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Headlines

= Notations and conventions: Finite fields, Relative control matrices.
= Alternant codes. Special families: RS, GRS, BCH, Goppa.

» The PGZ decoders (PGZa and PGZb). Notice on the BMS
decoder.

» Philosophy: Balance between mathematical theory and effective
computations.

= Main reference: R. Farré, N. Sayols, S. Xambd-Descamps: “On
the PGZ decoding of alternant codes”. Computational and
Applied Mathematics, 2018 (in press).

* For the computational environment, see
https://mat-web.upc.edu/people/sebastia.xambo/PyECC.html.

It will be the computational support of the second edition of Block
error-correcting codes (SX, Springer, 2003) planned for Spring 2019.
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Notations and conventions Finite fields

K: A finite field and g = |K]| (so K ~ F,)
F: a finite extension of K and m = [F /K] (so F =~ Fym).

F = K[X]/(f), f = X"+ XL 4 o 4 f_1X + £, irreducible/K.

As a K-vector space, F = (1, a,...,a™ 1), where a = [X]¢

(polynomial expressions of degree < m in a). Multiplication is carried
out as the multiplication of polynomial expressions, but with the
reduction rule ™ = —(fa™ 1 + -+ fi_1a + ).

If a=ay+aja+ -+ am_1a™ L € F, we will write
[alk = [am—-1, .- -, a1,30] € K™ (or simply [a]). The map F — K™,
a+ [a], is a K-linear isomorphism.

Gauss formula. The number of monic irreducible polynomials
f € K[X] of degree m is
Z u(d m/d T
m
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Notations and conventions

Examples of binary irreducible polynomials

m | f Ny(m)
2 1
3 2
4 3
5 | X>+X2+1 6
6 9
7 18
8 | XB 4+ X4+ X3+ X+1 30
9 56
10 | X104+ X341 99
11 | XM+ X241 186
12 | X2+ X341 335
I3 XB X4+ X3+X+1] 630
14 | X¥ 4+ X541 1161
15 2182
16 | X1+ X5 4+ X34+ X +1| 4080
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Notations and conventions  Codes defined by a relative control matrix
H € F(r,n): an r x n matrix with entries in F (control matrix).
Fory € F", sy(y) = yH" € F" (syndrome of y)
C=Ck(H)={x€ K"|su(x) =0} = Ce(H)N K"

(linear code/K associated to H)

S. Xambé (UPC) DECODERS 14/9/2018

5/32



Notations and conventions Computing k = dim(C)

'‘Blow’ H relative to K by replacing each of its entries h;; by the
column vector [h;]T. If we let [H] = [H]x € K(rm, n) be the
resulting matrix, then we have

Ck(H) = Ck([H]), k = dim(Ck(H)) = n — rank([H]).
In the special case F = K (equivalent to m = 1), [H] = H and
k = n — rank(H).

Solving the homogeneous linear system x[H]" = 0 provides a
generating matrix G of C. Its rows form a linear basis of C.
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Notations and conventions Example

K = Zn(2); [KX,X] = polynomial_ring(K)
f Xxx5 + Xxx2 + 1
[F,x] = extension(K,f,’x’)

H = matrix(geometric_series(x*%*3,11))
bH = blow(H) =>

[0001010110 1]
[01111101110]
0000110010 0]
(0011111011 1]
[10000110010]] :: Matrix[K]

rank(bH) => 5

So k = 6.
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Notations and conventions Generating matrix

[[1011110000 0]

0101111000 0]

(0010111100 0]

0001011110 0]

[00001011110]

[00000101111]] :: Matrix[K]
Xk %

Remark. Since the sum of the columns marked with * is zero, the
minimum weight of C is at most 3, and actually it is 3 because any
two columns are distinct.
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Notations and conventions The decoding problem

u € K. information vector.
x = uG € C: code vector ('sent vector')

e € K": error vector. The number of non-zero entries of e is denoted
le| (weight of e).

y = x + e: 'received vector'.
s =su(y) = su(e) € F": syndrome vector

The decoding problem is to find an algorithm (decoder) that takes s
as input and delivers x (hence also u). If this can be accomplished for
all e such that |e| < t, we say that the decoder corrects up to t
errors.

