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The digital era

A Mathematical Theory
of Communication (1948)

* Mathematical foundations of
communication systems.

+ Definition of information (bit),
of channel capacity
and of error-correcting codes. » Master’s thesis (1937): logic

Claude Shannon (1916-2001)

circuits
+ [l WWII: Cryptography

* Source and channel
coding theorems.

* Founder of modern mathematical cryptography
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Remarks on mathematical

computation
The PyECC system - How can you get it - Examples
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Remarks on mathematical computation The PyECC system

m A purely Python computational environment. Small, powerful, and
free. Initially designed to cover the computational needs of a book
such as [1] (Error-Correcting Codes. A computational Primer).

m |t is being extended to meet other related purposes, such as, among
others, the second edition of [1] (planned to have additional chapters
on post-quantum cryptography, quantum codes, and convolutional
codes) and [2] (A second edition of Using intersection theory and
planned to cover a wide range of computations in intersection theory
and enumerative geometry).
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Remarks on mathematical computation How can you get it

m For more information, including instructions for how to install it,
visit the Web page PyECC.

Py Error-Correcting Coding (PyECC)
S. Xambé

Description

This is a venture in collaboration with Narcis Sayols Baixeras. Its aim is to produce a Python package
(PyECC) enabling the construction, coding and decoding of error-correcting codes and make it freely
available for students, teachers and researchers.

Initially (October 2015) the idea was to match the funcionality of the CC system developed to deal with
the computational tasks related to the book Xambo-2003, but we soon found that we could go beyond
that system in several directions. The purpose of this page (work in progress) is to document the current
state of the project.

INDEX

o FUNCTION SUMMARY

e PYECC JupYTER NOTEBOOKS
o INSTALLING INSTRUCTIONS
® STRUCTURE

o VERSION HISTORY
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https://mat-web.upc.edu/people/sebastia.xambo/PyECC.html

Remarks on mathematical computation Online resources

m For online resources related to this talk, visit the Web page PyACA,
which provides access to Python sources and Jupyter notebooks that
are companion materials to the paper [3].

Index of links

» Modular arithmetic [py | nb]

Computation of Io(m) [py | nb]

Construction of rings and fields [py | nb]

m Vectors and matrices [py | nb]

Random pemutation matrix [py | nb]
rd_GL(k,F) [py | nb]
The Hamming code [7,4,3] [py | nb]

Coding and decoding the Hamming code [7,4,3] [py | nb]
m Example of blow and prune [py | nb]

Example of a Goppa code [py | nb]
» An illustration of the McEliece system, step by step [py | nb]
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https://mat-web.upc.edu/people/sebastia.xambo/Papers/PyACA.html

Remarks on mathematical computation Example: Classical reversible logical gates

def NOT(j, x):
x[jl =1
return x

# Controlled-not. For j=i, x[i] is set to O.
def CNOT(i,j, x):

x[j] += x[i]

return x

# Remark: for i=j it agrees with CNOT(j,k, x)
def TOFFOLI(i,j,k, x):

x[k] += x[i]*x[j]

return x

Fact: Any classical computation can be embedded in a reversible
computation (see [4]) and any reversible computation can be
achieved with a sequence of Toffoli gates
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Remarks on mathematical computation Example: Generating random prime numbers

# To pick a random n-digit prime number
def rd_prime(n):
while True:
r = ri(n) # a random integer of n digits
if even(r): r += 1
if is_prime(r): return r

rd_prime(10) => 31716 43721

rd_prime(100) =>

75549 06889 06549 88619 83249 61562 84269 54436 19389 71081
98583 48723 01531 63041 11630 94137 11913 03811 57707 35373

The density of n-digit prime numbers is ~ 0.48/(n + 1), which roughly
means an average of 2n trials to produce a prime number.
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Remarks on mathematical computation Example: One-time pad encryption and decryption

# x, the message, is a binary vector

# p is a random binary vector of the same length as x.
# The encrypted message is y = x+p

# Decryption is y+p=x+p+p~=

def one_time_pad(x):
n = len(x)
p = rd_vector(Zn(2),n)
return (x+p,p)

x = rd_vector(Zn(2),25)

one_time_pad(x) =>

(fo,o0,0,0,0,1,0,0,1,0,1,1,0,0,1,0,0,1,0,0,0,
(1,1,1,0,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,1,0
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Remarks on mathematical computation Example: Generating a one-time pad

