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Headlines

Notations and conventions: Finite fields, Relative control matrices.

Alternant codes. Special families: RS, GRS, BCH, Goppa.

The PGZ decoders (PGZa and PGZb). Notice on the BMS
decoder.

Philosophy: Balance between mathematical theory and effective
computations.

Main reference: R. Farré, N. Sayols, S. Xambó-Descamps: “On
the PGZ decoding of alternant codes”. Computational and
Applied Mathematics, 2018 (in press).

For the computational environment, see
https://mat-web.upc.edu/people/sebastia.xambo/PyECC.html.

It will be the computational support of the second edition of Block
error-correcting codes (SX, Springer, 2003) planned for Spring 2019.
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Notations and conventions Finite fields

K : A finite field and q = |K | (so K ' Fq)

F : a finite extension of K and m = [F/K ] (so F ' Fqm).

F = K [X ]/(f ), f = Xm + f1X
m−1 + · · ·+ fm−1X + fm irreducible/K .

As a K -vector space, F = 〈1, α, . . . , αm−1〉K , where α = [X ]f
(polynomial expressions of degree < m in α). Multiplication is carried
out as the multiplication of polynomial expressions, but with the
reduction rule αm = −(f1α

m−1 + · · ·+ fm−1α + fm).

If a = a0 + a1α + · · ·+ am−1α
m−1 ∈ F , we will write

[a]K = [am−1, . . . , a1, a0] ∈ Km (or simply [a]). The map F → Km,
a 7→ [a], is a K -linear isomorphism.

Gauss formula. The number of monic irreducible polynomials
f ∈ K [X ] of degree m is

Nq(m) =
1

m

∑
d |m

µ(d)qm/d =
qm

m
+ · · ·
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Notations and conventions Examples of binary irreducible polynomials

m f N2(m)
2 X 2 + X + 1 1
3 X 3 + X + 1 2
4 X 4 + X + 1 3
5 X 5 + X 2 + 1 6
6 X 6 + X + 1 9
7 X 7 + X + 1 18
8 X 8 + X 4 + X 3 + X + 1 30
9 X 9 + X + 1 56

10 X 10 + X 3 + 1 99
11 X 11 + X 2 + 1 186
12 X 12 + X 3 + 1 335
13 X 13 + X 4 + X 3 + X + 1 630
14 X 14 + X 5 + 1 1161
15 X 15 + X + 1 2182
16 X 16 + X 5 + X 3 + X + 1 4080
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Notations and conventions Codes defined by a relative control matrix

H ∈ F (r , n): an r × n matrix with entries in F (control matrix).

For y ∈ F n, sH(y) = yHT ∈ F r (syndrome of y)

C = CK (H) = {x ∈ K n | sH(x) = 0} = CF (H) ∩ K n

(linear code/K associated to H)
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Notations and conventions Computing k = dim(C)

’Blow’ H relative to K by replacing each of its entries hij by the
column vector [hij ]

T . If we let [H] = [H]K ∈ K (rm, n) be the
resulting matrix, then we have

CK (H) = CK ([H]), k = dim(CK (H)) = n − rank([H]).

In the special case F = K (equivalent to m = 1), [H] = H and
k = n − rank(H).

Solving the homogeneous linear system x [H]T = 0 provides a
generating matrix G of C . Its rows form a linear basis of C .
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Notations and conventions Example

K = Zn(2); [KX,X] = polynomial_ring(K)

f = X**5 + X**2 + 1

[F,x] = extension(K,f,’x’)

H = matrix(geometric_series(x**3,11))

bH = blow(H) =>

[[0 0 0 1 0 1 0 1 1 0 1]

[0 1 1 1 1 1 0 1 1 1 0]

[0 0 0 0 1 1 0 0 1 0 0]

[0 0 1 1 1 1 1 0 1 1 1]

[1 0 0 0 0 1 1 0 0 1 0]] :: Matrix[K]

rank(bH) => 5

So k = 6.
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Notations and conventions Generating matrix

[[1 0 1 1 1 1 0 0 0 0 0]

[0 1 0 1 1 1 1 0 0 0 0]

[0 0 1 0 1 1 1 1 0 0 0]

[0 0 0 1 0 1 1 1 1 0 0]

[0 0 0 0 1 0 1 1 1 1 0]

[0 0 0 0 0 1 0 1 1 1 1]] :: Matrix[K]

* * *

Remark. Since the sum of the columns marked with ∗ is zero, the
minimum weight of C is at most 3, and actually it is 3 because any
two columns are distinct.
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Notations and conventions The decoding problem

u ∈ K k : information vector .

x = uG ∈ C : code vector (’sent vector’)

e ∈ K n: error vector . The number of non-zero entries of e is denoted
|e| (weight of e).

y = x + e: ’received vector’.

s = sH(y) = sH(e) ∈ F r : syndrome vector

The decoding problem is to find an algorithm (decoder) that takes s
as input and delivers x (hence also u). If this can be accomplished for
all e such that |e| 6 t, we say that the decoder corrects up to t
errors.