Recall: For general linear codes, the decoding problem is
NP-complete (Berlekamp-McEliece-van Tilborg, 1978).
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Notations and conventions  Alternant control matrices

Let ay,...,q, and hq,..., h, be elements of F such that h; # 0 for
all i and «a; # a;j for all i # j. Consider the matrix

H=V,(ai,...,a,)diag(hy,..., h,) € F(r,n), (1)
that is,
hh ... h,
hio ... hpa,
oo 1 . 2)
hial™t ... hpal?

We say that H is the alternant control matrix of order r associated
with the vectors

h=(h,....h,) and o= (a,...,qa,).

To make explicit that the entries of h and o (and hence of H) lie in
F, we will say that H is defined over F.

S. Xambé (UPC) DECODERS 14/9/2018  10/32



Alternant codes  Alternant codes

The codes Ax(h, o, r) = Cx(H) defined by the control matrix H are
called alternant codes.

Proposition (Alternant bounds)

If C = Ak(h,a,r), then
n—r>2dmC>=n—rm

and

d>r+1
(minimum distance alternant bound).
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Families of alternant codes Reed-Solomon codes

Given a list or vector « of distinct non-zero elements aq, ..., a, € K,
the Reed—Solomon code

C =RS(e, k) C K"
is the subspace of K" generated by the rows of the Vandermonde
matrix Vi(aq,...,a,). It turns out that

RS(e, k) = Ax(h, o, n — k),

where h = (hy, ..., h,) is given by

h,' = 1/ H(Oéj — Oé,‘). (3)

J#i

Note that in this case F = K, hence m = 1, and that the alternant
bounds are sharp. Indeed, we have r = n — k, hence k = n— r, while
n—k+1>d (by the Singleton bound) andd > r+1=n—k+1
by the minimum distance alternant bound. In other words, C is MDS
(maximum distance separable).
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Families of alternant codes Generalized RS codes

The vector h in the definition of the code RS([a, . .., ay), k) as an
alternant code is obtained from a by the formula (3). If we allow
that h can be chosen possibly unrelated to «, but still with
components in K, the resulting codes Ax(h, o, n — k) are called
Generalized Reed-Solomon (GRS) codes, and we will write
GRS(h, a, k) to denote them. An argument as above shows that
such codes have type [n, k,n — k + 1].

Notice that the code Ax(h, o, r) is the intersection of the GRS code
Ae(h, o, r) with K"
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Families of alternant codes BCH codes

These codes are denoted BCH(«, d, /), where a € F and d > 0,
| > 0 are integers (called the designed minimum distance and the
offset, respectively).

When | = 1, we simply write BCH(«, d) and say that the it is a
strict BCH code. The good news here is that

BCH(a, d, /) = Ak(h,a,d — 1), (4)
where h = (1,a/,0?,...,a" ) a = (1,a,a?,...,a"™ 1),
n = period(a).
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Families of alternant codes Classical Goppa codes

Let g € F[T] be a polynomial of degree r > 0 and let
a=aqi,...,a, € F be distinct non-zero elements such that

g(a;) # 0 for all /.

The classical Goppa code over K associated with g and a, which will
be denoted (g, ), can be defined as Ax(h, a, r), where h is the
vector (1/g(a1),...,1/g(a,)). Thus the minimum distance of
M(g,) is = r + 1 and its dimension k satisfies n —rm < k < n—r.

The minimum distance bound can be improved to d > 2r + 1 in the
case that K = IF, and the roots of g are distinct.
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PGZ decoding Background

Let C = Ax(h, e, r) be an alternant code. Let t = |r/2], that is,
the highest integer t such that 2t < r. For reasons that will become
apparent below, t is called the error-correction capacity of C.