# Pseudo-random generator of n bits
# (Blum-Blum-Shup, 1996)
def PRG(n,d=30):
N = rd_prime(d)*rd_prime(d)
x = rd_int(1,N-1)
s = str(x2)
for _ in range(1,n):
X = xx*x2 U N
s += str(x%2)
return s

PRG(40) => ’1000101110101010111000111011111010011101"
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Remarks on mathematical computation Example: Random permutation matrix

The function permutation_matrix(n) creates a random permutation
matrix of order n.

def rd_permutation_matrix(n):
N = list(range(n))
p = rd_permutation(n)
P = matrix(ZZ() ,n,n)
for j in range(n):
P[j,pljl]l =1
return P

rd_permutation_matrix(5) =>
([t 0 0 0 O]

[0 0 0 0 1]
[0 1 0 0 0]
[0 0 0 1 0]
[0 0 1 0 0]]
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Remarks on mathematical computation Example: Construction of a random invertible matrix

The construction of uniformly random invertible matrix S of order k
with entries in a finite field F is a bit involved (see [3], particularly
the function rd_GL(k,F)). Instead, let us consider an easier function
scramble_matrix(k,A) which creates a random S € A(k) with
det(S) = +1. Note: rd(A) returns an element of A selected
uniformly at random.

def scramble_matrix(k,A):
U = matrix(A,k,k)
L = matrix(A,k,k)
for i in range(k):
U[i,i] = L[i,i] =1
for j in range(i+1,k):
Uli,j] = rd(a)
L[j,i] = rd(A)
P = permutation_matrix(k)
return P*LxU
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RSA in a nutshell

RSA pairs of prime numbers - RSA keys -
Encryption and decryption - RSA numbers
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RSA in a nutshell ~ Picking an RSA pair of prime numbers

def rsa_pair(n,m=3):
while True:
p = rd_prime(n); q = rd_prime(n)
if igecd(m,p-1)>1 or igcd(m,q-1)>1 or p==q:
continue
else: break
return (p,q)

rsa_pair(20) =>
(21569513085908660339, 15526103590621876157)

rsa_pair(20,17) =>
(33996414417889718849, 56610744900409885459)
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RSA in a nutshell RSA keys

Fix a positive integer n (in practice today, a three digit number, say

120).

(p,q) an RSA pair of n-digit prime numbers for some m (say m = 3

for concreteness).

k the inverse of m mod (p — 1)(q — 1)
Secret keys: (p, g, m, k).

Public keys: (N, m), where N = pq.

(p,q) = rsa_pair(10) => (2952363761, 6768633203)
k = inverse(3, (p-1)*(q-1)) => 13322311580211706347
N = pxq = 19983467380038556483
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RSA in a nutshell  Encryption and decryption

x: a number in (1, N — 1), the message.
Encryption: y = x” mod N.
Decryption: z = y¥ mod N.

Fact: z = x.

Proof: yk = (xM)k = x™k = x*r(p=1)(a-1) — x a5
(p—1)(q — 1) = ¢(N) and hence x(P~1)(a=1) = 1 (Euler).

Security
= RSA is secure if factoring N is unfeasible.

= The best known algorithms factor N (a 2n-digit number)

in subexponential expected time e(*+o(M) (") r(n) = /2nlog(2n).

n 100 | 200 | 300 | 400 | 500 | 1000

llog,e™| | 46 | 70 | 89 | 105 | 119 | 177
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RSA-100
RSA-110
RSA-120

RSA-129

RSA-130
RSA-140
RSA-150
RSA-155
RSA-160

RSA in a nutshell

RSA-170  RSA-230
RSA576  RSA-232°
RSA-180  RSA-768

RSA-190  RSA-240°
RSA-640 RSA-250*
RSA-200  RSA-260°
RSA-210  RSA-270"
RSA-704 RSA-896*
RSA-220  RSA-280"

