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Preliminars

De les transformacions de Lorentz,
x'=y(x—-vt),y =vy,z =z, t =yt —vx/c?),
ony=1/{/1-p2, p=v/c,

s’obté facilment que
Ox =Y (ax’ -

o les corresponents inverses

lat')r ay = ay’ , 0, = az" 0p = Y(at’ o vax’)’

c?2

Oy =Y (ax + C%at)’ a)" =0y, 0,7 =0, 0y =y(0 + vax)-m

Proposicio. L’operador O és invariant Lorentz, és a dir,

02 + 02 + 0F —— 02 = 02 + 0% + 0 — 051 .

c?2
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Invariancia de la carrega eléctrica. La valor d’una carrega electrica és el
mateix per a tots els observadors inercials (direm que la carrega eléectrica
és invariant Lorentz). Una evidencia indirecta, pero clara, d’aquest fet és
qgue els cossos materials son electricament neutres a qualsevol temperatu-
ra.

4-Corrent

Sigui p una distribucio continua de carregues, u el seu vector de velocitats i
Jj = pu (la densitat de corrent de la distribucio). Definim el quadrivector de
corrent, j, per la formula

i = Pol,
on pg és la densitat propia de la distribucid, és a dir, la densitat en la refe-

rencia en la qual I'element de volum que es mou a velocitat u esta mo-
mentaniament en repos.



Proposicio. p = y,,po.

Prova. Per la invariancia relativista de la carrega, pdw = pydwg, on dw in-
dica I'’element de volum segons S i dwg I'’element de volum propi. Per altra
banda, dw = dwy/y,, ja que des de S la direccid del sistema propi pa-
ral-lela a u es contreu segons el factor y,, i les direccions perpendiculars no
canvien. D’aixo resulta que p/y,, = poy, com voliem veure.

Proposicio. j = [j, p]. En particular resulta que [j, p] és un quadrivector.
Prova. [, p] = [pu, p] = = [rutt, vl = pou =j.

Corol-lari. Si p" i j' = Ux'rJy' Jz') sOn la densitat i el corrent segons la re-

feréncia S’, llavors

Jx' =YUx = VP), Jyr =y, Jgr =Jz, P =v(P —vjx/C?).



4-potencial

Siguin A i ¢ potencials vector i escalar, respectivament, d’'un camp elec-
tromagnetic E i B. Ates que A i ¢ queden determinats a menys d’una
transformacié de gauge, per establir la llei de transformacié de S a S’ n’hi
ha prou que construim A’ i ¢’ a partir de A i ¢ de manera que satisfacin les
equacions de Maxwell a S’, aixo és, tals que

nA' = —puyj' + k', o¢' = -2 — .0,

€0
on h' = div(4") + ppendyr @'

Teorema. Siguin p i j la densitat de carrega i el corrent en el sistema S, i si-
guin A un potencial vector i ¢ un potencial escalar corresponentsa pij (és
a dir, tals que

DA=_H0j+ah | qu=—p/80—ath,

on h = div(A4) + uyeds @ (en aquest cas B = rot(A4) és el camp magnétic
i E = —0d¢ — 0;A és el camp electric).



Llavors el camp A" i la funcid ¢’ donats per les formules

¢
Ay :y(Ax_vc_z)' AJ” :AJ" Ay =A4,,¢" =y(p—vAy) [*]
son potencials vector i escalar, relativament a S’, de la densitat p’ i el cor-

rent j' corresponents a p i j per la transformacid de Lorentz (és a dir, A’ i
¢’ compleixen les relacions

OA = —ugj +0h',0'¢p" =—p'/eg — 0,R').

En altres paraules, [A4, ¢/c?] és un 4-vector (amb notacions x;, aquest 4-
vector es representa com A = [¢/c, A]).

Les inverses de les formules [*] son
¢! ’
A=y (Ay +v5), Ay =4y, A, = A, ¢ =y(¢p' +vA,).

A més, A i ¢ compleixen la condicié de Lorentz (és a dir, h = 0) si i només
siA"i ¢’ la compleixen.
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Remarca. Una manera de conjecturar expressions per A" i ¢’ és suposar
que els potencials satisfan la condicié de Lorentz div(4) + pyeqd:¢p = 0,

és a dir, 0,A, + 0,4, + 0,4, + 0, (%) = 0 (recordem que sempre po-

dem aconseguir que aquesta condicio es satisfaci, potser després d’una
transformacio de gauge).