Recall: For general linear codes, the decoding problem is
NP-complete (Berlekamp-McEliece-van Tilborg, 1978).
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Notations and conventions Alternant control matrices

Let α1, . . . , αn and h1, . . . , hn be elements of F such that hi 6= 0 for
all i and αi 6= αj for all i 6= j . Consider the matrix

H = Vr (α1, . . . , αn)diag(h1, . . . , hn) ∈ F (r , n), (1)

that is,

H =


h1 . . . hn

h1α1 . . . hnαn
...

...
h1α

r−1
1 . . . hnα

r−1
n

 (2)

We say that H is the alternant control matrix of order r associated
with the vectors

h = (h1, . . . , hn) and α = (α1, . . . , αn).

To make explicit that the entries of h and α (and hence of H) lie in
F , we will say that H is defined over F .
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Alternant codes Alternant codes

The codes AK (h,α, r) = CK (H) defined by the control matrix H are
called alternant codes.

Proposition (Alternant bounds)

If C = AK (h,α, r), then

n − r > dimC > n − rm

and
d > r + 1

(minimum distance alternant bound).
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Families of alternant codes Reed-Solomon codes

Given a list or vector α of distinct non-zero elements α1, . . . , αn ∈ K ,
the Reed–Solomon code

C = RS(α, k) ⊆ K n

is the subspace of K n generated by the rows of the Vandermonde
matrix Vk(α1, . . . , αn). It turns out that

RS(α, k) = AK (h,α, n − k),

where h = (h1, . . . , hn) is given by

hi = 1/
∏
j 6=i

(αj − αi). (3)

Note that in this case F = K , hence m = 1, and that the alternant
bounds are sharp. Indeed, we have r = n − k , hence k = n − r , while
n − k + 1 > d (by the Singleton bound) and d > r + 1 = n − k + 1
by the minimum distance alternant bound. In other words, C is MDS
(maximum distance separable).
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Families of alternant codes Generalized RS codes

The vector h in the definition of the code RS([α1, . . . , αn], k) as an
alternant code is obtained from α by the formula (3). If we allow
that h can be chosen possibly unrelated to α, but still with
components in K , the resulting codes AK (h,α, n − k) are called
Generalized Reed–Solomon (GRS) codes, and we will write
GRS(h,α, k) to denote them. An argument as above shows that
such codes have type [n, k , n − k + 1].

Notice that the code AK (h,α, r) is the intersection of the GRS code
AF (h,α, r) with K n.
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Families of alternant codes BCH codes

These codes are denoted BCH(α, d , l), where α ∈ F and d > 0,
l > 0 are integers (called the designed minimum distance and the
offset, respectively).

When l = 1, we simply write BCH(α, d) and say that the it is a
strict BCH code. The good news here is that

BCH(α, d , l) = AK (h,α, d − 1), (4)

where h = (1, αl , α2l , . . . , α(n−1)l), α = (1, α, α2, . . . , α(n−1)),
n = period(α).
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Families of alternant codes Classical Goppa codes

Let g ∈ F [T ] be a polynomial of degree r > 0 and let
α = α1, . . . , αn ∈ F be distinct non-zero elements such that
g(αi) 6= 0 for all i .

The classical Goppa code over K associated with g and α, which will
be denoted Γ(g ,α), can be defined as AK (h,α, r), where h is the
vector (1/g(α1), . . . , 1/g(αn)). Thus the minimum distance of
Γ(g ,α) is > r + 1 and its dimension k satisfies n − rm 6 k 6 n − r .

The minimum distance bound can be improved to d > 2r + 1 in the
case that K = F2 and the roots of g are distinct.
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PGZ decoding Background

Let C = AK (h,α, r) be an alternant code. Let t = br/2c, that is,
the highest integer t such that 2t 6 r . For reasons that will become
apparent below, t is called the error-correction capacity of C .