RSA numbers

RSA-290*
RSA-300 *
RSA-309*
RSA-1024"
RSA-310*
RSA-320°
RSA-330*
RSA-340"
RSA-350"

RSA-360 *
RSA-370*
RSA-380°
RSA-390*
RSA-400*
RSA-410"
RSA-420"
RSA-430"
RSA-440"

RSA-450°
RSA-460°
RSA-1536*
RSA-470"
RSA-480*
RSA-490*
RSA-500"
RSA-617*
RSA-2048*

RSA Factoring Challenge: 1991-2007. Each number is the
products of two primes of similar size. Those underlined in red are
quoted in bits, with the number of decimal digits written in grey
above them. The numbers with * have not been factored yet.
Source: https://en.wikipedia.org/wiki/RSA_numbers.
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https://en.wikipedia.org/wiki/RSA_numbers

RSA in a nutshell RSA-768

RSA-768 [edi]
RSA-768 has 232 decimal digits (768 bits), and was factored on December 12, 2009 over the span of two years, by

Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel Thome, Pierrick Gaudry, Alexander Kruppa,
Peter Montgomery, Joppe W. Bos, Dag Arme Osvik, Herman te Riele, Andrey Timofeev, and Paul Zimmermann.[36]

RSA-768 =

RSA-768 =

x

12301866845301177551304949583849627207728535695953347921973224521517264005
07263657518745202199786469389956474942774063845925192557326303453731548268
50791702612214291346167042921431160222124047927473779408066535141959745985
6902143413

33478071698956898786044169848212690817704794983713768568912431388982883793
878002287614711652531743087737814467999489
36746043666799590428244633799627952632279158164343087642676032283815739666
511279233373417143396810270092798736308917

The CPU time spent on finding these factors by a collection of parallel computers amounted approximately to the equivalent

of almost 2000 years of computing on a single-core 2.2 GHz AMD Opteron-based computer,136]
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RSA in a nutshell  RSA-240, RSA-250,...

RSA-240 [edit]

RSA-240 has 240 decimal digits (795 bits), and has not been factored so far.
RSA-240 =
12462036678171878406583504460810659043482037465167880575481878888328966680118821

08550360395702725087475098647684384586210548655379702539305718912176843182863628
46948405301614416430468066875699415246993185704183030512549594371372159029236099

RSA-250 [edit]
RSA-250 has 250 decimal digits (829 bits), and has not been factored so far.
RSA-250 = 2140324650240744961264423072839333563008614715144755017797754920881418023447
1401366433455190958046796109928518724709145876873962619215573630474547705208

0511905649310668769159001975940569345745223058932597669747168173806936489469
9871578494975937497937
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McEliece cryptosystems

Ingredients of a McECS - Encryption - Decryption -
Construction of McECS - Security analysis
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Ingredients of a McECS Local data 1/2

m [ = F,, a finite field of cardinal g (base field). The most important
case will be F = Z,.

m k a positive integer. The vectors of F¥ are called information
vectors, or messages.

m n > k an integer. The vectors of F" are called transmission vectors.
Notations

If x € F", we let |x| denote the number of non-zero components of x
and we say that it is the weight of x.

F(r,s) denotes the space of matrices of type r X s with entries in F
and F(r) = F(r,r).
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Ingredients of a McECS Local data 2/2

A receiving user needs the following data:
m G € F(k,n) such that rank(G) = k;
m S € F(k) invertible and chosen uniformly at random:;
m P € F(n) a random permutation matrix;
m t, a positive integer; and
mg: X — FK, X C F", such that for any u € F¥ and all e € F"
with |e| < t,
x=uG+ecX and g(x)=u. (1)

The map g is called an t-error-correcting G-decoder, or simply
decoder, and the vectors of X are said to be g-decodable.

m Private key: {G,S, P}.
m Public key: {G’,t}, where G’ = SGP.
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McECS  Encryption

Encryption protocol

The protocol that a user has to follow to encript and send a message
u to the user whose public key is {G’, t} consists of two steps:

m Random generation of a transmission vector e of weight t;

m Sending the vector x = uG’' + e = uSGP + e to that user.
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McECS  Decryption