En efecte, substituint d,, ay, d,, 0; per les seves expressions en funcid de
d,, (")‘yr, d,1,0, obtenim la relacié

14 (axl — Cv—zat/)Ax + ayIAy + 0,/ A, + )/(at/ — Uax/) (%) =0.

Reordenant, tenim

c?2

—VA,
01 (Y(Ay — v9/c2)) + Dy Ay + 0,14y + Dy (y (& )) -0,
i aquesta relacio ens suggereix que

Av =y (A =v5) Ay = Ay, Ay = Az, @' = (9 —vAY).
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Prova del teorema. Vegem primer que I'expressid h és invariant Lorentz,

és a dir, que h = h'. En efecte,

h'=0.A, + 0yrAyr + 0,4, + UoEgOpr P’

- o+ 200 (-2

c2

+dyA, + 0,4,
+ggoy * (0 + v0y) (¢ — vA,)
=% (0xAy — 5 0xp + 20, Ay — 0,0
+0,A, + 8,4,

+ HOEOVZ( — vatAx + vax¢ o vzaxAx)

2
= Y?(1 — ppggv*)0xAx + 0,A, + 0,4, + Z—Z (1 —

1
= 0, Ay + 0yAy + 0,4, + 0 p = .

v2

c2

JEX
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Ara ja podem calcular O’'A" i O'@’. En el cas de O'A’, procedirem compo-

nent a component, tot recordant que 0’ = O:

O'Ayr = y(OAy — Cv_zl:lgb)
=¥ (=Hojx + 0xh) +v 5 (C + 0ch)

= —poyY(Ux —vp) +vy (ax + C%at) h

= —Uofy + 0y h';
O'Ayr = 04y = —Uojy + 0yh = —pgj,r + 0y R
(i analogamentamb A4,/) ;
O'¢p’ = yoep — yvoA,

=y (=2 = 0ch) — yv(—poji + 0:h)

€o

= L (p=2)) = y(@ +vih = =L — .

€o €0
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Transformacions relativistes del camp electromagnetic
Vista la llei de transformacio dels potencials, podem deduir la relacié entre
els camps eléctric i magnétic mesurats en els sistemes Si S'.
Teorema. La relacié entre els camps E = (E,, E,, E,) i B=(B,, By, B,)
mesurats a S i els camps E' = (Exr,Eyr,EZr) i B = (er,Byr,Bzr) mesu-

ratsa S’ és la donada per les formules seglients:

Ex=E, | E,=y(E, +vB,) E,=y(E,, —vB, )

1%

Prova. Podem expressar B i E en termes del potencial vector A i del po-
tencial escalar ¢:

B =rot(A), E=—-0¢ —0,A.
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En el sistema S’ valen férmules analogues per a B' i E' en termes de A’ i
¢'. En coordenades aquestes relacions adopten la forma

B, = 0,A, — 0,A,, B, = 0,A, — 0,A;, B, = 0,A, — 0,A,
Ex — —6x(]5 — atAx, Ey — _ay¢ — atAy, EZ — _aZ¢ — atAZ
(i formules analogues en el sistema S’).

Per altra banda tenim
A=y (Ay +vE), Ay = Ay, A, = A, ¢ =y(¢d' +vA,).

onA' = (Ax,,Ay,,AZ,) i @' denoten els potencials en el sistema S'. A més,

tenim les relacions

0: = (00 —200), 0y, =0y, 0,=0,1, 0, = y(0y — VD).

C

Ara les formules de I'’enunciat es dedueixen fent aquestes substitucions i
les del grup anterior a les formules que donen B i E, operant, i tenint en
compte les formules que expressen B’ i E' entermesde A" i ¢':



Ey

_axd) o atAx

= —y (axr — Cv—zatl) ¢ — )/(atr — vaxl)Ax

= ~0,(v(¢ —va) — 0, (v (4 5

2
— _ax’¢’ - at’Ax’
=F_r.