Let x ∈ C (sent vector) and e ∈ F n (error vector , or error pattern).
Let y = x + e (received vector). The goal of a decoder is to obtain x
from y and H when l : |e| 6 t. Henceforth we will assume that l > 0.
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PGZ decoding Background

If em 6= 0, we say that m is an error position.

Let {m1, . . . ,ml} be the error positions and {em1 , . . . , eml
} the

corresponding error values.

The error locators η1, . . . , ηl are defined by ηk = αmk
. Since

α1, . . . , αn are distinct, the knowledge of the ηk is equivalent to that
of the error positions.
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PGZ decoding Background

The monic polynonial L(z) whose roots are the error locators is called
the error-locator polynomial . Notice that

L(z) =
l∏

i=1

(z − ηi) = z l + a1z
l−1 + a2z

l−2 + · · ·+ al , (5)

where aj = (−1)jσj , σj = σj(η1, ..., ηl) the j-th elementary symmetric
polynomial in the ηi (0 ≤ j ≤ l).

We will write al = (al , ..., a1).
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PGZ decoding Background

Recall that the syndrome of y is the vector s = yHT , say
s = (s0, . . . , sr−1).

Since xHT = 0, we have s = eHT .

Using the definitions, we easily find that

sj =
n−1∑
i=0

eihiα
j
i =

l∑
k=1

hmk
emk

αj
mk

=
l∑

k=1

hmk
emk

ηjk (6)
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PGZ decoding Background

Now we will use the following notations:

Al =


s0 s1 . . . sl−1

s1 s2 . . . sl
...

...
. . .

...
sl−1 sl . . . s2l−2

 (7)

bl = (sl , . . . , s2l−1). (8)

Next proposition establishes the key relation for computing the
error-locator polynomial.

Recall that al = (al , ..., a1) (see Equation (5)).

Proposition

alAl + bl = 0. (9)
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PGZ decoding Background

Proof

Substituting z by ηi in the identity
l∏

i=1

(z − ηi) = z l + a1z
l−1 + ... + al

we obtain the relations

ηli + a1η
l−1
i + · · ·+ al = 0,

where i = 1, ..., l . Multiplying by hmi
emi
ηji and adding with respect to

i , we obtain (using (6)) the relations

sj+l + a1sj+l−1 + · · ·+ alsj = 0,

where j = 0, ..., l − 1, and these relations are equivalent to the stated
matrix relation.
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PGZ decoding Background

Remark

In the Equation (9), the matrix Al turns out to be non-singular and
hence it determines al (hence also L(z)) uniquely, namely

al = −blA
−1
l .

In next section we are going to establish this fact as a corollary of Eq.
(11), whose main outcome is a fast solution of Equation (9).
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PGZ decoding Key observations

Consider the matrix

S =



s0 s1 · · · sl−1 sl · · · st
s1 s2 · · · sl sl+1 · · · st+1
...

...
...

...
...

sl−1 sl · · · s2l−2 s2l−1 · · · st+l−1
...

...
...

...
...

st−1 st · · · st+l−2 st+l−1 · · · s2t−1


. (10)

Note that 2t − 1 6 r − 1, so that all components are well defined.
Note also that the l × l submatrix at the upper left corner is the
matrix Al defined by Equation (7) an that the column
(sl , sl+1, . . . , s2l−1)T to its right is the vector bl defined by Eq. (8).

In next Theorem we use the following notation: Vs = Vs(η1, . . . , ηl).
Thus the i -th row of Vs , for 0 6 i 6 s − 1, is the vector (ηi1, . . . , η

i
l ).

We also write D = diag(hm1em1 , . . . , hml
eml

).
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PGZ decoding Key observations

Theorem
S = VtDV

T
t+1. (11)

Proof

Let 0 6 i 6 t − 1 and 0 6 j 6 t. Then the j-th column of DV T
t+1 is

the column vector (hm1em1η
j
1, . . . , hml

eml
ηjl )

T . It follows that the
element in row i column j of VtDV

T
t+1 is

hm1em1η
i+j
1 + · · ·+ hml

eml
ηi+j
l = si+j (by Equation (6)).
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PGZ decoding Key observations

Corollary

The rank of S is l and the matrix Al is non-singular.