Decryption protocol

Consists of four steps that only use private data of the receiver and
the vector x sent by the emitter:

mSety =xP ! sothaty = (uS)G + eP .

m Set X' = g(y). Since P is a permutation matrix, [eP~!| = |e| = t,
and hence x’ is well defined, as g corrects t errors. The result is

x" = (uS)G, which says that x" is the linear combination of the rows
of G with coefficients v’ = uS.

m Since G has rank k, ¢’ is uniquely determined by x’ and can be
obtained by solving the system of linear equations x’ = v’ G, where o’
is the unknown vector.

mLet v = 'S !, which agrees with the message sent by the emitter.
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McECS  Construction of G

m [ = F, (most constructions also for F,, ¢ > 2).

mF= Fqm, m a positive integer. If 5 € F. 5] wil denote the colum
vector of its components with respect to a basis of F/F.

o =ay,...,q, € F distinct elements, so that n < g™.
m p € F[X] a polynomial of degree r > 0 such that p(a;) # 0
(G=1,...,n).

mSet hj =1/p(a) j=1,...,n) and

hy - h,
— hl()él tee hnOén _
H = € F(r,n)
hial™ o hyat?
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McECS  Construction of G

m Let H € F(r',n) be the result of replacing each entry 3 of H by [f]
(this yields a matrix [H] € F(mr, n)), followed by deleting from [H]
any row that is in the span of the previous ones. Note that r' < mr.
It also holds that r < r’, as the (H)z = (H)£.

mletl =T (p,a)={x€ F":xH" =0}. It is a code of type
[n, k = n— r']. This code is called the classical Goppa code
associated to p and a.

mWehaven—mr<k<n-—r.

m Fact: If G € F(k,n) is a generating matrix of I, there is
G-decoder that corrects r errors (r/2 for g > 2) provided p has no
multiple roots in F. See, for example, [1, P.4.7]
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McECS  Construction of G

Practical specification
m Let o be the set of elements of F. Hence n = 2.

mlet pe l:_[_X] be a monic irreducible of degree t > 1. Then p has
no roots in F and so a generating matrix G of ['(p, &) has a decoder
g that corrects t errors.

This ends the theoretical construction of a MCECS with the
following parameters:

m n = 2" where m is any posivive integer, and p is monic irreducible
of degree t.

m A € F(t,n) and G € F(k,n), where k = n — rank(H)
(n—tm< k< n—t).

m Original example: m = 10, n = 1024, t = 50, k = 524 (in this case
k = n — tm, the minimum possible given m and t).
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McECS  Security analysis [5, 6], [3]

n = 8192

300 -
250 o
200 ' ) = 40t -
1000
150 | -
n = 2048 500
100

s N\
50 W n =[1024 \\*

O | 1 | |
0 0.2 04 k/n 0.6 0.8 1

Horizontal axis R = k/n, WF curves for n = 2/, j=10,...,13. The red
line represents the WF needed to break RSA with 1000-digit prime
numbers. The similar 500-digit and 200-digit levels are also shown. The
latter is comparable to the original MCECS.

S. Xambé (UPC/BSC) PosT-QUANTUM CRYPTOGRPHY 19/11/2019 32/60




Planck

Dirac Pauli Feynman Shor

S. Xambé (UPC/BSC) PosT-QUANTUM CRYPTOGRPHY 19/11/2019 33 /60



Max Planck (1858-1947), Albert Einstein (1879-1955), Erwing
Schrodinger (1887-1966), Louis de Broglie (1892-1987).

Paul Dirac (1902-1984), Wolfgang Pauli (1909-1958).
Richard Feynman (1918-1988), Peter Shor (1959).
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Quantum computing

g-bits - g-registers - g-computations - g-gates -
g-algorithms - Shor’s factoring g-algorithm -
Grover’s searching g-algorithm - The power of
g-computing.
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Quantum computing  g-bits (or qubits)

Oven

Non uniform
magnetic field

Stern-Gerlach experiment, which uncovered the quantum nature of
the electron spin.
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Quantum computing  g-bits (or qubits)

m To move from classical to quantum computation, replace

B = {0, 1}, the set of classical bits, by all their ‘superpositions’
(linear combinations with complex coefficients), i.e. by the complex
space E = E() generated by B.