)
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Ey

E,

= —3,¢ — 8,4,

= —0,(y(¢' + VA1) —y(0p = v0) A,

= y(=0,¢p" — 0 A,) +yv(0 A, — 0,0 A0)
=y(E, +vB,).

= —0,p — 0,4,

= =0, (y(@' +vA,)) —y(0p — vd,)A,

= y(=0,¢" — 0y Ay) +yv(d, Ay — 8,1A,0)

— V(Ez' — vBy/).

13



By = 0yA, — 0,A, =0, A, — 0, Ay =B,
B, = 0,4, — 0,A,

y
=0, ()/ (Axl + v%)) -y (axl — C%at/) A,

— V(az’Ax' — axlAZ') + y:_z(az’¢, + at’Az’)
v
= )/(Byl — C_ZEZ’) .

B, = 0,A, — 0yA,

=V (axl — C%atr)/ly/ — ay/ (]/ (Axl + v%l))

= y(axlAyI — 6yrAxr) — y:_z(ay’¢’ + at’Ay’)

=y (B, +2Ey).

14
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Camp electromagnetic d'una carrega en moviment

Per a velocitats v petites, les transformacions de E i B del teorema anteri-
or gairebé coincideixen amb les transformacions vectorials classiques:

E=E, B=B'
En tot cas, pero, veiem que tant en la transformacié de E com en la de B
intervenen E' i B'.

Un cas particularment interessant és el d'una carrega puntual g que es
mou amb velocitat uniforme v: en el sistema propi (sistema S’), hi ha camp
eléctric de Coulomb E’, pero B’ = 0, mentre que en el sistema S tant E
com B seran no nuls, amb la qual cosa ens adonem que el camp magnetic
generat per una carrega en moviment és simplement un efecte relativista
del camp de Coulomb.

Vegem com precisar el contingut explicit d'aquesta afirmacio.
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L'expressio del camp de Coulomb E’ creat per la carrega q és

EI — q rl
4neor’3 ’

on 1’ és el vector de posicid respecte de g, en el sistema S’, del punt on
mesurem E’. En coordenades tenim:

!/

E 1 x
x, 4‘77:80 (x,2+y,2+Z,2)3/2 ’

!

E q Y
y amey (x'2+y'2+2'2)3/2”’

!

E, =— d
Z 4TrE, (x’2+y’2+z’2)3/2 ’

Si ara utilitzem les transformacions de Lorentz, les transformacions relati-
vistes del camp eléctric i magnetic, i notem que B’ = 0, obtenim
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E _ E _ q y(x_Vt)
x —

;] =
X 4mey (Y2(x—vt)2+y2+22)3/2"7

—_ _ 9 Yy
Ey = )/Ey/ =

4mey (Y2 (x—vt)2+y2+22)3/2"7

E, =YE, = -

amrey (Y2 (x—vt)2+y2+22)3/2’

pel que fa al camp electric E, i

B,=B, =0,
v v
By :y(By’_C_zEz') - V2 E r= _C_ZEZ'

v 4
B, =y (B, +5E,) =v5E, = %E,
pel que fa al camp magnetic. En particular tenim
B = —(0 —vE,, VE,) = —v/\E

qgue és la formula de que vam partir per elaborar la teoria del camp mag-
netic.
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Passem a veure que la forca F sobre una carrega g’, quan la velocitat d'a-
qguesta respecte de S és u, ve donada per la llei de Lorentz, és a dir,

F=q'(E+uAnB).

En efecte, per la llei de transformacio de les forces,

Fx — Fxl - (uy/Fy/ - uZ’FZ’)

2
Cc +vuxr

= q'Exr +q (uyrEyr + quEZr)

c2+vu /

=q'Ex+q' (u, Ey /vy + uyE./y)

c2+vu

, VU ; DUy
=q'Ex+q —ZEy+q FE,

C
= q'E; + q’(usz — uzBy).
Hem usat les identitats

u.rs
v y vuy v uzl . vu,

- )

2 2 2 - 27
cetvu,r y C ce+vu,r y C



gue son equivalents a les formules

u_ s
— b4 — uz’

u, = u, =
Yo y@+vuy,/c?)’ T y(A+vu/c?)

de transformacio relativista de les velocitats.