Let x € C (sent vector) and e € F" (error vector, or error pattern).
Let y = x + e (received vector). The goal of a decoder is to obtain x
from y and H when | : |e| < t. Henceforth we will assume that / > 0.
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PGZ decoding Background

If e,, # 0, we say that m is an error position.

Let {my,..., m} be the error positions and {e,, ..., en} the
corresponding error values.

The error locators 11, ..., n are defined by 1y = a,, . Since
ag, ..., «q, are distinct, the knowledge of the 7, is equivalent to that

of the error positions.
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PGZ decoding Background

The monic polynonial L(z) whose roots are the error locators is called

the error-locator polynomial. Notice that
/

L(z) = H(z —m) =2 +aZ t +a T+ +a, (5)
i=1
where a; = (—1Yo;, 0; = 0j(m, ..., ) the j-th elementary symmetric
polynomial in the n; (0 <j </).

We will write a, = (a/, ..., a1).
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PGZ decoding Background

Recall that the syndrome of y is the vector s = yHT, say
s=(soy.--,S-1)

Since xH™T =0, we have s = eH .

Using the definitions, we easily find that

n—1
= Z ei , Z hmk emk My Z hmk emkrﬂ( (6)
i=0
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PGZ decoding Background

Now we will use the following notations:

So ST ... S5-1
S S Ce S
T (7)
Sj—-1 S ... S2/-2
b/ = (5/7 Ce ,52/_1). (8)

Next proposition establishes the key relation for computing the
error-locator polynomial.

Recall that a, = (ay, ..., a1) (see Equation (5)).

Proposition

Q/A/ -+ b/ =0. (9)
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PGZ decoding Background

Proof

Substituting z by 7; in the identity
/

H(z —n) =z +azZt+. +a
i=1
we obtain the relations
n+am 443 =0,

where i =1, ..., /. Multiplying by hm,emirﬂ and adding with respect to
i, we obtain (using (6)) the relations
Si+1+ a1Sjp—1+ -+ a5 =0,

where j = 0,...,/ — 1, and these relations are equivalent to the stated
matrix relation. O
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PGZ decoding Background

Remark

In the Equation (9), the matrix A, turns out to be non-singular and
hence it determines a; (hence also L(z)) uniquely, namely

a; = —b/Al_l.

In next section we are going to establish this fact as a corollary of Eq.
(11), whose main outcome is a fast solution of Equation (9).
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PGZ decoding Key observations

Consider the matrix

50 51 PR 5,71 5/ PR St
ST S - Sy S/4+1 ce St4+1
5 : : : : : ' (10)
Si—1 S -+ Sp—2  Sp—1 tt Setl-1
St—1 St - St41-2 St+1-1 ccc S2t—1

Note that 2t — 1 < r — 1, so that all components are well defined.
Note also that the / x [/ submatrix at the upper left corner is the
matrix A, defined by Equation (7) an that the column
(S/,S/41,---,59-1)" to its right is the vector b, defined by Eq. (8).

In next Theorem we use the following notation: Vi = V(n1,...,m).

Thus the i-th row of V;, for 0 < i < s — 1, is the vector (n1,...,n)).
We also write D = diag(hm,€m,, - - - » hm €m,)-
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PGZ decoding Key observations

Theorem

S=V,DV],. (11)
Proof
Let 0 < i< t—1and 0 <, <t Then the j-th column of DV, is
the column vector (hmlemlni, ooy hmemm)T. It follows that the

element in row i column j of VtDVtJrl is
Py €my™ + -+ -+ hmemm ™ = si4; (by Equation (6)).

(]
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PGZ decoding Key observations

Corollary
The rank of S is / and the matrix A is non-singular.
Proof

Since D has rank /, the rank of S is at most /. On the other hand,
the theorem shows that A, = V,D\/,T and therefore

det(A)) = det(V;)? det(D) # 0.