(Superpositions of waves occur in classical physics, particularly in
many wave phenomena, and in the related notion of polarization
statates of electromagnetic waves. Its general validity in the context
of quantum physics is one of the main tenets of this theory)

Thus the elements of E have the form ) = 1)yey + )11, where g
and e; is the basis corresponding to 0 and 1 and g, ¥; € C.

The vectors 1 of norm 1 form a sphere S3 ¢ E() ~ R* and are
called Pauli spinors ([t]? = |1bo|? + |¥1]?).
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Quantum computing  g-bits (or qubits)

m The g-bit state corresponding to a spinor 1) is the point (in Dirac’s
ket notation) |¢p) € S C R® defined by the formulas

x = (thot1 + ot1),y = —i(thoths — Yoth1), z = (otho — Pr1¢1).
The map S — S2, ¢+ |3)) is the Hopf fibration.

In fact, [¢0) = [¢') if and only if ¥/ = & for some unit complex
number &, a relation that we will denote ¢ ~ )/
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Quantum computing  g-bits (or qubits)

m |f we set
Voo = e "2 cos geo + e/®/?sin gel

(0< ¢ <2m, 0< 0 <), then Syp = [thy9) € S? is the point at
longitude ¢ and colatitude 6. In particular,

+X = (41,0,0) = |[2(& + &)),
+Y = (0,£1,0) = | L(eo * ier)),

Z =|eg) = (0,0,1) (North pole), —Z = |e;) = (0,0, —1) (South
pole).
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Quantum computing  g-bits (or qubits)

Z ~|0)

Y~ [0) + 1)

w=e""%2cos (g) |0) + ei#/? siﬂ(§>|1>
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Quantum computing Measurement

m The measurement of a g-bit that is in the state 5,4, which
corresponds to the reading of a classical bit, produces the state

lep) = N =1 or the state |e;) = —N =, and this result is a random
event with probabilities ps(T) = coszg and ps(|) = sin? g.
These states 1 and | are classical, in that py(1) = p,({) =1 (in
agreement with the Stern-Gerlach findings), and they are the only
states having this property. For states S on the equator (6 = 7/2), 1
and | are equiprobable, and they are the only ones having this
property.
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Quantum computing g-registers

m More generally, the model of a g-register of length n, @,, is based
on replacing B" (the space of n-bit strings) by £(" = (B")¢, the
complex vector space with basis B”, represented as the tensor
product (g-entanglement of the g-bits in the g-register) of EM with
itself n times.

So the vectors of E(") have the form ¢ = > bepgn Uben, Where
ep = €p, DD ep, = €y - €p,. Avector 1 is normalized if

|W|2 Zbesn 1/)b| = 1.

m Each normalized vector ¢ defines a state |¢)) in the state space ¥,
of a Q,, with the rule that [¢)) = [¢) if and only if ¢/ = £ for some
unit complex number £. Again, we denote this relation by ¢ ~ ¢/,
As we have seen, ¥; = 52,

m The measuring of Q, in the state S = [¢)) returns one of the basis
states |e,) = |b) at random with probabilities |¢,|?.
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Quantum computing g-computations

® The notion of a classical (reversible) computation on n bits is
replaced by a unitary matrix U of order 2", which can be viewed as a
unitary transformation U : E(" — E(),

m To any classical computation f : B” — B" we can associate the
g-computation Us : E(" — E(") defined by e;, — erp)- Itis a
permutation matrix.

m |n particular we can regard the logical gates CNOT and TOFFOLI
as quantum gates. Thus, for instance, CNOT(1,4) leaves e, fixed if
by = 0 and changes it to ey if by = 1, where b, = 1+ b, and
otherwise b, = b;.
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Quantum computing  Hadamard gate

m For a g-bit, the Hadamard gate, H, is defined by ey — g(eo + e1),

€1 — %(eo — 61)2
Y2 (11
2 \1 -1
This is a genuine g-gate, as the states +X defined by H(e) and
H(ey1) are not classical.

