of classical bits, by all their ‘superpositions’
(linear combinations with complex coefficients), i.e. by the complex
space E = E (1) generated by B .

Remark . Superpositions of waves occur in classical physics,
particularly in many wave phenomena, and in the related notion of
polarization states of electromagnetic waves. Its general validity in
the context of quantum physics is one of the main tenets of this
theory, which is strongly backed experimentally.

Thus the elements of E have the form ψ = ψ0e0 + ψ1e1, where e0

and e1 is the basis corresponding to 0 and 1 and ψ0, ψ1 ∈ C. In the
formalism of the preceeding section, we may take e0 = (1, 0) and
e1 = (0, 1).
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Pauli’s model of the electron spin q-bits

The Pauli spinors ψ form the sphere S3 ⊂ E (1) ' R4.

A Pauli spinor ψ ∈ S3 ⊂ E (1) ' R4 defines the state
|ψ〉 = h(ψ) ∈ S2 (Dirac notation).

In the common parlance of quantum mechanics, the space of (pure)
spin states is S2 (as suggested by the SG experiments) and the Pauli
spinors are the state vectors. The state vector of a state is defined
up to a phasor factor (e2πit).

As seen before, if ψϕ,θ = e−iϕ/2 sin θ
2
e0 + e iϕ/2 cos θ

2
e1,

|ψφ,θ〉 = uϕ,θ

the state at longitude φ and colatitude θ. In particular,
±X = (±1, 0, 0) = |

√
2

2
(e0 ± e1)〉,

±Y = (0,±1, 0) = |
√

2
2

(e0 ± ie1)〉,
−Z = |e0〉 = |0〉 = (0, 0,−1) = S (South pole),
+Z = |e1〉 = |∞〉 = (0, 0, 1) = N (North pole).
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Pauli’s model of the electron spin The Bloch sphere
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Pauli’s model of the electron spin q-measurement

The q-measurement of a q-bit that is in the state u = uφ,θ, which
corresponds to the reading of a classical bit, produces the state
|e1〉 = N = ↑ or the state |e0〉 = S = ↓, and this result is a random
event with probabilities pu(↓) = sin2 θ

2
and pu(↑) = cos2 θ

2
.

These states ↑ and ↓ are classical, in that p↑(↑) = p↓(↓) = 1 (in
agreement with the Stern-Gerlach findings), and they are the only
states having this property.

For states u on the equator (θ = π/2), ↑ and ↓ are equiprobable, and
they are the only ones having this property.
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Quantum computing
q-registers. q-computations. q-gates. q-algorithms.

Shor’s factoring q-algorithm. Grover’s searching
q-algorithm. The power of q-computing.
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Quantum computing q-registers

More generally, the model of a q-register of length n, Qn, is based
on replacing Bn (the space of n-bit strings) by E (n) = 〈Bn〉C, the
complex vector space with basis Bn, represented as the tensor
product (q-entanglement of the q-bits in the q-register) of E (1) with
itself n times.
So the vectors of E (n) have the form ψ =

∑
b∈Bn ψbeb, where

eb = eb1 ⊗ · · · ⊗ ebn ≡ eb1 · · · ebn . A vector ψ is normalized if
|ψ|2 =

∑
b∈Bn |ψb|2 = 1.

Each normalized vector ψ defines a state |ψ〉 in the state space Σn

of a Qn, with the rule that |ψ〉 = |ψ′〉 if and only if ψ′ = ξψ for some
unit complex number ξ. Again, we denote this relation by ψ ∼ ψ′.
As we have seen, Σ1 = S2.

The measuring of Qn in the state S = |ψ〉 returns one of the basis
states |eb〉 ≡ |b〉 at random with probabilities |ψb|2.
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Quantum computing q-computations

The notion of a classical (reversible) computation on n bits is
replaced by a unitary matrix U of order 2n, which can be viewed as a
unitary transformation U : E (n) → E (n).

To any classical computation f : Bn → Bn we can associate the
q-computation Uf : E (n) → E (n) defined by eb 7→ ef (b). It is a
permutation matrix.

In particular we can regard the logical gates CNOT and TOFFOLI
as quantum gates. Thus, for instance, CNOT(1,4) leaves eb fixed if
b1 = 0 and changes it to eb′ if b1 = 1, where b′4 = 1 + b4 and
otherwise b′i = bi . Similarly, TOFFOLI(1,3,7) does nothing on eb if
b1b3 6= 1, and otherwise just negates b7.