Note that det(V)) is the Vandermonde determinant of 7y, ..., 7,
which is non-zero because the error locators are distinct. ]
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PGZ decoding Key observations

Corollary

The Gauss-Jordan algorithm applied to the matrix S returns a matrix
that has the form

10 --- 0 —a =x
01 0 —a_; =
s : : : (12)
00 --- 1 —ai *

\: )

where x denotes unneeded values (if any) and the vertical dots below
the horizontal line denote that all its elements (if any) are zero. This
matrix gives at the same time /, the number of errors, and the
coefficients of the error-locator polynomial.
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PGZ decoding  The algorithm PGZa

In the descriptions that follow, Error means “a suitable
decoding-error message” and the function GJ(S) returns the values
—ay,...,—a; of the matrix (12) as a column vector (this is a
conveniently modified form of the Gauss-Jordan procedure).
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PGZ decoding  The algorithm PGZa

. Get the syndrome vector, s = (sp, ...,s,_1) = yHT. If s =0,
return y.

2. Form the matrix S as in the Equation (10).
3. Set a = —GJ(S) (Equation (12)). After this we have ay, ..., a),

hence also the error-locator polynomial L.

. Find the elements «; that are roots of the polynomial L. If the

number of these roots is < /, return Error. Otherwise let

M, ..., 7 be the error-locators corresponding to the roots and set

M={m,..., m,} where 7, = ..

. Solve for e, ..., ey, the following system of linear equatlons
hm1em177ll + hm2em277]2 +..t hm,em,n’ =5 (O xJ / - 1)

If any of the values of e, is not in K, return Error. Otherwise

return y — e.
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PGZ decoding  The algorithm PGZa
Theorem

The algorithm PGZa corrects up to t errors.

Remark

The equations in Step 5 are equivalent to the matrix equation

hmy hm, - hm, em; So
hmlnl hm2772 cee hm,nl €m, S1
2 2 2
—h hmms oo A €m; | = S
-1 -1 -1
hm1771 hm2772 hmﬂ?/ €m, Si—1
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PGZb Forney's formula

There is al alternative to step 5 of the PGZa algorithm. Let

»0(z) =50+ sz+ -+ 5,12t (syndromy polynomial).

« [(z) =1+ a1z+ -+ a2 (its roots are 1/n1,...,1/n)).

« E(z) = [(z)o(z) mod z" (error-evaluator)
Theorem

Forany me {my,...,m}
_amE(l/am)
L' (1))

where L'(z) denotes the derivative of L(z).
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The BMS algotithm The error evaluator

In this decoding algorithm, the error-locating polynomial is defined by

I
E(z) == hmemni [[(z—m).
i=1 j#i
It satisfies the Forney's formula
E(nk)
hmanCL,(nk.
So we could handle error-location and error-evaluation as soon as we
knew how to find L(z) and E(z) from the syndrome.

Notice that deg(E(z)) < .

€m, = —
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The BMS algotithm The key equation

Theorem

Let

S(Z) = S()Zr_1 +---4+5_1
Then
E(z) = L(z)S(z) mod z".

Equivalently, there exists a polynomial M(z) such that
E(z) = L(2)S(z) + M(z2)z".
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The BMS algotithm  The Sugiyama procedure

Compute the sequence rp = z", r = 5(z), ,..., rj of the
Euclidean-algorithm remainders until deg(r;) < t. Let gqo, ..., q; be
the corresponding quotients (thus r; = ri_o — q;ri_1.

Define Vo = 0, Vi = 1, and Vi =Vi_> —(qjVi_1.
Output {E(z2), L(2)} = {v;, rj}.

This solves the key equation with M(z) = u;, where uy =1, uy =0,
L, U = Ui — qiUi_q (122,,1)
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