In the case of Q,, H can be applied to any g-bit, or to all, in which
case we will denote it by H("). For example:
H® gy = %(eo +e1)(eo + 1) = %(eoo + eo1 + €0 + en1).

Thus, on measuring, the four possible results 00, 01, 10, 11 are
equiproblable.

In general, H(”)eo...o = (‘/7§> ZbeB" ep, a superpostion for which all

states |b) are equiprobable. This embodies the so-called quantum
parallelism.
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Quantum computing  g-algorithms

m A g-algorithm is a sequence of Hadamard and Toffoli gates,
followed by a measure of the final state, which is the (classical) bit
string returned by the algorithm.

Example. Initialize Qs in the state |000). Apply H®) . End by a
measuring operation. This g-algorithm yields a uniform random
string of three bits. The generalization to @, is obvious.

m Shor's g-algorithm factors integers in polynomial time.

m Grover's g-algorithm searches an item in a list of size N in time

VN.

For a systematic introduction to g-computing, including a discussion
of these and other algorithms, see [4], and also the references therein.
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Quantum computing The power of g-computing

Box packing
Map coloring
Traveling salesman
n x n Sudoky

NP -
Complete

Graph isomorphism

An excellent discussion about the complexity theory issues is provided by

Scott Aaronson’ book [7] (Quantum computing since Democritus).
S. Xambé (UPC/BSC) PosT-QUANTUM CRYPTOGRPHY 19/11/2019 46 / 60



Post-quantum cryptography

Quantum threats to cryptographic protocols.
MCcECS as a post-quantum system. Other
post-quantum protocols. The NIST initiative for
PQ protocols.
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PQ cryptography  The fate of RSA and McECS

m g-computing poses a fundamental threat to widespread
cryptographic systems like RSA.

® In principle, it does not pose a threat to MCECS (unless P = NP),
because the general problem of decoding linear codes is NP complete
[8] (Berlekamp, McEliece and van Tilborg, 1978: On the inherent
intractability of certain coding problems).

However, for the special codes used in MCECS it could still exist an
astute way of using their structure to crack them. But all the
evidence collected in their study so far (see page 32) suggests it is a
post-quantum protocol, in the sense that no computational power
can crack it if the appropriate parameters are used.
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PQ cryptography  The NIST initiative

In addition to the MCECS, there are other systems that may qualify
as post-quantum cryptography:

m Hash-based cryptography;

m Code-based cryptography;

m | attice-based cryptography;

m Multivariate-quadratic-equations cryptography.

See [9], particularly the introductory paper by D. J. Bernstein.

These, and variations on them, are being considered by NIST with
the goal set at defining and standardize one or more post-quantum
cryptography protocols. See
http://dx.doi.org/10.6028/NIST.IR.8105.
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Urmila Mahadev

For outstanding achievements
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Urmila Mahadev  For outstanding achievements

“Urmila Mahadev spent eight years in graduate school solving one of
the most basic questions in quantum computation: How do you know
whether a quantum computer has done anything quantum at all?”
(article by Erika Klarreich, 8 October 2018, in Quantamagazine).

https://www.quantamagazine.org/

graduate-student-solves-quantum-verification-problem-20181008/

See [10] (U. Mahadev, Classical Verification of Quantum
Computations).
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Urmila Mahadev  For outstanding achievements

Abstract. We present the first protocol allowing a classical computer
to interactively verify the result of an efficient quantum computation.

We achieve this by constructing a measurement protocol, which
enables a classical verifier to use a quantum prover as a trusted
measurement device.

The protocol forces the prover to behave as follows: (1) the prover
must construct an n qubit state of his choice, (2) measure each qubit
in the Hadamard or standard basis as directed by the verifier, and
(3) report the measurement results to the verifier.

The soundness of this protocol is enforced based on the assumption
that the learning with errors problem [one of the post-quantum
protocols] is computationally intractable for efficient quantum
machines.
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Further references
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Further references

On mathematical cryptography: [11].
For a study of MCECS and its security: [3]

On quantum computing: [12]. For an approach to the g-bit based on
the stereographic projection of 52, see [13].

Another important paper of Urmila Mahadev: [14].
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