Proof

Since D has rank l , the rank of S is at most l . On the other hand,
the theorem shows that Al = VlDV

T
l and therefore

det(Al) = det(Vl)
2 det(D) 6= 0.

Note that det(Vl) is the Vandermonde determinant of η1, . . . , ηl ,
which is non-zero because the error locators are distinct.
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PGZ decoding Key observations

Corollary

The Gauss-Jordan algorithm applied to the matrix S returns a matrix
that has the form 

1 0 · · · 0 −al ∗
0 1 · · · 0 −al−1 ∗
...

...
...

...
...

0 0 · · · 1 −a1 ∗
...

...
...

...
...

 (12)

where ∗ denotes unneeded values (if any) and the vertical dots below
the horizontal line denote that all its elements (if any) are zero. This
matrix gives at the same time l , the number of errors, and the
coefficients of the error-locator polynomial.
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PGZ decoding The algorithm PGZa

In the descriptions that follow, Error means “a suitable
decoding-error message” and the function GJ(S) returns the values
−al , . . . ,−a1 of the matrix (12) as a column vector (this is a
conveniently modified form of the Gauss-Jordan procedure).
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PGZ decoding The algorithm PGZa

1. Get the syndrome vector, s = (s0, ..., sr−1) = yHT . If s = 0,
return y .

2. Form the matrix S as in the Equation (10).

3. Set a = −GJ(S) (Equation (12)). After this we have a1, ..., al ,
hence also the error-locator polynomial L.

4. Find the elements αj that are roots of the polynomial L. If the
number of these roots is < l , return Error. Otherwise let
η1, ..., ηl be the error-locators corresponding to the roots and set
M = {m1, . . . ,ml}, where ηi = αmi

.

5. Solve for em1 , ..., eml
the following system of linear equations:

hm1em1η
j
1 + hm2em2η

j
2 + ... + hml

eml
ηjl = sj (0 6 j 6 l − 1).

If any of the values of em is not in K , return Error. Otherwise
return y − e.
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PGZ decoding The algorithm PGZa

Theorem

The algorithm PGZa corrects up to t errors.

Remark

The equations in Step 5 are equivalent to the matrix equation
hm1 hm2 . . . hml

hm1η1 hm2η2 . . . hml
ηl

hm1η
2
1 hm2η

2
2 . . . hml

η2
l

...
...

. . .
...

hm1η1
l−1 hm2η2

l−1 . . . hml
ηl

l−1




em1

em2

em3

...
eml

 =


s0

s1

s2
...

sl−1


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PGZb Forney’s formula

There is al alternative to step 5 of the PGZa algorithm. Let

σ(z) = s0 + s1z + · · ·+ sr−1z
r−1 (syndromy polynomial).

L̃(z) = 1 + a1z + · · ·+ alz
l (its roots are 1/η1, . . . , 1/ηl).

E (z) = L̃(z)σ(z) mod z r (error-evaluator)

Theorem

For any m ∈ {m1, . . . ,ml}

em = −αm E (1/αm)

hmL̃
′(1/αm)

, (13)

where L̃
′
(z) denotes the derivative of L̃(z).
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The BMS algotithm The error evaluator

In this decoding algorithm, the error-locating polynomial is defined by

E (z) = −
l∑

i=1

hmi
emi
ηri

∏
j 6=i

(z − ηj).

It satisfies the Forney’s formula

emk
= − E (ηk)

hmk
ηrkL

′(ηk
.

So we could handle error-location and error-evaluation as soon as we
knew how to find L(z) and E (z) from the syndrome.

Notice that deg(E (z)) < l .
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The BMS algotithm The key equation

Theorem

Let
S(z) = s0z

r−1 + · · ·+ sr−1

Then
E (z) ≡ L(z)S(z) mod z r .

Equivalently, there exists a polynomial M(z) such that

E (z) = L(z)S(z) + M(z)z r .
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The BMS algotithm The Sugiyama procedure

Compute the sequence r0 = z r , r1 = S(z), , . . . , rj of the
Euclidean-algorithm remainders until deg(rj) < t. Let q2, . . . , qj be
the corresponding quotients (thus ri = ri−2 − qi ri−1.

Define v0 = 0, v1 = 1, and vi = vi−2 − qivi−1.

Output {E (z), L(z)} = {vj , rj}.

This solves the key equation with M(z) = uj , where u0 = 1, u1 = 0,
. . . , ui = ui−2 − qiui−1 (i = 2, . . . , j).
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