S. Xambó (UPC/BSC) V Red GAS - jmmp 22/01/2020 17 / 45



Quantum computing Hadamard gate

For a q-bit, the Hadamard gate, H , is defined by e0 7→
√

2
2

(e0 + e1),

e1 7→
√

2
2

(e0 − e1):

H =

√
2

2

(
1 1
1 −1

)
This is a genuine q-gate, as the states ±X defined by H(e0) and
H(e1) are not classical.
In the case of Qn, H can be applied to any q-bit, or to all, in which
case we will denote it by H (n). For example:

H (2)e00 = 1
2
(e0 + e1)(e0 + e1) = 1

2
(e00 + e01 + e10 + e11).

Thus, on measuring, the four possible results 00, 01, 10, 11 are
equiproblable.

In general, H (n)e0···0 =
(√

2
2

)n∑
b∈Bn eb, a superpostion for which all

states |b〉 are equiprobable. This embodies the so-called quantum
parallelism.
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Quantum computing q-algorithms

A q-algorithm is a sequence of Hadamard and Toffoli gates,
followed by a measurement of the final state, which is the (classical)
bit string returned by the algorithm.
Example. Initialize Q3 in the state |000〉. Apply H (3). End by a
measuring operation. This q-algorithm yields a uniform random
string of three bits. The generalization to Qn is obvious.

Shor’s q-algorithm factors integers in polynomial time.
Grover’s q-algorithm searches an item in a list of size N in time√
N .

For a systematic introduction to q-computing, including a discussion
of these and other algorithms, see [2], and also the references therein.
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Quantum computing The power of q-computing

An excellent discussion about the complexity theory issues is provided by

Scott Aaronson’ book [3] (Quantum computing since Democritus).
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P1
Fq, McElice cryptography,

coding theory
Ingredients of a McECS. Encryption. Decryption.

Construction of McECS. Security analysis.
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Ingredients of a McECS Local data 1/2

F = Fq, a finite field of cardinal q (base field). The most important
case will be F = Z2.
k a positive integer. The vectors of F k are called information

vectors, or messages.
n > k an integer. The vectors of F n are called transmission vectors.

Notations
If x ∈ F n, we let |x| denote the number of non-zero components of x
and we say that it is the weight of x.
F (r , s) denotes the space of matrices of type r × s with entries in F
and F (r) = F (r , r).
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Ingredients of a McECS Local data 2/2

A receiving user needs the following data:
G ∈ F (k , n) such that rank(G ) = k ;
S ∈ F (k) invertible and chosen uniformly at random;
P ∈ F (n) a random permutation matrix;
t, a positive integer; and
g : X → F k , X ⊆ F n, such that for any u ∈ F k and all e ∈ F n

with |e| 6 t,

x = uG + e ∈ X and g(x) = u. (1)

The map g is called an t-error-correcting G-decoder , or simply
decoder , and the vectors of X are said to be g-decodable.

Private key: {G , S ,P}.
Public key: {G ′, t}, where G ′ = SGP .
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McECS Encryption

Encryption protocol
The protocol that a user has to follow to encript and send a message
u to the user whose public key is {G ′, t} consists of two steps:

Random generation of a transmission vector e of weight t;
Sending the vector x = uG ′ + e = uSGP + e to that user.
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McECS Decryption

Decryption protocol
Consists of four steps that only use private data of the receiver and
the vector x sent by the emitter:

Set y = xP−1, so that y = (uS)G + eP−1.
Set x′ = g(y). Since P is a permutation matrix, |eP−1| = |e| = t,

and hence x′ is well defined, as g corrects t errors. The result is
x′ = (uS)G , which says that x′ is the linear combination of the rows
of G with coefficients u′ = uS .

Since G has rank k , u′ is uniquely determined by x′ and can be
obtained by solving the system of linear equations x′ = u

′G , where u
′

is the unknown vector.
Let u = u

′S−1, which agrees with the message sent by the emitter.
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McECS Construction of G

F = F2 (most constructions also for Fq, q > 2).
F̄ = Fqm , m a positive integer. If β ∈ F̄ , [β] will denote the colum

vector of its components with respect to a basis of F̄/F .
α = α1, . . . , αn ∈ F̄ distinct elements, so that n 6 qm.
p ∈ F̄ [X ] a polynomial of degree r > 0 such that p(αj) 6= 0

(j = 1, . . . , n).
Set hj = 1/p(αj) (j = 1, . . . , n) and

H̄ =


h1 · · · hn

h1α1 · · · hnαn
...

...
h1α

r−1
1 · · · hnα

r−1
n

 ∈ F̄ (r , n).
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McECS Construction of G

Let H ∈ F (r ′, n) be the result of replacing each entry β of H̄ by [β]
(this yields a matrix [H] ∈ F (mr , n)), followed by deleting from [H]
any row that is in the span of the previous ones. Note that r ′ 6 mr .
It also holds that r 6 r ′, as the 〈H〉F̄ = 〈H̄〉F̄ .