D'una manera similar podem calcular £

o= Fy’ _ C[,Eyl
Yo y(14vu/c?)  y(14vu,/c?)
_ q'Ey 11 2
y2(1+vu,r/c?) =q (1 —vu/c )Ey
/ ; VUy / /
=q'Ey —q' —Ey=q'E, — q'uyB,.

Analogament, F, = q'E, + q'u,B,,.
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Aixi, doncs,
F = (q'Ex + q'(uyB; —w;By),q'Ey — q'uxB,,q'E; + q'uyBy)
= q'(Ey, Ey E;) + q'(u,B, — u,B,, —uyB,, u,B,)
=q'(E +uAB),
com voliem demostrar.
Remarca. El camp electric E en el sistema S coincideix amb el camp de

Coulomb d'una carrega q situada en el punt (vt,0,0) només quan y ten-
deix a 1, és a dir, quan v tendeix a 0. Com que la llei de Lorentz, i la formu-

la B = =V A E, han estat deduides usant aquesta interpretacio relativista
de E, ens adonem que aquestes formules sén incorrectes en la interpreta-
cio de l'electromagnetisme classic, ja que en aquest context E era el camp

de Coulomb de g en sentit estricte.
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Per altra banda, el camp B corresponent a la carrega g és, segons hem cal-
culat abans,

C%(O,—sz,vEy)= q (O’_yvz,va)

ATTEC? r3 ° r3
HodY 0 HodY
= —VZ,Vy) = VAT
o3 (0, —VZ,vy) = =3 :
on r = (x —vt,y,z). Veiem, doncs, que la formula B = 4‘:1?31)/\1' que

vam postular com a punt de partida per al camp magnetic creat per g tam-
bé només és certa en el limit y = 1. Tot i aixo, es pot veure que el camp
magnetic creat per un corrent, calculat en el marc de la relativitat (tenint
en compte, per tant, els efectes relativistes de les carregues en moviment)
obeeix a la llei de Biot—Savard d'una manera exacta.
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Exercicis R.5 (Electrodinamica relativista)

R.5.1. a) Si la velocitat d’un sistema inercial S’ respecte d’un sistema iner-
cial S és v, proveu que les transformacions relativistes del camp electro-
magnetic es poden es poden escriure en la forma

E\=E, E,=y(E.+(wxB))

/ / 1
| =By, Bl =V<B¢—C—Z(VXE))

on, donat un vector X, posem X = X;, + X, per denotar la seva descom-
posicio com a suma d’un vector paral-lel a v, X, i un vector perpendicular
a v, XJ_.

b) Posem B = cB. Escriviu les transformacions relativistes dels camps E, B
en termesde f = v/c.

R.5.2. Mostreu que E? — B? = E? — ¢?B? és un invariant Lorentz. En par-
ticular resulta que les relacions E = ¢cB, E > cB i E < ¢B son invariants.
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R.5.3. Mostreu que E - B és invariant Lorentz. En particular resulta que si E
i B son perpendiculars en una referencia inercials, aleshores son perpendi-
culars en tota referencia inercial.

R.5.4. Calculeu els invariants E2 — c2B? i E - B en el cas d’una ona elec-
tromagnetica monocromatica.

R.5.5. Demostreu que si E-B =0 en un punt i E < cB (respectivament
E > cB), llavors hi ha una referencia inercial en la qual E (respectivament
B) s’anul-la en el punt.
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Notes

N1. (Pag. 2) Donats dos sistemes de coordenades xq, ..., Xy, i V1, ..., Vi, |2
component de dy, respecte de ayj és dy;/0x;, ja que si posem

Bxl. — Zk Aikayk, llavors /1l] — (Zk Aikayk)(yj) — axly]

2. (Pag. 19) Hem usat la relacio

1

=1-—vu,/c?

v2(1+vu,r/c?)
. . .y UN\—V
que es pot es establir a partir de la relaciéd u,r = ———:
1-vu,/c
1 . 1
vuU_ N\ "~
2 X -
y?(1+=F) yz(1+§2. _uﬁg,u‘;>
1=
Cc
. 1 _ cP-vuy
_y2(1+"”X‘”2) y2(c?-v?)
C4—vUuy