Let Γ = Γ(p, α) = {x ∈ F n : xHT = 0}. It is a code of type
[n, k = n − r ′]. This code is called the classical Goppa code
associated to p and α.

We have n −mr 6 k 6 n − r .
Fact: If G ∈ F (k , n) is a generating matrix of Γ, there is

G-decoder that corrects r errors (r/2 for q > 2) provided p has no
multiple roots in F̄ . See, for example, [4, P.4.7]
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McECS Construction of G

Practical specification
Let α be the set of elements of F̄ . Hence n = 2m.
Let p ∈ F̄ [X ] be a monic irreducible of degree t > 1. Then p has

no roots in F̄ and so a generating matrix G of Γ(p,α) has a decoder
g that corrects t errors.
This ends the theoretical construction of a McECS with the
following parameters:
n = 2m, where m is any posivive integer, and p is monic irreducible

of degree t.
H̄ ∈ F̄ (t, n) and G ∈ F (k , n), where k = n − rank(H)

(n − tm 6 k 6 n − t).
Original example: m = 10, n = 1024, t = 50, k = 524 (in this case

k = n − tm, the minimum possible given m and t).
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McECS Security analysis [5, 6], [7]

Horizontal axis R = k/n, WF curves for n = 2j , j = 10, . . . , 13. The red
line represents the WF needed to break RSA with 1000-digit prime
numbers. The similar 500-digit and 200-digit levels are also shown. The
latter is comparable to the original McECS.
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Post-quantum cryptography
Quantum threats to cryptographic protocols.

McECS as a post-quantum system. Other
post-quantum protocols. The NIST initiative for

PQ protocols.
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PQ cryptography The fate of RSA and McECS

q-computing poses a fundamental threat to widespread
cryptographic systems like RSA.

In principle, it does not pose a threat to McECS (unless P = NP),
because the general problem of decoding linear codes is NP complete
[8] (Berlekamp, McEliece and van Tilborg, 1978: On the inherent
intractability of certain coding problems).
However, for the special codes used in McECS it could still exist an
astute way of using their structure to crack them. But all the
evidence collected in their study so far (see page 29) suggests it is a
post-quantum protocol, in the sense that no computational power
can crack it if the appropriate parameters are used.
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PQ cryptography The NIST initiative

In addition to the McECS, there are other systems that may qualify
as post-quantum cryptography:

Hash-based cryptography;
Code-based cryptography;
Lattice-based cryptography;
Multivariate-quadratic-equations cryptography.

See [9], particularly the introductory paper by D. J. Bernstein.
These, and variations on them, are being considered by NIST with
the goal set at defining and standardize one or more post-quantum
cryptography protocols. See
http://dx.doi.org/10.6028/NIST.IR.8105.
In the first round, 26 algorithms were selected out of 69 submitted.
The selection outcome of the second round should be known soon.
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Can classical computation
certify quantum computers?

The work of Urmila Mahadev
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Can classical computation certify quantum computers? The work of Urmila Mahadev

S. Xambó (UPC/BSC) V Red GAS - jmmp 22/01/2020 34 / 45



Can classical computation certify quantum computers? The work of Urmila Mahadev

“Urmila Mahadev spent eight years in graduate school solving one of
the most basic questions in quantum computation: How do you know
whether a quantum computer has done anything quantum at all?”
(article by Erika Klarreich, 8 October 2018, in Quantamagazine).
https://www.quantamagazine.org/

graduate-student-solves-quantum-verification-problem-20181008/

See [10] (U. Mahadev, Classical Verification of Quantum
Computations).
Another important paper of Urmila Mahadev: [11].
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Can classical computation certify quantum computers? The work of Urmila Mahadev

Abstract. We present the first protocol allowing a classical computer
to interactively verify the result of an efficient quantum computation.
We achieve this by constructing a measurement protocol , which
enables a classical verifier to use a quantum prover as a trusted
measurement device.
The protocol forces the prover to behave as follows: (1) the prover
must construct an n qubit state of his choice, (2) measure each qubit
in the Hadamard or standard basis as directed by the verifier, and
(3) report the measurement results to the verifier.
The soundness of this protocol is enforced based on the assumption
that the learning with errors problem [one of the post-quantum
protocols] is computationally intractable for efficient quantum
machines.

S. Xambó (UPC/BSC) V Red GAS - jmmp 22/01/2020 36 / 45



In memoriam
Codes 2001-2014. ArbolMat
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In memoriam Codes 2001-2006
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In memoriam Codes 2007-2010
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In memoriam Codes 2011-2014

S. Xambó (UPC/BSC) V Red GAS - jmmp 22/01/2020 40 / 45



In memoriam ArbolMat (13-III-2014)
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